1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/mm.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
37 struct extent_buffer *src, int empty);
38 static int balance_node_right(struct btrfs_trans_handle *trans,
39 struct btrfs_fs_info *fs_info,
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 struct extent_buffer *eb);
46
btrfs_alloc_path(void)47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
btrfs_set_path_blocking(struct btrfs_path * p)56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
btrfs_release_path(struct btrfs_path * p)121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136 }
137
138 /*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
btrfs_root_node(struct btrfs_root * root)148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was COWed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
btrfs_lock_root_node(struct btrfs_root * root)176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
btrfs_read_lock_root_node(struct btrfs_root * root)195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
add_root_to_dirty_list(struct btrfs_root * root)214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
222 spin_lock(&fs_info->trans_lock);
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
227 &fs_info->dirty_cowonly_roots);
228 else
229 list_move(&root->dirty_list,
230 &fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct btrfs_fs_info *fs_info = root->fs_info;
246 struct extent_buffer *cow;
247 int ret = 0;
248 int level;
249 struct btrfs_disk_key disk_key;
250
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != fs_info->running_transaction->transid);
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
255
256 level = btrfs_header_level(buf);
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
261
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
264 if (IS_ERR(cow))
265 return PTR_ERR(cow);
266
267 copy_extent_buffer_full(cow, buf);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
277
278 write_extent_buffer_fsid(cow, fs_info->fsid);
279
280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 ret = btrfs_inc_ref(trans, root, cow, 1);
283 else
284 ret = btrfs_inc_ref(trans, root, cow, 0);
285
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292 }
293
294 enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307 };
308
309 struct tree_mod_root {
310 u64 logical;
311 u8 level;
312 };
313
314 struct tree_mod_elem {
315 struct rb_node node;
316 u64 logical;
317 u64 seq;
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335 };
336
337 /*
338 * Pull a new tree mod seq number for our operation.
339 */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)340 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
341 {
342 return atomic64_inc_return(&fs_info->tree_mod_seq);
343 }
344
345 /*
346 * This adds a new blocker to the tree mod log's blocker list if the @elem
347 * passed does not already have a sequence number set. So when a caller expects
348 * to record tree modifications, it should ensure to set elem->seq to zero
349 * before calling btrfs_get_tree_mod_seq.
350 * Returns a fresh, unused tree log modification sequence number, even if no new
351 * blocker was added.
352 */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)353 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
354 struct seq_list *elem)
355 {
356 write_lock(&fs_info->tree_mod_log_lock);
357 if (!elem->seq) {
358 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
359 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
360 }
361 write_unlock(&fs_info->tree_mod_log_lock);
362
363 return elem->seq;
364 }
365
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)366 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
367 struct seq_list *elem)
368 {
369 struct rb_root *tm_root;
370 struct rb_node *node;
371 struct rb_node *next;
372 struct seq_list *cur_elem;
373 struct tree_mod_elem *tm;
374 u64 min_seq = (u64)-1;
375 u64 seq_putting = elem->seq;
376
377 if (!seq_putting)
378 return;
379
380 write_lock(&fs_info->tree_mod_log_lock);
381 list_del(&elem->list);
382 elem->seq = 0;
383
384 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
385 if (cur_elem->seq < min_seq) {
386 if (seq_putting > cur_elem->seq) {
387 /*
388 * blocker with lower sequence number exists, we
389 * cannot remove anything from the log
390 */
391 write_unlock(&fs_info->tree_mod_log_lock);
392 return;
393 }
394 min_seq = cur_elem->seq;
395 }
396 }
397
398 /*
399 * anything that's lower than the lowest existing (read: blocked)
400 * sequence number can be removed from the tree.
401 */
402 tm_root = &fs_info->tree_mod_log;
403 for (node = rb_first(tm_root); node; node = next) {
404 next = rb_next(node);
405 tm = rb_entry(node, struct tree_mod_elem, node);
406 if (tm->seq >= min_seq)
407 continue;
408 rb_erase(node, tm_root);
409 kfree(tm);
410 }
411 write_unlock(&fs_info->tree_mod_log_lock);
412 }
413
414 /*
415 * key order of the log:
416 * node/leaf start address -> sequence
417 *
418 * The 'start address' is the logical address of the *new* root node
419 * for root replace operations, or the logical address of the affected
420 * block for all other operations.
421 *
422 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
423 */
424 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)425 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
426 {
427 struct rb_root *tm_root;
428 struct rb_node **new;
429 struct rb_node *parent = NULL;
430 struct tree_mod_elem *cur;
431
432 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
433
434 tm_root = &fs_info->tree_mod_log;
435 new = &tm_root->rb_node;
436 while (*new) {
437 cur = rb_entry(*new, struct tree_mod_elem, node);
438 parent = *new;
439 if (cur->logical < tm->logical)
440 new = &((*new)->rb_left);
441 else if (cur->logical > tm->logical)
442 new = &((*new)->rb_right);
443 else if (cur->seq < tm->seq)
444 new = &((*new)->rb_left);
445 else if (cur->seq > tm->seq)
446 new = &((*new)->rb_right);
447 else
448 return -EEXIST;
449 }
450
451 rb_link_node(&tm->node, parent, new);
452 rb_insert_color(&tm->node, tm_root);
453 return 0;
454 }
455
456 /*
457 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
458 * returns zero with the tree_mod_log_lock acquired. The caller must hold
459 * this until all tree mod log insertions are recorded in the rb tree and then
460 * write unlock fs_info::tree_mod_log_lock.
461 */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)462 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
463 struct extent_buffer *eb) {
464 smp_mb();
465 if (list_empty(&(fs_info)->tree_mod_seq_list))
466 return 1;
467 if (eb && btrfs_header_level(eb) == 0)
468 return 1;
469
470 write_lock(&fs_info->tree_mod_log_lock);
471 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
472 write_unlock(&fs_info->tree_mod_log_lock);
473 return 1;
474 }
475
476 return 0;
477 }
478
479 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)480 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
481 struct extent_buffer *eb)
482 {
483 smp_mb();
484 if (list_empty(&(fs_info)->tree_mod_seq_list))
485 return 0;
486 if (eb && btrfs_header_level(eb) == 0)
487 return 0;
488
489 return 1;
490 }
491
492 static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)493 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
494 enum mod_log_op op, gfp_t flags)
495 {
496 struct tree_mod_elem *tm;
497
498 tm = kzalloc(sizeof(*tm), flags);
499 if (!tm)
500 return NULL;
501
502 tm->logical = eb->start;
503 if (op != MOD_LOG_KEY_ADD) {
504 btrfs_node_key(eb, &tm->key, slot);
505 tm->blockptr = btrfs_node_blockptr(eb, slot);
506 }
507 tm->op = op;
508 tm->slot = slot;
509 tm->generation = btrfs_node_ptr_generation(eb, slot);
510 RB_CLEAR_NODE(&tm->node);
511
512 return tm;
513 }
514
515 static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)516 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
517 struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
519 {
520 struct tree_mod_elem *tm;
521 int ret;
522
523 if (!tree_mod_need_log(fs_info, eb))
524 return 0;
525
526 tm = alloc_tree_mod_elem(eb, slot, op, flags);
527 if (!tm)
528 return -ENOMEM;
529
530 if (tree_mod_dont_log(fs_info, eb)) {
531 kfree(tm);
532 return 0;
533 }
534
535 ret = __tree_mod_log_insert(fs_info, tm);
536 write_unlock(&eb->fs_info->tree_mod_log_lock);
537 if (ret)
538 kfree(tm);
539
540 return ret;
541 }
542
543 static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items)544 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
545 struct extent_buffer *eb, int dst_slot, int src_slot,
546 int nr_items)
547 {
548 struct tree_mod_elem *tm = NULL;
549 struct tree_mod_elem **tm_list = NULL;
550 int ret = 0;
551 int i;
552 int locked = 0;
553
554 if (!tree_mod_need_log(fs_info, eb))
555 return 0;
556
557 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
558 if (!tm_list)
559 return -ENOMEM;
560
561 tm = kzalloc(sizeof(*tm), GFP_NOFS);
562 if (!tm) {
563 ret = -ENOMEM;
564 goto free_tms;
565 }
566
567 tm->logical = eb->start;
568 tm->slot = src_slot;
569 tm->move.dst_slot = dst_slot;
570 tm->move.nr_items = nr_items;
571 tm->op = MOD_LOG_MOVE_KEYS;
572
573 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
574 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
575 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
576 if (!tm_list[i]) {
577 ret = -ENOMEM;
578 goto free_tms;
579 }
580 }
581
582 if (tree_mod_dont_log(fs_info, eb))
583 goto free_tms;
584 locked = 1;
585
586 /*
587 * When we override something during the move, we log these removals.
588 * This can only happen when we move towards the beginning of the
589 * buffer, i.e. dst_slot < src_slot.
590 */
591 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
592 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
593 if (ret)
594 goto free_tms;
595 }
596
597 ret = __tree_mod_log_insert(fs_info, tm);
598 if (ret)
599 goto free_tms;
600 write_unlock(&eb->fs_info->tree_mod_log_lock);
601 kfree(tm_list);
602
603 return 0;
604 free_tms:
605 for (i = 0; i < nr_items; i++) {
606 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
607 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
608 kfree(tm_list[i]);
609 }
610 if (locked)
611 write_unlock(&eb->fs_info->tree_mod_log_lock);
612 kfree(tm_list);
613 kfree(tm);
614
615 return ret;
616 }
617
618 static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)619 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
620 struct tree_mod_elem **tm_list,
621 int nritems)
622 {
623 int i, j;
624 int ret;
625
626 for (i = nritems - 1; i >= 0; i--) {
627 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
628 if (ret) {
629 for (j = nritems - 1; j > i; j--)
630 rb_erase(&tm_list[j]->node,
631 &fs_info->tree_mod_log);
632 return ret;
633 }
634 }
635
636 return 0;
637 }
638
639 static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info * fs_info,struct extent_buffer * old_root,struct extent_buffer * new_root,int log_removal)640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 struct extent_buffer *old_root,
642 struct extent_buffer *new_root,
643 int log_removal)
644 {
645 struct tree_mod_elem *tm = NULL;
646 struct tree_mod_elem **tm_list = NULL;
647 int nritems = 0;
648 int ret = 0;
649 int i;
650
651 if (!tree_mod_need_log(fs_info, NULL))
652 return 0;
653
654 if (log_removal && btrfs_header_level(old_root) > 0) {
655 nritems = btrfs_header_nritems(old_root);
656 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
657 GFP_NOFS);
658 if (!tm_list) {
659 ret = -ENOMEM;
660 goto free_tms;
661 }
662 for (i = 0; i < nritems; i++) {
663 tm_list[i] = alloc_tree_mod_elem(old_root, i,
664 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
665 if (!tm_list[i]) {
666 ret = -ENOMEM;
667 goto free_tms;
668 }
669 }
670 }
671
672 tm = kzalloc(sizeof(*tm), GFP_NOFS);
673 if (!tm) {
674 ret = -ENOMEM;
675 goto free_tms;
676 }
677
678 tm->logical = new_root->start;
679 tm->old_root.logical = old_root->start;
680 tm->old_root.level = btrfs_header_level(old_root);
681 tm->generation = btrfs_header_generation(old_root);
682 tm->op = MOD_LOG_ROOT_REPLACE;
683
684 if (tree_mod_dont_log(fs_info, NULL))
685 goto free_tms;
686
687 if (tm_list)
688 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
689 if (!ret)
690 ret = __tree_mod_log_insert(fs_info, tm);
691
692 write_unlock(&fs_info->tree_mod_log_lock);
693 if (ret)
694 goto free_tms;
695 kfree(tm_list);
696
697 return ret;
698
699 free_tms:
700 if (tm_list) {
701 for (i = 0; i < nritems; i++)
702 kfree(tm_list[i]);
703 kfree(tm_list);
704 }
705 kfree(tm);
706
707 return ret;
708 }
709
710 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 int smallest)
713 {
714 struct rb_root *tm_root;
715 struct rb_node *node;
716 struct tree_mod_elem *cur = NULL;
717 struct tree_mod_elem *found = NULL;
718
719 read_lock(&fs_info->tree_mod_log_lock);
720 tm_root = &fs_info->tree_mod_log;
721 node = tm_root->rb_node;
722 while (node) {
723 cur = rb_entry(node, struct tree_mod_elem, node);
724 if (cur->logical < start) {
725 node = node->rb_left;
726 } else if (cur->logical > start) {
727 node = node->rb_right;
728 } else if (cur->seq < min_seq) {
729 node = node->rb_left;
730 } else if (!smallest) {
731 /* we want the node with the highest seq */
732 if (found)
733 BUG_ON(found->seq > cur->seq);
734 found = cur;
735 node = node->rb_left;
736 } else if (cur->seq > min_seq) {
737 /* we want the node with the smallest seq */
738 if (found)
739 BUG_ON(found->seq < cur->seq);
740 found = cur;
741 node = node->rb_right;
742 } else {
743 found = cur;
744 break;
745 }
746 }
747 read_unlock(&fs_info->tree_mod_log_lock);
748
749 return found;
750 }
751
752 /*
753 * this returns the element from the log with the smallest time sequence
754 * value that's in the log (the oldest log item). any element with a time
755 * sequence lower than min_seq will be ignored.
756 */
757 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)758 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
759 u64 min_seq)
760 {
761 return __tree_mod_log_search(fs_info, start, min_seq, 1);
762 }
763
764 /*
765 * this returns the element from the log with the largest time sequence
766 * value that's in the log (the most recent log item). any element with
767 * a time sequence lower than min_seq will be ignored.
768 */
769 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)770 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
771 {
772 return __tree_mod_log_search(fs_info, start, min_seq, 0);
773 }
774
775 static noinline int
tree_mod_log_eb_copy(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)776 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
777 struct extent_buffer *src, unsigned long dst_offset,
778 unsigned long src_offset, int nr_items)
779 {
780 int ret = 0;
781 struct tree_mod_elem **tm_list = NULL;
782 struct tree_mod_elem **tm_list_add, **tm_list_rem;
783 int i;
784 int locked = 0;
785
786 if (!tree_mod_need_log(fs_info, NULL))
787 return 0;
788
789 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
790 return 0;
791
792 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
793 GFP_NOFS);
794 if (!tm_list)
795 return -ENOMEM;
796
797 tm_list_add = tm_list;
798 tm_list_rem = tm_list + nr_items;
799 for (i = 0; i < nr_items; i++) {
800 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
801 MOD_LOG_KEY_REMOVE, GFP_NOFS);
802 if (!tm_list_rem[i]) {
803 ret = -ENOMEM;
804 goto free_tms;
805 }
806
807 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
808 MOD_LOG_KEY_ADD, GFP_NOFS);
809 if (!tm_list_add[i]) {
810 ret = -ENOMEM;
811 goto free_tms;
812 }
813 }
814
815 if (tree_mod_dont_log(fs_info, NULL))
816 goto free_tms;
817 locked = 1;
818
819 for (i = 0; i < nr_items; i++) {
820 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
821 if (ret)
822 goto free_tms;
823 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
824 if (ret)
825 goto free_tms;
826 }
827
828 write_unlock(&fs_info->tree_mod_log_lock);
829 kfree(tm_list);
830
831 return 0;
832
833 free_tms:
834 for (i = 0; i < nr_items * 2; i++) {
835 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
836 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
837 kfree(tm_list[i]);
838 }
839 if (locked)
840 write_unlock(&fs_info->tree_mod_log_lock);
841 kfree(tm_list);
842
843 return ret;
844 }
845
846 static inline void
tree_mod_log_eb_move(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,int dst_offset,int src_offset,int nr_items)847 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
848 int dst_offset, int src_offset, int nr_items)
849 {
850 int ret;
851 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
852 nr_items);
853 BUG_ON(ret < 0);
854 }
855
856 static noinline void
tree_mod_log_set_node_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,int atomic)857 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
858 struct extent_buffer *eb, int slot, int atomic)
859 {
860 int ret;
861
862 ret = tree_mod_log_insert_key(fs_info, eb, slot,
863 MOD_LOG_KEY_REPLACE,
864 atomic ? GFP_ATOMIC : GFP_NOFS);
865 BUG_ON(ret < 0);
866 }
867
868 static noinline int
tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)869 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
870 {
871 struct tree_mod_elem **tm_list = NULL;
872 int nritems = 0;
873 int i;
874 int ret = 0;
875
876 if (btrfs_header_level(eb) == 0)
877 return 0;
878
879 if (!tree_mod_need_log(fs_info, NULL))
880 return 0;
881
882 nritems = btrfs_header_nritems(eb);
883 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
884 if (!tm_list)
885 return -ENOMEM;
886
887 for (i = 0; i < nritems; i++) {
888 tm_list[i] = alloc_tree_mod_elem(eb, i,
889 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
890 if (!tm_list[i]) {
891 ret = -ENOMEM;
892 goto free_tms;
893 }
894 }
895
896 if (tree_mod_dont_log(fs_info, eb))
897 goto free_tms;
898
899 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
900 write_unlock(&eb->fs_info->tree_mod_log_lock);
901 if (ret)
902 goto free_tms;
903 kfree(tm_list);
904
905 return 0;
906
907 free_tms:
908 for (i = 0; i < nritems; i++)
909 kfree(tm_list[i]);
910 kfree(tm_list);
911
912 return ret;
913 }
914
915 static noinline void
tree_mod_log_set_root_pointer(struct btrfs_root * root,struct extent_buffer * new_root_node,int log_removal)916 tree_mod_log_set_root_pointer(struct btrfs_root *root,
917 struct extent_buffer *new_root_node,
918 int log_removal)
919 {
920 int ret;
921 ret = tree_mod_log_insert_root(root->fs_info, root->node,
922 new_root_node, log_removal);
923 BUG_ON(ret < 0);
924 }
925
926 /*
927 * check if the tree block can be shared by multiple trees
928 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)929 int btrfs_block_can_be_shared(struct btrfs_root *root,
930 struct extent_buffer *buf)
931 {
932 /*
933 * Tree blocks not in reference counted trees and tree roots
934 * are never shared. If a block was allocated after the last
935 * snapshot and the block was not allocated by tree relocation,
936 * we know the block is not shared.
937 */
938 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
939 buf != root->node && buf != root->commit_root &&
940 (btrfs_header_generation(buf) <=
941 btrfs_root_last_snapshot(&root->root_item) ||
942 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
943 return 1;
944 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
945 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
946 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
947 return 1;
948 #endif
949 return 0;
950 }
951
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)952 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 struct extent_buffer *buf,
955 struct extent_buffer *cow,
956 int *last_ref)
957 {
958 struct btrfs_fs_info *fs_info = root->fs_info;
959 u64 refs;
960 u64 owner;
961 u64 flags;
962 u64 new_flags = 0;
963 int ret;
964
965 /*
966 * Backrefs update rules:
967 *
968 * Always use full backrefs for extent pointers in tree block
969 * allocated by tree relocation.
970 *
971 * If a shared tree block is no longer referenced by its owner
972 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
973 * use full backrefs for extent pointers in tree block.
974 *
975 * If a tree block is been relocating
976 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
977 * use full backrefs for extent pointers in tree block.
978 * The reason for this is some operations (such as drop tree)
979 * are only allowed for blocks use full backrefs.
980 */
981
982 if (btrfs_block_can_be_shared(root, buf)) {
983 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
984 btrfs_header_level(buf), 1,
985 &refs, &flags);
986 if (ret)
987 return ret;
988 if (refs == 0) {
989 ret = -EROFS;
990 btrfs_handle_fs_error(fs_info, ret, NULL);
991 return ret;
992 }
993 } else {
994 refs = 1;
995 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
996 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
997 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
998 else
999 flags = 0;
1000 }
1001
1002 owner = btrfs_header_owner(buf);
1003 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1004 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1005
1006 if (refs > 1) {
1007 if ((owner == root->root_key.objectid ||
1008 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1009 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1010 ret = btrfs_inc_ref(trans, root, buf, 1);
1011 if (ret)
1012 return ret;
1013
1014 if (root->root_key.objectid ==
1015 BTRFS_TREE_RELOC_OBJECTID) {
1016 ret = btrfs_dec_ref(trans, root, buf, 0);
1017 if (ret)
1018 return ret;
1019 ret = btrfs_inc_ref(trans, root, cow, 1);
1020 if (ret)
1021 return ret;
1022 }
1023 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024 } else {
1025
1026 if (root->root_key.objectid ==
1027 BTRFS_TREE_RELOC_OBJECTID)
1028 ret = btrfs_inc_ref(trans, root, cow, 1);
1029 else
1030 ret = btrfs_inc_ref(trans, root, cow, 0);
1031 if (ret)
1032 return ret;
1033 }
1034 if (new_flags != 0) {
1035 int level = btrfs_header_level(buf);
1036
1037 ret = btrfs_set_disk_extent_flags(trans, fs_info,
1038 buf->start,
1039 buf->len,
1040 new_flags, level, 0);
1041 if (ret)
1042 return ret;
1043 }
1044 } else {
1045 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1046 if (root->root_key.objectid ==
1047 BTRFS_TREE_RELOC_OBJECTID)
1048 ret = btrfs_inc_ref(trans, root, cow, 1);
1049 else
1050 ret = btrfs_inc_ref(trans, root, cow, 0);
1051 if (ret)
1052 return ret;
1053 ret = btrfs_dec_ref(trans, root, buf, 1);
1054 if (ret)
1055 return ret;
1056 }
1057 clean_tree_block(fs_info, buf);
1058 *last_ref = 1;
1059 }
1060 return 0;
1061 }
1062
1063 /*
1064 * does the dirty work in cow of a single block. The parent block (if
1065 * supplied) is updated to point to the new cow copy. The new buffer is marked
1066 * dirty and returned locked. If you modify the block it needs to be marked
1067 * dirty again.
1068 *
1069 * search_start -- an allocation hint for the new block
1070 *
1071 * empty_size -- a hint that you plan on doing more cow. This is the size in
1072 * bytes the allocator should try to find free next to the block it returns.
1073 * This is just a hint and may be ignored by the allocator.
1074 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)1075 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1076 struct btrfs_root *root,
1077 struct extent_buffer *buf,
1078 struct extent_buffer *parent, int parent_slot,
1079 struct extent_buffer **cow_ret,
1080 u64 search_start, u64 empty_size)
1081 {
1082 struct btrfs_fs_info *fs_info = root->fs_info;
1083 struct btrfs_disk_key disk_key;
1084 struct extent_buffer *cow;
1085 int level, ret;
1086 int last_ref = 0;
1087 int unlock_orig = 0;
1088 u64 parent_start = 0;
1089
1090 if (*cow_ret == buf)
1091 unlock_orig = 1;
1092
1093 btrfs_assert_tree_locked(buf);
1094
1095 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1096 trans->transid != fs_info->running_transaction->transid);
1097 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1098 trans->transid != root->last_trans);
1099
1100 level = btrfs_header_level(buf);
1101
1102 if (level == 0)
1103 btrfs_item_key(buf, &disk_key, 0);
1104 else
1105 btrfs_node_key(buf, &disk_key, 0);
1106
1107 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1108 parent_start = parent->start;
1109
1110 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1111 root->root_key.objectid, &disk_key, level,
1112 search_start, empty_size);
1113 if (IS_ERR(cow))
1114 return PTR_ERR(cow);
1115
1116 /* cow is set to blocking by btrfs_init_new_buffer */
1117
1118 copy_extent_buffer_full(cow, buf);
1119 btrfs_set_header_bytenr(cow, cow->start);
1120 btrfs_set_header_generation(cow, trans->transid);
1121 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1122 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1123 BTRFS_HEADER_FLAG_RELOC);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1125 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1126 else
1127 btrfs_set_header_owner(cow, root->root_key.objectid);
1128
1129 write_extent_buffer_fsid(cow, fs_info->fsid);
1130
1131 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1132 if (ret) {
1133 btrfs_abort_transaction(trans, ret);
1134 return ret;
1135 }
1136
1137 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1138 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1139 if (ret) {
1140 btrfs_abort_transaction(trans, ret);
1141 return ret;
1142 }
1143 }
1144
1145 if (buf == root->node) {
1146 WARN_ON(parent && parent != buf);
1147 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1148 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1149 parent_start = buf->start;
1150
1151 extent_buffer_get(cow);
1152 tree_mod_log_set_root_pointer(root, cow, 1);
1153 rcu_assign_pointer(root->node, cow);
1154
1155 btrfs_free_tree_block(trans, root, buf, parent_start,
1156 last_ref);
1157 free_extent_buffer(buf);
1158 add_root_to_dirty_list(root);
1159 } else {
1160 WARN_ON(trans->transid != btrfs_header_generation(parent));
1161 tree_mod_log_insert_key(fs_info, parent, parent_slot,
1162 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1163 btrfs_set_node_blockptr(parent, parent_slot,
1164 cow->start);
1165 btrfs_set_node_ptr_generation(parent, parent_slot,
1166 trans->transid);
1167 btrfs_mark_buffer_dirty(parent);
1168 if (last_ref) {
1169 ret = tree_mod_log_free_eb(fs_info, buf);
1170 if (ret) {
1171 btrfs_abort_transaction(trans, ret);
1172 return ret;
1173 }
1174 }
1175 btrfs_free_tree_block(trans, root, buf, parent_start,
1176 last_ref);
1177 }
1178 if (unlock_orig)
1179 btrfs_tree_unlock(buf);
1180 free_extent_buffer_stale(buf);
1181 btrfs_mark_buffer_dirty(cow);
1182 *cow_ret = cow;
1183 return 0;
1184 }
1185
1186 /*
1187 * returns the logical address of the oldest predecessor of the given root.
1188 * entries older than time_seq are ignored.
1189 */
1190 static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info * fs_info,struct extent_buffer * eb_root,u64 time_seq)1191 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1192 struct extent_buffer *eb_root, u64 time_seq)
1193 {
1194 struct tree_mod_elem *tm;
1195 struct tree_mod_elem *found = NULL;
1196 u64 root_logical = eb_root->start;
1197 int looped = 0;
1198
1199 if (!time_seq)
1200 return NULL;
1201
1202 /*
1203 * the very last operation that's logged for a root is the
1204 * replacement operation (if it is replaced at all). this has
1205 * the logical address of the *new* root, making it the very
1206 * first operation that's logged for this root.
1207 */
1208 while (1) {
1209 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1210 time_seq);
1211 if (!looped && !tm)
1212 return NULL;
1213 /*
1214 * if there are no tree operation for the oldest root, we simply
1215 * return it. this should only happen if that (old) root is at
1216 * level 0.
1217 */
1218 if (!tm)
1219 break;
1220
1221 /*
1222 * if there's an operation that's not a root replacement, we
1223 * found the oldest version of our root. normally, we'll find a
1224 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1225 */
1226 if (tm->op != MOD_LOG_ROOT_REPLACE)
1227 break;
1228
1229 found = tm;
1230 root_logical = tm->old_root.logical;
1231 looped = 1;
1232 }
1233
1234 /* if there's no old root to return, return what we found instead */
1235 if (!found)
1236 found = tm;
1237
1238 return found;
1239 }
1240
1241 /*
1242 * tm is a pointer to the first operation to rewind within eb. then, all
1243 * previous operations will be rewound (until we reach something older than
1244 * time_seq).
1245 */
1246 static void
__tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1247 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1248 u64 time_seq, struct tree_mod_elem *first_tm)
1249 {
1250 u32 n;
1251 struct rb_node *next;
1252 struct tree_mod_elem *tm = first_tm;
1253 unsigned long o_dst;
1254 unsigned long o_src;
1255 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1256
1257 n = btrfs_header_nritems(eb);
1258 read_lock(&fs_info->tree_mod_log_lock);
1259 while (tm && tm->seq >= time_seq) {
1260 /*
1261 * all the operations are recorded with the operator used for
1262 * the modification. as we're going backwards, we do the
1263 * opposite of each operation here.
1264 */
1265 switch (tm->op) {
1266 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1267 BUG_ON(tm->slot < n);
1268 /* Fallthrough */
1269 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1270 case MOD_LOG_KEY_REMOVE:
1271 btrfs_set_node_key(eb, &tm->key, tm->slot);
1272 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1273 btrfs_set_node_ptr_generation(eb, tm->slot,
1274 tm->generation);
1275 n++;
1276 break;
1277 case MOD_LOG_KEY_REPLACE:
1278 BUG_ON(tm->slot >= n);
1279 btrfs_set_node_key(eb, &tm->key, tm->slot);
1280 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1281 btrfs_set_node_ptr_generation(eb, tm->slot,
1282 tm->generation);
1283 break;
1284 case MOD_LOG_KEY_ADD:
1285 /* if a move operation is needed it's in the log */
1286 n--;
1287 break;
1288 case MOD_LOG_MOVE_KEYS:
1289 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1290 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1291 memmove_extent_buffer(eb, o_dst, o_src,
1292 tm->move.nr_items * p_size);
1293 break;
1294 case MOD_LOG_ROOT_REPLACE:
1295 /*
1296 * this operation is special. for roots, this must be
1297 * handled explicitly before rewinding.
1298 * for non-roots, this operation may exist if the node
1299 * was a root: root A -> child B; then A gets empty and
1300 * B is promoted to the new root. in the mod log, we'll
1301 * have a root-replace operation for B, a tree block
1302 * that is no root. we simply ignore that operation.
1303 */
1304 break;
1305 }
1306 next = rb_next(&tm->node);
1307 if (!next)
1308 break;
1309 tm = rb_entry(next, struct tree_mod_elem, node);
1310 if (tm->logical != first_tm->logical)
1311 break;
1312 }
1313 read_unlock(&fs_info->tree_mod_log_lock);
1314 btrfs_set_header_nritems(eb, n);
1315 }
1316
1317 /*
1318 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1319 * is returned. If rewind operations happen, a fresh buffer is returned. The
1320 * returned buffer is always read-locked. If the returned buffer is not the
1321 * input buffer, the lock on the input buffer is released and the input buffer
1322 * is freed (its refcount is decremented).
1323 */
1324 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)1325 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1326 struct extent_buffer *eb, u64 time_seq)
1327 {
1328 struct extent_buffer *eb_rewin;
1329 struct tree_mod_elem *tm;
1330
1331 if (!time_seq)
1332 return eb;
1333
1334 if (btrfs_header_level(eb) == 0)
1335 return eb;
1336
1337 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1338 if (!tm)
1339 return eb;
1340
1341 btrfs_set_path_blocking(path);
1342 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1343
1344 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1345 BUG_ON(tm->slot != 0);
1346 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1347 if (!eb_rewin) {
1348 btrfs_tree_read_unlock_blocking(eb);
1349 free_extent_buffer(eb);
1350 return NULL;
1351 }
1352 btrfs_set_header_bytenr(eb_rewin, eb->start);
1353 btrfs_set_header_backref_rev(eb_rewin,
1354 btrfs_header_backref_rev(eb));
1355 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1356 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1357 } else {
1358 eb_rewin = btrfs_clone_extent_buffer(eb);
1359 if (!eb_rewin) {
1360 btrfs_tree_read_unlock_blocking(eb);
1361 free_extent_buffer(eb);
1362 return NULL;
1363 }
1364 }
1365
1366 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1367 btrfs_tree_read_unlock_blocking(eb);
1368 free_extent_buffer(eb);
1369
1370 extent_buffer_get(eb_rewin);
1371 btrfs_tree_read_lock(eb_rewin);
1372 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1373 WARN_ON(btrfs_header_nritems(eb_rewin) >
1374 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1375
1376 return eb_rewin;
1377 }
1378
1379 /*
1380 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1381 * value. If there are no changes, the current root->root_node is returned. If
1382 * anything changed in between, there's a fresh buffer allocated on which the
1383 * rewind operations are done. In any case, the returned buffer is read locked.
1384 * Returns NULL on error (with no locks held).
1385 */
1386 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1387 get_old_root(struct btrfs_root *root, u64 time_seq)
1388 {
1389 struct btrfs_fs_info *fs_info = root->fs_info;
1390 struct tree_mod_elem *tm;
1391 struct extent_buffer *eb = NULL;
1392 struct extent_buffer *eb_root;
1393 u64 eb_root_owner = 0;
1394 struct extent_buffer *old;
1395 struct tree_mod_root *old_root = NULL;
1396 u64 old_generation = 0;
1397 u64 logical;
1398
1399 eb_root = btrfs_read_lock_root_node(root);
1400 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1401 if (!tm)
1402 return eb_root;
1403
1404 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1405 old_root = &tm->old_root;
1406 old_generation = tm->generation;
1407 logical = old_root->logical;
1408 } else {
1409 logical = eb_root->start;
1410 }
1411
1412 tm = tree_mod_log_search(fs_info, logical, time_seq);
1413 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1414 btrfs_tree_read_unlock(eb_root);
1415 free_extent_buffer(eb_root);
1416 old = read_tree_block(fs_info, logical, 0);
1417 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1418 if (!IS_ERR(old))
1419 free_extent_buffer(old);
1420 btrfs_warn(fs_info,
1421 "failed to read tree block %llu from get_old_root",
1422 logical);
1423 } else {
1424 eb = btrfs_clone_extent_buffer(old);
1425 free_extent_buffer(old);
1426 }
1427 } else if (old_root) {
1428 eb_root_owner = btrfs_header_owner(eb_root);
1429 btrfs_tree_read_unlock(eb_root);
1430 free_extent_buffer(eb_root);
1431 eb = alloc_dummy_extent_buffer(fs_info, logical);
1432 } else {
1433 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1434 eb = btrfs_clone_extent_buffer(eb_root);
1435 btrfs_tree_read_unlock_blocking(eb_root);
1436 free_extent_buffer(eb_root);
1437 }
1438
1439 if (!eb)
1440 return NULL;
1441 extent_buffer_get(eb);
1442 btrfs_tree_read_lock(eb);
1443 if (old_root) {
1444 btrfs_set_header_bytenr(eb, eb->start);
1445 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1446 btrfs_set_header_owner(eb, eb_root_owner);
1447 btrfs_set_header_level(eb, old_root->level);
1448 btrfs_set_header_generation(eb, old_generation);
1449 }
1450 if (tm)
1451 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1452 else
1453 WARN_ON(btrfs_header_level(eb) != 0);
1454 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1455
1456 return eb;
1457 }
1458
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1459 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1460 {
1461 struct tree_mod_elem *tm;
1462 int level;
1463 struct extent_buffer *eb_root = btrfs_root_node(root);
1464
1465 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1466 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1467 level = tm->old_root.level;
1468 } else {
1469 level = btrfs_header_level(eb_root);
1470 }
1471 free_extent_buffer(eb_root);
1472
1473 return level;
1474 }
1475
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1476 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root,
1478 struct extent_buffer *buf)
1479 {
1480 if (btrfs_is_testing(root->fs_info))
1481 return 0;
1482
1483 /* ensure we can see the force_cow */
1484 smp_rmb();
1485
1486 /*
1487 * We do not need to cow a block if
1488 * 1) this block is not created or changed in this transaction;
1489 * 2) this block does not belong to TREE_RELOC tree;
1490 * 3) the root is not forced COW.
1491 *
1492 * What is forced COW:
1493 * when we create snapshot during committing the transaction,
1494 * after we've finished coping src root, we must COW the shared
1495 * block to ensure the metadata consistency.
1496 */
1497 if (btrfs_header_generation(buf) == trans->transid &&
1498 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1499 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1500 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1501 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1502 return 0;
1503 return 1;
1504 }
1505
1506 /*
1507 * cows a single block, see __btrfs_cow_block for the real work.
1508 * This version of it has extra checks so that a block isn't COWed more than
1509 * once per transaction, as long as it hasn't been written yet
1510 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1511 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1512 struct btrfs_root *root, struct extent_buffer *buf,
1513 struct extent_buffer *parent, int parent_slot,
1514 struct extent_buffer **cow_ret)
1515 {
1516 struct btrfs_fs_info *fs_info = root->fs_info;
1517 u64 search_start;
1518 int ret;
1519
1520 if (trans->transaction != fs_info->running_transaction)
1521 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1522 trans->transid,
1523 fs_info->running_transaction->transid);
1524
1525 if (trans->transid != fs_info->generation)
1526 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1527 trans->transid, fs_info->generation);
1528
1529 if (!should_cow_block(trans, root, buf)) {
1530 trans->dirty = true;
1531 *cow_ret = buf;
1532 return 0;
1533 }
1534
1535 search_start = buf->start & ~((u64)SZ_1G - 1);
1536
1537 if (parent)
1538 btrfs_set_lock_blocking(parent);
1539 btrfs_set_lock_blocking(buf);
1540
1541 ret = __btrfs_cow_block(trans, root, buf, parent,
1542 parent_slot, cow_ret, search_start, 0);
1543
1544 trace_btrfs_cow_block(root, buf, *cow_ret);
1545
1546 return ret;
1547 }
1548
1549 /*
1550 * helper function for defrag to decide if two blocks pointed to by a
1551 * node are actually close by
1552 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1553 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1554 {
1555 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1556 return 1;
1557 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1558 return 1;
1559 return 0;
1560 }
1561
1562 /*
1563 * compare two keys in a memcmp fashion
1564 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)1565 static int comp_keys(const struct btrfs_disk_key *disk,
1566 const struct btrfs_key *k2)
1567 {
1568 struct btrfs_key k1;
1569
1570 btrfs_disk_key_to_cpu(&k1, disk);
1571
1572 return btrfs_comp_cpu_keys(&k1, k2);
1573 }
1574
1575 /*
1576 * same as comp_keys only with two btrfs_key's
1577 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)1578 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1579 {
1580 if (k1->objectid > k2->objectid)
1581 return 1;
1582 if (k1->objectid < k2->objectid)
1583 return -1;
1584 if (k1->type > k2->type)
1585 return 1;
1586 if (k1->type < k2->type)
1587 return -1;
1588 if (k1->offset > k2->offset)
1589 return 1;
1590 if (k1->offset < k2->offset)
1591 return -1;
1592 return 0;
1593 }
1594
1595 /*
1596 * this is used by the defrag code to go through all the
1597 * leaves pointed to by a node and reallocate them so that
1598 * disk order is close to key order
1599 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1600 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root, struct extent_buffer *parent,
1602 int start_slot, u64 *last_ret,
1603 struct btrfs_key *progress)
1604 {
1605 struct btrfs_fs_info *fs_info = root->fs_info;
1606 struct extent_buffer *cur;
1607 u64 blocknr;
1608 u64 gen;
1609 u64 search_start = *last_ret;
1610 u64 last_block = 0;
1611 u64 other;
1612 u32 parent_nritems;
1613 int end_slot;
1614 int i;
1615 int err = 0;
1616 int parent_level;
1617 int uptodate;
1618 u32 blocksize;
1619 int progress_passed = 0;
1620 struct btrfs_disk_key disk_key;
1621
1622 parent_level = btrfs_header_level(parent);
1623
1624 WARN_ON(trans->transaction != fs_info->running_transaction);
1625 WARN_ON(trans->transid != fs_info->generation);
1626
1627 parent_nritems = btrfs_header_nritems(parent);
1628 blocksize = fs_info->nodesize;
1629 end_slot = parent_nritems - 1;
1630
1631 if (parent_nritems <= 1)
1632 return 0;
1633
1634 btrfs_set_lock_blocking(parent);
1635
1636 for (i = start_slot; i <= end_slot; i++) {
1637 int close = 1;
1638
1639 btrfs_node_key(parent, &disk_key, i);
1640 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1641 continue;
1642
1643 progress_passed = 1;
1644 blocknr = btrfs_node_blockptr(parent, i);
1645 gen = btrfs_node_ptr_generation(parent, i);
1646 if (last_block == 0)
1647 last_block = blocknr;
1648
1649 if (i > 0) {
1650 other = btrfs_node_blockptr(parent, i - 1);
1651 close = close_blocks(blocknr, other, blocksize);
1652 }
1653 if (!close && i < end_slot) {
1654 other = btrfs_node_blockptr(parent, i + 1);
1655 close = close_blocks(blocknr, other, blocksize);
1656 }
1657 if (close) {
1658 last_block = blocknr;
1659 continue;
1660 }
1661
1662 cur = find_extent_buffer(fs_info, blocknr);
1663 if (cur)
1664 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1665 else
1666 uptodate = 0;
1667 if (!cur || !uptodate) {
1668 if (!cur) {
1669 cur = read_tree_block(fs_info, blocknr, gen);
1670 if (IS_ERR(cur)) {
1671 return PTR_ERR(cur);
1672 } else if (!extent_buffer_uptodate(cur)) {
1673 free_extent_buffer(cur);
1674 return -EIO;
1675 }
1676 } else if (!uptodate) {
1677 err = btrfs_read_buffer(cur, gen);
1678 if (err) {
1679 free_extent_buffer(cur);
1680 return err;
1681 }
1682 }
1683 }
1684 if (search_start == 0)
1685 search_start = last_block;
1686
1687 btrfs_tree_lock(cur);
1688 btrfs_set_lock_blocking(cur);
1689 err = __btrfs_cow_block(trans, root, cur, parent, i,
1690 &cur, search_start,
1691 min(16 * blocksize,
1692 (end_slot - i) * blocksize));
1693 if (err) {
1694 btrfs_tree_unlock(cur);
1695 free_extent_buffer(cur);
1696 break;
1697 }
1698 search_start = cur->start;
1699 last_block = cur->start;
1700 *last_ret = search_start;
1701 btrfs_tree_unlock(cur);
1702 free_extent_buffer(cur);
1703 }
1704 return err;
1705 }
1706
1707 /*
1708 * search for key in the extent_buffer. The items start at offset p,
1709 * and they are item_size apart. There are 'max' items in p.
1710 *
1711 * the slot in the array is returned via slot, and it points to
1712 * the place where you would insert key if it is not found in
1713 * the array.
1714 *
1715 * slot may point to max if the key is bigger than all of the keys
1716 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,const struct btrfs_key * key,int max,int * slot)1717 static noinline int generic_bin_search(struct extent_buffer *eb,
1718 unsigned long p, int item_size,
1719 const struct btrfs_key *key,
1720 int max, int *slot)
1721 {
1722 int low = 0;
1723 int high = max;
1724 int mid;
1725 int ret;
1726 struct btrfs_disk_key *tmp = NULL;
1727 struct btrfs_disk_key unaligned;
1728 unsigned long offset;
1729 char *kaddr = NULL;
1730 unsigned long map_start = 0;
1731 unsigned long map_len = 0;
1732 int err;
1733
1734 if (low > high) {
1735 btrfs_err(eb->fs_info,
1736 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1737 __func__, low, high, eb->start,
1738 btrfs_header_owner(eb), btrfs_header_level(eb));
1739 return -EINVAL;
1740 }
1741
1742 while (low < high) {
1743 mid = (low + high) / 2;
1744 offset = p + mid * item_size;
1745
1746 if (!kaddr || offset < map_start ||
1747 (offset + sizeof(struct btrfs_disk_key)) >
1748 map_start + map_len) {
1749
1750 err = map_private_extent_buffer(eb, offset,
1751 sizeof(struct btrfs_disk_key),
1752 &kaddr, &map_start, &map_len);
1753
1754 if (!err) {
1755 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1756 map_start);
1757 } else if (err == 1) {
1758 read_extent_buffer(eb, &unaligned,
1759 offset, sizeof(unaligned));
1760 tmp = &unaligned;
1761 } else {
1762 return err;
1763 }
1764
1765 } else {
1766 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1767 map_start);
1768 }
1769 ret = comp_keys(tmp, key);
1770
1771 if (ret < 0)
1772 low = mid + 1;
1773 else if (ret > 0)
1774 high = mid;
1775 else {
1776 *slot = mid;
1777 return 0;
1778 }
1779 }
1780 *slot = low;
1781 return 1;
1782 }
1783
1784 /*
1785 * simple bin_search frontend that does the right thing for
1786 * leaves vs nodes
1787 */
bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int level,int * slot)1788 static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1789 int level, int *slot)
1790 {
1791 if (level == 0)
1792 return generic_bin_search(eb,
1793 offsetof(struct btrfs_leaf, items),
1794 sizeof(struct btrfs_item),
1795 key, btrfs_header_nritems(eb),
1796 slot);
1797 else
1798 return generic_bin_search(eb,
1799 offsetof(struct btrfs_node, ptrs),
1800 sizeof(struct btrfs_key_ptr),
1801 key, btrfs_header_nritems(eb),
1802 slot);
1803 }
1804
btrfs_bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int level,int * slot)1805 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1806 int level, int *slot)
1807 {
1808 return bin_search(eb, key, level, slot);
1809 }
1810
root_add_used(struct btrfs_root * root,u32 size)1811 static void root_add_used(struct btrfs_root *root, u32 size)
1812 {
1813 spin_lock(&root->accounting_lock);
1814 btrfs_set_root_used(&root->root_item,
1815 btrfs_root_used(&root->root_item) + size);
1816 spin_unlock(&root->accounting_lock);
1817 }
1818
root_sub_used(struct btrfs_root * root,u32 size)1819 static void root_sub_used(struct btrfs_root *root, u32 size)
1820 {
1821 spin_lock(&root->accounting_lock);
1822 btrfs_set_root_used(&root->root_item,
1823 btrfs_root_used(&root->root_item) - size);
1824 spin_unlock(&root->accounting_lock);
1825 }
1826
1827 /* given a node and slot number, this reads the blocks it points to. The
1828 * extent buffer is returned with a reference taken (but unlocked).
1829 */
1830 static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info * fs_info,struct extent_buffer * parent,int slot)1831 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1832 int slot)
1833 {
1834 int level = btrfs_header_level(parent);
1835 struct extent_buffer *eb;
1836
1837 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1838 return ERR_PTR(-ENOENT);
1839
1840 BUG_ON(level == 0);
1841
1842 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1843 btrfs_node_ptr_generation(parent, slot));
1844 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1845 free_extent_buffer(eb);
1846 eb = ERR_PTR(-EIO);
1847 }
1848
1849 return eb;
1850 }
1851
1852 /*
1853 * node level balancing, used to make sure nodes are in proper order for
1854 * item deletion. We balance from the top down, so we have to make sure
1855 * that a deletion won't leave an node completely empty later on.
1856 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1857 static noinline int balance_level(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 struct btrfs_path *path, int level)
1860 {
1861 struct btrfs_fs_info *fs_info = root->fs_info;
1862 struct extent_buffer *right = NULL;
1863 struct extent_buffer *mid;
1864 struct extent_buffer *left = NULL;
1865 struct extent_buffer *parent = NULL;
1866 int ret = 0;
1867 int wret;
1868 int pslot;
1869 int orig_slot = path->slots[level];
1870 u64 orig_ptr;
1871
1872 if (level == 0)
1873 return 0;
1874
1875 mid = path->nodes[level];
1876
1877 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1878 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1879 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1880
1881 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1882
1883 if (level < BTRFS_MAX_LEVEL - 1) {
1884 parent = path->nodes[level + 1];
1885 pslot = path->slots[level + 1];
1886 }
1887
1888 /*
1889 * deal with the case where there is only one pointer in the root
1890 * by promoting the node below to a root
1891 */
1892 if (!parent) {
1893 struct extent_buffer *child;
1894
1895 if (btrfs_header_nritems(mid) != 1)
1896 return 0;
1897
1898 /* promote the child to a root */
1899 child = read_node_slot(fs_info, mid, 0);
1900 if (IS_ERR(child)) {
1901 ret = PTR_ERR(child);
1902 btrfs_handle_fs_error(fs_info, ret, NULL);
1903 goto enospc;
1904 }
1905
1906 btrfs_tree_lock(child);
1907 btrfs_set_lock_blocking(child);
1908 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1909 if (ret) {
1910 btrfs_tree_unlock(child);
1911 free_extent_buffer(child);
1912 goto enospc;
1913 }
1914
1915 tree_mod_log_set_root_pointer(root, child, 1);
1916 rcu_assign_pointer(root->node, child);
1917
1918 add_root_to_dirty_list(root);
1919 btrfs_tree_unlock(child);
1920
1921 path->locks[level] = 0;
1922 path->nodes[level] = NULL;
1923 clean_tree_block(fs_info, mid);
1924 btrfs_tree_unlock(mid);
1925 /* once for the path */
1926 free_extent_buffer(mid);
1927
1928 root_sub_used(root, mid->len);
1929 btrfs_free_tree_block(trans, root, mid, 0, 1);
1930 /* once for the root ptr */
1931 free_extent_buffer_stale(mid);
1932 return 0;
1933 }
1934 if (btrfs_header_nritems(mid) >
1935 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1936 return 0;
1937
1938 left = read_node_slot(fs_info, parent, pslot - 1);
1939 if (IS_ERR(left))
1940 left = NULL;
1941
1942 if (left) {
1943 btrfs_tree_lock(left);
1944 btrfs_set_lock_blocking(left);
1945 wret = btrfs_cow_block(trans, root, left,
1946 parent, pslot - 1, &left);
1947 if (wret) {
1948 ret = wret;
1949 goto enospc;
1950 }
1951 }
1952
1953 right = read_node_slot(fs_info, parent, pslot + 1);
1954 if (IS_ERR(right))
1955 right = NULL;
1956
1957 if (right) {
1958 btrfs_tree_lock(right);
1959 btrfs_set_lock_blocking(right);
1960 wret = btrfs_cow_block(trans, root, right,
1961 parent, pslot + 1, &right);
1962 if (wret) {
1963 ret = wret;
1964 goto enospc;
1965 }
1966 }
1967
1968 /* first, try to make some room in the middle buffer */
1969 if (left) {
1970 orig_slot += btrfs_header_nritems(left);
1971 wret = push_node_left(trans, fs_info, left, mid, 1);
1972 if (wret < 0)
1973 ret = wret;
1974 }
1975
1976 /*
1977 * then try to empty the right most buffer into the middle
1978 */
1979 if (right) {
1980 wret = push_node_left(trans, fs_info, mid, right, 1);
1981 if (wret < 0 && wret != -ENOSPC)
1982 ret = wret;
1983 if (btrfs_header_nritems(right) == 0) {
1984 clean_tree_block(fs_info, right);
1985 btrfs_tree_unlock(right);
1986 del_ptr(root, path, level + 1, pslot + 1);
1987 root_sub_used(root, right->len);
1988 btrfs_free_tree_block(trans, root, right, 0, 1);
1989 free_extent_buffer_stale(right);
1990 right = NULL;
1991 } else {
1992 struct btrfs_disk_key right_key;
1993 btrfs_node_key(right, &right_key, 0);
1994 tree_mod_log_set_node_key(fs_info, parent,
1995 pslot + 1, 0);
1996 btrfs_set_node_key(parent, &right_key, pslot + 1);
1997 btrfs_mark_buffer_dirty(parent);
1998 }
1999 }
2000 if (btrfs_header_nritems(mid) == 1) {
2001 /*
2002 * we're not allowed to leave a node with one item in the
2003 * tree during a delete. A deletion from lower in the tree
2004 * could try to delete the only pointer in this node.
2005 * So, pull some keys from the left.
2006 * There has to be a left pointer at this point because
2007 * otherwise we would have pulled some pointers from the
2008 * right
2009 */
2010 if (!left) {
2011 ret = -EROFS;
2012 btrfs_handle_fs_error(fs_info, ret, NULL);
2013 goto enospc;
2014 }
2015 wret = balance_node_right(trans, fs_info, mid, left);
2016 if (wret < 0) {
2017 ret = wret;
2018 goto enospc;
2019 }
2020 if (wret == 1) {
2021 wret = push_node_left(trans, fs_info, left, mid, 1);
2022 if (wret < 0)
2023 ret = wret;
2024 }
2025 BUG_ON(wret == 1);
2026 }
2027 if (btrfs_header_nritems(mid) == 0) {
2028 clean_tree_block(fs_info, mid);
2029 btrfs_tree_unlock(mid);
2030 del_ptr(root, path, level + 1, pslot);
2031 root_sub_used(root, mid->len);
2032 btrfs_free_tree_block(trans, root, mid, 0, 1);
2033 free_extent_buffer_stale(mid);
2034 mid = NULL;
2035 } else {
2036 /* update the parent key to reflect our changes */
2037 struct btrfs_disk_key mid_key;
2038 btrfs_node_key(mid, &mid_key, 0);
2039 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2040 btrfs_set_node_key(parent, &mid_key, pslot);
2041 btrfs_mark_buffer_dirty(parent);
2042 }
2043
2044 /* update the path */
2045 if (left) {
2046 if (btrfs_header_nritems(left) > orig_slot) {
2047 extent_buffer_get(left);
2048 /* left was locked after cow */
2049 path->nodes[level] = left;
2050 path->slots[level + 1] -= 1;
2051 path->slots[level] = orig_slot;
2052 if (mid) {
2053 btrfs_tree_unlock(mid);
2054 free_extent_buffer(mid);
2055 }
2056 } else {
2057 orig_slot -= btrfs_header_nritems(left);
2058 path->slots[level] = orig_slot;
2059 }
2060 }
2061 /* double check we haven't messed things up */
2062 if (orig_ptr !=
2063 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2064 BUG();
2065 enospc:
2066 if (right) {
2067 btrfs_tree_unlock(right);
2068 free_extent_buffer(right);
2069 }
2070 if (left) {
2071 if (path->nodes[level] != left)
2072 btrfs_tree_unlock(left);
2073 free_extent_buffer(left);
2074 }
2075 return ret;
2076 }
2077
2078 /* Node balancing for insertion. Here we only split or push nodes around
2079 * when they are completely full. This is also done top down, so we
2080 * have to be pessimistic.
2081 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2082 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2083 struct btrfs_root *root,
2084 struct btrfs_path *path, int level)
2085 {
2086 struct btrfs_fs_info *fs_info = root->fs_info;
2087 struct extent_buffer *right = NULL;
2088 struct extent_buffer *mid;
2089 struct extent_buffer *left = NULL;
2090 struct extent_buffer *parent = NULL;
2091 int ret = 0;
2092 int wret;
2093 int pslot;
2094 int orig_slot = path->slots[level];
2095
2096 if (level == 0)
2097 return 1;
2098
2099 mid = path->nodes[level];
2100 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2101
2102 if (level < BTRFS_MAX_LEVEL - 1) {
2103 parent = path->nodes[level + 1];
2104 pslot = path->slots[level + 1];
2105 }
2106
2107 if (!parent)
2108 return 1;
2109
2110 left = read_node_slot(fs_info, parent, pslot - 1);
2111 if (IS_ERR(left))
2112 left = NULL;
2113
2114 /* first, try to make some room in the middle buffer */
2115 if (left) {
2116 u32 left_nr;
2117
2118 btrfs_tree_lock(left);
2119 btrfs_set_lock_blocking(left);
2120
2121 left_nr = btrfs_header_nritems(left);
2122 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2123 wret = 1;
2124 } else {
2125 ret = btrfs_cow_block(trans, root, left, parent,
2126 pslot - 1, &left);
2127 if (ret)
2128 wret = 1;
2129 else {
2130 wret = push_node_left(trans, fs_info,
2131 left, mid, 0);
2132 }
2133 }
2134 if (wret < 0)
2135 ret = wret;
2136 if (wret == 0) {
2137 struct btrfs_disk_key disk_key;
2138 orig_slot += left_nr;
2139 btrfs_node_key(mid, &disk_key, 0);
2140 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2141 btrfs_set_node_key(parent, &disk_key, pslot);
2142 btrfs_mark_buffer_dirty(parent);
2143 if (btrfs_header_nritems(left) > orig_slot) {
2144 path->nodes[level] = left;
2145 path->slots[level + 1] -= 1;
2146 path->slots[level] = orig_slot;
2147 btrfs_tree_unlock(mid);
2148 free_extent_buffer(mid);
2149 } else {
2150 orig_slot -=
2151 btrfs_header_nritems(left);
2152 path->slots[level] = orig_slot;
2153 btrfs_tree_unlock(left);
2154 free_extent_buffer(left);
2155 }
2156 return 0;
2157 }
2158 btrfs_tree_unlock(left);
2159 free_extent_buffer(left);
2160 }
2161 right = read_node_slot(fs_info, parent, pslot + 1);
2162 if (IS_ERR(right))
2163 right = NULL;
2164
2165 /*
2166 * then try to empty the right most buffer into the middle
2167 */
2168 if (right) {
2169 u32 right_nr;
2170
2171 btrfs_tree_lock(right);
2172 btrfs_set_lock_blocking(right);
2173
2174 right_nr = btrfs_header_nritems(right);
2175 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2176 wret = 1;
2177 } else {
2178 ret = btrfs_cow_block(trans, root, right,
2179 parent, pslot + 1,
2180 &right);
2181 if (ret)
2182 wret = 1;
2183 else {
2184 wret = balance_node_right(trans, fs_info,
2185 right, mid);
2186 }
2187 }
2188 if (wret < 0)
2189 ret = wret;
2190 if (wret == 0) {
2191 struct btrfs_disk_key disk_key;
2192
2193 btrfs_node_key(right, &disk_key, 0);
2194 tree_mod_log_set_node_key(fs_info, parent,
2195 pslot + 1, 0);
2196 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2197 btrfs_mark_buffer_dirty(parent);
2198
2199 if (btrfs_header_nritems(mid) <= orig_slot) {
2200 path->nodes[level] = right;
2201 path->slots[level + 1] += 1;
2202 path->slots[level] = orig_slot -
2203 btrfs_header_nritems(mid);
2204 btrfs_tree_unlock(mid);
2205 free_extent_buffer(mid);
2206 } else {
2207 btrfs_tree_unlock(right);
2208 free_extent_buffer(right);
2209 }
2210 return 0;
2211 }
2212 btrfs_tree_unlock(right);
2213 free_extent_buffer(right);
2214 }
2215 return 1;
2216 }
2217
2218 /*
2219 * readahead one full node of leaves, finding things that are close
2220 * to the block in 'slot', and triggering ra on them.
2221 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)2222 static void reada_for_search(struct btrfs_fs_info *fs_info,
2223 struct btrfs_path *path,
2224 int level, int slot, u64 objectid)
2225 {
2226 struct extent_buffer *node;
2227 struct btrfs_disk_key disk_key;
2228 u32 nritems;
2229 u64 search;
2230 u64 target;
2231 u64 nread = 0;
2232 struct extent_buffer *eb;
2233 u32 nr;
2234 u32 blocksize;
2235 u32 nscan = 0;
2236
2237 if (level != 1)
2238 return;
2239
2240 if (!path->nodes[level])
2241 return;
2242
2243 node = path->nodes[level];
2244
2245 search = btrfs_node_blockptr(node, slot);
2246 blocksize = fs_info->nodesize;
2247 eb = find_extent_buffer(fs_info, search);
2248 if (eb) {
2249 free_extent_buffer(eb);
2250 return;
2251 }
2252
2253 target = search;
2254
2255 nritems = btrfs_header_nritems(node);
2256 nr = slot;
2257
2258 while (1) {
2259 if (path->reada == READA_BACK) {
2260 if (nr == 0)
2261 break;
2262 nr--;
2263 } else if (path->reada == READA_FORWARD) {
2264 nr++;
2265 if (nr >= nritems)
2266 break;
2267 }
2268 if (path->reada == READA_BACK && objectid) {
2269 btrfs_node_key(node, &disk_key, nr);
2270 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2271 break;
2272 }
2273 search = btrfs_node_blockptr(node, nr);
2274 if ((search <= target && target - search <= 65536) ||
2275 (search > target && search - target <= 65536)) {
2276 readahead_tree_block(fs_info, search);
2277 nread += blocksize;
2278 }
2279 nscan++;
2280 if ((nread > 65536 || nscan > 32))
2281 break;
2282 }
2283 }
2284
reada_for_balance(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level)2285 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2286 struct btrfs_path *path, int level)
2287 {
2288 int slot;
2289 int nritems;
2290 struct extent_buffer *parent;
2291 struct extent_buffer *eb;
2292 u64 gen;
2293 u64 block1 = 0;
2294 u64 block2 = 0;
2295
2296 parent = path->nodes[level + 1];
2297 if (!parent)
2298 return;
2299
2300 nritems = btrfs_header_nritems(parent);
2301 slot = path->slots[level + 1];
2302
2303 if (slot > 0) {
2304 block1 = btrfs_node_blockptr(parent, slot - 1);
2305 gen = btrfs_node_ptr_generation(parent, slot - 1);
2306 eb = find_extent_buffer(fs_info, block1);
2307 /*
2308 * if we get -eagain from btrfs_buffer_uptodate, we
2309 * don't want to return eagain here. That will loop
2310 * forever
2311 */
2312 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2313 block1 = 0;
2314 free_extent_buffer(eb);
2315 }
2316 if (slot + 1 < nritems) {
2317 block2 = btrfs_node_blockptr(parent, slot + 1);
2318 gen = btrfs_node_ptr_generation(parent, slot + 1);
2319 eb = find_extent_buffer(fs_info, block2);
2320 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2321 block2 = 0;
2322 free_extent_buffer(eb);
2323 }
2324
2325 if (block1)
2326 readahead_tree_block(fs_info, block1);
2327 if (block2)
2328 readahead_tree_block(fs_info, block2);
2329 }
2330
2331
2332 /*
2333 * when we walk down the tree, it is usually safe to unlock the higher layers
2334 * in the tree. The exceptions are when our path goes through slot 0, because
2335 * operations on the tree might require changing key pointers higher up in the
2336 * tree.
2337 *
2338 * callers might also have set path->keep_locks, which tells this code to keep
2339 * the lock if the path points to the last slot in the block. This is part of
2340 * walking through the tree, and selecting the next slot in the higher block.
2341 *
2342 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2343 * if lowest_unlock is 1, level 0 won't be unlocked
2344 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2345 static noinline void unlock_up(struct btrfs_path *path, int level,
2346 int lowest_unlock, int min_write_lock_level,
2347 int *write_lock_level)
2348 {
2349 int i;
2350 int skip_level = level;
2351 int no_skips = 0;
2352 struct extent_buffer *t;
2353
2354 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2355 if (!path->nodes[i])
2356 break;
2357 if (!path->locks[i])
2358 break;
2359 if (!no_skips && path->slots[i] == 0) {
2360 skip_level = i + 1;
2361 continue;
2362 }
2363 if (!no_skips && path->keep_locks) {
2364 u32 nritems;
2365 t = path->nodes[i];
2366 nritems = btrfs_header_nritems(t);
2367 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2368 skip_level = i + 1;
2369 continue;
2370 }
2371 }
2372 if (skip_level < i && i >= lowest_unlock)
2373 no_skips = 1;
2374
2375 t = path->nodes[i];
2376 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2377 btrfs_tree_unlock_rw(t, path->locks[i]);
2378 path->locks[i] = 0;
2379 if (write_lock_level &&
2380 i > min_write_lock_level &&
2381 i <= *write_lock_level) {
2382 *write_lock_level = i - 1;
2383 }
2384 }
2385 }
2386 }
2387
2388 /*
2389 * This releases any locks held in the path starting at level and
2390 * going all the way up to the root.
2391 *
2392 * btrfs_search_slot will keep the lock held on higher nodes in a few
2393 * corner cases, such as COW of the block at slot zero in the node. This
2394 * ignores those rules, and it should only be called when there are no
2395 * more updates to be done higher up in the tree.
2396 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2397 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2398 {
2399 int i;
2400
2401 if (path->keep_locks)
2402 return;
2403
2404 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2405 if (!path->nodes[i])
2406 continue;
2407 if (!path->locks[i])
2408 continue;
2409 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2410 path->locks[i] = 0;
2411 }
2412 }
2413
2414 /*
2415 * helper function for btrfs_search_slot. The goal is to find a block
2416 * in cache without setting the path to blocking. If we find the block
2417 * we return zero and the path is unchanged.
2418 *
2419 * If we can't find the block, we set the path blocking and do some
2420 * reada. -EAGAIN is returned and the search must be repeated.
2421 */
2422 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)2423 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2424 struct extent_buffer **eb_ret, int level, int slot,
2425 const struct btrfs_key *key)
2426 {
2427 struct btrfs_fs_info *fs_info = root->fs_info;
2428 u64 blocknr;
2429 u64 gen;
2430 struct extent_buffer *b = *eb_ret;
2431 struct extent_buffer *tmp;
2432 int ret;
2433
2434 blocknr = btrfs_node_blockptr(b, slot);
2435 gen = btrfs_node_ptr_generation(b, slot);
2436
2437 tmp = find_extent_buffer(fs_info, blocknr);
2438 if (tmp) {
2439 /* first we do an atomic uptodate check */
2440 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2441 *eb_ret = tmp;
2442 return 0;
2443 }
2444
2445 /* the pages were up to date, but we failed
2446 * the generation number check. Do a full
2447 * read for the generation number that is correct.
2448 * We must do this without dropping locks so
2449 * we can trust our generation number
2450 */
2451 btrfs_set_path_blocking(p);
2452
2453 /* now we're allowed to do a blocking uptodate check */
2454 ret = btrfs_read_buffer(tmp, gen);
2455 if (!ret) {
2456 *eb_ret = tmp;
2457 return 0;
2458 }
2459 free_extent_buffer(tmp);
2460 btrfs_release_path(p);
2461 return -EIO;
2462 }
2463
2464 /*
2465 * reduce lock contention at high levels
2466 * of the btree by dropping locks before
2467 * we read. Don't release the lock on the current
2468 * level because we need to walk this node to figure
2469 * out which blocks to read.
2470 */
2471 btrfs_unlock_up_safe(p, level + 1);
2472 btrfs_set_path_blocking(p);
2473
2474 free_extent_buffer(tmp);
2475 if (p->reada != READA_NONE)
2476 reada_for_search(fs_info, p, level, slot, key->objectid);
2477
2478 ret = -EAGAIN;
2479 tmp = read_tree_block(fs_info, blocknr, gen);
2480 if (!IS_ERR(tmp)) {
2481 /*
2482 * If the read above didn't mark this buffer up to date,
2483 * it will never end up being up to date. Set ret to EIO now
2484 * and give up so that our caller doesn't loop forever
2485 * on our EAGAINs.
2486 */
2487 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2488 ret = -EIO;
2489 free_extent_buffer(tmp);
2490 } else {
2491 ret = PTR_ERR(tmp);
2492 }
2493
2494 btrfs_release_path(p);
2495 return ret;
2496 }
2497
2498 /*
2499 * helper function for btrfs_search_slot. This does all of the checks
2500 * for node-level blocks and does any balancing required based on
2501 * the ins_len.
2502 *
2503 * If no extra work was required, zero is returned. If we had to
2504 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2505 * start over
2506 */
2507 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2508 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2509 struct btrfs_root *root, struct btrfs_path *p,
2510 struct extent_buffer *b, int level, int ins_len,
2511 int *write_lock_level)
2512 {
2513 struct btrfs_fs_info *fs_info = root->fs_info;
2514 int ret;
2515
2516 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2517 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2518 int sret;
2519
2520 if (*write_lock_level < level + 1) {
2521 *write_lock_level = level + 1;
2522 btrfs_release_path(p);
2523 goto again;
2524 }
2525
2526 btrfs_set_path_blocking(p);
2527 reada_for_balance(fs_info, p, level);
2528 sret = split_node(trans, root, p, level);
2529 btrfs_clear_path_blocking(p, NULL, 0);
2530
2531 BUG_ON(sret > 0);
2532 if (sret) {
2533 ret = sret;
2534 goto done;
2535 }
2536 b = p->nodes[level];
2537 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2538 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2539 int sret;
2540
2541 if (*write_lock_level < level + 1) {
2542 *write_lock_level = level + 1;
2543 btrfs_release_path(p);
2544 goto again;
2545 }
2546
2547 btrfs_set_path_blocking(p);
2548 reada_for_balance(fs_info, p, level);
2549 sret = balance_level(trans, root, p, level);
2550 btrfs_clear_path_blocking(p, NULL, 0);
2551
2552 if (sret) {
2553 ret = sret;
2554 goto done;
2555 }
2556 b = p->nodes[level];
2557 if (!b) {
2558 btrfs_release_path(p);
2559 goto again;
2560 }
2561 BUG_ON(btrfs_header_nritems(b) == 1);
2562 }
2563 return 0;
2564
2565 again:
2566 ret = -EAGAIN;
2567 done:
2568 return ret;
2569 }
2570
key_search_validate(struct extent_buffer * b,const struct btrfs_key * key,int level)2571 static void key_search_validate(struct extent_buffer *b,
2572 const struct btrfs_key *key,
2573 int level)
2574 {
2575 #ifdef CONFIG_BTRFS_ASSERT
2576 struct btrfs_disk_key disk_key;
2577
2578 btrfs_cpu_key_to_disk(&disk_key, key);
2579
2580 if (level == 0)
2581 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2582 offsetof(struct btrfs_leaf, items[0].key),
2583 sizeof(disk_key)));
2584 else
2585 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2586 offsetof(struct btrfs_node, ptrs[0].key),
2587 sizeof(disk_key)));
2588 #endif
2589 }
2590
key_search(struct extent_buffer * b,const struct btrfs_key * key,int level,int * prev_cmp,int * slot)2591 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2592 int level, int *prev_cmp, int *slot)
2593 {
2594 if (*prev_cmp != 0) {
2595 *prev_cmp = bin_search(b, key, level, slot);
2596 return *prev_cmp;
2597 }
2598
2599 key_search_validate(b, key, level);
2600 *slot = 0;
2601
2602 return 0;
2603 }
2604
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)2605 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2606 u64 iobjectid, u64 ioff, u8 key_type,
2607 struct btrfs_key *found_key)
2608 {
2609 int ret;
2610 struct btrfs_key key;
2611 struct extent_buffer *eb;
2612
2613 ASSERT(path);
2614 ASSERT(found_key);
2615
2616 key.type = key_type;
2617 key.objectid = iobjectid;
2618 key.offset = ioff;
2619
2620 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2621 if (ret < 0)
2622 return ret;
2623
2624 eb = path->nodes[0];
2625 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2626 ret = btrfs_next_leaf(fs_root, path);
2627 if (ret)
2628 return ret;
2629 eb = path->nodes[0];
2630 }
2631
2632 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2633 if (found_key->type != key.type ||
2634 found_key->objectid != key.objectid)
2635 return 1;
2636
2637 return 0;
2638 }
2639
2640 /*
2641 * look for key in the tree. path is filled in with nodes along the way
2642 * if key is found, we return zero and you can find the item in the leaf
2643 * level of the path (level 0)
2644 *
2645 * If the key isn't found, the path points to the slot where it should
2646 * be inserted, and 1 is returned. If there are other errors during the
2647 * search a negative error number is returned.
2648 *
2649 * if ins_len > 0, nodes and leaves will be split as we walk down the
2650 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2651 * possible)
2652 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2653 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2654 const struct btrfs_key *key, struct btrfs_path *p,
2655 int ins_len, int cow)
2656 {
2657 struct btrfs_fs_info *fs_info = root->fs_info;
2658 struct extent_buffer *b;
2659 int slot;
2660 int ret;
2661 int err;
2662 int level;
2663 int lowest_unlock = 1;
2664 int root_lock;
2665 /* everything at write_lock_level or lower must be write locked */
2666 int write_lock_level = 0;
2667 u8 lowest_level = 0;
2668 int min_write_lock_level;
2669 int prev_cmp;
2670
2671 lowest_level = p->lowest_level;
2672 WARN_ON(lowest_level && ins_len > 0);
2673 WARN_ON(p->nodes[0] != NULL);
2674 BUG_ON(!cow && ins_len);
2675
2676 if (ins_len < 0) {
2677 lowest_unlock = 2;
2678
2679 /* when we are removing items, we might have to go up to level
2680 * two as we update tree pointers Make sure we keep write
2681 * for those levels as well
2682 */
2683 write_lock_level = 2;
2684 } else if (ins_len > 0) {
2685 /*
2686 * for inserting items, make sure we have a write lock on
2687 * level 1 so we can update keys
2688 */
2689 write_lock_level = 1;
2690 }
2691
2692 if (!cow)
2693 write_lock_level = -1;
2694
2695 if (cow && (p->keep_locks || p->lowest_level))
2696 write_lock_level = BTRFS_MAX_LEVEL;
2697
2698 min_write_lock_level = write_lock_level;
2699
2700 again:
2701 prev_cmp = -1;
2702 /*
2703 * we try very hard to do read locks on the root
2704 */
2705 root_lock = BTRFS_READ_LOCK;
2706 level = 0;
2707 if (p->search_commit_root) {
2708 /*
2709 * the commit roots are read only
2710 * so we always do read locks
2711 */
2712 if (p->need_commit_sem)
2713 down_read(&fs_info->commit_root_sem);
2714 b = root->commit_root;
2715 extent_buffer_get(b);
2716 level = btrfs_header_level(b);
2717 if (p->need_commit_sem)
2718 up_read(&fs_info->commit_root_sem);
2719 if (!p->skip_locking)
2720 btrfs_tree_read_lock(b);
2721 } else {
2722 if (p->skip_locking) {
2723 b = btrfs_root_node(root);
2724 level = btrfs_header_level(b);
2725 } else {
2726 /* we don't know the level of the root node
2727 * until we actually have it read locked
2728 */
2729 b = btrfs_read_lock_root_node(root);
2730 level = btrfs_header_level(b);
2731 if (level <= write_lock_level) {
2732 /* whoops, must trade for write lock */
2733 btrfs_tree_read_unlock(b);
2734 free_extent_buffer(b);
2735 b = btrfs_lock_root_node(root);
2736 root_lock = BTRFS_WRITE_LOCK;
2737
2738 /* the level might have changed, check again */
2739 level = btrfs_header_level(b);
2740 }
2741 }
2742 }
2743 p->nodes[level] = b;
2744 if (!p->skip_locking)
2745 p->locks[level] = root_lock;
2746
2747 while (b) {
2748 level = btrfs_header_level(b);
2749
2750 /*
2751 * setup the path here so we can release it under lock
2752 * contention with the cow code
2753 */
2754 if (cow) {
2755 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2756
2757 /*
2758 * if we don't really need to cow this block
2759 * then we don't want to set the path blocking,
2760 * so we test it here
2761 */
2762 if (!should_cow_block(trans, root, b)) {
2763 trans->dirty = true;
2764 goto cow_done;
2765 }
2766
2767 /*
2768 * must have write locks on this node and the
2769 * parent
2770 */
2771 if (level > write_lock_level ||
2772 (level + 1 > write_lock_level &&
2773 level + 1 < BTRFS_MAX_LEVEL &&
2774 p->nodes[level + 1])) {
2775 write_lock_level = level + 1;
2776 btrfs_release_path(p);
2777 goto again;
2778 }
2779
2780 btrfs_set_path_blocking(p);
2781 if (last_level)
2782 err = btrfs_cow_block(trans, root, b, NULL, 0,
2783 &b);
2784 else
2785 err = btrfs_cow_block(trans, root, b,
2786 p->nodes[level + 1],
2787 p->slots[level + 1], &b);
2788 if (err) {
2789 ret = err;
2790 goto done;
2791 }
2792 }
2793 cow_done:
2794 p->nodes[level] = b;
2795 btrfs_clear_path_blocking(p, NULL, 0);
2796
2797 /*
2798 * we have a lock on b and as long as we aren't changing
2799 * the tree, there is no way to for the items in b to change.
2800 * It is safe to drop the lock on our parent before we
2801 * go through the expensive btree search on b.
2802 *
2803 * If we're inserting or deleting (ins_len != 0), then we might
2804 * be changing slot zero, which may require changing the parent.
2805 * So, we can't drop the lock until after we know which slot
2806 * we're operating on.
2807 */
2808 if (!ins_len && !p->keep_locks) {
2809 int u = level + 1;
2810
2811 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2812 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2813 p->locks[u] = 0;
2814 }
2815 }
2816
2817 ret = key_search(b, key, level, &prev_cmp, &slot);
2818 if (ret < 0)
2819 goto done;
2820
2821 if (level != 0) {
2822 int dec = 0;
2823 if (ret && slot > 0) {
2824 dec = 1;
2825 slot -= 1;
2826 }
2827 p->slots[level] = slot;
2828 err = setup_nodes_for_search(trans, root, p, b, level,
2829 ins_len, &write_lock_level);
2830 if (err == -EAGAIN)
2831 goto again;
2832 if (err) {
2833 ret = err;
2834 goto done;
2835 }
2836 b = p->nodes[level];
2837 slot = p->slots[level];
2838
2839 /*
2840 * slot 0 is special, if we change the key
2841 * we have to update the parent pointer
2842 * which means we must have a write lock
2843 * on the parent
2844 */
2845 if (slot == 0 && ins_len &&
2846 write_lock_level < level + 1) {
2847 write_lock_level = level + 1;
2848 btrfs_release_path(p);
2849 goto again;
2850 }
2851
2852 unlock_up(p, level, lowest_unlock,
2853 min_write_lock_level, &write_lock_level);
2854
2855 if (level == lowest_level) {
2856 if (dec)
2857 p->slots[level]++;
2858 goto done;
2859 }
2860
2861 err = read_block_for_search(root, p, &b, level,
2862 slot, key);
2863 if (err == -EAGAIN)
2864 goto again;
2865 if (err) {
2866 ret = err;
2867 goto done;
2868 }
2869
2870 if (!p->skip_locking) {
2871 level = btrfs_header_level(b);
2872 if (level <= write_lock_level) {
2873 err = btrfs_try_tree_write_lock(b);
2874 if (!err) {
2875 btrfs_set_path_blocking(p);
2876 btrfs_tree_lock(b);
2877 btrfs_clear_path_blocking(p, b,
2878 BTRFS_WRITE_LOCK);
2879 }
2880 p->locks[level] = BTRFS_WRITE_LOCK;
2881 } else {
2882 err = btrfs_tree_read_lock_atomic(b);
2883 if (!err) {
2884 btrfs_set_path_blocking(p);
2885 btrfs_tree_read_lock(b);
2886 btrfs_clear_path_blocking(p, b,
2887 BTRFS_READ_LOCK);
2888 }
2889 p->locks[level] = BTRFS_READ_LOCK;
2890 }
2891 p->nodes[level] = b;
2892 }
2893 } else {
2894 p->slots[level] = slot;
2895 if (ins_len > 0 &&
2896 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2897 if (write_lock_level < 1) {
2898 write_lock_level = 1;
2899 btrfs_release_path(p);
2900 goto again;
2901 }
2902
2903 btrfs_set_path_blocking(p);
2904 err = split_leaf(trans, root, key,
2905 p, ins_len, ret == 0);
2906 btrfs_clear_path_blocking(p, NULL, 0);
2907
2908 BUG_ON(err > 0);
2909 if (err) {
2910 ret = err;
2911 goto done;
2912 }
2913 }
2914 if (!p->search_for_split)
2915 unlock_up(p, level, lowest_unlock,
2916 min_write_lock_level, &write_lock_level);
2917 goto done;
2918 }
2919 }
2920 ret = 1;
2921 done:
2922 /*
2923 * we don't really know what they plan on doing with the path
2924 * from here on, so for now just mark it as blocking
2925 */
2926 if (!p->leave_spinning)
2927 btrfs_set_path_blocking(p);
2928 if (ret < 0 && !p->skip_release_on_error)
2929 btrfs_release_path(p);
2930 return ret;
2931 }
2932
2933 /*
2934 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935 * current state of the tree together with the operations recorded in the tree
2936 * modification log to search for the key in a previous version of this tree, as
2937 * denoted by the time_seq parameter.
2938 *
2939 * Naturally, there is no support for insert, delete or cow operations.
2940 *
2941 * The resulting path and return value will be set up as if we called
2942 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2943 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2944 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2945 struct btrfs_path *p, u64 time_seq)
2946 {
2947 struct btrfs_fs_info *fs_info = root->fs_info;
2948 struct extent_buffer *b;
2949 int slot;
2950 int ret;
2951 int err;
2952 int level;
2953 int lowest_unlock = 1;
2954 u8 lowest_level = 0;
2955 int prev_cmp = -1;
2956
2957 lowest_level = p->lowest_level;
2958 WARN_ON(p->nodes[0] != NULL);
2959
2960 if (p->search_commit_root) {
2961 BUG_ON(time_seq);
2962 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2963 }
2964
2965 again:
2966 b = get_old_root(root, time_seq);
2967 if (!b) {
2968 ret = -EIO;
2969 goto done;
2970 }
2971 level = btrfs_header_level(b);
2972 p->locks[level] = BTRFS_READ_LOCK;
2973
2974 while (b) {
2975 level = btrfs_header_level(b);
2976 p->nodes[level] = b;
2977 btrfs_clear_path_blocking(p, NULL, 0);
2978
2979 /*
2980 * we have a lock on b and as long as we aren't changing
2981 * the tree, there is no way to for the items in b to change.
2982 * It is safe to drop the lock on our parent before we
2983 * go through the expensive btree search on b.
2984 */
2985 btrfs_unlock_up_safe(p, level + 1);
2986
2987 /*
2988 * Since we can unwind ebs we want to do a real search every
2989 * time.
2990 */
2991 prev_cmp = -1;
2992 ret = key_search(b, key, level, &prev_cmp, &slot);
2993
2994 if (level != 0) {
2995 int dec = 0;
2996 if (ret && slot > 0) {
2997 dec = 1;
2998 slot -= 1;
2999 }
3000 p->slots[level] = slot;
3001 unlock_up(p, level, lowest_unlock, 0, NULL);
3002
3003 if (level == lowest_level) {
3004 if (dec)
3005 p->slots[level]++;
3006 goto done;
3007 }
3008
3009 err = read_block_for_search(root, p, &b, level,
3010 slot, key);
3011 if (err == -EAGAIN)
3012 goto again;
3013 if (err) {
3014 ret = err;
3015 goto done;
3016 }
3017
3018 level = btrfs_header_level(b);
3019 err = btrfs_tree_read_lock_atomic(b);
3020 if (!err) {
3021 btrfs_set_path_blocking(p);
3022 btrfs_tree_read_lock(b);
3023 btrfs_clear_path_blocking(p, b,
3024 BTRFS_READ_LOCK);
3025 }
3026 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3027 if (!b) {
3028 ret = -ENOMEM;
3029 goto done;
3030 }
3031 p->locks[level] = BTRFS_READ_LOCK;
3032 p->nodes[level] = b;
3033 } else {
3034 p->slots[level] = slot;
3035 unlock_up(p, level, lowest_unlock, 0, NULL);
3036 goto done;
3037 }
3038 }
3039 ret = 1;
3040 done:
3041 if (!p->leave_spinning)
3042 btrfs_set_path_blocking(p);
3043 if (ret < 0)
3044 btrfs_release_path(p);
3045
3046 return ret;
3047 }
3048
3049 /*
3050 * helper to use instead of search slot if no exact match is needed but
3051 * instead the next or previous item should be returned.
3052 * When find_higher is true, the next higher item is returned, the next lower
3053 * otherwise.
3054 * When return_any and find_higher are both true, and no higher item is found,
3055 * return the next lower instead.
3056 * When return_any is true and find_higher is false, and no lower item is found,
3057 * return the next higher instead.
3058 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3059 * < 0 on error
3060 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)3061 int btrfs_search_slot_for_read(struct btrfs_root *root,
3062 const struct btrfs_key *key,
3063 struct btrfs_path *p, int find_higher,
3064 int return_any)
3065 {
3066 int ret;
3067 struct extent_buffer *leaf;
3068
3069 again:
3070 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3071 if (ret <= 0)
3072 return ret;
3073 /*
3074 * a return value of 1 means the path is at the position where the
3075 * item should be inserted. Normally this is the next bigger item,
3076 * but in case the previous item is the last in a leaf, path points
3077 * to the first free slot in the previous leaf, i.e. at an invalid
3078 * item.
3079 */
3080 leaf = p->nodes[0];
3081
3082 if (find_higher) {
3083 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3084 ret = btrfs_next_leaf(root, p);
3085 if (ret <= 0)
3086 return ret;
3087 if (!return_any)
3088 return 1;
3089 /*
3090 * no higher item found, return the next
3091 * lower instead
3092 */
3093 return_any = 0;
3094 find_higher = 0;
3095 btrfs_release_path(p);
3096 goto again;
3097 }
3098 } else {
3099 if (p->slots[0] == 0) {
3100 ret = btrfs_prev_leaf(root, p);
3101 if (ret < 0)
3102 return ret;
3103 if (!ret) {
3104 leaf = p->nodes[0];
3105 if (p->slots[0] == btrfs_header_nritems(leaf))
3106 p->slots[0]--;
3107 return 0;
3108 }
3109 if (!return_any)
3110 return 1;
3111 /*
3112 * no lower item found, return the next
3113 * higher instead
3114 */
3115 return_any = 0;
3116 find_higher = 1;
3117 btrfs_release_path(p);
3118 goto again;
3119 } else {
3120 --p->slots[0];
3121 }
3122 }
3123 return 0;
3124 }
3125
3126 /*
3127 * adjust the pointers going up the tree, starting at level
3128 * making sure the right key of each node is points to 'key'.
3129 * This is used after shifting pointers to the left, so it stops
3130 * fixing up pointers when a given leaf/node is not in slot 0 of the
3131 * higher levels
3132 *
3133 */
fixup_low_keys(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_disk_key * key,int level)3134 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3135 struct btrfs_path *path,
3136 struct btrfs_disk_key *key, int level)
3137 {
3138 int i;
3139 struct extent_buffer *t;
3140
3141 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3142 int tslot = path->slots[i];
3143 if (!path->nodes[i])
3144 break;
3145 t = path->nodes[i];
3146 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3147 btrfs_set_node_key(t, key, tslot);
3148 btrfs_mark_buffer_dirty(path->nodes[i]);
3149 if (tslot != 0)
3150 break;
3151 }
3152 }
3153
3154 /*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161 struct btrfs_path *path,
3162 const struct btrfs_key *new_key)
3163 {
3164 struct btrfs_disk_key disk_key;
3165 struct extent_buffer *eb;
3166 int slot;
3167
3168 eb = path->nodes[0];
3169 slot = path->slots[0];
3170 if (slot > 0) {
3171 btrfs_item_key(eb, &disk_key, slot - 1);
3172 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3173 }
3174 if (slot < btrfs_header_nritems(eb) - 1) {
3175 btrfs_item_key(eb, &disk_key, slot + 1);
3176 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3177 }
3178
3179 btrfs_cpu_key_to_disk(&disk_key, new_key);
3180 btrfs_set_item_key(eb, &disk_key, slot);
3181 btrfs_mark_buffer_dirty(eb);
3182 if (slot == 0)
3183 fixup_low_keys(fs_info, path, &disk_key, 1);
3184 }
3185
3186 /*
3187 * try to push data from one node into the next node left in the
3188 * tree.
3189 *
3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191 * error, and > 0 if there was no room in the left hand block.
3192 */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,int empty)3193 static int push_node_left(struct btrfs_trans_handle *trans,
3194 struct btrfs_fs_info *fs_info,
3195 struct extent_buffer *dst,
3196 struct extent_buffer *src, int empty)
3197 {
3198 int push_items = 0;
3199 int src_nritems;
3200 int dst_nritems;
3201 int ret = 0;
3202
3203 src_nritems = btrfs_header_nritems(src);
3204 dst_nritems = btrfs_header_nritems(dst);
3205 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3206 WARN_ON(btrfs_header_generation(src) != trans->transid);
3207 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3208
3209 if (!empty && src_nritems <= 8)
3210 return 1;
3211
3212 if (push_items <= 0)
3213 return 1;
3214
3215 if (empty) {
3216 push_items = min(src_nritems, push_items);
3217 if (push_items < src_nritems) {
3218 /* leave at least 8 pointers in the node if
3219 * we aren't going to empty it
3220 */
3221 if (src_nritems - push_items < 8) {
3222 if (push_items <= 8)
3223 return 1;
3224 push_items -= 8;
3225 }
3226 }
3227 } else
3228 push_items = min(src_nritems - 8, push_items);
3229
3230 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3231 push_items);
3232 if (ret) {
3233 btrfs_abort_transaction(trans, ret);
3234 return ret;
3235 }
3236 copy_extent_buffer(dst, src,
3237 btrfs_node_key_ptr_offset(dst_nritems),
3238 btrfs_node_key_ptr_offset(0),
3239 push_items * sizeof(struct btrfs_key_ptr));
3240
3241 if (push_items < src_nritems) {
3242 /*
3243 * don't call tree_mod_log_eb_move here, key removal was already
3244 * fully logged by tree_mod_log_eb_copy above.
3245 */
3246 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3247 btrfs_node_key_ptr_offset(push_items),
3248 (src_nritems - push_items) *
3249 sizeof(struct btrfs_key_ptr));
3250 }
3251 btrfs_set_header_nritems(src, src_nritems - push_items);
3252 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3253 btrfs_mark_buffer_dirty(src);
3254 btrfs_mark_buffer_dirty(dst);
3255
3256 return ret;
3257 }
3258
3259 /*
3260 * try to push data from one node into the next node right in the
3261 * tree.
3262 *
3263 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3264 * error, and > 0 if there was no room in the right hand block.
3265 *
3266 * this will only push up to 1/2 the contents of the left node over
3267 */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src)3268 static int balance_node_right(struct btrfs_trans_handle *trans,
3269 struct btrfs_fs_info *fs_info,
3270 struct extent_buffer *dst,
3271 struct extent_buffer *src)
3272 {
3273 int push_items = 0;
3274 int max_push;
3275 int src_nritems;
3276 int dst_nritems;
3277 int ret = 0;
3278
3279 WARN_ON(btrfs_header_generation(src) != trans->transid);
3280 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3281
3282 src_nritems = btrfs_header_nritems(src);
3283 dst_nritems = btrfs_header_nritems(dst);
3284 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3285 if (push_items <= 0)
3286 return 1;
3287
3288 if (src_nritems < 4)
3289 return 1;
3290
3291 max_push = src_nritems / 2 + 1;
3292 /* don't try to empty the node */
3293 if (max_push >= src_nritems)
3294 return 1;
3295
3296 if (max_push < push_items)
3297 push_items = max_push;
3298
3299 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3300 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3301 btrfs_node_key_ptr_offset(0),
3302 (dst_nritems) *
3303 sizeof(struct btrfs_key_ptr));
3304
3305 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3306 src_nritems - push_items, push_items);
3307 if (ret) {
3308 btrfs_abort_transaction(trans, ret);
3309 return ret;
3310 }
3311 copy_extent_buffer(dst, src,
3312 btrfs_node_key_ptr_offset(0),
3313 btrfs_node_key_ptr_offset(src_nritems - push_items),
3314 push_items * sizeof(struct btrfs_key_ptr));
3315
3316 btrfs_set_header_nritems(src, src_nritems - push_items);
3317 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3318
3319 btrfs_mark_buffer_dirty(src);
3320 btrfs_mark_buffer_dirty(dst);
3321
3322 return ret;
3323 }
3324
3325 /*
3326 * helper function to insert a new root level in the tree.
3327 * A new node is allocated, and a single item is inserted to
3328 * point to the existing root
3329 *
3330 * returns zero on success or < 0 on failure.
3331 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3332 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3333 struct btrfs_root *root,
3334 struct btrfs_path *path, int level)
3335 {
3336 struct btrfs_fs_info *fs_info = root->fs_info;
3337 u64 lower_gen;
3338 struct extent_buffer *lower;
3339 struct extent_buffer *c;
3340 struct extent_buffer *old;
3341 struct btrfs_disk_key lower_key;
3342
3343 BUG_ON(path->nodes[level]);
3344 BUG_ON(path->nodes[level-1] != root->node);
3345
3346 lower = path->nodes[level-1];
3347 if (level == 1)
3348 btrfs_item_key(lower, &lower_key, 0);
3349 else
3350 btrfs_node_key(lower, &lower_key, 0);
3351
3352 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3353 &lower_key, level, root->node->start, 0);
3354 if (IS_ERR(c))
3355 return PTR_ERR(c);
3356
3357 root_add_used(root, fs_info->nodesize);
3358
3359 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3360 btrfs_set_header_nritems(c, 1);
3361 btrfs_set_header_level(c, level);
3362 btrfs_set_header_bytenr(c, c->start);
3363 btrfs_set_header_generation(c, trans->transid);
3364 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3365 btrfs_set_header_owner(c, root->root_key.objectid);
3366
3367 write_extent_buffer_fsid(c, fs_info->fsid);
3368 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3369
3370 btrfs_set_node_key(c, &lower_key, 0);
3371 btrfs_set_node_blockptr(c, 0, lower->start);
3372 lower_gen = btrfs_header_generation(lower);
3373 WARN_ON(lower_gen != trans->transid);
3374
3375 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3376
3377 btrfs_mark_buffer_dirty(c);
3378
3379 old = root->node;
3380 tree_mod_log_set_root_pointer(root, c, 0);
3381 rcu_assign_pointer(root->node, c);
3382
3383 /* the super has an extra ref to root->node */
3384 free_extent_buffer(old);
3385
3386 add_root_to_dirty_list(root);
3387 extent_buffer_get(c);
3388 path->nodes[level] = c;
3389 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3390 path->slots[level] = 0;
3391 return 0;
3392 }
3393
3394 /*
3395 * worker function to insert a single pointer in a node.
3396 * the node should have enough room for the pointer already
3397 *
3398 * slot and level indicate where you want the key to go, and
3399 * blocknr is the block the key points to.
3400 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3401 static void insert_ptr(struct btrfs_trans_handle *trans,
3402 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3403 struct btrfs_disk_key *key, u64 bytenr,
3404 int slot, int level)
3405 {
3406 struct extent_buffer *lower;
3407 int nritems;
3408 int ret;
3409
3410 BUG_ON(!path->nodes[level]);
3411 btrfs_assert_tree_locked(path->nodes[level]);
3412 lower = path->nodes[level];
3413 nritems = btrfs_header_nritems(lower);
3414 BUG_ON(slot > nritems);
3415 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3416 if (slot != nritems) {
3417 if (level)
3418 tree_mod_log_eb_move(fs_info, lower, slot + 1,
3419 slot, nritems - slot);
3420 memmove_extent_buffer(lower,
3421 btrfs_node_key_ptr_offset(slot + 1),
3422 btrfs_node_key_ptr_offset(slot),
3423 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3424 }
3425 if (level) {
3426 ret = tree_mod_log_insert_key(fs_info, lower, slot,
3427 MOD_LOG_KEY_ADD, GFP_NOFS);
3428 BUG_ON(ret < 0);
3429 }
3430 btrfs_set_node_key(lower, key, slot);
3431 btrfs_set_node_blockptr(lower, slot, bytenr);
3432 WARN_ON(trans->transid == 0);
3433 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3434 btrfs_set_header_nritems(lower, nritems + 1);
3435 btrfs_mark_buffer_dirty(lower);
3436 }
3437
3438 /*
3439 * split the node at the specified level in path in two.
3440 * The path is corrected to point to the appropriate node after the split
3441 *
3442 * Before splitting this tries to make some room in the node by pushing
3443 * left and right, if either one works, it returns right away.
3444 *
3445 * returns 0 on success and < 0 on failure
3446 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3447 static noinline int split_node(struct btrfs_trans_handle *trans,
3448 struct btrfs_root *root,
3449 struct btrfs_path *path, int level)
3450 {
3451 struct btrfs_fs_info *fs_info = root->fs_info;
3452 struct extent_buffer *c;
3453 struct extent_buffer *split;
3454 struct btrfs_disk_key disk_key;
3455 int mid;
3456 int ret;
3457 u32 c_nritems;
3458
3459 c = path->nodes[level];
3460 WARN_ON(btrfs_header_generation(c) != trans->transid);
3461 if (c == root->node) {
3462 /*
3463 * trying to split the root, lets make a new one
3464 *
3465 * tree mod log: We don't log_removal old root in
3466 * insert_new_root, because that root buffer will be kept as a
3467 * normal node. We are going to log removal of half of the
3468 * elements below with tree_mod_log_eb_copy. We're holding a
3469 * tree lock on the buffer, which is why we cannot race with
3470 * other tree_mod_log users.
3471 */
3472 ret = insert_new_root(trans, root, path, level + 1);
3473 if (ret)
3474 return ret;
3475 } else {
3476 ret = push_nodes_for_insert(trans, root, path, level);
3477 c = path->nodes[level];
3478 if (!ret && btrfs_header_nritems(c) <
3479 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3480 return 0;
3481 if (ret < 0)
3482 return ret;
3483 }
3484
3485 c_nritems = btrfs_header_nritems(c);
3486 mid = (c_nritems + 1) / 2;
3487 btrfs_node_key(c, &disk_key, mid);
3488
3489 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3490 &disk_key, level, c->start, 0);
3491 if (IS_ERR(split))
3492 return PTR_ERR(split);
3493
3494 root_add_used(root, fs_info->nodesize);
3495
3496 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3497 btrfs_set_header_level(split, btrfs_header_level(c));
3498 btrfs_set_header_bytenr(split, split->start);
3499 btrfs_set_header_generation(split, trans->transid);
3500 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3501 btrfs_set_header_owner(split, root->root_key.objectid);
3502 write_extent_buffer_fsid(split, fs_info->fsid);
3503 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3504
3505 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3506 if (ret) {
3507 btrfs_abort_transaction(trans, ret);
3508 return ret;
3509 }
3510 copy_extent_buffer(split, c,
3511 btrfs_node_key_ptr_offset(0),
3512 btrfs_node_key_ptr_offset(mid),
3513 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3514 btrfs_set_header_nritems(split, c_nritems - mid);
3515 btrfs_set_header_nritems(c, mid);
3516 ret = 0;
3517
3518 btrfs_mark_buffer_dirty(c);
3519 btrfs_mark_buffer_dirty(split);
3520
3521 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3522 path->slots[level + 1] + 1, level + 1);
3523
3524 if (path->slots[level] >= mid) {
3525 path->slots[level] -= mid;
3526 btrfs_tree_unlock(c);
3527 free_extent_buffer(c);
3528 path->nodes[level] = split;
3529 path->slots[level + 1] += 1;
3530 } else {
3531 btrfs_tree_unlock(split);
3532 free_extent_buffer(split);
3533 }
3534 return ret;
3535 }
3536
3537 /*
3538 * how many bytes are required to store the items in a leaf. start
3539 * and nr indicate which items in the leaf to check. This totals up the
3540 * space used both by the item structs and the item data
3541 */
leaf_space_used(struct extent_buffer * l,int start,int nr)3542 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3543 {
3544 struct btrfs_item *start_item;
3545 struct btrfs_item *end_item;
3546 struct btrfs_map_token token;
3547 int data_len;
3548 int nritems = btrfs_header_nritems(l);
3549 int end = min(nritems, start + nr) - 1;
3550
3551 if (!nr)
3552 return 0;
3553 btrfs_init_map_token(&token);
3554 start_item = btrfs_item_nr(start);
3555 end_item = btrfs_item_nr(end);
3556 data_len = btrfs_token_item_offset(l, start_item, &token) +
3557 btrfs_token_item_size(l, start_item, &token);
3558 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3559 data_len += sizeof(struct btrfs_item) * nr;
3560 WARN_ON(data_len < 0);
3561 return data_len;
3562 }
3563
3564 /*
3565 * The space between the end of the leaf items and
3566 * the start of the leaf data. IOW, how much room
3567 * the leaf has left for both items and data
3568 */
btrfs_leaf_free_space(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf)3569 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3570 struct extent_buffer *leaf)
3571 {
3572 int nritems = btrfs_header_nritems(leaf);
3573 int ret;
3574
3575 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3576 if (ret < 0) {
3577 btrfs_crit(fs_info,
3578 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3579 ret,
3580 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3581 leaf_space_used(leaf, 0, nritems), nritems);
3582 }
3583 return ret;
3584 }
3585
3586 /*
3587 * min slot controls the lowest index we're willing to push to the
3588 * right. We'll push up to and including min_slot, but no lower
3589 */
__push_leaf_right(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3590 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3591 struct btrfs_path *path,
3592 int data_size, int empty,
3593 struct extent_buffer *right,
3594 int free_space, u32 left_nritems,
3595 u32 min_slot)
3596 {
3597 struct extent_buffer *left = path->nodes[0];
3598 struct extent_buffer *upper = path->nodes[1];
3599 struct btrfs_map_token token;
3600 struct btrfs_disk_key disk_key;
3601 int slot;
3602 u32 i;
3603 int push_space = 0;
3604 int push_items = 0;
3605 struct btrfs_item *item;
3606 u32 nr;
3607 u32 right_nritems;
3608 u32 data_end;
3609 u32 this_item_size;
3610
3611 btrfs_init_map_token(&token);
3612
3613 if (empty)
3614 nr = 0;
3615 else
3616 nr = max_t(u32, 1, min_slot);
3617
3618 if (path->slots[0] >= left_nritems)
3619 push_space += data_size;
3620
3621 slot = path->slots[1];
3622 i = left_nritems - 1;
3623 while (i >= nr) {
3624 item = btrfs_item_nr(i);
3625
3626 if (!empty && push_items > 0) {
3627 if (path->slots[0] > i)
3628 break;
3629 if (path->slots[0] == i) {
3630 int space = btrfs_leaf_free_space(fs_info, left);
3631 if (space + push_space * 2 > free_space)
3632 break;
3633 }
3634 }
3635
3636 if (path->slots[0] == i)
3637 push_space += data_size;
3638
3639 this_item_size = btrfs_item_size(left, item);
3640 if (this_item_size + sizeof(*item) + push_space > free_space)
3641 break;
3642
3643 push_items++;
3644 push_space += this_item_size + sizeof(*item);
3645 if (i == 0)
3646 break;
3647 i--;
3648 }
3649
3650 if (push_items == 0)
3651 goto out_unlock;
3652
3653 WARN_ON(!empty && push_items == left_nritems);
3654
3655 /* push left to right */
3656 right_nritems = btrfs_header_nritems(right);
3657
3658 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3659 push_space -= leaf_data_end(fs_info, left);
3660
3661 /* make room in the right data area */
3662 data_end = leaf_data_end(fs_info, right);
3663 memmove_extent_buffer(right,
3664 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3665 BTRFS_LEAF_DATA_OFFSET + data_end,
3666 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3667
3668 /* copy from the left data area */
3669 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3670 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3671 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3672 push_space);
3673
3674 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3675 btrfs_item_nr_offset(0),
3676 right_nritems * sizeof(struct btrfs_item));
3677
3678 /* copy the items from left to right */
3679 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3680 btrfs_item_nr_offset(left_nritems - push_items),
3681 push_items * sizeof(struct btrfs_item));
3682
3683 /* update the item pointers */
3684 right_nritems += push_items;
3685 btrfs_set_header_nritems(right, right_nritems);
3686 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3687 for (i = 0; i < right_nritems; i++) {
3688 item = btrfs_item_nr(i);
3689 push_space -= btrfs_token_item_size(right, item, &token);
3690 btrfs_set_token_item_offset(right, item, push_space, &token);
3691 }
3692
3693 left_nritems -= push_items;
3694 btrfs_set_header_nritems(left, left_nritems);
3695
3696 if (left_nritems)
3697 btrfs_mark_buffer_dirty(left);
3698 else
3699 clean_tree_block(fs_info, left);
3700
3701 btrfs_mark_buffer_dirty(right);
3702
3703 btrfs_item_key(right, &disk_key, 0);
3704 btrfs_set_node_key(upper, &disk_key, slot + 1);
3705 btrfs_mark_buffer_dirty(upper);
3706
3707 /* then fixup the leaf pointer in the path */
3708 if (path->slots[0] >= left_nritems) {
3709 path->slots[0] -= left_nritems;
3710 if (btrfs_header_nritems(path->nodes[0]) == 0)
3711 clean_tree_block(fs_info, path->nodes[0]);
3712 btrfs_tree_unlock(path->nodes[0]);
3713 free_extent_buffer(path->nodes[0]);
3714 path->nodes[0] = right;
3715 path->slots[1] += 1;
3716 } else {
3717 btrfs_tree_unlock(right);
3718 free_extent_buffer(right);
3719 }
3720 return 0;
3721
3722 out_unlock:
3723 btrfs_tree_unlock(right);
3724 free_extent_buffer(right);
3725 return 1;
3726 }
3727
3728 /*
3729 * push some data in the path leaf to the right, trying to free up at
3730 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3731 *
3732 * returns 1 if the push failed because the other node didn't have enough
3733 * room, 0 if everything worked out and < 0 if there were major errors.
3734 *
3735 * this will push starting from min_slot to the end of the leaf. It won't
3736 * push any slot lower than min_slot
3737 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3738 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3739 *root, struct btrfs_path *path,
3740 int min_data_size, int data_size,
3741 int empty, u32 min_slot)
3742 {
3743 struct btrfs_fs_info *fs_info = root->fs_info;
3744 struct extent_buffer *left = path->nodes[0];
3745 struct extent_buffer *right;
3746 struct extent_buffer *upper;
3747 int slot;
3748 int free_space;
3749 u32 left_nritems;
3750 int ret;
3751
3752 if (!path->nodes[1])
3753 return 1;
3754
3755 slot = path->slots[1];
3756 upper = path->nodes[1];
3757 if (slot >= btrfs_header_nritems(upper) - 1)
3758 return 1;
3759
3760 btrfs_assert_tree_locked(path->nodes[1]);
3761
3762 right = read_node_slot(fs_info, upper, slot + 1);
3763 /*
3764 * slot + 1 is not valid or we fail to read the right node,
3765 * no big deal, just return.
3766 */
3767 if (IS_ERR(right))
3768 return 1;
3769
3770 btrfs_tree_lock(right);
3771 btrfs_set_lock_blocking(right);
3772
3773 free_space = btrfs_leaf_free_space(fs_info, right);
3774 if (free_space < data_size)
3775 goto out_unlock;
3776
3777 /* cow and double check */
3778 ret = btrfs_cow_block(trans, root, right, upper,
3779 slot + 1, &right);
3780 if (ret)
3781 goto out_unlock;
3782
3783 free_space = btrfs_leaf_free_space(fs_info, right);
3784 if (free_space < data_size)
3785 goto out_unlock;
3786
3787 left_nritems = btrfs_header_nritems(left);
3788 if (left_nritems == 0)
3789 goto out_unlock;
3790
3791 if (path->slots[0] == left_nritems && !empty) {
3792 /* Key greater than all keys in the leaf, right neighbor has
3793 * enough room for it and we're not emptying our leaf to delete
3794 * it, therefore use right neighbor to insert the new item and
3795 * no need to touch/dirty our left leaft. */
3796 btrfs_tree_unlock(left);
3797 free_extent_buffer(left);
3798 path->nodes[0] = right;
3799 path->slots[0] = 0;
3800 path->slots[1]++;
3801 return 0;
3802 }
3803
3804 return __push_leaf_right(fs_info, path, min_data_size, empty,
3805 right, free_space, left_nritems, min_slot);
3806 out_unlock:
3807 btrfs_tree_unlock(right);
3808 free_extent_buffer(right);
3809 return 1;
3810 }
3811
3812 /*
3813 * push some data in the path leaf to the left, trying to free up at
3814 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3815 *
3816 * max_slot can put a limit on how far into the leaf we'll push items. The
3817 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3818 * items
3819 */
__push_leaf_left(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3820 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3821 struct btrfs_path *path, int data_size,
3822 int empty, struct extent_buffer *left,
3823 int free_space, u32 right_nritems,
3824 u32 max_slot)
3825 {
3826 struct btrfs_disk_key disk_key;
3827 struct extent_buffer *right = path->nodes[0];
3828 int i;
3829 int push_space = 0;
3830 int push_items = 0;
3831 struct btrfs_item *item;
3832 u32 old_left_nritems;
3833 u32 nr;
3834 int ret = 0;
3835 u32 this_item_size;
3836 u32 old_left_item_size;
3837 struct btrfs_map_token token;
3838
3839 btrfs_init_map_token(&token);
3840
3841 if (empty)
3842 nr = min(right_nritems, max_slot);
3843 else
3844 nr = min(right_nritems - 1, max_slot);
3845
3846 for (i = 0; i < nr; i++) {
3847 item = btrfs_item_nr(i);
3848
3849 if (!empty && push_items > 0) {
3850 if (path->slots[0] < i)
3851 break;
3852 if (path->slots[0] == i) {
3853 int space = btrfs_leaf_free_space(fs_info, right);
3854 if (space + push_space * 2 > free_space)
3855 break;
3856 }
3857 }
3858
3859 if (path->slots[0] == i)
3860 push_space += data_size;
3861
3862 this_item_size = btrfs_item_size(right, item);
3863 if (this_item_size + sizeof(*item) + push_space > free_space)
3864 break;
3865
3866 push_items++;
3867 push_space += this_item_size + sizeof(*item);
3868 }
3869
3870 if (push_items == 0) {
3871 ret = 1;
3872 goto out;
3873 }
3874 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3875
3876 /* push data from right to left */
3877 copy_extent_buffer(left, right,
3878 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3879 btrfs_item_nr_offset(0),
3880 push_items * sizeof(struct btrfs_item));
3881
3882 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3883 btrfs_item_offset_nr(right, push_items - 1);
3884
3885 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3886 leaf_data_end(fs_info, left) - push_space,
3887 BTRFS_LEAF_DATA_OFFSET +
3888 btrfs_item_offset_nr(right, push_items - 1),
3889 push_space);
3890 old_left_nritems = btrfs_header_nritems(left);
3891 BUG_ON(old_left_nritems <= 0);
3892
3893 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3894 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3895 u32 ioff;
3896
3897 item = btrfs_item_nr(i);
3898
3899 ioff = btrfs_token_item_offset(left, item, &token);
3900 btrfs_set_token_item_offset(left, item,
3901 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3902 &token);
3903 }
3904 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3905
3906 /* fixup right node */
3907 if (push_items > right_nritems)
3908 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3909 right_nritems);
3910
3911 if (push_items < right_nritems) {
3912 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3913 leaf_data_end(fs_info, right);
3914 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3915 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3916 BTRFS_LEAF_DATA_OFFSET +
3917 leaf_data_end(fs_info, right), push_space);
3918
3919 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3920 btrfs_item_nr_offset(push_items),
3921 (btrfs_header_nritems(right) - push_items) *
3922 sizeof(struct btrfs_item));
3923 }
3924 right_nritems -= push_items;
3925 btrfs_set_header_nritems(right, right_nritems);
3926 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3927 for (i = 0; i < right_nritems; i++) {
3928 item = btrfs_item_nr(i);
3929
3930 push_space = push_space - btrfs_token_item_size(right,
3931 item, &token);
3932 btrfs_set_token_item_offset(right, item, push_space, &token);
3933 }
3934
3935 btrfs_mark_buffer_dirty(left);
3936 if (right_nritems)
3937 btrfs_mark_buffer_dirty(right);
3938 else
3939 clean_tree_block(fs_info, right);
3940
3941 btrfs_item_key(right, &disk_key, 0);
3942 fixup_low_keys(fs_info, path, &disk_key, 1);
3943
3944 /* then fixup the leaf pointer in the path */
3945 if (path->slots[0] < push_items) {
3946 path->slots[0] += old_left_nritems;
3947 btrfs_tree_unlock(path->nodes[0]);
3948 free_extent_buffer(path->nodes[0]);
3949 path->nodes[0] = left;
3950 path->slots[1] -= 1;
3951 } else {
3952 btrfs_tree_unlock(left);
3953 free_extent_buffer(left);
3954 path->slots[0] -= push_items;
3955 }
3956 BUG_ON(path->slots[0] < 0);
3957 return ret;
3958 out:
3959 btrfs_tree_unlock(left);
3960 free_extent_buffer(left);
3961 return ret;
3962 }
3963
3964 /*
3965 * push some data in the path leaf to the left, trying to free up at
3966 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3967 *
3968 * max_slot can put a limit on how far into the leaf we'll push items. The
3969 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3970 * items
3971 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3972 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3973 *root, struct btrfs_path *path, int min_data_size,
3974 int data_size, int empty, u32 max_slot)
3975 {
3976 struct btrfs_fs_info *fs_info = root->fs_info;
3977 struct extent_buffer *right = path->nodes[0];
3978 struct extent_buffer *left;
3979 int slot;
3980 int free_space;
3981 u32 right_nritems;
3982 int ret = 0;
3983
3984 slot = path->slots[1];
3985 if (slot == 0)
3986 return 1;
3987 if (!path->nodes[1])
3988 return 1;
3989
3990 right_nritems = btrfs_header_nritems(right);
3991 if (right_nritems == 0)
3992 return 1;
3993
3994 btrfs_assert_tree_locked(path->nodes[1]);
3995
3996 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3997 /*
3998 * slot - 1 is not valid or we fail to read the left node,
3999 * no big deal, just return.
4000 */
4001 if (IS_ERR(left))
4002 return 1;
4003
4004 btrfs_tree_lock(left);
4005 btrfs_set_lock_blocking(left);
4006
4007 free_space = btrfs_leaf_free_space(fs_info, left);
4008 if (free_space < data_size) {
4009 ret = 1;
4010 goto out;
4011 }
4012
4013 /* cow and double check */
4014 ret = btrfs_cow_block(trans, root, left,
4015 path->nodes[1], slot - 1, &left);
4016 if (ret) {
4017 /* we hit -ENOSPC, but it isn't fatal here */
4018 if (ret == -ENOSPC)
4019 ret = 1;
4020 goto out;
4021 }
4022
4023 free_space = btrfs_leaf_free_space(fs_info, left);
4024 if (free_space < data_size) {
4025 ret = 1;
4026 goto out;
4027 }
4028
4029 return __push_leaf_left(fs_info, path, min_data_size,
4030 empty, left, free_space, right_nritems,
4031 max_slot);
4032 out:
4033 btrfs_tree_unlock(left);
4034 free_extent_buffer(left);
4035 return ret;
4036 }
4037
4038 /*
4039 * split the path's leaf in two, making sure there is at least data_size
4040 * available for the resulting leaf level of the path.
4041 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)4042 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4043 struct btrfs_fs_info *fs_info,
4044 struct btrfs_path *path,
4045 struct extent_buffer *l,
4046 struct extent_buffer *right,
4047 int slot, int mid, int nritems)
4048 {
4049 int data_copy_size;
4050 int rt_data_off;
4051 int i;
4052 struct btrfs_disk_key disk_key;
4053 struct btrfs_map_token token;
4054
4055 btrfs_init_map_token(&token);
4056
4057 nritems = nritems - mid;
4058 btrfs_set_header_nritems(right, nritems);
4059 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4060
4061 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4062 btrfs_item_nr_offset(mid),
4063 nritems * sizeof(struct btrfs_item));
4064
4065 copy_extent_buffer(right, l,
4066 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4067 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4068 leaf_data_end(fs_info, l), data_copy_size);
4069
4070 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4071
4072 for (i = 0; i < nritems; i++) {
4073 struct btrfs_item *item = btrfs_item_nr(i);
4074 u32 ioff;
4075
4076 ioff = btrfs_token_item_offset(right, item, &token);
4077 btrfs_set_token_item_offset(right, item,
4078 ioff + rt_data_off, &token);
4079 }
4080
4081 btrfs_set_header_nritems(l, mid);
4082 btrfs_item_key(right, &disk_key, 0);
4083 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4084 path->slots[1] + 1, 1);
4085
4086 btrfs_mark_buffer_dirty(right);
4087 btrfs_mark_buffer_dirty(l);
4088 BUG_ON(path->slots[0] != slot);
4089
4090 if (mid <= slot) {
4091 btrfs_tree_unlock(path->nodes[0]);
4092 free_extent_buffer(path->nodes[0]);
4093 path->nodes[0] = right;
4094 path->slots[0] -= mid;
4095 path->slots[1] += 1;
4096 } else {
4097 btrfs_tree_unlock(right);
4098 free_extent_buffer(right);
4099 }
4100
4101 BUG_ON(path->slots[0] < 0);
4102 }
4103
4104 /*
4105 * double splits happen when we need to insert a big item in the middle
4106 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4107 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4108 * A B C
4109 *
4110 * We avoid this by trying to push the items on either side of our target
4111 * into the adjacent leaves. If all goes well we can avoid the double split
4112 * completely.
4113 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)4114 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *root,
4116 struct btrfs_path *path,
4117 int data_size)
4118 {
4119 struct btrfs_fs_info *fs_info = root->fs_info;
4120 int ret;
4121 int progress = 0;
4122 int slot;
4123 u32 nritems;
4124 int space_needed = data_size;
4125
4126 slot = path->slots[0];
4127 if (slot < btrfs_header_nritems(path->nodes[0]))
4128 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4129
4130 /*
4131 * try to push all the items after our slot into the
4132 * right leaf
4133 */
4134 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4135 if (ret < 0)
4136 return ret;
4137
4138 if (ret == 0)
4139 progress++;
4140
4141 nritems = btrfs_header_nritems(path->nodes[0]);
4142 /*
4143 * our goal is to get our slot at the start or end of a leaf. If
4144 * we've done so we're done
4145 */
4146 if (path->slots[0] == 0 || path->slots[0] == nritems)
4147 return 0;
4148
4149 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4150 return 0;
4151
4152 /* try to push all the items before our slot into the next leaf */
4153 slot = path->slots[0];
4154 space_needed = data_size;
4155 if (slot > 0)
4156 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4157 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4158 if (ret < 0)
4159 return ret;
4160
4161 if (ret == 0)
4162 progress++;
4163
4164 if (progress)
4165 return 0;
4166 return 1;
4167 }
4168
4169 /*
4170 * split the path's leaf in two, making sure there is at least data_size
4171 * available for the resulting leaf level of the path.
4172 *
4173 * returns 0 if all went well and < 0 on failure.
4174 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)4175 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4176 struct btrfs_root *root,
4177 const struct btrfs_key *ins_key,
4178 struct btrfs_path *path, int data_size,
4179 int extend)
4180 {
4181 struct btrfs_disk_key disk_key;
4182 struct extent_buffer *l;
4183 u32 nritems;
4184 int mid;
4185 int slot;
4186 struct extent_buffer *right;
4187 struct btrfs_fs_info *fs_info = root->fs_info;
4188 int ret = 0;
4189 int wret;
4190 int split;
4191 int num_doubles = 0;
4192 int tried_avoid_double = 0;
4193
4194 l = path->nodes[0];
4195 slot = path->slots[0];
4196 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4197 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4198 return -EOVERFLOW;
4199
4200 /* first try to make some room by pushing left and right */
4201 if (data_size && path->nodes[1]) {
4202 int space_needed = data_size;
4203
4204 if (slot < btrfs_header_nritems(l))
4205 space_needed -= btrfs_leaf_free_space(fs_info, l);
4206
4207 wret = push_leaf_right(trans, root, path, space_needed,
4208 space_needed, 0, 0);
4209 if (wret < 0)
4210 return wret;
4211 if (wret) {
4212 space_needed = data_size;
4213 if (slot > 0)
4214 space_needed -= btrfs_leaf_free_space(fs_info,
4215 l);
4216 wret = push_leaf_left(trans, root, path, space_needed,
4217 space_needed, 0, (u32)-1);
4218 if (wret < 0)
4219 return wret;
4220 }
4221 l = path->nodes[0];
4222
4223 /* did the pushes work? */
4224 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4225 return 0;
4226 }
4227
4228 if (!path->nodes[1]) {
4229 ret = insert_new_root(trans, root, path, 1);
4230 if (ret)
4231 return ret;
4232 }
4233 again:
4234 split = 1;
4235 l = path->nodes[0];
4236 slot = path->slots[0];
4237 nritems = btrfs_header_nritems(l);
4238 mid = (nritems + 1) / 2;
4239
4240 if (mid <= slot) {
4241 if (nritems == 1 ||
4242 leaf_space_used(l, mid, nritems - mid) + data_size >
4243 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4244 if (slot >= nritems) {
4245 split = 0;
4246 } else {
4247 mid = slot;
4248 if (mid != nritems &&
4249 leaf_space_used(l, mid, nritems - mid) +
4250 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4251 if (data_size && !tried_avoid_double)
4252 goto push_for_double;
4253 split = 2;
4254 }
4255 }
4256 }
4257 } else {
4258 if (leaf_space_used(l, 0, mid) + data_size >
4259 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4260 if (!extend && data_size && slot == 0) {
4261 split = 0;
4262 } else if ((extend || !data_size) && slot == 0) {
4263 mid = 1;
4264 } else {
4265 mid = slot;
4266 if (mid != nritems &&
4267 leaf_space_used(l, mid, nritems - mid) +
4268 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4269 if (data_size && !tried_avoid_double)
4270 goto push_for_double;
4271 split = 2;
4272 }
4273 }
4274 }
4275 }
4276
4277 if (split == 0)
4278 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4279 else
4280 btrfs_item_key(l, &disk_key, mid);
4281
4282 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4283 &disk_key, 0, l->start, 0);
4284 if (IS_ERR(right))
4285 return PTR_ERR(right);
4286
4287 root_add_used(root, fs_info->nodesize);
4288
4289 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4290 btrfs_set_header_bytenr(right, right->start);
4291 btrfs_set_header_generation(right, trans->transid);
4292 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4293 btrfs_set_header_owner(right, root->root_key.objectid);
4294 btrfs_set_header_level(right, 0);
4295 write_extent_buffer_fsid(right, fs_info->fsid);
4296 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4297
4298 if (split == 0) {
4299 if (mid <= slot) {
4300 btrfs_set_header_nritems(right, 0);
4301 insert_ptr(trans, fs_info, path, &disk_key,
4302 right->start, path->slots[1] + 1, 1);
4303 btrfs_tree_unlock(path->nodes[0]);
4304 free_extent_buffer(path->nodes[0]);
4305 path->nodes[0] = right;
4306 path->slots[0] = 0;
4307 path->slots[1] += 1;
4308 } else {
4309 btrfs_set_header_nritems(right, 0);
4310 insert_ptr(trans, fs_info, path, &disk_key,
4311 right->start, path->slots[1], 1);
4312 btrfs_tree_unlock(path->nodes[0]);
4313 free_extent_buffer(path->nodes[0]);
4314 path->nodes[0] = right;
4315 path->slots[0] = 0;
4316 if (path->slots[1] == 0)
4317 fixup_low_keys(fs_info, path, &disk_key, 1);
4318 }
4319 /*
4320 * We create a new leaf 'right' for the required ins_len and
4321 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4322 * the content of ins_len to 'right'.
4323 */
4324 return ret;
4325 }
4326
4327 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4328
4329 if (split == 2) {
4330 BUG_ON(num_doubles != 0);
4331 num_doubles++;
4332 goto again;
4333 }
4334
4335 return 0;
4336
4337 push_for_double:
4338 push_for_double_split(trans, root, path, data_size);
4339 tried_avoid_double = 1;
4340 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4341 return 0;
4342 goto again;
4343 }
4344
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4345 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4346 struct btrfs_root *root,
4347 struct btrfs_path *path, int ins_len)
4348 {
4349 struct btrfs_fs_info *fs_info = root->fs_info;
4350 struct btrfs_key key;
4351 struct extent_buffer *leaf;
4352 struct btrfs_file_extent_item *fi;
4353 u64 extent_len = 0;
4354 u32 item_size;
4355 int ret;
4356
4357 leaf = path->nodes[0];
4358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4359
4360 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4361 key.type != BTRFS_EXTENT_CSUM_KEY);
4362
4363 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4364 return 0;
4365
4366 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4367 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4368 fi = btrfs_item_ptr(leaf, path->slots[0],
4369 struct btrfs_file_extent_item);
4370 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4371 }
4372 btrfs_release_path(path);
4373
4374 path->keep_locks = 1;
4375 path->search_for_split = 1;
4376 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4377 path->search_for_split = 0;
4378 if (ret > 0)
4379 ret = -EAGAIN;
4380 if (ret < 0)
4381 goto err;
4382
4383 ret = -EAGAIN;
4384 leaf = path->nodes[0];
4385 /* if our item isn't there, return now */
4386 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4387 goto err;
4388
4389 /* the leaf has changed, it now has room. return now */
4390 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4391 goto err;
4392
4393 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4394 fi = btrfs_item_ptr(leaf, path->slots[0],
4395 struct btrfs_file_extent_item);
4396 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4397 goto err;
4398 }
4399
4400 btrfs_set_path_blocking(path);
4401 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4402 if (ret)
4403 goto err;
4404
4405 path->keep_locks = 0;
4406 btrfs_unlock_up_safe(path, 1);
4407 return 0;
4408 err:
4409 path->keep_locks = 0;
4410 return ret;
4411 }
4412
split_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4413 static noinline int split_item(struct btrfs_fs_info *fs_info,
4414 struct btrfs_path *path,
4415 const struct btrfs_key *new_key,
4416 unsigned long split_offset)
4417 {
4418 struct extent_buffer *leaf;
4419 struct btrfs_item *item;
4420 struct btrfs_item *new_item;
4421 int slot;
4422 char *buf;
4423 u32 nritems;
4424 u32 item_size;
4425 u32 orig_offset;
4426 struct btrfs_disk_key disk_key;
4427
4428 leaf = path->nodes[0];
4429 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4430
4431 btrfs_set_path_blocking(path);
4432
4433 item = btrfs_item_nr(path->slots[0]);
4434 orig_offset = btrfs_item_offset(leaf, item);
4435 item_size = btrfs_item_size(leaf, item);
4436
4437 buf = kmalloc(item_size, GFP_NOFS);
4438 if (!buf)
4439 return -ENOMEM;
4440
4441 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4442 path->slots[0]), item_size);
4443
4444 slot = path->slots[0] + 1;
4445 nritems = btrfs_header_nritems(leaf);
4446 if (slot != nritems) {
4447 /* shift the items */
4448 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4449 btrfs_item_nr_offset(slot),
4450 (nritems - slot) * sizeof(struct btrfs_item));
4451 }
4452
4453 btrfs_cpu_key_to_disk(&disk_key, new_key);
4454 btrfs_set_item_key(leaf, &disk_key, slot);
4455
4456 new_item = btrfs_item_nr(slot);
4457
4458 btrfs_set_item_offset(leaf, new_item, orig_offset);
4459 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4460
4461 btrfs_set_item_offset(leaf, item,
4462 orig_offset + item_size - split_offset);
4463 btrfs_set_item_size(leaf, item, split_offset);
4464
4465 btrfs_set_header_nritems(leaf, nritems + 1);
4466
4467 /* write the data for the start of the original item */
4468 write_extent_buffer(leaf, buf,
4469 btrfs_item_ptr_offset(leaf, path->slots[0]),
4470 split_offset);
4471
4472 /* write the data for the new item */
4473 write_extent_buffer(leaf, buf + split_offset,
4474 btrfs_item_ptr_offset(leaf, slot),
4475 item_size - split_offset);
4476 btrfs_mark_buffer_dirty(leaf);
4477
4478 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4479 kfree(buf);
4480 return 0;
4481 }
4482
4483 /*
4484 * This function splits a single item into two items,
4485 * giving 'new_key' to the new item and splitting the
4486 * old one at split_offset (from the start of the item).
4487 *
4488 * The path may be released by this operation. After
4489 * the split, the path is pointing to the old item. The
4490 * new item is going to be in the same node as the old one.
4491 *
4492 * Note, the item being split must be smaller enough to live alone on
4493 * a tree block with room for one extra struct btrfs_item
4494 *
4495 * This allows us to split the item in place, keeping a lock on the
4496 * leaf the entire time.
4497 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4498 int btrfs_split_item(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
4500 struct btrfs_path *path,
4501 const struct btrfs_key *new_key,
4502 unsigned long split_offset)
4503 {
4504 int ret;
4505 ret = setup_leaf_for_split(trans, root, path,
4506 sizeof(struct btrfs_item));
4507 if (ret)
4508 return ret;
4509
4510 ret = split_item(root->fs_info, path, new_key, split_offset);
4511 return ret;
4512 }
4513
4514 /*
4515 * This function duplicate a item, giving 'new_key' to the new item.
4516 * It guarantees both items live in the same tree leaf and the new item
4517 * is contiguous with the original item.
4518 *
4519 * This allows us to split file extent in place, keeping a lock on the
4520 * leaf the entire time.
4521 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4522 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4523 struct btrfs_root *root,
4524 struct btrfs_path *path,
4525 const struct btrfs_key *new_key)
4526 {
4527 struct extent_buffer *leaf;
4528 int ret;
4529 u32 item_size;
4530
4531 leaf = path->nodes[0];
4532 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4533 ret = setup_leaf_for_split(trans, root, path,
4534 item_size + sizeof(struct btrfs_item));
4535 if (ret)
4536 return ret;
4537
4538 path->slots[0]++;
4539 setup_items_for_insert(root, path, new_key, &item_size,
4540 item_size, item_size +
4541 sizeof(struct btrfs_item), 1);
4542 leaf = path->nodes[0];
4543 memcpy_extent_buffer(leaf,
4544 btrfs_item_ptr_offset(leaf, path->slots[0]),
4545 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4546 item_size);
4547 return 0;
4548 }
4549
4550 /*
4551 * make the item pointed to by the path smaller. new_size indicates
4552 * how small to make it, and from_end tells us if we just chop bytes
4553 * off the end of the item or if we shift the item to chop bytes off
4554 * the front.
4555 */
btrfs_truncate_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u32 new_size,int from_end)4556 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4557 struct btrfs_path *path, u32 new_size, int from_end)
4558 {
4559 int slot;
4560 struct extent_buffer *leaf;
4561 struct btrfs_item *item;
4562 u32 nritems;
4563 unsigned int data_end;
4564 unsigned int old_data_start;
4565 unsigned int old_size;
4566 unsigned int size_diff;
4567 int i;
4568 struct btrfs_map_token token;
4569
4570 btrfs_init_map_token(&token);
4571
4572 leaf = path->nodes[0];
4573 slot = path->slots[0];
4574
4575 old_size = btrfs_item_size_nr(leaf, slot);
4576 if (old_size == new_size)
4577 return;
4578
4579 nritems = btrfs_header_nritems(leaf);
4580 data_end = leaf_data_end(fs_info, leaf);
4581
4582 old_data_start = btrfs_item_offset_nr(leaf, slot);
4583
4584 size_diff = old_size - new_size;
4585
4586 BUG_ON(slot < 0);
4587 BUG_ON(slot >= nritems);
4588
4589 /*
4590 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4591 */
4592 /* first correct the data pointers */
4593 for (i = slot; i < nritems; i++) {
4594 u32 ioff;
4595 item = btrfs_item_nr(i);
4596
4597 ioff = btrfs_token_item_offset(leaf, item, &token);
4598 btrfs_set_token_item_offset(leaf, item,
4599 ioff + size_diff, &token);
4600 }
4601
4602 /* shift the data */
4603 if (from_end) {
4604 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4605 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4606 data_end, old_data_start + new_size - data_end);
4607 } else {
4608 struct btrfs_disk_key disk_key;
4609 u64 offset;
4610
4611 btrfs_item_key(leaf, &disk_key, slot);
4612
4613 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4614 unsigned long ptr;
4615 struct btrfs_file_extent_item *fi;
4616
4617 fi = btrfs_item_ptr(leaf, slot,
4618 struct btrfs_file_extent_item);
4619 fi = (struct btrfs_file_extent_item *)(
4620 (unsigned long)fi - size_diff);
4621
4622 if (btrfs_file_extent_type(leaf, fi) ==
4623 BTRFS_FILE_EXTENT_INLINE) {
4624 ptr = btrfs_item_ptr_offset(leaf, slot);
4625 memmove_extent_buffer(leaf, ptr,
4626 (unsigned long)fi,
4627 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4628 }
4629 }
4630
4631 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4632 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4633 data_end, old_data_start - data_end);
4634
4635 offset = btrfs_disk_key_offset(&disk_key);
4636 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4637 btrfs_set_item_key(leaf, &disk_key, slot);
4638 if (slot == 0)
4639 fixup_low_keys(fs_info, path, &disk_key, 1);
4640 }
4641
4642 item = btrfs_item_nr(slot);
4643 btrfs_set_item_size(leaf, item, new_size);
4644 btrfs_mark_buffer_dirty(leaf);
4645
4646 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4647 btrfs_print_leaf(leaf);
4648 BUG();
4649 }
4650 }
4651
4652 /*
4653 * make the item pointed to by the path bigger, data_size is the added size.
4654 */
btrfs_extend_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u32 data_size)4655 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4656 u32 data_size)
4657 {
4658 int slot;
4659 struct extent_buffer *leaf;
4660 struct btrfs_item *item;
4661 u32 nritems;
4662 unsigned int data_end;
4663 unsigned int old_data;
4664 unsigned int old_size;
4665 int i;
4666 struct btrfs_map_token token;
4667
4668 btrfs_init_map_token(&token);
4669
4670 leaf = path->nodes[0];
4671
4672 nritems = btrfs_header_nritems(leaf);
4673 data_end = leaf_data_end(fs_info, leaf);
4674
4675 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4676 btrfs_print_leaf(leaf);
4677 BUG();
4678 }
4679 slot = path->slots[0];
4680 old_data = btrfs_item_end_nr(leaf, slot);
4681
4682 BUG_ON(slot < 0);
4683 if (slot >= nritems) {
4684 btrfs_print_leaf(leaf);
4685 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4686 slot, nritems);
4687 BUG_ON(1);
4688 }
4689
4690 /*
4691 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4692 */
4693 /* first correct the data pointers */
4694 for (i = slot; i < nritems; i++) {
4695 u32 ioff;
4696 item = btrfs_item_nr(i);
4697
4698 ioff = btrfs_token_item_offset(leaf, item, &token);
4699 btrfs_set_token_item_offset(leaf, item,
4700 ioff - data_size, &token);
4701 }
4702
4703 /* shift the data */
4704 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4705 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4706 data_end, old_data - data_end);
4707
4708 data_end = old_data;
4709 old_size = btrfs_item_size_nr(leaf, slot);
4710 item = btrfs_item_nr(slot);
4711 btrfs_set_item_size(leaf, item, old_size + data_size);
4712 btrfs_mark_buffer_dirty(leaf);
4713
4714 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4715 btrfs_print_leaf(leaf);
4716 BUG();
4717 }
4718 }
4719
4720 /*
4721 * this is a helper for btrfs_insert_empty_items, the main goal here is
4722 * to save stack depth by doing the bulk of the work in a function
4723 * that doesn't call btrfs_search_slot
4724 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4725 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4726 const struct btrfs_key *cpu_key, u32 *data_size,
4727 u32 total_data, u32 total_size, int nr)
4728 {
4729 struct btrfs_fs_info *fs_info = root->fs_info;
4730 struct btrfs_item *item;
4731 int i;
4732 u32 nritems;
4733 unsigned int data_end;
4734 struct btrfs_disk_key disk_key;
4735 struct extent_buffer *leaf;
4736 int slot;
4737 struct btrfs_map_token token;
4738
4739 if (path->slots[0] == 0) {
4740 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4741 fixup_low_keys(fs_info, path, &disk_key, 1);
4742 }
4743 btrfs_unlock_up_safe(path, 1);
4744
4745 btrfs_init_map_token(&token);
4746
4747 leaf = path->nodes[0];
4748 slot = path->slots[0];
4749
4750 nritems = btrfs_header_nritems(leaf);
4751 data_end = leaf_data_end(fs_info, leaf);
4752
4753 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4754 btrfs_print_leaf(leaf);
4755 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4756 total_size, btrfs_leaf_free_space(fs_info, leaf));
4757 BUG();
4758 }
4759
4760 if (slot != nritems) {
4761 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4762
4763 if (old_data < data_end) {
4764 btrfs_print_leaf(leaf);
4765 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4766 slot, old_data, data_end);
4767 BUG_ON(1);
4768 }
4769 /*
4770 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4771 */
4772 /* first correct the data pointers */
4773 for (i = slot; i < nritems; i++) {
4774 u32 ioff;
4775
4776 item = btrfs_item_nr(i);
4777 ioff = btrfs_token_item_offset(leaf, item, &token);
4778 btrfs_set_token_item_offset(leaf, item,
4779 ioff - total_data, &token);
4780 }
4781 /* shift the items */
4782 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4783 btrfs_item_nr_offset(slot),
4784 (nritems - slot) * sizeof(struct btrfs_item));
4785
4786 /* shift the data */
4787 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4788 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4789 data_end, old_data - data_end);
4790 data_end = old_data;
4791 }
4792
4793 /* setup the item for the new data */
4794 for (i = 0; i < nr; i++) {
4795 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4796 btrfs_set_item_key(leaf, &disk_key, slot + i);
4797 item = btrfs_item_nr(slot + i);
4798 btrfs_set_token_item_offset(leaf, item,
4799 data_end - data_size[i], &token);
4800 data_end -= data_size[i];
4801 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4802 }
4803
4804 btrfs_set_header_nritems(leaf, nritems + nr);
4805 btrfs_mark_buffer_dirty(leaf);
4806
4807 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4808 btrfs_print_leaf(leaf);
4809 BUG();
4810 }
4811 }
4812
4813 /*
4814 * Given a key and some data, insert items into the tree.
4815 * This does all the path init required, making room in the tree if needed.
4816 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,int nr)4817 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4818 struct btrfs_root *root,
4819 struct btrfs_path *path,
4820 const struct btrfs_key *cpu_key, u32 *data_size,
4821 int nr)
4822 {
4823 int ret = 0;
4824 int slot;
4825 int i;
4826 u32 total_size = 0;
4827 u32 total_data = 0;
4828
4829 for (i = 0; i < nr; i++)
4830 total_data += data_size[i];
4831
4832 total_size = total_data + (nr * sizeof(struct btrfs_item));
4833 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4834 if (ret == 0)
4835 return -EEXIST;
4836 if (ret < 0)
4837 return ret;
4838
4839 slot = path->slots[0];
4840 BUG_ON(slot < 0);
4841
4842 setup_items_for_insert(root, path, cpu_key, data_size,
4843 total_data, total_size, nr);
4844 return 0;
4845 }
4846
4847 /*
4848 * Given a key and some data, insert an item into the tree.
4849 * This does all the path init required, making room in the tree if needed.
4850 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4851 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4852 const struct btrfs_key *cpu_key, void *data,
4853 u32 data_size)
4854 {
4855 int ret = 0;
4856 struct btrfs_path *path;
4857 struct extent_buffer *leaf;
4858 unsigned long ptr;
4859
4860 path = btrfs_alloc_path();
4861 if (!path)
4862 return -ENOMEM;
4863 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4864 if (!ret) {
4865 leaf = path->nodes[0];
4866 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4867 write_extent_buffer(leaf, data, ptr, data_size);
4868 btrfs_mark_buffer_dirty(leaf);
4869 }
4870 btrfs_free_path(path);
4871 return ret;
4872 }
4873
4874 /*
4875 * delete the pointer from a given node.
4876 *
4877 * the tree should have been previously balanced so the deletion does not
4878 * empty a node.
4879 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4880 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4881 int level, int slot)
4882 {
4883 struct btrfs_fs_info *fs_info = root->fs_info;
4884 struct extent_buffer *parent = path->nodes[level];
4885 u32 nritems;
4886 int ret;
4887
4888 nritems = btrfs_header_nritems(parent);
4889 if (slot != nritems - 1) {
4890 if (level)
4891 tree_mod_log_eb_move(fs_info, parent, slot,
4892 slot + 1, nritems - slot - 1);
4893 memmove_extent_buffer(parent,
4894 btrfs_node_key_ptr_offset(slot),
4895 btrfs_node_key_ptr_offset(slot + 1),
4896 sizeof(struct btrfs_key_ptr) *
4897 (nritems - slot - 1));
4898 } else if (level) {
4899 ret = tree_mod_log_insert_key(fs_info, parent, slot,
4900 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4901 BUG_ON(ret < 0);
4902 }
4903
4904 nritems--;
4905 btrfs_set_header_nritems(parent, nritems);
4906 if (nritems == 0 && parent == root->node) {
4907 BUG_ON(btrfs_header_level(root->node) != 1);
4908 /* just turn the root into a leaf and break */
4909 btrfs_set_header_level(root->node, 0);
4910 } else if (slot == 0) {
4911 struct btrfs_disk_key disk_key;
4912
4913 btrfs_node_key(parent, &disk_key, 0);
4914 fixup_low_keys(fs_info, path, &disk_key, level + 1);
4915 }
4916 btrfs_mark_buffer_dirty(parent);
4917 }
4918
4919 /*
4920 * a helper function to delete the leaf pointed to by path->slots[1] and
4921 * path->nodes[1].
4922 *
4923 * This deletes the pointer in path->nodes[1] and frees the leaf
4924 * block extent. zero is returned if it all worked out, < 0 otherwise.
4925 *
4926 * The path must have already been setup for deleting the leaf, including
4927 * all the proper balancing. path->nodes[1] must be locked.
4928 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4929 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4930 struct btrfs_root *root,
4931 struct btrfs_path *path,
4932 struct extent_buffer *leaf)
4933 {
4934 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4935 del_ptr(root, path, 1, path->slots[1]);
4936
4937 /*
4938 * btrfs_free_extent is expensive, we want to make sure we
4939 * aren't holding any locks when we call it
4940 */
4941 btrfs_unlock_up_safe(path, 0);
4942
4943 root_sub_used(root, leaf->len);
4944
4945 extent_buffer_get(leaf);
4946 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4947 free_extent_buffer_stale(leaf);
4948 }
4949 /*
4950 * delete the item at the leaf level in path. If that empties
4951 * the leaf, remove it from the tree
4952 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4953 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4954 struct btrfs_path *path, int slot, int nr)
4955 {
4956 struct btrfs_fs_info *fs_info = root->fs_info;
4957 struct extent_buffer *leaf;
4958 struct btrfs_item *item;
4959 u32 last_off;
4960 u32 dsize = 0;
4961 int ret = 0;
4962 int wret;
4963 int i;
4964 u32 nritems;
4965 struct btrfs_map_token token;
4966
4967 btrfs_init_map_token(&token);
4968
4969 leaf = path->nodes[0];
4970 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4971
4972 for (i = 0; i < nr; i++)
4973 dsize += btrfs_item_size_nr(leaf, slot + i);
4974
4975 nritems = btrfs_header_nritems(leaf);
4976
4977 if (slot + nr != nritems) {
4978 int data_end = leaf_data_end(fs_info, leaf);
4979
4980 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4981 data_end + dsize,
4982 BTRFS_LEAF_DATA_OFFSET + data_end,
4983 last_off - data_end);
4984
4985 for (i = slot + nr; i < nritems; i++) {
4986 u32 ioff;
4987
4988 item = btrfs_item_nr(i);
4989 ioff = btrfs_token_item_offset(leaf, item, &token);
4990 btrfs_set_token_item_offset(leaf, item,
4991 ioff + dsize, &token);
4992 }
4993
4994 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4995 btrfs_item_nr_offset(slot + nr),
4996 sizeof(struct btrfs_item) *
4997 (nritems - slot - nr));
4998 }
4999 btrfs_set_header_nritems(leaf, nritems - nr);
5000 nritems -= nr;
5001
5002 /* delete the leaf if we've emptied it */
5003 if (nritems == 0) {
5004 if (leaf == root->node) {
5005 btrfs_set_header_level(leaf, 0);
5006 } else {
5007 btrfs_set_path_blocking(path);
5008 clean_tree_block(fs_info, leaf);
5009 btrfs_del_leaf(trans, root, path, leaf);
5010 }
5011 } else {
5012 int used = leaf_space_used(leaf, 0, nritems);
5013 if (slot == 0) {
5014 struct btrfs_disk_key disk_key;
5015
5016 btrfs_item_key(leaf, &disk_key, 0);
5017 fixup_low_keys(fs_info, path, &disk_key, 1);
5018 }
5019
5020 /* delete the leaf if it is mostly empty */
5021 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5022 /* push_leaf_left fixes the path.
5023 * make sure the path still points to our leaf
5024 * for possible call to del_ptr below
5025 */
5026 slot = path->slots[1];
5027 extent_buffer_get(leaf);
5028
5029 btrfs_set_path_blocking(path);
5030 wret = push_leaf_left(trans, root, path, 1, 1,
5031 1, (u32)-1);
5032 if (wret < 0 && wret != -ENOSPC)
5033 ret = wret;
5034
5035 if (path->nodes[0] == leaf &&
5036 btrfs_header_nritems(leaf)) {
5037 wret = push_leaf_right(trans, root, path, 1,
5038 1, 1, 0);
5039 if (wret < 0 && wret != -ENOSPC)
5040 ret = wret;
5041 }
5042
5043 if (btrfs_header_nritems(leaf) == 0) {
5044 path->slots[1] = slot;
5045 btrfs_del_leaf(trans, root, path, leaf);
5046 free_extent_buffer(leaf);
5047 ret = 0;
5048 } else {
5049 /* if we're still in the path, make sure
5050 * we're dirty. Otherwise, one of the
5051 * push_leaf functions must have already
5052 * dirtied this buffer
5053 */
5054 if (path->nodes[0] == leaf)
5055 btrfs_mark_buffer_dirty(leaf);
5056 free_extent_buffer(leaf);
5057 }
5058 } else {
5059 btrfs_mark_buffer_dirty(leaf);
5060 }
5061 }
5062 return ret;
5063 }
5064
5065 /*
5066 * search the tree again to find a leaf with lesser keys
5067 * returns 0 if it found something or 1 if there are no lesser leaves.
5068 * returns < 0 on io errors.
5069 *
5070 * This may release the path, and so you may lose any locks held at the
5071 * time you call it.
5072 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)5073 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5074 {
5075 struct btrfs_key key;
5076 struct btrfs_disk_key found_key;
5077 int ret;
5078
5079 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5080
5081 if (key.offset > 0) {
5082 key.offset--;
5083 } else if (key.type > 0) {
5084 key.type--;
5085 key.offset = (u64)-1;
5086 } else if (key.objectid > 0) {
5087 key.objectid--;
5088 key.type = (u8)-1;
5089 key.offset = (u64)-1;
5090 } else {
5091 return 1;
5092 }
5093
5094 btrfs_release_path(path);
5095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5096 if (ret < 0)
5097 return ret;
5098 btrfs_item_key(path->nodes[0], &found_key, 0);
5099 ret = comp_keys(&found_key, &key);
5100 /*
5101 * We might have had an item with the previous key in the tree right
5102 * before we released our path. And after we released our path, that
5103 * item might have been pushed to the first slot (0) of the leaf we
5104 * were holding due to a tree balance. Alternatively, an item with the
5105 * previous key can exist as the only element of a leaf (big fat item).
5106 * Therefore account for these 2 cases, so that our callers (like
5107 * btrfs_previous_item) don't miss an existing item with a key matching
5108 * the previous key we computed above.
5109 */
5110 if (ret <= 0)
5111 return 0;
5112 return 1;
5113 }
5114
5115 /*
5116 * A helper function to walk down the tree starting at min_key, and looking
5117 * for nodes or leaves that are have a minimum transaction id.
5118 * This is used by the btree defrag code, and tree logging
5119 *
5120 * This does not cow, but it does stuff the starting key it finds back
5121 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5122 * key and get a writable path.
5123 *
5124 * This does lock as it descends, and path->keep_locks should be set
5125 * to 1 by the caller.
5126 *
5127 * This honors path->lowest_level to prevent descent past a given level
5128 * of the tree.
5129 *
5130 * min_trans indicates the oldest transaction that you are interested
5131 * in walking through. Any nodes or leaves older than min_trans are
5132 * skipped over (without reading them).
5133 *
5134 * returns zero if something useful was found, < 0 on error and 1 if there
5135 * was nothing in the tree that matched the search criteria.
5136 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)5137 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5138 struct btrfs_path *path,
5139 u64 min_trans)
5140 {
5141 struct btrfs_fs_info *fs_info = root->fs_info;
5142 struct extent_buffer *cur;
5143 struct btrfs_key found_key;
5144 int slot;
5145 int sret;
5146 u32 nritems;
5147 int level;
5148 int ret = 1;
5149 int keep_locks = path->keep_locks;
5150
5151 path->keep_locks = 1;
5152 again:
5153 cur = btrfs_read_lock_root_node(root);
5154 level = btrfs_header_level(cur);
5155 WARN_ON(path->nodes[level]);
5156 path->nodes[level] = cur;
5157 path->locks[level] = BTRFS_READ_LOCK;
5158
5159 if (btrfs_header_generation(cur) < min_trans) {
5160 ret = 1;
5161 goto out;
5162 }
5163 while (1) {
5164 nritems = btrfs_header_nritems(cur);
5165 level = btrfs_header_level(cur);
5166 sret = bin_search(cur, min_key, level, &slot);
5167
5168 /* at the lowest level, we're done, setup the path and exit */
5169 if (level == path->lowest_level) {
5170 if (slot >= nritems)
5171 goto find_next_key;
5172 ret = 0;
5173 path->slots[level] = slot;
5174 btrfs_item_key_to_cpu(cur, &found_key, slot);
5175 goto out;
5176 }
5177 if (sret && slot > 0)
5178 slot--;
5179 /*
5180 * check this node pointer against the min_trans parameters.
5181 * If it is too old, old, skip to the next one.
5182 */
5183 while (slot < nritems) {
5184 u64 gen;
5185
5186 gen = btrfs_node_ptr_generation(cur, slot);
5187 if (gen < min_trans) {
5188 slot++;
5189 continue;
5190 }
5191 break;
5192 }
5193 find_next_key:
5194 /*
5195 * we didn't find a candidate key in this node, walk forward
5196 * and find another one
5197 */
5198 if (slot >= nritems) {
5199 path->slots[level] = slot;
5200 btrfs_set_path_blocking(path);
5201 sret = btrfs_find_next_key(root, path, min_key, level,
5202 min_trans);
5203 if (sret == 0) {
5204 btrfs_release_path(path);
5205 goto again;
5206 } else {
5207 goto out;
5208 }
5209 }
5210 /* save our key for returning back */
5211 btrfs_node_key_to_cpu(cur, &found_key, slot);
5212 path->slots[level] = slot;
5213 if (level == path->lowest_level) {
5214 ret = 0;
5215 goto out;
5216 }
5217 btrfs_set_path_blocking(path);
5218 cur = read_node_slot(fs_info, cur, slot);
5219 if (IS_ERR(cur)) {
5220 ret = PTR_ERR(cur);
5221 goto out;
5222 }
5223
5224 btrfs_tree_read_lock(cur);
5225
5226 path->locks[level - 1] = BTRFS_READ_LOCK;
5227 path->nodes[level - 1] = cur;
5228 unlock_up(path, level, 1, 0, NULL);
5229 btrfs_clear_path_blocking(path, NULL, 0);
5230 }
5231 out:
5232 path->keep_locks = keep_locks;
5233 if (ret == 0) {
5234 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5235 btrfs_set_path_blocking(path);
5236 memcpy(min_key, &found_key, sizeof(found_key));
5237 }
5238 return ret;
5239 }
5240
tree_move_down(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int * level)5241 static int tree_move_down(struct btrfs_fs_info *fs_info,
5242 struct btrfs_path *path,
5243 int *level)
5244 {
5245 struct extent_buffer *eb;
5246
5247 BUG_ON(*level == 0);
5248 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5249 if (IS_ERR(eb))
5250 return PTR_ERR(eb);
5251
5252 path->nodes[*level - 1] = eb;
5253 path->slots[*level - 1] = 0;
5254 (*level)--;
5255 return 0;
5256 }
5257
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)5258 static int tree_move_next_or_upnext(struct btrfs_path *path,
5259 int *level, int root_level)
5260 {
5261 int ret = 0;
5262 int nritems;
5263 nritems = btrfs_header_nritems(path->nodes[*level]);
5264
5265 path->slots[*level]++;
5266
5267 while (path->slots[*level] >= nritems) {
5268 if (*level == root_level)
5269 return -1;
5270
5271 /* move upnext */
5272 path->slots[*level] = 0;
5273 free_extent_buffer(path->nodes[*level]);
5274 path->nodes[*level] = NULL;
5275 (*level)++;
5276 path->slots[*level]++;
5277
5278 nritems = btrfs_header_nritems(path->nodes[*level]);
5279 ret = 1;
5280 }
5281 return ret;
5282 }
5283
5284 /*
5285 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5286 * or down.
5287 */
tree_advance(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)5288 static int tree_advance(struct btrfs_fs_info *fs_info,
5289 struct btrfs_path *path,
5290 int *level, int root_level,
5291 int allow_down,
5292 struct btrfs_key *key)
5293 {
5294 int ret;
5295
5296 if (*level == 0 || !allow_down) {
5297 ret = tree_move_next_or_upnext(path, level, root_level);
5298 } else {
5299 ret = tree_move_down(fs_info, path, level);
5300 }
5301 if (ret >= 0) {
5302 if (*level == 0)
5303 btrfs_item_key_to_cpu(path->nodes[*level], key,
5304 path->slots[*level]);
5305 else
5306 btrfs_node_key_to_cpu(path->nodes[*level], key,
5307 path->slots[*level]);
5308 }
5309 return ret;
5310 }
5311
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)5312 static int tree_compare_item(struct btrfs_path *left_path,
5313 struct btrfs_path *right_path,
5314 char *tmp_buf)
5315 {
5316 int cmp;
5317 int len1, len2;
5318 unsigned long off1, off2;
5319
5320 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5321 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5322 if (len1 != len2)
5323 return 1;
5324
5325 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5326 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5327 right_path->slots[0]);
5328
5329 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5330
5331 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5332 if (cmp)
5333 return 1;
5334 return 0;
5335 }
5336
5337 #define ADVANCE 1
5338 #define ADVANCE_ONLY_NEXT -1
5339
5340 /*
5341 * This function compares two trees and calls the provided callback for
5342 * every changed/new/deleted item it finds.
5343 * If shared tree blocks are encountered, whole subtrees are skipped, making
5344 * the compare pretty fast on snapshotted subvolumes.
5345 *
5346 * This currently works on commit roots only. As commit roots are read only,
5347 * we don't do any locking. The commit roots are protected with transactions.
5348 * Transactions are ended and rejoined when a commit is tried in between.
5349 *
5350 * This function checks for modifications done to the trees while comparing.
5351 * If it detects a change, it aborts immediately.
5352 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)5353 int btrfs_compare_trees(struct btrfs_root *left_root,
5354 struct btrfs_root *right_root,
5355 btrfs_changed_cb_t changed_cb, void *ctx)
5356 {
5357 struct btrfs_fs_info *fs_info = left_root->fs_info;
5358 int ret;
5359 int cmp;
5360 struct btrfs_path *left_path = NULL;
5361 struct btrfs_path *right_path = NULL;
5362 struct btrfs_key left_key;
5363 struct btrfs_key right_key;
5364 char *tmp_buf = NULL;
5365 int left_root_level;
5366 int right_root_level;
5367 int left_level;
5368 int right_level;
5369 int left_end_reached;
5370 int right_end_reached;
5371 int advance_left;
5372 int advance_right;
5373 u64 left_blockptr;
5374 u64 right_blockptr;
5375 u64 left_gen;
5376 u64 right_gen;
5377
5378 left_path = btrfs_alloc_path();
5379 if (!left_path) {
5380 ret = -ENOMEM;
5381 goto out;
5382 }
5383 right_path = btrfs_alloc_path();
5384 if (!right_path) {
5385 ret = -ENOMEM;
5386 goto out;
5387 }
5388
5389 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5390 if (!tmp_buf) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394
5395 left_path->search_commit_root = 1;
5396 left_path->skip_locking = 1;
5397 right_path->search_commit_root = 1;
5398 right_path->skip_locking = 1;
5399
5400 /*
5401 * Strategy: Go to the first items of both trees. Then do
5402 *
5403 * If both trees are at level 0
5404 * Compare keys of current items
5405 * If left < right treat left item as new, advance left tree
5406 * and repeat
5407 * If left > right treat right item as deleted, advance right tree
5408 * and repeat
5409 * If left == right do deep compare of items, treat as changed if
5410 * needed, advance both trees and repeat
5411 * If both trees are at the same level but not at level 0
5412 * Compare keys of current nodes/leafs
5413 * If left < right advance left tree and repeat
5414 * If left > right advance right tree and repeat
5415 * If left == right compare blockptrs of the next nodes/leafs
5416 * If they match advance both trees but stay at the same level
5417 * and repeat
5418 * If they don't match advance both trees while allowing to go
5419 * deeper and repeat
5420 * If tree levels are different
5421 * Advance the tree that needs it and repeat
5422 *
5423 * Advancing a tree means:
5424 * If we are at level 0, try to go to the next slot. If that's not
5425 * possible, go one level up and repeat. Stop when we found a level
5426 * where we could go to the next slot. We may at this point be on a
5427 * node or a leaf.
5428 *
5429 * If we are not at level 0 and not on shared tree blocks, go one
5430 * level deeper.
5431 *
5432 * If we are not at level 0 and on shared tree blocks, go one slot to
5433 * the right if possible or go up and right.
5434 */
5435
5436 down_read(&fs_info->commit_root_sem);
5437 left_level = btrfs_header_level(left_root->commit_root);
5438 left_root_level = left_level;
5439 left_path->nodes[left_level] =
5440 btrfs_clone_extent_buffer(left_root->commit_root);
5441 if (!left_path->nodes[left_level]) {
5442 up_read(&fs_info->commit_root_sem);
5443 ret = -ENOMEM;
5444 goto out;
5445 }
5446 extent_buffer_get(left_path->nodes[left_level]);
5447
5448 right_level = btrfs_header_level(right_root->commit_root);
5449 right_root_level = right_level;
5450 right_path->nodes[right_level] =
5451 btrfs_clone_extent_buffer(right_root->commit_root);
5452 if (!right_path->nodes[right_level]) {
5453 up_read(&fs_info->commit_root_sem);
5454 ret = -ENOMEM;
5455 goto out;
5456 }
5457 extent_buffer_get(right_path->nodes[right_level]);
5458 up_read(&fs_info->commit_root_sem);
5459
5460 if (left_level == 0)
5461 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5462 &left_key, left_path->slots[left_level]);
5463 else
5464 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5465 &left_key, left_path->slots[left_level]);
5466 if (right_level == 0)
5467 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5468 &right_key, right_path->slots[right_level]);
5469 else
5470 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5471 &right_key, right_path->slots[right_level]);
5472
5473 left_end_reached = right_end_reached = 0;
5474 advance_left = advance_right = 0;
5475
5476 while (1) {
5477 cond_resched();
5478 if (advance_left && !left_end_reached) {
5479 ret = tree_advance(fs_info, left_path, &left_level,
5480 left_root_level,
5481 advance_left != ADVANCE_ONLY_NEXT,
5482 &left_key);
5483 if (ret == -1)
5484 left_end_reached = ADVANCE;
5485 else if (ret < 0)
5486 goto out;
5487 advance_left = 0;
5488 }
5489 if (advance_right && !right_end_reached) {
5490 ret = tree_advance(fs_info, right_path, &right_level,
5491 right_root_level,
5492 advance_right != ADVANCE_ONLY_NEXT,
5493 &right_key);
5494 if (ret == -1)
5495 right_end_reached = ADVANCE;
5496 else if (ret < 0)
5497 goto out;
5498 advance_right = 0;
5499 }
5500
5501 if (left_end_reached && right_end_reached) {
5502 ret = 0;
5503 goto out;
5504 } else if (left_end_reached) {
5505 if (right_level == 0) {
5506 ret = changed_cb(left_root, right_root,
5507 left_path, right_path,
5508 &right_key,
5509 BTRFS_COMPARE_TREE_DELETED,
5510 ctx);
5511 if (ret < 0)
5512 goto out;
5513 }
5514 advance_right = ADVANCE;
5515 continue;
5516 } else if (right_end_reached) {
5517 if (left_level == 0) {
5518 ret = changed_cb(left_root, right_root,
5519 left_path, right_path,
5520 &left_key,
5521 BTRFS_COMPARE_TREE_NEW,
5522 ctx);
5523 if (ret < 0)
5524 goto out;
5525 }
5526 advance_left = ADVANCE;
5527 continue;
5528 }
5529
5530 if (left_level == 0 && right_level == 0) {
5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532 if (cmp < 0) {
5533 ret = changed_cb(left_root, right_root,
5534 left_path, right_path,
5535 &left_key,
5536 BTRFS_COMPARE_TREE_NEW,
5537 ctx);
5538 if (ret < 0)
5539 goto out;
5540 advance_left = ADVANCE;
5541 } else if (cmp > 0) {
5542 ret = changed_cb(left_root, right_root,
5543 left_path, right_path,
5544 &right_key,
5545 BTRFS_COMPARE_TREE_DELETED,
5546 ctx);
5547 if (ret < 0)
5548 goto out;
5549 advance_right = ADVANCE;
5550 } else {
5551 enum btrfs_compare_tree_result result;
5552
5553 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5554 ret = tree_compare_item(left_path, right_path,
5555 tmp_buf);
5556 if (ret)
5557 result = BTRFS_COMPARE_TREE_CHANGED;
5558 else
5559 result = BTRFS_COMPARE_TREE_SAME;
5560 ret = changed_cb(left_root, right_root,
5561 left_path, right_path,
5562 &left_key, result, ctx);
5563 if (ret < 0)
5564 goto out;
5565 advance_left = ADVANCE;
5566 advance_right = ADVANCE;
5567 }
5568 } else if (left_level == right_level) {
5569 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5570 if (cmp < 0) {
5571 advance_left = ADVANCE;
5572 } else if (cmp > 0) {
5573 advance_right = ADVANCE;
5574 } else {
5575 left_blockptr = btrfs_node_blockptr(
5576 left_path->nodes[left_level],
5577 left_path->slots[left_level]);
5578 right_blockptr = btrfs_node_blockptr(
5579 right_path->nodes[right_level],
5580 right_path->slots[right_level]);
5581 left_gen = btrfs_node_ptr_generation(
5582 left_path->nodes[left_level],
5583 left_path->slots[left_level]);
5584 right_gen = btrfs_node_ptr_generation(
5585 right_path->nodes[right_level],
5586 right_path->slots[right_level]);
5587 if (left_blockptr == right_blockptr &&
5588 left_gen == right_gen) {
5589 /*
5590 * As we're on a shared block, don't
5591 * allow to go deeper.
5592 */
5593 advance_left = ADVANCE_ONLY_NEXT;
5594 advance_right = ADVANCE_ONLY_NEXT;
5595 } else {
5596 advance_left = ADVANCE;
5597 advance_right = ADVANCE;
5598 }
5599 }
5600 } else if (left_level < right_level) {
5601 advance_right = ADVANCE;
5602 } else {
5603 advance_left = ADVANCE;
5604 }
5605 }
5606
5607 out:
5608 btrfs_free_path(left_path);
5609 btrfs_free_path(right_path);
5610 kvfree(tmp_buf);
5611 return ret;
5612 }
5613
5614 /*
5615 * this is similar to btrfs_next_leaf, but does not try to preserve
5616 * and fixup the path. It looks for and returns the next key in the
5617 * tree based on the current path and the min_trans parameters.
5618 *
5619 * 0 is returned if another key is found, < 0 if there are any errors
5620 * and 1 is returned if there are no higher keys in the tree
5621 *
5622 * path->keep_locks should be set to 1 on the search made before
5623 * calling this function.
5624 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5625 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5626 struct btrfs_key *key, int level, u64 min_trans)
5627 {
5628 int slot;
5629 struct extent_buffer *c;
5630
5631 WARN_ON(!path->keep_locks);
5632 while (level < BTRFS_MAX_LEVEL) {
5633 if (!path->nodes[level])
5634 return 1;
5635
5636 slot = path->slots[level] + 1;
5637 c = path->nodes[level];
5638 next:
5639 if (slot >= btrfs_header_nritems(c)) {
5640 int ret;
5641 int orig_lowest;
5642 struct btrfs_key cur_key;
5643 if (level + 1 >= BTRFS_MAX_LEVEL ||
5644 !path->nodes[level + 1])
5645 return 1;
5646
5647 if (path->locks[level + 1]) {
5648 level++;
5649 continue;
5650 }
5651
5652 slot = btrfs_header_nritems(c) - 1;
5653 if (level == 0)
5654 btrfs_item_key_to_cpu(c, &cur_key, slot);
5655 else
5656 btrfs_node_key_to_cpu(c, &cur_key, slot);
5657
5658 orig_lowest = path->lowest_level;
5659 btrfs_release_path(path);
5660 path->lowest_level = level;
5661 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5662 0, 0);
5663 path->lowest_level = orig_lowest;
5664 if (ret < 0)
5665 return ret;
5666
5667 c = path->nodes[level];
5668 slot = path->slots[level];
5669 if (ret == 0)
5670 slot++;
5671 goto next;
5672 }
5673
5674 if (level == 0)
5675 btrfs_item_key_to_cpu(c, key, slot);
5676 else {
5677 u64 gen = btrfs_node_ptr_generation(c, slot);
5678
5679 if (gen < min_trans) {
5680 slot++;
5681 goto next;
5682 }
5683 btrfs_node_key_to_cpu(c, key, slot);
5684 }
5685 return 0;
5686 }
5687 return 1;
5688 }
5689
5690 /*
5691 * search the tree again to find a leaf with greater keys
5692 * returns 0 if it found something or 1 if there are no greater leaves.
5693 * returns < 0 on io errors.
5694 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5695 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5696 {
5697 return btrfs_next_old_leaf(root, path, 0);
5698 }
5699
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5700 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5701 u64 time_seq)
5702 {
5703 int slot;
5704 int level;
5705 struct extent_buffer *c;
5706 struct extent_buffer *next;
5707 struct btrfs_key key;
5708 u32 nritems;
5709 int ret;
5710 int old_spinning = path->leave_spinning;
5711 int next_rw_lock = 0;
5712
5713 nritems = btrfs_header_nritems(path->nodes[0]);
5714 if (nritems == 0)
5715 return 1;
5716
5717 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5718 again:
5719 level = 1;
5720 next = NULL;
5721 next_rw_lock = 0;
5722 btrfs_release_path(path);
5723
5724 path->keep_locks = 1;
5725 path->leave_spinning = 1;
5726
5727 if (time_seq)
5728 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5729 else
5730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5731 path->keep_locks = 0;
5732
5733 if (ret < 0)
5734 return ret;
5735
5736 nritems = btrfs_header_nritems(path->nodes[0]);
5737 /*
5738 * by releasing the path above we dropped all our locks. A balance
5739 * could have added more items next to the key that used to be
5740 * at the very end of the block. So, check again here and
5741 * advance the path if there are now more items available.
5742 */
5743 if (nritems > 0 && path->slots[0] < nritems - 1) {
5744 if (ret == 0)
5745 path->slots[0]++;
5746 ret = 0;
5747 goto done;
5748 }
5749 /*
5750 * So the above check misses one case:
5751 * - after releasing the path above, someone has removed the item that
5752 * used to be at the very end of the block, and balance between leafs
5753 * gets another one with bigger key.offset to replace it.
5754 *
5755 * This one should be returned as well, or we can get leaf corruption
5756 * later(esp. in __btrfs_drop_extents()).
5757 *
5758 * And a bit more explanation about this check,
5759 * with ret > 0, the key isn't found, the path points to the slot
5760 * where it should be inserted, so the path->slots[0] item must be the
5761 * bigger one.
5762 */
5763 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5764 ret = 0;
5765 goto done;
5766 }
5767
5768 while (level < BTRFS_MAX_LEVEL) {
5769 if (!path->nodes[level]) {
5770 ret = 1;
5771 goto done;
5772 }
5773
5774 slot = path->slots[level] + 1;
5775 c = path->nodes[level];
5776 if (slot >= btrfs_header_nritems(c)) {
5777 level++;
5778 if (level == BTRFS_MAX_LEVEL) {
5779 ret = 1;
5780 goto done;
5781 }
5782 continue;
5783 }
5784
5785 if (next) {
5786 btrfs_tree_unlock_rw(next, next_rw_lock);
5787 free_extent_buffer(next);
5788 }
5789
5790 next = c;
5791 next_rw_lock = path->locks[level];
5792 ret = read_block_for_search(root, path, &next, level,
5793 slot, &key);
5794 if (ret == -EAGAIN)
5795 goto again;
5796
5797 if (ret < 0) {
5798 btrfs_release_path(path);
5799 goto done;
5800 }
5801
5802 if (!path->skip_locking) {
5803 ret = btrfs_try_tree_read_lock(next);
5804 if (!ret && time_seq) {
5805 /*
5806 * If we don't get the lock, we may be racing
5807 * with push_leaf_left, holding that lock while
5808 * itself waiting for the leaf we've currently
5809 * locked. To solve this situation, we give up
5810 * on our lock and cycle.
5811 */
5812 free_extent_buffer(next);
5813 btrfs_release_path(path);
5814 cond_resched();
5815 goto again;
5816 }
5817 if (!ret) {
5818 btrfs_set_path_blocking(path);
5819 btrfs_tree_read_lock(next);
5820 btrfs_clear_path_blocking(path, next,
5821 BTRFS_READ_LOCK);
5822 }
5823 next_rw_lock = BTRFS_READ_LOCK;
5824 }
5825 break;
5826 }
5827 path->slots[level] = slot;
5828 while (1) {
5829 level--;
5830 c = path->nodes[level];
5831 if (path->locks[level])
5832 btrfs_tree_unlock_rw(c, path->locks[level]);
5833
5834 free_extent_buffer(c);
5835 path->nodes[level] = next;
5836 path->slots[level] = 0;
5837 if (!path->skip_locking)
5838 path->locks[level] = next_rw_lock;
5839 if (!level)
5840 break;
5841
5842 ret = read_block_for_search(root, path, &next, level,
5843 0, &key);
5844 if (ret == -EAGAIN)
5845 goto again;
5846
5847 if (ret < 0) {
5848 btrfs_release_path(path);
5849 goto done;
5850 }
5851
5852 if (!path->skip_locking) {
5853 ret = btrfs_try_tree_read_lock(next);
5854 if (!ret) {
5855 btrfs_set_path_blocking(path);
5856 btrfs_tree_read_lock(next);
5857 btrfs_clear_path_blocking(path, next,
5858 BTRFS_READ_LOCK);
5859 }
5860 next_rw_lock = BTRFS_READ_LOCK;
5861 }
5862 }
5863 ret = 0;
5864 done:
5865 unlock_up(path, 0, 1, 0, NULL);
5866 path->leave_spinning = old_spinning;
5867 if (!old_spinning)
5868 btrfs_set_path_blocking(path);
5869
5870 return ret;
5871 }
5872
5873 /*
5874 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5875 * searching until it gets past min_objectid or finds an item of 'type'
5876 *
5877 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5879 int btrfs_previous_item(struct btrfs_root *root,
5880 struct btrfs_path *path, u64 min_objectid,
5881 int type)
5882 {
5883 struct btrfs_key found_key;
5884 struct extent_buffer *leaf;
5885 u32 nritems;
5886 int ret;
5887
5888 while (1) {
5889 if (path->slots[0] == 0) {
5890 btrfs_set_path_blocking(path);
5891 ret = btrfs_prev_leaf(root, path);
5892 if (ret != 0)
5893 return ret;
5894 } else {
5895 path->slots[0]--;
5896 }
5897 leaf = path->nodes[0];
5898 nritems = btrfs_header_nritems(leaf);
5899 if (nritems == 0)
5900 return 1;
5901 if (path->slots[0] == nritems)
5902 path->slots[0]--;
5903
5904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5905 if (found_key.objectid < min_objectid)
5906 break;
5907 if (found_key.type == type)
5908 return 0;
5909 if (found_key.objectid == min_objectid &&
5910 found_key.type < type)
5911 break;
5912 }
5913 return 1;
5914 }
5915
5916 /*
5917 * search in extent tree to find a previous Metadata/Data extent item with
5918 * min objecitd.
5919 *
5920 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5921 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5922 int btrfs_previous_extent_item(struct btrfs_root *root,
5923 struct btrfs_path *path, u64 min_objectid)
5924 {
5925 struct btrfs_key found_key;
5926 struct extent_buffer *leaf;
5927 u32 nritems;
5928 int ret;
5929
5930 while (1) {
5931 if (path->slots[0] == 0) {
5932 btrfs_set_path_blocking(path);
5933 ret = btrfs_prev_leaf(root, path);
5934 if (ret != 0)
5935 return ret;
5936 } else {
5937 path->slots[0]--;
5938 }
5939 leaf = path->nodes[0];
5940 nritems = btrfs_header_nritems(leaf);
5941 if (nritems == 0)
5942 return 1;
5943 if (path->slots[0] == nritems)
5944 path->slots[0]--;
5945
5946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5947 if (found_key.objectid < min_objectid)
5948 break;
5949 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5950 found_key.type == BTRFS_METADATA_ITEM_KEY)
5951 return 0;
5952 if (found_key.objectid == min_objectid &&
5953 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5954 break;
5955 }
5956 return 1;
5957 }
5958