1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
58
59 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
60 BTRFS_HEADER_FLAG_RELOC |\
61 BTRFS_SUPER_FLAG_ERROR |\
62 BTRFS_SUPER_FLAG_SEEDING |\
63 BTRFS_SUPER_FLAG_METADUMP |\
64 BTRFS_SUPER_FLAG_METADUMP_V2)
65
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72 struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75 struct extent_io_tree *dirty_pages,
76 int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78 struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81
82 /*
83 * btrfs_end_io_wq structs are used to do processing in task context when an IO
84 * is complete. This is used during reads to verify checksums, and it is used
85 * by writes to insert metadata for new file extents after IO is complete.
86 */
87 struct btrfs_end_io_wq {
88 struct bio *bio;
89 bio_end_io_t *end_io;
90 void *private;
91 struct btrfs_fs_info *info;
92 blk_status_t status;
93 enum btrfs_wq_endio_type metadata;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
btrfs_end_io_wq_init(void)99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
btrfs_end_io_wq_exit(void)111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 void *private_data;
123 struct btrfs_fs_info *fs_info;
124 struct bio *bio;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 blk_status_t status;
136 };
137
138 /*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 # error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185 };
186
btrfs_init_lockdep(void)187 void __init btrfs_init_lockdep(void)
188 {
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199 }
200
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203 {
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)223 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226 {
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 struct extent_map_tree *em_tree = &inode->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev = fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265 out:
266 return em;
267 }
268
btrfs_csum_data(const char * data,u32 seed,size_t len)269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 {
271 return btrfs_crc32c(seed, data, len);
272 }
273
btrfs_csum_final(u32 crc,u8 * result)274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276 put_unaligned_le32(~crc, result);
277 }
278
279 /*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286 {
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
335 }
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
338 }
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
342 }
343
344 /*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
353 {
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
361 if (atomic)
362 return -EAGAIN;
363
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392 out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
398 }
399
400 /*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
406 {
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437 }
438
439 /*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
btree_read_extent_buffer_pages(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 parent_transid)443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446 {
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 num_copies = btrfs_num_copies(fs_info,
468 eb->start, eb->len);
469 if (num_copies == 1)
470 break;
471
472 if (!failed_mirror) {
473 failed = 1;
474 failed_mirror = eb->read_mirror;
475 }
476
477 mirror_num++;
478 if (mirror_num == failed_mirror)
479 mirror_num++;
480
481 if (mirror_num > num_copies)
482 break;
483 }
484
485 if (failed && !ret && failed_mirror)
486 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488 return ret;
489 }
490
491 /*
492 * checksum a dirty tree block before IO. This has extra checks to make sure
493 * we only fill in the checksum field in the first page of a multi-page block
494 */
495
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)496 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497 {
498 u64 start = page_offset(page);
499 u64 found_start;
500 struct extent_buffer *eb;
501
502 eb = (struct extent_buffer *)page->private;
503 if (page != eb->pages[0])
504 return 0;
505
506 found_start = btrfs_header_bytenr(eb);
507 /*
508 * Please do not consolidate these warnings into a single if.
509 * It is useful to know what went wrong.
510 */
511 if (WARN_ON(found_start != start))
512 return -EUCLEAN;
513 if (WARN_ON(!PageUptodate(page)))
514 return -EUCLEAN;
515
516 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519 return csum_tree_block(fs_info, eb, 0);
520 }
521
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523 struct extent_buffer *eb)
524 {
525 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526 u8 fsid[BTRFS_FSID_SIZE];
527 int ret = 1;
528
529 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530 while (fs_devices) {
531 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532 ret = 0;
533 break;
534 }
535 fs_devices = fs_devices->seed;
536 }
537 return ret;
538 }
539
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)540 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541 u64 phy_offset, struct page *page,
542 u64 start, u64 end, int mirror)
543 {
544 u64 found_start;
545 int found_level;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 int ret = 0;
550 int reads_done;
551
552 if (!page->private)
553 goto out;
554
555 eb = (struct extent_buffer *)page->private;
556
557 /* the pending IO might have been the only thing that kept this buffer
558 * in memory. Make sure we have a ref for all this other checks
559 */
560 extent_buffer_get(eb);
561
562 reads_done = atomic_dec_and_test(&eb->io_pages);
563 if (!reads_done)
564 goto err;
565
566 eb->read_mirror = mirror;
567 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568 ret = -EIO;
569 goto err;
570 }
571
572 found_start = btrfs_header_bytenr(eb);
573 if (found_start != eb->start) {
574 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575 found_start, eb->start);
576 ret = -EIO;
577 goto err;
578 }
579 if (check_tree_block_fsid(fs_info, eb)) {
580 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581 eb->start);
582 ret = -EIO;
583 goto err;
584 }
585 found_level = btrfs_header_level(eb);
586 if (found_level >= BTRFS_MAX_LEVEL) {
587 btrfs_err(fs_info, "bad tree block level %d",
588 (int)btrfs_header_level(eb));
589 ret = -EIO;
590 goto err;
591 }
592
593 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594 eb, found_level);
595
596 ret = csum_tree_block(fs_info, eb, 1);
597 if (ret)
598 goto err;
599
600 /*
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
603 * return -EIO.
604 */
605 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607 ret = -EIO;
608 }
609
610 if (found_level > 0 && btrfs_check_node(root, eb))
611 ret = -EIO;
612
613 if (!ret)
614 set_extent_buffer_uptodate(eb);
615 err:
616 if (reads_done &&
617 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618 btree_readahead_hook(eb, ret);
619
620 if (ret) {
621 /*
622 * our io error hook is going to dec the io pages
623 * again, we have to make sure it has something
624 * to decrement
625 */
626 atomic_inc(&eb->io_pages);
627 clear_extent_buffer_uptodate(eb);
628 }
629 free_extent_buffer(eb);
630 out:
631 return ret;
632 }
633
btree_io_failed_hook(struct page * page,int failed_mirror)634 static int btree_io_failed_hook(struct page *page, int failed_mirror)
635 {
636 struct extent_buffer *eb;
637
638 eb = (struct extent_buffer *)page->private;
639 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640 eb->read_mirror = failed_mirror;
641 atomic_dec(&eb->io_pages);
642 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643 btree_readahead_hook(eb, -EIO);
644 return -EIO; /* we fixed nothing */
645 }
646
end_workqueue_bio(struct bio * bio)647 static void end_workqueue_bio(struct bio *bio)
648 {
649 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650 struct btrfs_fs_info *fs_info;
651 struct btrfs_workqueue *wq;
652 btrfs_work_func_t func;
653
654 fs_info = end_io_wq->info;
655 end_io_wq->status = bio->bi_status;
656
657 if (bio_op(bio) == REQ_OP_WRITE) {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659 wq = fs_info->endio_meta_write_workers;
660 func = btrfs_endio_meta_write_helper;
661 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662 wq = fs_info->endio_freespace_worker;
663 func = btrfs_freespace_write_helper;
664 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665 wq = fs_info->endio_raid56_workers;
666 func = btrfs_endio_raid56_helper;
667 } else {
668 wq = fs_info->endio_write_workers;
669 func = btrfs_endio_write_helper;
670 }
671 } else {
672 if (unlikely(end_io_wq->metadata ==
673 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674 wq = fs_info->endio_repair_workers;
675 func = btrfs_endio_repair_helper;
676 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677 wq = fs_info->endio_raid56_workers;
678 func = btrfs_endio_raid56_helper;
679 } else if (end_io_wq->metadata) {
680 wq = fs_info->endio_meta_workers;
681 func = btrfs_endio_meta_helper;
682 } else {
683 wq = fs_info->endio_workers;
684 func = btrfs_endio_helper;
685 }
686 }
687
688 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689 btrfs_queue_work(wq, &end_io_wq->work);
690 }
691
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693 enum btrfs_wq_endio_type metadata)
694 {
695 struct btrfs_end_io_wq *end_io_wq;
696
697 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698 if (!end_io_wq)
699 return BLK_STS_RESOURCE;
700
701 end_io_wq->private = bio->bi_private;
702 end_io_wq->end_io = bio->bi_end_io;
703 end_io_wq->info = info;
704 end_io_wq->status = 0;
705 end_io_wq->bio = bio;
706 end_io_wq->metadata = metadata;
707
708 bio->bi_private = end_io_wq;
709 bio->bi_end_io = end_workqueue_bio;
710 return 0;
711 }
712
btrfs_async_submit_limit(struct btrfs_fs_info * info)713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714 {
715 unsigned long limit = min_t(unsigned long,
716 info->thread_pool_size,
717 info->fs_devices->open_devices);
718 return 256 * limit;
719 }
720
run_one_async_start(struct btrfs_work * work)721 static void run_one_async_start(struct btrfs_work *work)
722 {
723 struct async_submit_bio *async;
724 blk_status_t ret;
725
726 async = container_of(work, struct async_submit_bio, work);
727 ret = async->submit_bio_start(async->private_data, async->bio,
728 async->mirror_num, async->bio_flags,
729 async->bio_offset);
730 if (ret)
731 async->status = ret;
732 }
733
run_one_async_done(struct btrfs_work * work)734 static void run_one_async_done(struct btrfs_work *work)
735 {
736 struct btrfs_fs_info *fs_info;
737 struct async_submit_bio *async;
738 int limit;
739
740 async = container_of(work, struct async_submit_bio, work);
741 fs_info = async->fs_info;
742
743 limit = btrfs_async_submit_limit(fs_info);
744 limit = limit * 2 / 3;
745
746 /*
747 * atomic_dec_return implies a barrier for waitqueue_active
748 */
749 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
750 waitqueue_active(&fs_info->async_submit_wait))
751 wake_up(&fs_info->async_submit_wait);
752
753 /* If an error occurred we just want to clean up the bio and move on */
754 if (async->status) {
755 async->bio->bi_status = async->status;
756 bio_endio(async->bio);
757 return;
758 }
759
760 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
761 async->bio_flags, async->bio_offset);
762 }
763
run_one_async_free(struct btrfs_work * work)764 static void run_one_async_free(struct btrfs_work *work)
765 {
766 struct async_submit_bio *async;
767
768 async = container_of(work, struct async_submit_bio, work);
769 kfree(async);
770 }
771
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)772 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
773 int mirror_num, unsigned long bio_flags,
774 u64 bio_offset, void *private_data,
775 extent_submit_bio_hook_t *submit_bio_start,
776 extent_submit_bio_hook_t *submit_bio_done)
777 {
778 struct async_submit_bio *async;
779
780 async = kmalloc(sizeof(*async), GFP_NOFS);
781 if (!async)
782 return BLK_STS_RESOURCE;
783
784 async->private_data = private_data;
785 async->fs_info = fs_info;
786 async->bio = bio;
787 async->mirror_num = mirror_num;
788 async->submit_bio_start = submit_bio_start;
789 async->submit_bio_done = submit_bio_done;
790
791 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
792 run_one_async_done, run_one_async_free);
793
794 async->bio_flags = bio_flags;
795 async->bio_offset = bio_offset;
796
797 async->status = 0;
798
799 atomic_inc(&fs_info->nr_async_submits);
800
801 if (op_is_sync(bio->bi_opf))
802 btrfs_set_work_high_priority(&async->work);
803
804 btrfs_queue_work(fs_info->workers, &async->work);
805
806 while (atomic_read(&fs_info->async_submit_draining) &&
807 atomic_read(&fs_info->nr_async_submits)) {
808 wait_event(fs_info->async_submit_wait,
809 (atomic_read(&fs_info->nr_async_submits) == 0));
810 }
811
812 return 0;
813 }
814
btree_csum_one_bio(struct bio * bio)815 static blk_status_t btree_csum_one_bio(struct bio *bio)
816 {
817 struct bio_vec *bvec;
818 struct btrfs_root *root;
819 int i, ret = 0;
820
821 ASSERT(!bio_flagged(bio, BIO_CLONED));
822 bio_for_each_segment_all(bvec, bio, i) {
823 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
824 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
825 if (ret)
826 break;
827 }
828
829 return errno_to_blk_status(ret);
830 }
831
__btree_submit_bio_start(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)832 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
833 int mirror_num, unsigned long bio_flags,
834 u64 bio_offset)
835 {
836 /*
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
839 */
840 return btree_csum_one_bio(bio);
841 }
842
__btree_submit_bio_done(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)843 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
844 int mirror_num, unsigned long bio_flags,
845 u64 bio_offset)
846 {
847 struct inode *inode = private_data;
848 blk_status_t ret;
849
850 /*
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
853 */
854 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
855 if (ret) {
856 bio->bi_status = ret;
857 bio_endio(bio);
858 }
859 return ret;
860 }
861
check_async_write(unsigned long bio_flags)862 static int check_async_write(unsigned long bio_flags)
863 {
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
865 return 0;
866 #ifdef CONFIG_X86
867 if (static_cpu_has(X86_FEATURE_XMM4_2))
868 return 0;
869 #endif
870 return 1;
871 }
872
btree_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
875 u64 bio_offset)
876 {
877 struct inode *inode = private_data;
878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
879 int async = check_async_write(bio_flags);
880 blk_status_t ret;
881
882 if (bio_op(bio) != REQ_OP_WRITE) {
883 /*
884 * called for a read, do the setup so that checksum validation
885 * can happen in the async kernel threads
886 */
887 ret = btrfs_bio_wq_end_io(fs_info, bio,
888 BTRFS_WQ_ENDIO_METADATA);
889 if (ret)
890 goto out_w_error;
891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892 } else if (!async) {
893 ret = btree_csum_one_bio(bio);
894 if (ret)
895 goto out_w_error;
896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897 } else {
898 /*
899 * kthread helpers are used to submit writes so that
900 * checksumming can happen in parallel across all CPUs
901 */
902 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
903 bio_offset, private_data,
904 __btree_submit_bio_start,
905 __btree_submit_bio_done);
906 }
907
908 if (ret)
909 goto out_w_error;
910 return 0;
911
912 out_w_error:
913 bio->bi_status = ret;
914 bio_endio(bio);
915 return ret;
916 }
917
918 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)919 static int btree_migratepage(struct address_space *mapping,
920 struct page *newpage, struct page *page,
921 enum migrate_mode mode)
922 {
923 /*
924 * we can't safely write a btree page from here,
925 * we haven't done the locking hook
926 */
927 if (PageDirty(page))
928 return -EAGAIN;
929 /*
930 * Buffers may be managed in a filesystem specific way.
931 * We must have no buffers or drop them.
932 */
933 if (page_has_private(page) &&
934 !try_to_release_page(page, GFP_KERNEL))
935 return -EAGAIN;
936 return migrate_page(mapping, newpage, page, mode);
937 }
938 #endif
939
940
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)941 static int btree_writepages(struct address_space *mapping,
942 struct writeback_control *wbc)
943 {
944 struct btrfs_fs_info *fs_info;
945 int ret;
946
947 if (wbc->sync_mode == WB_SYNC_NONE) {
948
949 if (wbc->for_kupdate)
950 return 0;
951
952 fs_info = BTRFS_I(mapping->host)->root->fs_info;
953 /* this is a bit racy, but that's ok */
954 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
955 BTRFS_DIRTY_METADATA_THRESH,
956 fs_info->dirty_metadata_batch);
957 if (ret < 0)
958 return 0;
959 }
960 return btree_write_cache_pages(mapping, wbc);
961 }
962
btree_readpage(struct file * file,struct page * page)963 static int btree_readpage(struct file *file, struct page *page)
964 {
965 struct extent_io_tree *tree;
966 tree = &BTRFS_I(page->mapping->host)->io_tree;
967 return extent_read_full_page(tree, page, btree_get_extent, 0);
968 }
969
btree_releasepage(struct page * page,gfp_t gfp_flags)970 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971 {
972 if (PageWriteback(page) || PageDirty(page))
973 return 0;
974
975 return try_release_extent_buffer(page);
976 }
977
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)978 static void btree_invalidatepage(struct page *page, unsigned int offset,
979 unsigned int length)
980 {
981 struct extent_io_tree *tree;
982 tree = &BTRFS_I(page->mapping->host)->io_tree;
983 extent_invalidatepage(tree, page, offset);
984 btree_releasepage(page, GFP_NOFS);
985 if (PagePrivate(page)) {
986 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
987 "page private not zero on page %llu",
988 (unsigned long long)page_offset(page));
989 ClearPagePrivate(page);
990 set_page_private(page, 0);
991 put_page(page);
992 }
993 }
994
btree_set_page_dirty(struct page * page)995 static int btree_set_page_dirty(struct page *page)
996 {
997 #ifdef DEBUG
998 struct extent_buffer *eb;
999
1000 BUG_ON(!PagePrivate(page));
1001 eb = (struct extent_buffer *)page->private;
1002 BUG_ON(!eb);
1003 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1004 BUG_ON(!atomic_read(&eb->refs));
1005 btrfs_assert_tree_locked(eb);
1006 #endif
1007 return __set_page_dirty_nobuffers(page);
1008 }
1009
1010 static const struct address_space_operations btree_aops = {
1011 .readpage = btree_readpage,
1012 .writepages = btree_writepages,
1013 .releasepage = btree_releasepage,
1014 .invalidatepage = btree_invalidatepage,
1015 #ifdef CONFIG_MIGRATION
1016 .migratepage = btree_migratepage,
1017 #endif
1018 .set_page_dirty = btree_set_page_dirty,
1019 };
1020
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1021 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1022 {
1023 struct extent_buffer *buf = NULL;
1024 struct inode *btree_inode = fs_info->btree_inode;
1025
1026 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1027 if (IS_ERR(buf))
1028 return;
1029 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1030 buf, WAIT_NONE, btree_get_extent, 0);
1031 free_extent_buffer(buf);
1032 }
1033
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1034 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1035 int mirror_num, struct extent_buffer **eb)
1036 {
1037 struct extent_buffer *buf = NULL;
1038 struct inode *btree_inode = fs_info->btree_inode;
1039 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1040 int ret;
1041
1042 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043 if (IS_ERR(buf))
1044 return 0;
1045
1046 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047
1048 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1049 btree_get_extent, mirror_num);
1050 if (ret) {
1051 free_extent_buffer(buf);
1052 return ret;
1053 }
1054
1055 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1056 free_extent_buffer(buf);
1057 return -EIO;
1058 } else if (extent_buffer_uptodate(buf)) {
1059 *eb = buf;
1060 } else {
1061 free_extent_buffer(buf);
1062 }
1063 return 0;
1064 }
1065
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1066 struct extent_buffer *btrfs_find_create_tree_block(
1067 struct btrfs_fs_info *fs_info,
1068 u64 bytenr)
1069 {
1070 if (btrfs_is_testing(fs_info))
1071 return alloc_test_extent_buffer(fs_info, bytenr);
1072 return alloc_extent_buffer(fs_info, bytenr);
1073 }
1074
1075
btrfs_write_tree_block(struct extent_buffer * buf)1076 int btrfs_write_tree_block(struct extent_buffer *buf)
1077 {
1078 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1079 buf->start + buf->len - 1);
1080 }
1081
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1082 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1083 {
1084 filemap_fdatawait_range(buf->pages[0]->mapping,
1085 buf->start, buf->start + buf->len - 1);
1086 }
1087
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid)1088 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1089 u64 parent_transid)
1090 {
1091 struct extent_buffer *buf = NULL;
1092 int ret;
1093
1094 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1095 if (IS_ERR(buf))
1096 return buf;
1097
1098 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1099 if (ret) {
1100 free_extent_buffer(buf);
1101 return ERR_PTR(ret);
1102 }
1103 return buf;
1104
1105 }
1106
clean_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1107 void clean_tree_block(struct btrfs_fs_info *fs_info,
1108 struct extent_buffer *buf)
1109 {
1110 if (btrfs_header_generation(buf) ==
1111 fs_info->running_transaction->transid) {
1112 btrfs_assert_tree_locked(buf);
1113
1114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116 -buf->len,
1117 fs_info->dirty_metadata_batch);
1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119 btrfs_set_lock_blocking(buf);
1120 clear_extent_buffer_dirty(buf);
1121 }
1122 }
1123 }
1124
btrfs_alloc_subvolume_writers(void)1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126 {
1127 struct btrfs_subvolume_writers *writers;
1128 int ret;
1129
1130 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131 if (!writers)
1132 return ERR_PTR(-ENOMEM);
1133
1134 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135 if (ret < 0) {
1136 kfree(writers);
1137 return ERR_PTR(ret);
1138 }
1139
1140 init_waitqueue_head(&writers->wait);
1141 return writers;
1142 }
1143
1144 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146 {
1147 percpu_counter_destroy(&writers->counter);
1148 kfree(writers);
1149 }
1150
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152 u64 objectid)
1153 {
1154 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155 root->node = NULL;
1156 root->commit_root = NULL;
1157 root->state = 0;
1158 root->orphan_cleanup_state = 0;
1159
1160 root->objectid = objectid;
1161 root->last_trans = 0;
1162 root->highest_objectid = 0;
1163 root->nr_delalloc_inodes = 0;
1164 root->nr_ordered_extents = 0;
1165 root->name = NULL;
1166 root->inode_tree = RB_ROOT;
1167 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168 root->block_rsv = NULL;
1169 root->orphan_block_rsv = NULL;
1170
1171 INIT_LIST_HEAD(&root->dirty_list);
1172 INIT_LIST_HEAD(&root->root_list);
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
1177 INIT_LIST_HEAD(&root->logged_list[0]);
1178 INIT_LIST_HEAD(&root->logged_list[1]);
1179 spin_lock_init(&root->orphan_lock);
1180 spin_lock_init(&root->inode_lock);
1181 spin_lock_init(&root->delalloc_lock);
1182 spin_lock_init(&root->ordered_extent_lock);
1183 spin_lock_init(&root->accounting_lock);
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
1186 mutex_init(&root->objectid_mutex);
1187 mutex_init(&root->log_mutex);
1188 mutex_init(&root->ordered_extent_mutex);
1189 mutex_init(&root->delalloc_mutex);
1190 init_waitqueue_head(&root->log_writer_wait);
1191 init_waitqueue_head(&root->log_commit_wait[0]);
1192 init_waitqueue_head(&root->log_commit_wait[1]);
1193 INIT_LIST_HEAD(&root->log_ctxs[0]);
1194 INIT_LIST_HEAD(&root->log_ctxs[1]);
1195 atomic_set(&root->log_commit[0], 0);
1196 atomic_set(&root->log_commit[1], 0);
1197 atomic_set(&root->log_writers, 0);
1198 atomic_set(&root->log_batch, 0);
1199 atomic_set(&root->orphan_inodes, 0);
1200 refcount_set(&root->refs, 1);
1201 atomic_set(&root->will_be_snapshotted, 0);
1202 atomic64_set(&root->qgroup_meta_rsv, 0);
1203 root->log_transid = 0;
1204 root->log_transid_committed = -1;
1205 root->last_log_commit = 0;
1206 if (!dummy)
1207 extent_io_tree_init(&root->dirty_log_pages, NULL);
1208
1209 memset(&root->root_key, 0, sizeof(root->root_key));
1210 memset(&root->root_item, 0, sizeof(root->root_item));
1211 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1212 if (!dummy)
1213 root->defrag_trans_start = fs_info->generation;
1214 else
1215 root->defrag_trans_start = 0;
1216 root->root_key.objectid = objectid;
1217 root->anon_dev = 0;
1218
1219 spin_lock_init(&root->root_item_lock);
1220 }
1221
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223 gfp_t flags)
1224 {
1225 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226 if (root)
1227 root->fs_info = fs_info;
1228 return root;
1229 }
1230
1231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1233 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234 {
1235 struct btrfs_root *root;
1236
1237 if (!fs_info)
1238 return ERR_PTR(-EINVAL);
1239
1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
1243
1244 /* We don't use the stripesize in selftest, set it as sectorsize */
1245 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246 root->alloc_bytenr = 0;
1247
1248 return root;
1249 }
1250 #endif
1251
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_fs_info *fs_info,
1254 u64 objectid)
1255 {
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
1260 int ret = 0;
1261 uuid_le uuid;
1262
1263 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1264 if (!root)
1265 return ERR_PTR(-ENOMEM);
1266
1267 __setup_root(root, fs_info, objectid);
1268 root->root_key.objectid = objectid;
1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 root->root_key.offset = 0;
1271
1272 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1273 if (IS_ERR(leaf)) {
1274 ret = PTR_ERR(leaf);
1275 leaf = NULL;
1276 goto fail;
1277 }
1278
1279 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1280 btrfs_set_header_bytenr(leaf, leaf->start);
1281 btrfs_set_header_generation(leaf, trans->transid);
1282 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1283 btrfs_set_header_owner(leaf, objectid);
1284 root->node = leaf;
1285
1286 write_extent_buffer_fsid(leaf, fs_info->fsid);
1287 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1288 btrfs_mark_buffer_dirty(leaf);
1289
1290 root->commit_root = btrfs_root_node(root);
1291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1292
1293 root->root_item.flags = 0;
1294 root->root_item.byte_limit = 0;
1295 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1296 btrfs_set_root_generation(&root->root_item, trans->transid);
1297 btrfs_set_root_level(&root->root_item, 0);
1298 btrfs_set_root_refs(&root->root_item, 1);
1299 btrfs_set_root_used(&root->root_item, leaf->len);
1300 btrfs_set_root_last_snapshot(&root->root_item, 0);
1301 btrfs_set_root_dirid(&root->root_item, 0);
1302 uuid_le_gen(&uuid);
1303 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304 root->root_item.drop_level = 0;
1305
1306 key.objectid = objectid;
1307 key.type = BTRFS_ROOT_ITEM_KEY;
1308 key.offset = 0;
1309 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310 if (ret)
1311 goto fail;
1312
1313 btrfs_tree_unlock(leaf);
1314
1315 return root;
1316
1317 fail:
1318 if (leaf) {
1319 btrfs_tree_unlock(leaf);
1320 free_extent_buffer(root->commit_root);
1321 free_extent_buffer(leaf);
1322 }
1323 kfree(root);
1324
1325 return ERR_PTR(ret);
1326 }
1327
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
1330 {
1331 struct btrfs_root *root;
1332 struct extent_buffer *leaf;
1333
1334 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335 if (!root)
1336 return ERR_PTR(-ENOMEM);
1337
1338 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339
1340 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343
1344 /*
1345 * DON'T set REF_COWS for log trees
1346 *
1347 * log trees do not get reference counted because they go away
1348 * before a real commit is actually done. They do store pointers
1349 * to file data extents, and those reference counts still get
1350 * updated (along with back refs to the log tree).
1351 */
1352
1353 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354 NULL, 0, 0, 0);
1355 if (IS_ERR(leaf)) {
1356 kfree(root);
1357 return ERR_CAST(leaf);
1358 }
1359
1360 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1361 btrfs_set_header_bytenr(leaf, leaf->start);
1362 btrfs_set_header_generation(leaf, trans->transid);
1363 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1365 root->node = leaf;
1366
1367 write_extent_buffer_fsid(root->node, fs_info->fsid);
1368 btrfs_mark_buffer_dirty(root->node);
1369 btrfs_tree_unlock(root->node);
1370 return root;
1371 }
1372
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1373 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1374 struct btrfs_fs_info *fs_info)
1375 {
1376 struct btrfs_root *log_root;
1377
1378 log_root = alloc_log_tree(trans, fs_info);
1379 if (IS_ERR(log_root))
1380 return PTR_ERR(log_root);
1381 WARN_ON(fs_info->log_root_tree);
1382 fs_info->log_root_tree = log_root;
1383 return 0;
1384 }
1385
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root)
1388 {
1389 struct btrfs_fs_info *fs_info = root->fs_info;
1390 struct btrfs_root *log_root;
1391 struct btrfs_inode_item *inode_item;
1392
1393 log_root = alloc_log_tree(trans, fs_info);
1394 if (IS_ERR(log_root))
1395 return PTR_ERR(log_root);
1396
1397 log_root->last_trans = trans->transid;
1398 log_root->root_key.offset = root->root_key.objectid;
1399
1400 inode_item = &log_root->root_item.inode;
1401 btrfs_set_stack_inode_generation(inode_item, 1);
1402 btrfs_set_stack_inode_size(inode_item, 3);
1403 btrfs_set_stack_inode_nlink(inode_item, 1);
1404 btrfs_set_stack_inode_nbytes(inode_item,
1405 fs_info->nodesize);
1406 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1407
1408 btrfs_set_root_node(&log_root->root_item, log_root->node);
1409
1410 WARN_ON(root->log_root);
1411 root->log_root = log_root;
1412 root->log_transid = 0;
1413 root->log_transid_committed = -1;
1414 root->last_log_commit = 0;
1415 return 0;
1416 }
1417
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1418 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1419 struct btrfs_key *key)
1420 {
1421 struct btrfs_root *root;
1422 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423 struct btrfs_path *path;
1424 u64 generation;
1425 int ret;
1426
1427 path = btrfs_alloc_path();
1428 if (!path)
1429 return ERR_PTR(-ENOMEM);
1430
1431 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1432 if (!root) {
1433 ret = -ENOMEM;
1434 goto alloc_fail;
1435 }
1436
1437 __setup_root(root, fs_info, key->objectid);
1438
1439 ret = btrfs_find_root(tree_root, key, path,
1440 &root->root_item, &root->root_key);
1441 if (ret) {
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 goto find_fail;
1445 }
1446
1447 generation = btrfs_root_generation(&root->root_item);
1448 root->node = read_tree_block(fs_info,
1449 btrfs_root_bytenr(&root->root_item),
1450 generation);
1451 if (IS_ERR(root->node)) {
1452 ret = PTR_ERR(root->node);
1453 goto find_fail;
1454 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455 ret = -EIO;
1456 free_extent_buffer(root->node);
1457 goto find_fail;
1458 }
1459 root->commit_root = btrfs_root_node(root);
1460 out:
1461 btrfs_free_path(path);
1462 return root;
1463
1464 find_fail:
1465 kfree(root);
1466 alloc_fail:
1467 root = ERR_PTR(ret);
1468 goto out;
1469 }
1470
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1471 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1472 struct btrfs_key *location)
1473 {
1474 struct btrfs_root *root;
1475
1476 root = btrfs_read_tree_root(tree_root, location);
1477 if (IS_ERR(root))
1478 return root;
1479
1480 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1481 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
1484
1485 return root;
1486 }
1487
btrfs_init_fs_root(struct btrfs_root * root)1488 int btrfs_init_fs_root(struct btrfs_root *root)
1489 {
1490 int ret;
1491 struct btrfs_subvolume_writers *writers;
1492
1493 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1494 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495 GFP_NOFS);
1496 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1497 ret = -ENOMEM;
1498 goto fail;
1499 }
1500
1501 writers = btrfs_alloc_subvolume_writers();
1502 if (IS_ERR(writers)) {
1503 ret = PTR_ERR(writers);
1504 goto fail;
1505 }
1506 root->subv_writers = writers;
1507
1508 btrfs_init_free_ino_ctl(root);
1509 spin_lock_init(&root->ino_cache_lock);
1510 init_waitqueue_head(&root->ino_cache_wait);
1511
1512 ret = get_anon_bdev(&root->anon_dev);
1513 if (ret)
1514 goto fail;
1515
1516 mutex_lock(&root->objectid_mutex);
1517 ret = btrfs_find_highest_objectid(root,
1518 &root->highest_objectid);
1519 if (ret) {
1520 mutex_unlock(&root->objectid_mutex);
1521 goto fail;
1522 }
1523
1524 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1525
1526 mutex_unlock(&root->objectid_mutex);
1527
1528 return 0;
1529 fail:
1530 /* the caller is responsible to call free_fs_root */
1531 return ret;
1532 }
1533
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1534 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535 u64 root_id)
1536 {
1537 struct btrfs_root *root;
1538
1539 spin_lock(&fs_info->fs_roots_radix_lock);
1540 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541 (unsigned long)root_id);
1542 spin_unlock(&fs_info->fs_roots_radix_lock);
1543 return root;
1544 }
1545
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1546 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_root *root)
1548 {
1549 int ret;
1550
1551 ret = radix_tree_preload(GFP_NOFS);
1552 if (ret)
1553 return ret;
1554
1555 spin_lock(&fs_info->fs_roots_radix_lock);
1556 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557 (unsigned long)root->root_key.objectid,
1558 root);
1559 if (ret == 0)
1560 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1561 spin_unlock(&fs_info->fs_roots_radix_lock);
1562 radix_tree_preload_end();
1563
1564 return ret;
1565 }
1566
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1567 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_key *location,
1569 bool check_ref)
1570 {
1571 struct btrfs_root *root;
1572 struct btrfs_path *path;
1573 struct btrfs_key key;
1574 int ret;
1575
1576 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 return fs_info->tree_root;
1578 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 return fs_info->extent_root;
1580 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 return fs_info->chunk_root;
1582 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583 return fs_info->dev_root;
1584 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 return fs_info->csum_root;
1586 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 return fs_info->quota_root ? fs_info->quota_root :
1588 ERR_PTR(-ENOENT);
1589 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1590 return fs_info->uuid_root ? fs_info->uuid_root :
1591 ERR_PTR(-ENOENT);
1592 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593 return fs_info->free_space_root ? fs_info->free_space_root :
1594 ERR_PTR(-ENOENT);
1595 again:
1596 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1597 if (root) {
1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1599 return ERR_PTR(-ENOENT);
1600 return root;
1601 }
1602
1603 root = btrfs_read_fs_root(fs_info->tree_root, location);
1604 if (IS_ERR(root))
1605 return root;
1606
1607 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1608 ret = -ENOENT;
1609 goto fail;
1610 }
1611
1612 ret = btrfs_init_fs_root(root);
1613 if (ret)
1614 goto fail;
1615
1616 path = btrfs_alloc_path();
1617 if (!path) {
1618 ret = -ENOMEM;
1619 goto fail;
1620 }
1621 key.objectid = BTRFS_ORPHAN_OBJECTID;
1622 key.type = BTRFS_ORPHAN_ITEM_KEY;
1623 key.offset = location->objectid;
1624
1625 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1626 btrfs_free_path(path);
1627 if (ret < 0)
1628 goto fail;
1629 if (ret == 0)
1630 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1631
1632 ret = btrfs_insert_fs_root(fs_info, root);
1633 if (ret) {
1634 if (ret == -EEXIST) {
1635 free_fs_root(root);
1636 goto again;
1637 }
1638 goto fail;
1639 }
1640 return root;
1641 fail:
1642 free_fs_root(root);
1643 return ERR_PTR(ret);
1644 }
1645
btrfs_congested_fn(void * congested_data,int bdi_bits)1646 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647 {
1648 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649 int ret = 0;
1650 struct btrfs_device *device;
1651 struct backing_dev_info *bdi;
1652
1653 rcu_read_lock();
1654 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1655 if (!device->bdev)
1656 continue;
1657 bdi = device->bdev->bd_bdi;
1658 if (bdi_congested(bdi, bdi_bits)) {
1659 ret = 1;
1660 break;
1661 }
1662 }
1663 rcu_read_unlock();
1664 return ret;
1665 }
1666
1667 /*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
end_workqueue_fn(struct btrfs_work * work)1671 static void end_workqueue_fn(struct btrfs_work *work)
1672 {
1673 struct bio *bio;
1674 struct btrfs_end_io_wq *end_io_wq;
1675
1676 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1677 bio = end_io_wq->bio;
1678
1679 bio->bi_status = end_io_wq->status;
1680 bio->bi_private = end_io_wq->private;
1681 bio->bi_end_io = end_io_wq->end_io;
1682 bio_endio(bio);
1683 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1684 }
1685
cleaner_kthread(void * arg)1686 static int cleaner_kthread(void *arg)
1687 {
1688 struct btrfs_root *root = arg;
1689 struct btrfs_fs_info *fs_info = root->fs_info;
1690 int again;
1691
1692 while (1) {
1693 again = 0;
1694
1695 /* Make the cleaner go to sleep early. */
1696 if (btrfs_need_cleaner_sleep(fs_info))
1697 goto sleep;
1698
1699 /*
1700 * Do not do anything if we might cause open_ctree() to block
1701 * before we have finished mounting the filesystem.
1702 */
1703 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1704 goto sleep;
1705
1706 if (!mutex_trylock(&fs_info->cleaner_mutex))
1707 goto sleep;
1708
1709 /*
1710 * Avoid the problem that we change the status of the fs
1711 * during the above check and trylock.
1712 */
1713 if (btrfs_need_cleaner_sleep(fs_info)) {
1714 mutex_unlock(&fs_info->cleaner_mutex);
1715 goto sleep;
1716 }
1717
1718 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1719 btrfs_run_delayed_iputs(fs_info);
1720 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1721
1722 again = btrfs_clean_one_deleted_snapshot(root);
1723 mutex_unlock(&fs_info->cleaner_mutex);
1724
1725 /*
1726 * The defragger has dealt with the R/O remount and umount,
1727 * needn't do anything special here.
1728 */
1729 btrfs_run_defrag_inodes(fs_info);
1730
1731 /*
1732 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1733 * with relocation (btrfs_relocate_chunk) and relocation
1734 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1735 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1736 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1737 * unused block groups.
1738 */
1739 btrfs_delete_unused_bgs(fs_info);
1740 sleep:
1741 if (kthread_should_park())
1742 kthread_parkme();
1743 if (kthread_should_stop())
1744 return 0;
1745 if (!again) {
1746 set_current_state(TASK_INTERRUPTIBLE);
1747 schedule();
1748 __set_current_state(TASK_RUNNING);
1749 }
1750 }
1751 }
1752
transaction_kthread(void * arg)1753 static int transaction_kthread(void *arg)
1754 {
1755 struct btrfs_root *root = arg;
1756 struct btrfs_fs_info *fs_info = root->fs_info;
1757 struct btrfs_trans_handle *trans;
1758 struct btrfs_transaction *cur;
1759 u64 transid;
1760 unsigned long now;
1761 unsigned long delay;
1762 bool cannot_commit;
1763
1764 do {
1765 cannot_commit = false;
1766 delay = HZ * fs_info->commit_interval;
1767 mutex_lock(&fs_info->transaction_kthread_mutex);
1768
1769 spin_lock(&fs_info->trans_lock);
1770 cur = fs_info->running_transaction;
1771 if (!cur) {
1772 spin_unlock(&fs_info->trans_lock);
1773 goto sleep;
1774 }
1775
1776 now = get_seconds();
1777 if (cur->state < TRANS_STATE_BLOCKED &&
1778 (now < cur->start_time ||
1779 now - cur->start_time < fs_info->commit_interval)) {
1780 spin_unlock(&fs_info->trans_lock);
1781 delay = HZ * 5;
1782 goto sleep;
1783 }
1784 transid = cur->transid;
1785 spin_unlock(&fs_info->trans_lock);
1786
1787 /* If the file system is aborted, this will always fail. */
1788 trans = btrfs_attach_transaction(root);
1789 if (IS_ERR(trans)) {
1790 if (PTR_ERR(trans) != -ENOENT)
1791 cannot_commit = true;
1792 goto sleep;
1793 }
1794 if (transid == trans->transid) {
1795 btrfs_commit_transaction(trans);
1796 } else {
1797 btrfs_end_transaction(trans);
1798 }
1799 sleep:
1800 wake_up_process(fs_info->cleaner_kthread);
1801 mutex_unlock(&fs_info->transaction_kthread_mutex);
1802
1803 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1804 &fs_info->fs_state)))
1805 btrfs_cleanup_transaction(fs_info);
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 if (!kthread_should_stop() &&
1808 (!btrfs_transaction_blocked(fs_info) ||
1809 cannot_commit))
1810 schedule_timeout(delay);
1811 __set_current_state(TASK_RUNNING);
1812 } while (!kthread_should_stop());
1813 return 0;
1814 }
1815
1816 /*
1817 * this will find the highest generation in the array of
1818 * root backups. The index of the highest array is returned,
1819 * or -1 if we can't find anything.
1820 *
1821 * We check to make sure the array is valid by comparing the
1822 * generation of the latest root in the array with the generation
1823 * in the super block. If they don't match we pitch it.
1824 */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1825 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1826 {
1827 u64 cur;
1828 int newest_index = -1;
1829 struct btrfs_root_backup *root_backup;
1830 int i;
1831
1832 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1833 root_backup = info->super_copy->super_roots + i;
1834 cur = btrfs_backup_tree_root_gen(root_backup);
1835 if (cur == newest_gen)
1836 newest_index = i;
1837 }
1838
1839 /* check to see if we actually wrapped around */
1840 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1841 root_backup = info->super_copy->super_roots;
1842 cur = btrfs_backup_tree_root_gen(root_backup);
1843 if (cur == newest_gen)
1844 newest_index = 0;
1845 }
1846 return newest_index;
1847 }
1848
1849
1850 /*
1851 * find the oldest backup so we know where to store new entries
1852 * in the backup array. This will set the backup_root_index
1853 * field in the fs_info struct
1854 */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1855 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1856 u64 newest_gen)
1857 {
1858 int newest_index = -1;
1859
1860 newest_index = find_newest_super_backup(info, newest_gen);
1861 /* if there was garbage in there, just move along */
1862 if (newest_index == -1) {
1863 info->backup_root_index = 0;
1864 } else {
1865 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1866 }
1867 }
1868
1869 /*
1870 * copy all the root pointers into the super backup array.
1871 * this will bump the backup pointer by one when it is
1872 * done
1873 */
backup_super_roots(struct btrfs_fs_info * info)1874 static void backup_super_roots(struct btrfs_fs_info *info)
1875 {
1876 int next_backup;
1877 struct btrfs_root_backup *root_backup;
1878 int last_backup;
1879
1880 next_backup = info->backup_root_index;
1881 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 BTRFS_NUM_BACKUP_ROOTS;
1883
1884 /*
1885 * just overwrite the last backup if we're at the same generation
1886 * this happens only at umount
1887 */
1888 root_backup = info->super_for_commit->super_roots + last_backup;
1889 if (btrfs_backup_tree_root_gen(root_backup) ==
1890 btrfs_header_generation(info->tree_root->node))
1891 next_backup = last_backup;
1892
1893 root_backup = info->super_for_commit->super_roots + next_backup;
1894
1895 /*
1896 * make sure all of our padding and empty slots get zero filled
1897 * regardless of which ones we use today
1898 */
1899 memset(root_backup, 0, sizeof(*root_backup));
1900
1901 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902
1903 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1904 btrfs_set_backup_tree_root_gen(root_backup,
1905 btrfs_header_generation(info->tree_root->node));
1906
1907 btrfs_set_backup_tree_root_level(root_backup,
1908 btrfs_header_level(info->tree_root->node));
1909
1910 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1911 btrfs_set_backup_chunk_root_gen(root_backup,
1912 btrfs_header_generation(info->chunk_root->node));
1913 btrfs_set_backup_chunk_root_level(root_backup,
1914 btrfs_header_level(info->chunk_root->node));
1915
1916 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1917 btrfs_set_backup_extent_root_gen(root_backup,
1918 btrfs_header_generation(info->extent_root->node));
1919 btrfs_set_backup_extent_root_level(root_backup,
1920 btrfs_header_level(info->extent_root->node));
1921
1922 /*
1923 * we might commit during log recovery, which happens before we set
1924 * the fs_root. Make sure it is valid before we fill it in.
1925 */
1926 if (info->fs_root && info->fs_root->node) {
1927 btrfs_set_backup_fs_root(root_backup,
1928 info->fs_root->node->start);
1929 btrfs_set_backup_fs_root_gen(root_backup,
1930 btrfs_header_generation(info->fs_root->node));
1931 btrfs_set_backup_fs_root_level(root_backup,
1932 btrfs_header_level(info->fs_root->node));
1933 }
1934
1935 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1936 btrfs_set_backup_dev_root_gen(root_backup,
1937 btrfs_header_generation(info->dev_root->node));
1938 btrfs_set_backup_dev_root_level(root_backup,
1939 btrfs_header_level(info->dev_root->node));
1940
1941 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1942 btrfs_set_backup_csum_root_gen(root_backup,
1943 btrfs_header_generation(info->csum_root->node));
1944 btrfs_set_backup_csum_root_level(root_backup,
1945 btrfs_header_level(info->csum_root->node));
1946
1947 btrfs_set_backup_total_bytes(root_backup,
1948 btrfs_super_total_bytes(info->super_copy));
1949 btrfs_set_backup_bytes_used(root_backup,
1950 btrfs_super_bytes_used(info->super_copy));
1951 btrfs_set_backup_num_devices(root_backup,
1952 btrfs_super_num_devices(info->super_copy));
1953
1954 /*
1955 * if we don't copy this out to the super_copy, it won't get remembered
1956 * for the next commit
1957 */
1958 memcpy(&info->super_copy->super_roots,
1959 &info->super_for_commit->super_roots,
1960 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1961 }
1962
1963 /*
1964 * this copies info out of the root backup array and back into
1965 * the in-memory super block. It is meant to help iterate through
1966 * the array, so you send it the number of backups you've already
1967 * tried and the last backup index you used.
1968 *
1969 * this returns -1 when it has tried all the backups
1970 */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1971 static noinline int next_root_backup(struct btrfs_fs_info *info,
1972 struct btrfs_super_block *super,
1973 int *num_backups_tried, int *backup_index)
1974 {
1975 struct btrfs_root_backup *root_backup;
1976 int newest = *backup_index;
1977
1978 if (*num_backups_tried == 0) {
1979 u64 gen = btrfs_super_generation(super);
1980
1981 newest = find_newest_super_backup(info, gen);
1982 if (newest == -1)
1983 return -1;
1984
1985 *backup_index = newest;
1986 *num_backups_tried = 1;
1987 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1988 /* we've tried all the backups, all done */
1989 return -1;
1990 } else {
1991 /* jump to the next oldest backup */
1992 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1993 BTRFS_NUM_BACKUP_ROOTS;
1994 *backup_index = newest;
1995 *num_backups_tried += 1;
1996 }
1997 root_backup = super->super_roots + newest;
1998
1999 btrfs_set_super_generation(super,
2000 btrfs_backup_tree_root_gen(root_backup));
2001 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2002 btrfs_set_super_root_level(super,
2003 btrfs_backup_tree_root_level(root_backup));
2004 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2005
2006 /*
2007 * fixme: the total bytes and num_devices need to match or we should
2008 * need a fsck
2009 */
2010 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2011 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2012 return 0;
2013 }
2014
2015 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2016 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2017 {
2018 btrfs_destroy_workqueue(fs_info->fixup_workers);
2019 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2020 btrfs_destroy_workqueue(fs_info->workers);
2021 btrfs_destroy_workqueue(fs_info->endio_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2024 btrfs_destroy_workqueue(fs_info->rmw_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2026 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2027 btrfs_destroy_workqueue(fs_info->submit_workers);
2028 btrfs_destroy_workqueue(fs_info->delayed_workers);
2029 btrfs_destroy_workqueue(fs_info->caching_workers);
2030 btrfs_destroy_workqueue(fs_info->readahead_workers);
2031 btrfs_destroy_workqueue(fs_info->flush_workers);
2032 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2033 btrfs_destroy_workqueue(fs_info->extent_workers);
2034 /*
2035 * Now that all other work queues are destroyed, we can safely destroy
2036 * the queues used for metadata I/O, since tasks from those other work
2037 * queues can do metadata I/O operations.
2038 */
2039 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2040 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2041 }
2042
free_root_extent_buffers(struct btrfs_root * root)2043 static void free_root_extent_buffers(struct btrfs_root *root)
2044 {
2045 if (root) {
2046 free_extent_buffer(root->node);
2047 free_extent_buffer(root->commit_root);
2048 root->node = NULL;
2049 root->commit_root = NULL;
2050 }
2051 }
2052
2053 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2054 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2055 {
2056 free_root_extent_buffers(info->tree_root);
2057
2058 free_root_extent_buffers(info->dev_root);
2059 free_root_extent_buffers(info->extent_root);
2060 free_root_extent_buffers(info->csum_root);
2061 free_root_extent_buffers(info->quota_root);
2062 free_root_extent_buffers(info->uuid_root);
2063 if (free_chunk_root)
2064 free_root_extent_buffers(info->chunk_root);
2065 free_root_extent_buffers(info->free_space_root);
2066 }
2067
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2068 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2069 {
2070 int ret;
2071 struct btrfs_root *gang[8];
2072 int i;
2073
2074 while (!list_empty(&fs_info->dead_roots)) {
2075 gang[0] = list_entry(fs_info->dead_roots.next,
2076 struct btrfs_root, root_list);
2077 list_del(&gang[0]->root_list);
2078
2079 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2080 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2081 } else {
2082 free_extent_buffer(gang[0]->node);
2083 free_extent_buffer(gang[0]->commit_root);
2084 btrfs_put_fs_root(gang[0]);
2085 }
2086 }
2087
2088 while (1) {
2089 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2090 (void **)gang, 0,
2091 ARRAY_SIZE(gang));
2092 if (!ret)
2093 break;
2094 for (i = 0; i < ret; i++)
2095 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2096 }
2097
2098 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2099 btrfs_free_log_root_tree(NULL, fs_info);
2100 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2101 }
2102 }
2103
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2104 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2105 {
2106 mutex_init(&fs_info->scrub_lock);
2107 atomic_set(&fs_info->scrubs_running, 0);
2108 atomic_set(&fs_info->scrub_pause_req, 0);
2109 atomic_set(&fs_info->scrubs_paused, 0);
2110 atomic_set(&fs_info->scrub_cancel_req, 0);
2111 init_waitqueue_head(&fs_info->scrub_pause_wait);
2112 fs_info->scrub_workers_refcnt = 0;
2113 }
2114
btrfs_init_balance(struct btrfs_fs_info * fs_info)2115 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2116 {
2117 spin_lock_init(&fs_info->balance_lock);
2118 mutex_init(&fs_info->balance_mutex);
2119 atomic_set(&fs_info->balance_running, 0);
2120 atomic_set(&fs_info->balance_pause_req, 0);
2121 atomic_set(&fs_info->balance_cancel_req, 0);
2122 fs_info->balance_ctl = NULL;
2123 init_waitqueue_head(&fs_info->balance_wait_q);
2124 }
2125
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2126 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2127 {
2128 struct inode *inode = fs_info->btree_inode;
2129
2130 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2131 set_nlink(inode, 1);
2132 /*
2133 * we set the i_size on the btree inode to the max possible int.
2134 * the real end of the address space is determined by all of
2135 * the devices in the system
2136 */
2137 inode->i_size = OFFSET_MAX;
2138 inode->i_mapping->a_ops = &btree_aops;
2139
2140 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2141 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2142 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2143 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2144
2145 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2146
2147 BTRFS_I(inode)->root = fs_info->tree_root;
2148 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2149 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2150 btrfs_insert_inode_hash(inode);
2151 }
2152
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2153 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2154 {
2155 fs_info->dev_replace.lock_owner = 0;
2156 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2157 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2158 rwlock_init(&fs_info->dev_replace.lock);
2159 atomic_set(&fs_info->dev_replace.read_locks, 0);
2160 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2161 init_waitqueue_head(&fs_info->replace_wait);
2162 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2163 }
2164
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2166 {
2167 spin_lock_init(&fs_info->qgroup_lock);
2168 mutex_init(&fs_info->qgroup_ioctl_lock);
2169 fs_info->qgroup_tree = RB_ROOT;
2170 fs_info->qgroup_op_tree = RB_ROOT;
2171 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2172 fs_info->qgroup_seq = 1;
2173 fs_info->qgroup_ulist = NULL;
2174 fs_info->qgroup_rescan_running = false;
2175 mutex_init(&fs_info->qgroup_rescan_lock);
2176 }
2177
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2178 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2179 struct btrfs_fs_devices *fs_devices)
2180 {
2181 int max_active = fs_info->thread_pool_size;
2182 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2183
2184 fs_info->workers =
2185 btrfs_alloc_workqueue(fs_info, "worker",
2186 flags | WQ_HIGHPRI, max_active, 16);
2187
2188 fs_info->delalloc_workers =
2189 btrfs_alloc_workqueue(fs_info, "delalloc",
2190 flags, max_active, 2);
2191
2192 fs_info->flush_workers =
2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2194 flags, max_active, 0);
2195
2196 fs_info->caching_workers =
2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2198
2199 /*
2200 * a higher idle thresh on the submit workers makes it much more
2201 * likely that bios will be send down in a sane order to the
2202 * devices
2203 */
2204 fs_info->submit_workers =
2205 btrfs_alloc_workqueue(fs_info, "submit", flags,
2206 min_t(u64, fs_devices->num_devices,
2207 max_active), 64);
2208
2209 fs_info->fixup_workers =
2210 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2211
2212 /*
2213 * endios are largely parallel and should have a very
2214 * low idle thresh
2215 */
2216 fs_info->endio_workers =
2217 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2218 fs_info->endio_meta_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2220 max_active, 4);
2221 fs_info->endio_meta_write_workers =
2222 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2223 max_active, 2);
2224 fs_info->endio_raid56_workers =
2225 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2226 max_active, 4);
2227 fs_info->endio_repair_workers =
2228 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2229 fs_info->rmw_workers =
2230 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2231 fs_info->endio_write_workers =
2232 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2233 max_active, 2);
2234 fs_info->endio_freespace_worker =
2235 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2236 max_active, 0);
2237 fs_info->delayed_workers =
2238 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2239 max_active, 0);
2240 fs_info->readahead_workers =
2241 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2242 max_active, 2);
2243 fs_info->qgroup_rescan_workers =
2244 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2245 fs_info->extent_workers =
2246 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2247 min_t(u64, fs_devices->num_devices,
2248 max_active), 8);
2249
2250 if (!(fs_info->workers && fs_info->delalloc_workers &&
2251 fs_info->submit_workers && fs_info->flush_workers &&
2252 fs_info->endio_workers && fs_info->endio_meta_workers &&
2253 fs_info->endio_meta_write_workers &&
2254 fs_info->endio_repair_workers &&
2255 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2256 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2257 fs_info->caching_workers && fs_info->readahead_workers &&
2258 fs_info->fixup_workers && fs_info->delayed_workers &&
2259 fs_info->extent_workers &&
2260 fs_info->qgroup_rescan_workers)) {
2261 return -ENOMEM;
2262 }
2263
2264 return 0;
2265 }
2266
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2268 struct btrfs_fs_devices *fs_devices)
2269 {
2270 int ret;
2271 struct btrfs_root *log_tree_root;
2272 struct btrfs_super_block *disk_super = fs_info->super_copy;
2273 u64 bytenr = btrfs_super_log_root(disk_super);
2274
2275 if (fs_devices->rw_devices == 0) {
2276 btrfs_warn(fs_info, "log replay required on RO media");
2277 return -EIO;
2278 }
2279
2280 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2281 if (!log_tree_root)
2282 return -ENOMEM;
2283
2284 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2285
2286 log_tree_root->node = read_tree_block(fs_info, bytenr,
2287 fs_info->generation + 1);
2288 if (IS_ERR(log_tree_root->node)) {
2289 btrfs_warn(fs_info, "failed to read log tree");
2290 ret = PTR_ERR(log_tree_root->node);
2291 kfree(log_tree_root);
2292 return ret;
2293 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2294 btrfs_err(fs_info, "failed to read log tree");
2295 free_extent_buffer(log_tree_root->node);
2296 kfree(log_tree_root);
2297 return -EIO;
2298 }
2299 /* returns with log_tree_root freed on success */
2300 ret = btrfs_recover_log_trees(log_tree_root);
2301 if (ret) {
2302 btrfs_handle_fs_error(fs_info, ret,
2303 "Failed to recover log tree");
2304 free_extent_buffer(log_tree_root->node);
2305 kfree(log_tree_root);
2306 return ret;
2307 }
2308
2309 if (sb_rdonly(fs_info->sb)) {
2310 ret = btrfs_commit_super(fs_info);
2311 if (ret)
2312 return ret;
2313 }
2314
2315 return 0;
2316 }
2317
btrfs_read_roots(struct btrfs_fs_info * fs_info)2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2319 {
2320 struct btrfs_root *tree_root = fs_info->tree_root;
2321 struct btrfs_root *root;
2322 struct btrfs_key location;
2323 int ret;
2324
2325 BUG_ON(!fs_info->tree_root);
2326
2327 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328 location.type = BTRFS_ROOT_ITEM_KEY;
2329 location.offset = 0;
2330
2331 root = btrfs_read_tree_root(tree_root, &location);
2332 if (IS_ERR(root))
2333 return PTR_ERR(root);
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->extent_root = root;
2336
2337 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (IS_ERR(root))
2340 return PTR_ERR(root);
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
2343 btrfs_init_devices_late(fs_info);
2344
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root))
2348 return PTR_ERR(root);
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 fs_info->csum_root = root;
2351
2352 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2353 root = btrfs_read_tree_root(tree_root, &location);
2354 if (!IS_ERR(root)) {
2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2357 fs_info->quota_root = root;
2358 }
2359
2360 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2361 root = btrfs_read_tree_root(tree_root, &location);
2362 if (IS_ERR(root)) {
2363 ret = PTR_ERR(root);
2364 if (ret != -ENOENT)
2365 return ret;
2366 } else {
2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368 fs_info->uuid_root = root;
2369 }
2370
2371 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2372 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2373 root = btrfs_read_tree_root(tree_root, &location);
2374 if (IS_ERR(root))
2375 return PTR_ERR(root);
2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377 fs_info->free_space_root = root;
2378 }
2379
2380 return 0;
2381 }
2382
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2383 int open_ctree(struct super_block *sb,
2384 struct btrfs_fs_devices *fs_devices,
2385 char *options)
2386 {
2387 u32 sectorsize;
2388 u32 nodesize;
2389 u32 stripesize;
2390 u64 generation;
2391 u64 features;
2392 struct btrfs_key location;
2393 struct buffer_head *bh;
2394 struct btrfs_super_block *disk_super;
2395 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2396 struct btrfs_root *tree_root;
2397 struct btrfs_root *chunk_root;
2398 int ret;
2399 int err = -EINVAL;
2400 int num_backups_tried = 0;
2401 int backup_index = 0;
2402 int max_active;
2403 int clear_free_space_tree = 0;
2404
2405 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2406 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2407 if (!tree_root || !chunk_root) {
2408 err = -ENOMEM;
2409 goto fail;
2410 }
2411
2412 ret = init_srcu_struct(&fs_info->subvol_srcu);
2413 if (ret) {
2414 err = ret;
2415 goto fail;
2416 }
2417
2418 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2419 if (ret) {
2420 err = ret;
2421 goto fail_srcu;
2422 }
2423 fs_info->dirty_metadata_batch = PAGE_SIZE *
2424 (1 + ilog2(nr_cpu_ids));
2425
2426 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2427 if (ret) {
2428 err = ret;
2429 goto fail_dirty_metadata_bytes;
2430 }
2431
2432 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2433 if (ret) {
2434 err = ret;
2435 goto fail_delalloc_bytes;
2436 }
2437
2438 fs_info->btree_inode = new_inode(sb);
2439 if (!fs_info->btree_inode) {
2440 err = -ENOMEM;
2441 goto fail_bio_counter;
2442 }
2443
2444 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2445
2446 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2447 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2448 INIT_LIST_HEAD(&fs_info->trans_list);
2449 INIT_LIST_HEAD(&fs_info->dead_roots);
2450 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2451 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2452 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2453 spin_lock_init(&fs_info->delalloc_root_lock);
2454 spin_lock_init(&fs_info->trans_lock);
2455 spin_lock_init(&fs_info->fs_roots_radix_lock);
2456 spin_lock_init(&fs_info->delayed_iput_lock);
2457 spin_lock_init(&fs_info->defrag_inodes_lock);
2458 spin_lock_init(&fs_info->super_lock);
2459 spin_lock_init(&fs_info->qgroup_op_lock);
2460 spin_lock_init(&fs_info->buffer_lock);
2461 spin_lock_init(&fs_info->unused_bgs_lock);
2462 rwlock_init(&fs_info->tree_mod_log_lock);
2463 mutex_init(&fs_info->unused_bg_unpin_mutex);
2464 mutex_init(&fs_info->delete_unused_bgs_mutex);
2465 mutex_init(&fs_info->reloc_mutex);
2466 mutex_init(&fs_info->delalloc_root_mutex);
2467 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2468 seqlock_init(&fs_info->profiles_lock);
2469
2470 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2471 INIT_LIST_HEAD(&fs_info->space_info);
2472 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2473 INIT_LIST_HEAD(&fs_info->unused_bgs);
2474 btrfs_mapping_init(&fs_info->mapping_tree);
2475 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2476 BTRFS_BLOCK_RSV_GLOBAL);
2477 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2478 BTRFS_BLOCK_RSV_DELALLOC);
2479 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2480 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2481 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2482 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2483 BTRFS_BLOCK_RSV_DELOPS);
2484 atomic_set(&fs_info->nr_async_submits, 0);
2485 atomic_set(&fs_info->async_delalloc_pages, 0);
2486 atomic_set(&fs_info->async_submit_draining, 0);
2487 atomic_set(&fs_info->nr_async_bios, 0);
2488 atomic_set(&fs_info->defrag_running, 0);
2489 atomic_set(&fs_info->qgroup_op_seq, 0);
2490 atomic_set(&fs_info->reada_works_cnt, 0);
2491 atomic64_set(&fs_info->tree_mod_seq, 0);
2492 fs_info->sb = sb;
2493 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2494 fs_info->metadata_ratio = 0;
2495 fs_info->defrag_inodes = RB_ROOT;
2496 atomic64_set(&fs_info->free_chunk_space, 0);
2497 fs_info->tree_mod_log = RB_ROOT;
2498 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2499 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2500 /* readahead state */
2501 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2502 spin_lock_init(&fs_info->reada_lock);
2503
2504 fs_info->thread_pool_size = min_t(unsigned long,
2505 num_online_cpus() + 2, 8);
2506
2507 INIT_LIST_HEAD(&fs_info->ordered_roots);
2508 spin_lock_init(&fs_info->ordered_root_lock);
2509 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2510 GFP_KERNEL);
2511 if (!fs_info->delayed_root) {
2512 err = -ENOMEM;
2513 goto fail_iput;
2514 }
2515 btrfs_init_delayed_root(fs_info->delayed_root);
2516
2517 btrfs_init_scrub(fs_info);
2518 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2519 fs_info->check_integrity_print_mask = 0;
2520 #endif
2521 btrfs_init_balance(fs_info);
2522 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2523
2524 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2525 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2526
2527 btrfs_init_btree_inode(fs_info);
2528
2529 spin_lock_init(&fs_info->block_group_cache_lock);
2530 fs_info->block_group_cache_tree = RB_ROOT;
2531 fs_info->first_logical_byte = (u64)-1;
2532
2533 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2534 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2535 fs_info->pinned_extents = &fs_info->freed_extents[0];
2536 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2537
2538 mutex_init(&fs_info->ordered_operations_mutex);
2539 mutex_init(&fs_info->tree_log_mutex);
2540 mutex_init(&fs_info->chunk_mutex);
2541 mutex_init(&fs_info->transaction_kthread_mutex);
2542 mutex_init(&fs_info->cleaner_mutex);
2543 mutex_init(&fs_info->volume_mutex);
2544 mutex_init(&fs_info->ro_block_group_mutex);
2545 init_rwsem(&fs_info->commit_root_sem);
2546 init_rwsem(&fs_info->cleanup_work_sem);
2547 init_rwsem(&fs_info->subvol_sem);
2548 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2549
2550 btrfs_init_dev_replace_locks(fs_info);
2551 btrfs_init_qgroup(fs_info);
2552
2553 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2554 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2555
2556 init_waitqueue_head(&fs_info->transaction_throttle);
2557 init_waitqueue_head(&fs_info->transaction_wait);
2558 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2559 init_waitqueue_head(&fs_info->async_submit_wait);
2560
2561 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2562
2563 /* Usable values until the real ones are cached from the superblock */
2564 fs_info->nodesize = 4096;
2565 fs_info->sectorsize = 4096;
2566 fs_info->stripesize = 4096;
2567
2568 ret = btrfs_alloc_stripe_hash_table(fs_info);
2569 if (ret) {
2570 err = ret;
2571 goto fail_alloc;
2572 }
2573
2574 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2575
2576 invalidate_bdev(fs_devices->latest_bdev);
2577
2578 /*
2579 * Read super block and check the signature bytes only
2580 */
2581 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2582 if (IS_ERR(bh)) {
2583 err = PTR_ERR(bh);
2584 goto fail_alloc;
2585 }
2586
2587 /*
2588 * We want to check superblock checksum, the type is stored inside.
2589 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2590 */
2591 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2592 btrfs_err(fs_info, "superblock checksum mismatch");
2593 err = -EINVAL;
2594 brelse(bh);
2595 goto fail_alloc;
2596 }
2597
2598 /*
2599 * super_copy is zeroed at allocation time and we never touch the
2600 * following bytes up to INFO_SIZE, the checksum is calculated from
2601 * the whole block of INFO_SIZE
2602 */
2603 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2604 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2605 sizeof(*fs_info->super_for_commit));
2606 brelse(bh);
2607
2608 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2609
2610 ret = btrfs_check_super_valid(fs_info);
2611 if (ret) {
2612 btrfs_err(fs_info, "superblock contains fatal errors");
2613 err = -EINVAL;
2614 goto fail_alloc;
2615 }
2616
2617 disk_super = fs_info->super_copy;
2618 if (!btrfs_super_root(disk_super))
2619 goto fail_alloc;
2620
2621 /* check FS state, whether FS is broken. */
2622 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2623 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2624
2625 /*
2626 * run through our array of backup supers and setup
2627 * our ring pointer to the oldest one
2628 */
2629 generation = btrfs_super_generation(disk_super);
2630 find_oldest_super_backup(fs_info, generation);
2631
2632 /*
2633 * In the long term, we'll store the compression type in the super
2634 * block, and it'll be used for per file compression control.
2635 */
2636 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2637
2638 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2639 if (ret) {
2640 err = ret;
2641 goto fail_alloc;
2642 }
2643
2644 features = btrfs_super_incompat_flags(disk_super) &
2645 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2646 if (features) {
2647 btrfs_err(fs_info,
2648 "cannot mount because of unsupported optional features (%llx)",
2649 features);
2650 err = -EINVAL;
2651 goto fail_alloc;
2652 }
2653
2654 features = btrfs_super_incompat_flags(disk_super);
2655 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2656 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2657 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2658 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2659 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2660
2661 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2662 btrfs_info(fs_info, "has skinny extents");
2663
2664 /*
2665 * flag our filesystem as having big metadata blocks if
2666 * they are bigger than the page size
2667 */
2668 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2669 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2670 btrfs_info(fs_info,
2671 "flagging fs with big metadata feature");
2672 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2673 }
2674
2675 nodesize = btrfs_super_nodesize(disk_super);
2676 sectorsize = btrfs_super_sectorsize(disk_super);
2677 stripesize = sectorsize;
2678 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2679 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2680
2681 /* Cache block sizes */
2682 fs_info->nodesize = nodesize;
2683 fs_info->sectorsize = sectorsize;
2684 fs_info->stripesize = stripesize;
2685
2686 /*
2687 * mixed block groups end up with duplicate but slightly offset
2688 * extent buffers for the same range. It leads to corruptions
2689 */
2690 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2691 (sectorsize != nodesize)) {
2692 btrfs_err(fs_info,
2693 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2694 nodesize, sectorsize);
2695 goto fail_alloc;
2696 }
2697
2698 /*
2699 * Needn't use the lock because there is no other task which will
2700 * update the flag.
2701 */
2702 btrfs_set_super_incompat_flags(disk_super, features);
2703
2704 features = btrfs_super_compat_ro_flags(disk_super) &
2705 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2706 if (!sb_rdonly(sb) && features) {
2707 btrfs_err(fs_info,
2708 "cannot mount read-write because of unsupported optional features (%llx)",
2709 features);
2710 err = -EINVAL;
2711 goto fail_alloc;
2712 }
2713
2714 max_active = fs_info->thread_pool_size;
2715
2716 ret = btrfs_init_workqueues(fs_info, fs_devices);
2717 if (ret) {
2718 err = ret;
2719 goto fail_sb_buffer;
2720 }
2721
2722 sb->s_bdi->congested_fn = btrfs_congested_fn;
2723 sb->s_bdi->congested_data = fs_info;
2724 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2725 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2726 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2727 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2728
2729 sb->s_blocksize = sectorsize;
2730 sb->s_blocksize_bits = blksize_bits(sectorsize);
2731
2732 mutex_lock(&fs_info->chunk_mutex);
2733 ret = btrfs_read_sys_array(fs_info);
2734 mutex_unlock(&fs_info->chunk_mutex);
2735 if (ret) {
2736 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2737 goto fail_sb_buffer;
2738 }
2739
2740 generation = btrfs_super_chunk_root_generation(disk_super);
2741
2742 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2743
2744 chunk_root->node = read_tree_block(fs_info,
2745 btrfs_super_chunk_root(disk_super),
2746 generation);
2747 if (IS_ERR(chunk_root->node) ||
2748 !extent_buffer_uptodate(chunk_root->node)) {
2749 btrfs_err(fs_info, "failed to read chunk root");
2750 if (!IS_ERR(chunk_root->node))
2751 free_extent_buffer(chunk_root->node);
2752 chunk_root->node = NULL;
2753 goto fail_tree_roots;
2754 }
2755 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2756 chunk_root->commit_root = btrfs_root_node(chunk_root);
2757
2758 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2759 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2760
2761 ret = btrfs_read_chunk_tree(fs_info);
2762 if (ret) {
2763 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2764 goto fail_tree_roots;
2765 }
2766
2767 /*
2768 * keep the device that is marked to be the target device for the
2769 * dev_replace procedure
2770 */
2771 btrfs_close_extra_devices(fs_devices, 0);
2772
2773 if (!fs_devices->latest_bdev) {
2774 btrfs_err(fs_info, "failed to read devices");
2775 goto fail_tree_roots;
2776 }
2777
2778 retry_root_backup:
2779 generation = btrfs_super_generation(disk_super);
2780
2781 tree_root->node = read_tree_block(fs_info,
2782 btrfs_super_root(disk_super),
2783 generation);
2784 if (IS_ERR(tree_root->node) ||
2785 !extent_buffer_uptodate(tree_root->node)) {
2786 btrfs_warn(fs_info, "failed to read tree root");
2787 if (!IS_ERR(tree_root->node))
2788 free_extent_buffer(tree_root->node);
2789 tree_root->node = NULL;
2790 goto recovery_tree_root;
2791 }
2792
2793 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2794 tree_root->commit_root = btrfs_root_node(tree_root);
2795 btrfs_set_root_refs(&tree_root->root_item, 1);
2796
2797 mutex_lock(&tree_root->objectid_mutex);
2798 ret = btrfs_find_highest_objectid(tree_root,
2799 &tree_root->highest_objectid);
2800 if (ret) {
2801 mutex_unlock(&tree_root->objectid_mutex);
2802 goto recovery_tree_root;
2803 }
2804
2805 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2806
2807 mutex_unlock(&tree_root->objectid_mutex);
2808
2809 ret = btrfs_read_roots(fs_info);
2810 if (ret)
2811 goto recovery_tree_root;
2812
2813 fs_info->generation = generation;
2814 fs_info->last_trans_committed = generation;
2815
2816 ret = btrfs_recover_balance(fs_info);
2817 if (ret) {
2818 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2819 goto fail_block_groups;
2820 }
2821
2822 ret = btrfs_init_dev_stats(fs_info);
2823 if (ret) {
2824 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2825 goto fail_block_groups;
2826 }
2827
2828 ret = btrfs_init_dev_replace(fs_info);
2829 if (ret) {
2830 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2831 goto fail_block_groups;
2832 }
2833
2834 btrfs_close_extra_devices(fs_devices, 1);
2835
2836 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2837 if (ret) {
2838 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2839 ret);
2840 goto fail_block_groups;
2841 }
2842
2843 ret = btrfs_sysfs_add_device(fs_devices);
2844 if (ret) {
2845 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2846 ret);
2847 goto fail_fsdev_sysfs;
2848 }
2849
2850 ret = btrfs_sysfs_add_mounted(fs_info);
2851 if (ret) {
2852 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2853 goto fail_fsdev_sysfs;
2854 }
2855
2856 ret = btrfs_init_space_info(fs_info);
2857 if (ret) {
2858 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2859 goto fail_sysfs;
2860 }
2861
2862 ret = btrfs_read_block_groups(fs_info);
2863 if (ret) {
2864 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2865 goto fail_sysfs;
2866 }
2867
2868 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2869 btrfs_warn(fs_info,
2870 "writeable mount is not allowed due to too many missing devices");
2871 goto fail_sysfs;
2872 }
2873
2874 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2875 "btrfs-cleaner");
2876 if (IS_ERR(fs_info->cleaner_kthread))
2877 goto fail_sysfs;
2878
2879 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2880 tree_root,
2881 "btrfs-transaction");
2882 if (IS_ERR(fs_info->transaction_kthread))
2883 goto fail_cleaner;
2884
2885 if (!btrfs_test_opt(fs_info, NOSSD) &&
2886 !fs_info->fs_devices->rotating) {
2887 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2888 }
2889
2890 /*
2891 * Mount does not set all options immediately, we can do it now and do
2892 * not have to wait for transaction commit
2893 */
2894 btrfs_apply_pending_changes(fs_info);
2895
2896 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2897 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2898 ret = btrfsic_mount(fs_info, fs_devices,
2899 btrfs_test_opt(fs_info,
2900 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2901 1 : 0,
2902 fs_info->check_integrity_print_mask);
2903 if (ret)
2904 btrfs_warn(fs_info,
2905 "failed to initialize integrity check module: %d",
2906 ret);
2907 }
2908 #endif
2909 ret = btrfs_read_qgroup_config(fs_info);
2910 if (ret)
2911 goto fail_trans_kthread;
2912
2913 /* do not make disk changes in broken FS or nologreplay is given */
2914 if (btrfs_super_log_root(disk_super) != 0 &&
2915 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2916 btrfs_info(fs_info, "start tree-log replay");
2917 ret = btrfs_replay_log(fs_info, fs_devices);
2918 if (ret) {
2919 err = ret;
2920 goto fail_qgroup;
2921 }
2922 }
2923
2924 ret = btrfs_find_orphan_roots(fs_info);
2925 if (ret)
2926 goto fail_qgroup;
2927
2928 if (!sb_rdonly(sb)) {
2929 ret = btrfs_cleanup_fs_roots(fs_info);
2930 if (ret)
2931 goto fail_qgroup;
2932
2933 mutex_lock(&fs_info->cleaner_mutex);
2934 ret = btrfs_recover_relocation(tree_root);
2935 mutex_unlock(&fs_info->cleaner_mutex);
2936 if (ret < 0) {
2937 btrfs_warn(fs_info, "failed to recover relocation: %d",
2938 ret);
2939 err = -EINVAL;
2940 goto fail_qgroup;
2941 }
2942 }
2943
2944 location.objectid = BTRFS_FS_TREE_OBJECTID;
2945 location.type = BTRFS_ROOT_ITEM_KEY;
2946 location.offset = 0;
2947
2948 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2949 if (IS_ERR(fs_info->fs_root)) {
2950 err = PTR_ERR(fs_info->fs_root);
2951 goto fail_qgroup;
2952 }
2953
2954 if (sb_rdonly(sb))
2955 return 0;
2956
2957 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2958 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2959 clear_free_space_tree = 1;
2960 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2961 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2962 btrfs_warn(fs_info, "free space tree is invalid");
2963 clear_free_space_tree = 1;
2964 }
2965
2966 if (clear_free_space_tree) {
2967 btrfs_info(fs_info, "clearing free space tree");
2968 ret = btrfs_clear_free_space_tree(fs_info);
2969 if (ret) {
2970 btrfs_warn(fs_info,
2971 "failed to clear free space tree: %d", ret);
2972 close_ctree(fs_info);
2973 return ret;
2974 }
2975 }
2976
2977 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2978 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2979 btrfs_info(fs_info, "creating free space tree");
2980 ret = btrfs_create_free_space_tree(fs_info);
2981 if (ret) {
2982 btrfs_warn(fs_info,
2983 "failed to create free space tree: %d", ret);
2984 close_ctree(fs_info);
2985 return ret;
2986 }
2987 }
2988
2989 down_read(&fs_info->cleanup_work_sem);
2990 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2991 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2992 up_read(&fs_info->cleanup_work_sem);
2993 close_ctree(fs_info);
2994 return ret;
2995 }
2996 up_read(&fs_info->cleanup_work_sem);
2997
2998 ret = btrfs_resume_balance_async(fs_info);
2999 if (ret) {
3000 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3001 close_ctree(fs_info);
3002 return ret;
3003 }
3004
3005 ret = btrfs_resume_dev_replace_async(fs_info);
3006 if (ret) {
3007 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3008 close_ctree(fs_info);
3009 return ret;
3010 }
3011
3012 btrfs_qgroup_rescan_resume(fs_info);
3013
3014 if (!fs_info->uuid_root) {
3015 btrfs_info(fs_info, "creating UUID tree");
3016 ret = btrfs_create_uuid_tree(fs_info);
3017 if (ret) {
3018 btrfs_warn(fs_info,
3019 "failed to create the UUID tree: %d", ret);
3020 close_ctree(fs_info);
3021 return ret;
3022 }
3023 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3024 fs_info->generation !=
3025 btrfs_super_uuid_tree_generation(disk_super)) {
3026 btrfs_info(fs_info, "checking UUID tree");
3027 ret = btrfs_check_uuid_tree(fs_info);
3028 if (ret) {
3029 btrfs_warn(fs_info,
3030 "failed to check the UUID tree: %d", ret);
3031 close_ctree(fs_info);
3032 return ret;
3033 }
3034 } else {
3035 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3036 }
3037 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3038
3039 /*
3040 * backuproot only affect mount behavior, and if open_ctree succeeded,
3041 * no need to keep the flag
3042 */
3043 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3044
3045 return 0;
3046
3047 fail_qgroup:
3048 btrfs_free_qgroup_config(fs_info);
3049 fail_trans_kthread:
3050 kthread_stop(fs_info->transaction_kthread);
3051 btrfs_cleanup_transaction(fs_info);
3052 btrfs_free_fs_roots(fs_info);
3053 fail_cleaner:
3054 kthread_stop(fs_info->cleaner_kthread);
3055
3056 /*
3057 * make sure we're done with the btree inode before we stop our
3058 * kthreads
3059 */
3060 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3061
3062 fail_sysfs:
3063 btrfs_sysfs_remove_mounted(fs_info);
3064
3065 fail_fsdev_sysfs:
3066 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3067
3068 fail_block_groups:
3069 btrfs_put_block_group_cache(fs_info);
3070
3071 fail_tree_roots:
3072 free_root_pointers(fs_info, true);
3073 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3074
3075 fail_sb_buffer:
3076 btrfs_stop_all_workers(fs_info);
3077 btrfs_free_block_groups(fs_info);
3078 fail_alloc:
3079 fail_iput:
3080 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3081
3082 iput(fs_info->btree_inode);
3083 fail_bio_counter:
3084 percpu_counter_destroy(&fs_info->bio_counter);
3085 fail_delalloc_bytes:
3086 percpu_counter_destroy(&fs_info->delalloc_bytes);
3087 fail_dirty_metadata_bytes:
3088 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3089 fail_srcu:
3090 cleanup_srcu_struct(&fs_info->subvol_srcu);
3091 fail:
3092 btrfs_free_stripe_hash_table(fs_info);
3093 btrfs_close_devices(fs_info->fs_devices);
3094 return err;
3095
3096 recovery_tree_root:
3097 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3098 goto fail_tree_roots;
3099
3100 free_root_pointers(fs_info, false);
3101
3102 /* don't use the log in recovery mode, it won't be valid */
3103 btrfs_set_super_log_root(disk_super, 0);
3104
3105 /* we can't trust the free space cache either */
3106 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3107
3108 ret = next_root_backup(fs_info, fs_info->super_copy,
3109 &num_backups_tried, &backup_index);
3110 if (ret == -1)
3111 goto fail_block_groups;
3112 goto retry_root_backup;
3113 }
3114
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3115 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3116 {
3117 if (uptodate) {
3118 set_buffer_uptodate(bh);
3119 } else {
3120 struct btrfs_device *device = (struct btrfs_device *)
3121 bh->b_private;
3122
3123 btrfs_warn_rl_in_rcu(device->fs_info,
3124 "lost page write due to IO error on %s",
3125 rcu_str_deref(device->name));
3126 /* note, we don't set_buffer_write_io_error because we have
3127 * our own ways of dealing with the IO errors
3128 */
3129 clear_buffer_uptodate(bh);
3130 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3131 }
3132 unlock_buffer(bh);
3133 put_bh(bh);
3134 }
3135
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3136 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3137 struct buffer_head **bh_ret)
3138 {
3139 struct buffer_head *bh;
3140 struct btrfs_super_block *super;
3141 u64 bytenr;
3142
3143 bytenr = btrfs_sb_offset(copy_num);
3144 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3145 return -EINVAL;
3146
3147 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3148 /*
3149 * If we fail to read from the underlying devices, as of now
3150 * the best option we have is to mark it EIO.
3151 */
3152 if (!bh)
3153 return -EIO;
3154
3155 super = (struct btrfs_super_block *)bh->b_data;
3156 if (btrfs_super_bytenr(super) != bytenr ||
3157 btrfs_super_magic(super) != BTRFS_MAGIC) {
3158 brelse(bh);
3159 return -EINVAL;
3160 }
3161
3162 *bh_ret = bh;
3163 return 0;
3164 }
3165
3166
btrfs_read_dev_super(struct block_device * bdev)3167 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3168 {
3169 struct buffer_head *bh;
3170 struct buffer_head *latest = NULL;
3171 struct btrfs_super_block *super;
3172 int i;
3173 u64 transid = 0;
3174 int ret = -EINVAL;
3175
3176 /* we would like to check all the supers, but that would make
3177 * a btrfs mount succeed after a mkfs from a different FS.
3178 * So, we need to add a special mount option to scan for
3179 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3180 */
3181 for (i = 0; i < 1; i++) {
3182 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3183 if (ret)
3184 continue;
3185
3186 super = (struct btrfs_super_block *)bh->b_data;
3187
3188 if (!latest || btrfs_super_generation(super) > transid) {
3189 brelse(latest);
3190 latest = bh;
3191 transid = btrfs_super_generation(super);
3192 } else {
3193 brelse(bh);
3194 }
3195 }
3196
3197 if (!latest)
3198 return ERR_PTR(ret);
3199
3200 return latest;
3201 }
3202
3203 /*
3204 * Write superblock @sb to the @device. Do not wait for completion, all the
3205 * buffer heads we write are pinned.
3206 *
3207 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3208 * the expected device size at commit time. Note that max_mirrors must be
3209 * same for write and wait phases.
3210 *
3211 * Return number of errors when buffer head is not found or submission fails.
3212 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3213 static int write_dev_supers(struct btrfs_device *device,
3214 struct btrfs_super_block *sb, int max_mirrors)
3215 {
3216 struct buffer_head *bh;
3217 int i;
3218 int ret;
3219 int errors = 0;
3220 u32 crc;
3221 u64 bytenr;
3222 int op_flags;
3223
3224 if (max_mirrors == 0)
3225 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3226
3227 for (i = 0; i < max_mirrors; i++) {
3228 bytenr = btrfs_sb_offset(i);
3229 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3230 device->commit_total_bytes)
3231 break;
3232
3233 btrfs_set_super_bytenr(sb, bytenr);
3234
3235 crc = ~(u32)0;
3236 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3237 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3238 btrfs_csum_final(crc, sb->csum);
3239
3240 /* One reference for us, and we leave it for the caller */
3241 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3242 BTRFS_SUPER_INFO_SIZE);
3243 if (!bh) {
3244 btrfs_err(device->fs_info,
3245 "couldn't get super buffer head for bytenr %llu",
3246 bytenr);
3247 errors++;
3248 continue;
3249 }
3250
3251 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3252
3253 /* one reference for submit_bh */
3254 get_bh(bh);
3255
3256 set_buffer_uptodate(bh);
3257 lock_buffer(bh);
3258 bh->b_end_io = btrfs_end_buffer_write_sync;
3259 bh->b_private = device;
3260
3261 /*
3262 * we fua the first super. The others we allow
3263 * to go down lazy.
3264 */
3265 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3266 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3267 op_flags |= REQ_FUA;
3268 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3269 if (ret)
3270 errors++;
3271 }
3272 return errors < i ? 0 : -1;
3273 }
3274
3275 /*
3276 * Wait for write completion of superblocks done by write_dev_supers,
3277 * @max_mirrors same for write and wait phases.
3278 *
3279 * Return number of errors when buffer head is not found or not marked up to
3280 * date.
3281 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3282 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3283 {
3284 struct buffer_head *bh;
3285 int i;
3286 int errors = 0;
3287 u64 bytenr;
3288
3289 if (max_mirrors == 0)
3290 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3291
3292 for (i = 0; i < max_mirrors; i++) {
3293 bytenr = btrfs_sb_offset(i);
3294 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3295 device->commit_total_bytes)
3296 break;
3297
3298 bh = __find_get_block(device->bdev,
3299 bytenr / BTRFS_BDEV_BLOCKSIZE,
3300 BTRFS_SUPER_INFO_SIZE);
3301 if (!bh) {
3302 errors++;
3303 continue;
3304 }
3305 wait_on_buffer(bh);
3306 if (!buffer_uptodate(bh))
3307 errors++;
3308
3309 /* drop our reference */
3310 brelse(bh);
3311
3312 /* drop the reference from the writing run */
3313 brelse(bh);
3314 }
3315
3316 return errors < i ? 0 : -1;
3317 }
3318
3319 /*
3320 * endio for the write_dev_flush, this will wake anyone waiting
3321 * for the barrier when it is done
3322 */
btrfs_end_empty_barrier(struct bio * bio)3323 static void btrfs_end_empty_barrier(struct bio *bio)
3324 {
3325 complete(bio->bi_private);
3326 }
3327
3328 /*
3329 * Submit a flush request to the device if it supports it. Error handling is
3330 * done in the waiting counterpart.
3331 */
write_dev_flush(struct btrfs_device * device)3332 static void write_dev_flush(struct btrfs_device *device)
3333 {
3334 struct request_queue *q = bdev_get_queue(device->bdev);
3335 struct bio *bio = device->flush_bio;
3336
3337 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3338 return;
3339
3340 bio_reset(bio);
3341 bio->bi_end_io = btrfs_end_empty_barrier;
3342 bio_set_dev(bio, device->bdev);
3343 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3344 init_completion(&device->flush_wait);
3345 bio->bi_private = &device->flush_wait;
3346
3347 btrfsic_submit_bio(bio);
3348 device->flush_bio_sent = 1;
3349 }
3350
3351 /*
3352 * If the flush bio has been submitted by write_dev_flush, wait for it.
3353 */
wait_dev_flush(struct btrfs_device * device)3354 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3355 {
3356 struct bio *bio = device->flush_bio;
3357
3358 if (!device->flush_bio_sent)
3359 return BLK_STS_OK;
3360
3361 device->flush_bio_sent = 0;
3362 wait_for_completion_io(&device->flush_wait);
3363
3364 return bio->bi_status;
3365 }
3366
check_barrier_error(struct btrfs_fs_info * fs_info)3367 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3368 {
3369 if (!btrfs_check_rw_degradable(fs_info))
3370 return -EIO;
3371 return 0;
3372 }
3373
3374 /*
3375 * send an empty flush down to each device in parallel,
3376 * then wait for them
3377 */
barrier_all_devices(struct btrfs_fs_info * info)3378 static int barrier_all_devices(struct btrfs_fs_info *info)
3379 {
3380 struct list_head *head;
3381 struct btrfs_device *dev;
3382 int errors_wait = 0;
3383 blk_status_t ret;
3384
3385 /* send down all the barriers */
3386 head = &info->fs_devices->devices;
3387 list_for_each_entry_rcu(dev, head, dev_list) {
3388 if (dev->missing)
3389 continue;
3390 if (!dev->bdev)
3391 continue;
3392 if (!dev->in_fs_metadata || !dev->writeable)
3393 continue;
3394
3395 write_dev_flush(dev);
3396 dev->last_flush_error = BLK_STS_OK;
3397 }
3398
3399 /* wait for all the barriers */
3400 list_for_each_entry_rcu(dev, head, dev_list) {
3401 if (dev->missing)
3402 continue;
3403 if (!dev->bdev) {
3404 errors_wait++;
3405 continue;
3406 }
3407 if (!dev->in_fs_metadata || !dev->writeable)
3408 continue;
3409
3410 ret = wait_dev_flush(dev);
3411 if (ret) {
3412 dev->last_flush_error = ret;
3413 btrfs_dev_stat_inc_and_print(dev,
3414 BTRFS_DEV_STAT_FLUSH_ERRS);
3415 errors_wait++;
3416 }
3417 }
3418
3419 if (errors_wait) {
3420 /*
3421 * At some point we need the status of all disks
3422 * to arrive at the volume status. So error checking
3423 * is being pushed to a separate loop.
3424 */
3425 return check_barrier_error(info);
3426 }
3427 return 0;
3428 }
3429
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3430 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3431 {
3432 int raid_type;
3433 int min_tolerated = INT_MAX;
3434
3435 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3436 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3437 min_tolerated = min(min_tolerated,
3438 btrfs_raid_array[BTRFS_RAID_SINGLE].
3439 tolerated_failures);
3440
3441 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3442 if (raid_type == BTRFS_RAID_SINGLE)
3443 continue;
3444 if (!(flags & btrfs_raid_group[raid_type]))
3445 continue;
3446 min_tolerated = min(min_tolerated,
3447 btrfs_raid_array[raid_type].
3448 tolerated_failures);
3449 }
3450
3451 if (min_tolerated == INT_MAX) {
3452 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3453 min_tolerated = 0;
3454 }
3455
3456 return min_tolerated;
3457 }
3458
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3459 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3460 {
3461 struct list_head *head;
3462 struct btrfs_device *dev;
3463 struct btrfs_super_block *sb;
3464 struct btrfs_dev_item *dev_item;
3465 int ret;
3466 int do_barriers;
3467 int max_errors;
3468 int total_errors = 0;
3469 u64 flags;
3470
3471 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3472
3473 /*
3474 * max_mirrors == 0 indicates we're from commit_transaction,
3475 * not from fsync where the tree roots in fs_info have not
3476 * been consistent on disk.
3477 */
3478 if (max_mirrors == 0)
3479 backup_super_roots(fs_info);
3480
3481 sb = fs_info->super_for_commit;
3482 dev_item = &sb->dev_item;
3483
3484 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3485 head = &fs_info->fs_devices->devices;
3486 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3487
3488 if (do_barriers) {
3489 ret = barrier_all_devices(fs_info);
3490 if (ret) {
3491 mutex_unlock(
3492 &fs_info->fs_devices->device_list_mutex);
3493 btrfs_handle_fs_error(fs_info, ret,
3494 "errors while submitting device barriers.");
3495 return ret;
3496 }
3497 }
3498
3499 list_for_each_entry_rcu(dev, head, dev_list) {
3500 if (!dev->bdev) {
3501 total_errors++;
3502 continue;
3503 }
3504 if (!dev->in_fs_metadata || !dev->writeable)
3505 continue;
3506
3507 btrfs_set_stack_device_generation(dev_item, 0);
3508 btrfs_set_stack_device_type(dev_item, dev->type);
3509 btrfs_set_stack_device_id(dev_item, dev->devid);
3510 btrfs_set_stack_device_total_bytes(dev_item,
3511 dev->commit_total_bytes);
3512 btrfs_set_stack_device_bytes_used(dev_item,
3513 dev->commit_bytes_used);
3514 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3515 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3516 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3517 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3518 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3519
3520 flags = btrfs_super_flags(sb);
3521 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3522
3523 ret = write_dev_supers(dev, sb, max_mirrors);
3524 if (ret)
3525 total_errors++;
3526 }
3527 if (total_errors > max_errors) {
3528 btrfs_err(fs_info, "%d errors while writing supers",
3529 total_errors);
3530 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3531
3532 /* FUA is masked off if unsupported and can't be the reason */
3533 btrfs_handle_fs_error(fs_info, -EIO,
3534 "%d errors while writing supers",
3535 total_errors);
3536 return -EIO;
3537 }
3538
3539 total_errors = 0;
3540 list_for_each_entry_rcu(dev, head, dev_list) {
3541 if (!dev->bdev)
3542 continue;
3543 if (!dev->in_fs_metadata || !dev->writeable)
3544 continue;
3545
3546 ret = wait_dev_supers(dev, max_mirrors);
3547 if (ret)
3548 total_errors++;
3549 }
3550 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3551 if (total_errors > max_errors) {
3552 btrfs_handle_fs_error(fs_info, -EIO,
3553 "%d errors while writing supers",
3554 total_errors);
3555 return -EIO;
3556 }
3557 return 0;
3558 }
3559
3560 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3561 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3562 struct btrfs_root *root)
3563 {
3564 spin_lock(&fs_info->fs_roots_radix_lock);
3565 radix_tree_delete(&fs_info->fs_roots_radix,
3566 (unsigned long)root->root_key.objectid);
3567 spin_unlock(&fs_info->fs_roots_radix_lock);
3568
3569 if (btrfs_root_refs(&root->root_item) == 0)
3570 synchronize_srcu(&fs_info->subvol_srcu);
3571
3572 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3573 btrfs_free_log(NULL, root);
3574 if (root->reloc_root) {
3575 free_extent_buffer(root->reloc_root->node);
3576 free_extent_buffer(root->reloc_root->commit_root);
3577 btrfs_put_fs_root(root->reloc_root);
3578 root->reloc_root = NULL;
3579 }
3580 }
3581
3582 if (root->free_ino_pinned)
3583 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3584 if (root->free_ino_ctl)
3585 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3586 free_fs_root(root);
3587 }
3588
free_fs_root(struct btrfs_root * root)3589 static void free_fs_root(struct btrfs_root *root)
3590 {
3591 iput(root->ino_cache_inode);
3592 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3593 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3594 root->orphan_block_rsv = NULL;
3595 if (root->anon_dev)
3596 free_anon_bdev(root->anon_dev);
3597 if (root->subv_writers)
3598 btrfs_free_subvolume_writers(root->subv_writers);
3599 free_extent_buffer(root->node);
3600 free_extent_buffer(root->commit_root);
3601 kfree(root->free_ino_ctl);
3602 kfree(root->free_ino_pinned);
3603 kfree(root->name);
3604 btrfs_put_fs_root(root);
3605 }
3606
btrfs_free_fs_root(struct btrfs_root * root)3607 void btrfs_free_fs_root(struct btrfs_root *root)
3608 {
3609 free_fs_root(root);
3610 }
3611
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3612 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3613 {
3614 u64 root_objectid = 0;
3615 struct btrfs_root *gang[8];
3616 int i = 0;
3617 int err = 0;
3618 unsigned int ret = 0;
3619 int index;
3620
3621 while (1) {
3622 index = srcu_read_lock(&fs_info->subvol_srcu);
3623 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3624 (void **)gang, root_objectid,
3625 ARRAY_SIZE(gang));
3626 if (!ret) {
3627 srcu_read_unlock(&fs_info->subvol_srcu, index);
3628 break;
3629 }
3630 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3631
3632 for (i = 0; i < ret; i++) {
3633 /* Avoid to grab roots in dead_roots */
3634 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3635 gang[i] = NULL;
3636 continue;
3637 }
3638 /* grab all the search result for later use */
3639 gang[i] = btrfs_grab_fs_root(gang[i]);
3640 }
3641 srcu_read_unlock(&fs_info->subvol_srcu, index);
3642
3643 for (i = 0; i < ret; i++) {
3644 if (!gang[i])
3645 continue;
3646 root_objectid = gang[i]->root_key.objectid;
3647 err = btrfs_orphan_cleanup(gang[i]);
3648 if (err)
3649 break;
3650 btrfs_put_fs_root(gang[i]);
3651 }
3652 root_objectid++;
3653 }
3654
3655 /* release the uncleaned roots due to error */
3656 for (; i < ret; i++) {
3657 if (gang[i])
3658 btrfs_put_fs_root(gang[i]);
3659 }
3660 return err;
3661 }
3662
btrfs_commit_super(struct btrfs_fs_info * fs_info)3663 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3664 {
3665 struct btrfs_root *root = fs_info->tree_root;
3666 struct btrfs_trans_handle *trans;
3667
3668 mutex_lock(&fs_info->cleaner_mutex);
3669 btrfs_run_delayed_iputs(fs_info);
3670 mutex_unlock(&fs_info->cleaner_mutex);
3671 wake_up_process(fs_info->cleaner_kthread);
3672
3673 /* wait until ongoing cleanup work done */
3674 down_write(&fs_info->cleanup_work_sem);
3675 up_write(&fs_info->cleanup_work_sem);
3676
3677 trans = btrfs_join_transaction(root);
3678 if (IS_ERR(trans))
3679 return PTR_ERR(trans);
3680 return btrfs_commit_transaction(trans);
3681 }
3682
close_ctree(struct btrfs_fs_info * fs_info)3683 void close_ctree(struct btrfs_fs_info *fs_info)
3684 {
3685 struct btrfs_root *root = fs_info->tree_root;
3686 int ret;
3687
3688 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3689 /*
3690 * We don't want the cleaner to start new transactions, add more delayed
3691 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3692 * because that frees the task_struct, and the transaction kthread might
3693 * still try to wake up the cleaner.
3694 */
3695 kthread_park(fs_info->cleaner_kthread);
3696
3697 /* wait for the qgroup rescan worker to stop */
3698 btrfs_qgroup_wait_for_completion(fs_info, false);
3699
3700 /* wait for the uuid_scan task to finish */
3701 down(&fs_info->uuid_tree_rescan_sem);
3702 /* avoid complains from lockdep et al., set sem back to initial state */
3703 up(&fs_info->uuid_tree_rescan_sem);
3704
3705 /* pause restriper - we want to resume on mount */
3706 btrfs_pause_balance(fs_info);
3707
3708 btrfs_dev_replace_suspend_for_unmount(fs_info);
3709
3710 btrfs_scrub_cancel(fs_info);
3711
3712 /* wait for any defraggers to finish */
3713 wait_event(fs_info->transaction_wait,
3714 (atomic_read(&fs_info->defrag_running) == 0));
3715
3716 /* clear out the rbtree of defraggable inodes */
3717 btrfs_cleanup_defrag_inodes(fs_info);
3718
3719 cancel_work_sync(&fs_info->async_reclaim_work);
3720
3721 if (!sb_rdonly(fs_info->sb)) {
3722 /*
3723 * The cleaner kthread is stopped, so do one final pass over
3724 * unused block groups.
3725 */
3726 btrfs_delete_unused_bgs(fs_info);
3727
3728 ret = btrfs_commit_super(fs_info);
3729 if (ret)
3730 btrfs_err(fs_info, "commit super ret %d", ret);
3731 }
3732
3733 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3734 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3735 btrfs_error_commit_super(fs_info);
3736
3737 kthread_stop(fs_info->transaction_kthread);
3738 kthread_stop(fs_info->cleaner_kthread);
3739
3740 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3741
3742 btrfs_free_qgroup_config(fs_info);
3743 ASSERT(list_empty(&fs_info->delalloc_roots));
3744
3745 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3746 btrfs_info(fs_info, "at unmount delalloc count %lld",
3747 percpu_counter_sum(&fs_info->delalloc_bytes));
3748 }
3749
3750 btrfs_sysfs_remove_mounted(fs_info);
3751 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3752
3753 btrfs_free_fs_roots(fs_info);
3754
3755 btrfs_put_block_group_cache(fs_info);
3756
3757 /*
3758 * we must make sure there is not any read request to
3759 * submit after we stopping all workers.
3760 */
3761 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3762 btrfs_stop_all_workers(fs_info);
3763
3764 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3765 free_root_pointers(fs_info, true);
3766
3767 /*
3768 * We must free the block groups after dropping the fs_roots as we could
3769 * have had an IO error and have left over tree log blocks that aren't
3770 * cleaned up until the fs roots are freed. This makes the block group
3771 * accounting appear to be wrong because there's pending reserved bytes,
3772 * so make sure we do the block group cleanup afterwards.
3773 */
3774 btrfs_free_block_groups(fs_info);
3775
3776 iput(fs_info->btree_inode);
3777
3778 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3779 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3780 btrfsic_unmount(fs_info->fs_devices);
3781 #endif
3782
3783 btrfs_close_devices(fs_info->fs_devices);
3784 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3785
3786 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3787 percpu_counter_destroy(&fs_info->delalloc_bytes);
3788 percpu_counter_destroy(&fs_info->bio_counter);
3789 cleanup_srcu_struct(&fs_info->subvol_srcu);
3790
3791 btrfs_free_stripe_hash_table(fs_info);
3792
3793 __btrfs_free_block_rsv(root->orphan_block_rsv);
3794 root->orphan_block_rsv = NULL;
3795
3796 while (!list_empty(&fs_info->pinned_chunks)) {
3797 struct extent_map *em;
3798
3799 em = list_first_entry(&fs_info->pinned_chunks,
3800 struct extent_map, list);
3801 list_del_init(&em->list);
3802 free_extent_map(em);
3803 }
3804 }
3805
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3806 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3807 int atomic)
3808 {
3809 int ret;
3810 struct inode *btree_inode = buf->pages[0]->mapping->host;
3811
3812 ret = extent_buffer_uptodate(buf);
3813 if (!ret)
3814 return ret;
3815
3816 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3817 parent_transid, atomic);
3818 if (ret == -EAGAIN)
3819 return ret;
3820 return !ret;
3821 }
3822
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3823 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3824 {
3825 struct btrfs_fs_info *fs_info;
3826 struct btrfs_root *root;
3827 u64 transid = btrfs_header_generation(buf);
3828 int was_dirty;
3829
3830 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3831 /*
3832 * This is a fast path so only do this check if we have sanity tests
3833 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3834 * outside of the sanity tests.
3835 */
3836 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3837 return;
3838 #endif
3839 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3840 fs_info = root->fs_info;
3841 btrfs_assert_tree_locked(buf);
3842 if (transid != fs_info->generation)
3843 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3844 buf->start, transid, fs_info->generation);
3845 was_dirty = set_extent_buffer_dirty(buf);
3846 if (!was_dirty)
3847 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3848 buf->len,
3849 fs_info->dirty_metadata_batch);
3850 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3851 /*
3852 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3853 * but item data not updated.
3854 * So here we should only check item pointers, not item data.
3855 */
3856 if (btrfs_header_level(buf) == 0 &&
3857 btrfs_check_leaf_relaxed(root, buf)) {
3858 btrfs_print_leaf(buf);
3859 ASSERT(0);
3860 }
3861 #endif
3862 }
3863
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)3864 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3865 int flush_delayed)
3866 {
3867 /*
3868 * looks as though older kernels can get into trouble with
3869 * this code, they end up stuck in balance_dirty_pages forever
3870 */
3871 int ret;
3872
3873 if (current->flags & PF_MEMALLOC)
3874 return;
3875
3876 if (flush_delayed)
3877 btrfs_balance_delayed_items(fs_info);
3878
3879 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3880 BTRFS_DIRTY_METADATA_THRESH,
3881 fs_info->dirty_metadata_batch);
3882 if (ret > 0) {
3883 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3884 }
3885 }
3886
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)3887 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3888 {
3889 __btrfs_btree_balance_dirty(fs_info, 1);
3890 }
3891
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)3892 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3893 {
3894 __btrfs_btree_balance_dirty(fs_info, 0);
3895 }
3896
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)3897 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3898 {
3899 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3900 struct btrfs_fs_info *fs_info = root->fs_info;
3901
3902 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3903 }
3904
btrfs_check_super_valid(struct btrfs_fs_info * fs_info)3905 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3906 {
3907 struct btrfs_super_block *sb = fs_info->super_copy;
3908 u64 nodesize = btrfs_super_nodesize(sb);
3909 u64 sectorsize = btrfs_super_sectorsize(sb);
3910 int ret = 0;
3911
3912 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3913 btrfs_err(fs_info, "no valid FS found");
3914 ret = -EINVAL;
3915 }
3916 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3917 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3918 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3919 ret = -EINVAL;
3920 }
3921 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3922 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3923 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3924 ret = -EINVAL;
3925 }
3926 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3927 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3928 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3929 ret = -EINVAL;
3930 }
3931 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3932 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3933 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3934 ret = -EINVAL;
3935 }
3936
3937 /*
3938 * Check sectorsize and nodesize first, other check will need it.
3939 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3940 */
3941 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3942 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3943 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3944 ret = -EINVAL;
3945 }
3946 /* Only PAGE SIZE is supported yet */
3947 if (sectorsize != PAGE_SIZE) {
3948 btrfs_err(fs_info,
3949 "sectorsize %llu not supported yet, only support %lu",
3950 sectorsize, PAGE_SIZE);
3951 ret = -EINVAL;
3952 }
3953 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3954 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3955 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3956 ret = -EINVAL;
3957 }
3958 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3959 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3960 le32_to_cpu(sb->__unused_leafsize), nodesize);
3961 ret = -EINVAL;
3962 }
3963
3964 /* Root alignment check */
3965 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3966 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3967 btrfs_super_root(sb));
3968 ret = -EINVAL;
3969 }
3970 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3971 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3972 btrfs_super_chunk_root(sb));
3973 ret = -EINVAL;
3974 }
3975 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3976 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3977 btrfs_super_log_root(sb));
3978 ret = -EINVAL;
3979 }
3980
3981 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3982 btrfs_err(fs_info,
3983 "dev_item UUID does not match fsid: %pU != %pU",
3984 fs_info->fsid, sb->dev_item.fsid);
3985 ret = -EINVAL;
3986 }
3987
3988 /*
3989 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3990 * done later
3991 */
3992 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3993 btrfs_err(fs_info, "bytes_used is too small %llu",
3994 btrfs_super_bytes_used(sb));
3995 ret = -EINVAL;
3996 }
3997 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3998 btrfs_err(fs_info, "invalid stripesize %u",
3999 btrfs_super_stripesize(sb));
4000 ret = -EINVAL;
4001 }
4002 if (btrfs_super_num_devices(sb) > (1UL << 31))
4003 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4004 btrfs_super_num_devices(sb));
4005 if (btrfs_super_num_devices(sb) == 0) {
4006 btrfs_err(fs_info, "number of devices is 0");
4007 ret = -EINVAL;
4008 }
4009
4010 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4011 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4012 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4013 ret = -EINVAL;
4014 }
4015
4016 /*
4017 * Obvious sys_chunk_array corruptions, it must hold at least one key
4018 * and one chunk
4019 */
4020 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4021 btrfs_err(fs_info, "system chunk array too big %u > %u",
4022 btrfs_super_sys_array_size(sb),
4023 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4024 ret = -EINVAL;
4025 }
4026 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4027 + sizeof(struct btrfs_chunk)) {
4028 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4029 btrfs_super_sys_array_size(sb),
4030 sizeof(struct btrfs_disk_key)
4031 + sizeof(struct btrfs_chunk));
4032 ret = -EINVAL;
4033 }
4034
4035 /*
4036 * The generation is a global counter, we'll trust it more than the others
4037 * but it's still possible that it's the one that's wrong.
4038 */
4039 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4040 btrfs_warn(fs_info,
4041 "suspicious: generation < chunk_root_generation: %llu < %llu",
4042 btrfs_super_generation(sb),
4043 btrfs_super_chunk_root_generation(sb));
4044 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4045 && btrfs_super_cache_generation(sb) != (u64)-1)
4046 btrfs_warn(fs_info,
4047 "suspicious: generation < cache_generation: %llu < %llu",
4048 btrfs_super_generation(sb),
4049 btrfs_super_cache_generation(sb));
4050
4051 return ret;
4052 }
4053
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4054 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4055 {
4056 /* cleanup FS via transaction */
4057 btrfs_cleanup_transaction(fs_info);
4058
4059 mutex_lock(&fs_info->cleaner_mutex);
4060 btrfs_run_delayed_iputs(fs_info);
4061 mutex_unlock(&fs_info->cleaner_mutex);
4062
4063 down_write(&fs_info->cleanup_work_sem);
4064 up_write(&fs_info->cleanup_work_sem);
4065 }
4066
btrfs_destroy_ordered_extents(struct btrfs_root * root)4067 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4068 {
4069 struct btrfs_ordered_extent *ordered;
4070
4071 spin_lock(&root->ordered_extent_lock);
4072 /*
4073 * This will just short circuit the ordered completion stuff which will
4074 * make sure the ordered extent gets properly cleaned up.
4075 */
4076 list_for_each_entry(ordered, &root->ordered_extents,
4077 root_extent_list)
4078 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4079 spin_unlock(&root->ordered_extent_lock);
4080 }
4081
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4082 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4083 {
4084 struct btrfs_root *root;
4085 struct list_head splice;
4086
4087 INIT_LIST_HEAD(&splice);
4088
4089 spin_lock(&fs_info->ordered_root_lock);
4090 list_splice_init(&fs_info->ordered_roots, &splice);
4091 while (!list_empty(&splice)) {
4092 root = list_first_entry(&splice, struct btrfs_root,
4093 ordered_root);
4094 list_move_tail(&root->ordered_root,
4095 &fs_info->ordered_roots);
4096
4097 spin_unlock(&fs_info->ordered_root_lock);
4098 btrfs_destroy_ordered_extents(root);
4099
4100 cond_resched();
4101 spin_lock(&fs_info->ordered_root_lock);
4102 }
4103 spin_unlock(&fs_info->ordered_root_lock);
4104
4105 /*
4106 * We need this here because if we've been flipped read-only we won't
4107 * get sync() from the umount, so we need to make sure any ordered
4108 * extents that haven't had their dirty pages IO start writeout yet
4109 * actually get run and error out properly.
4110 */
4111 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4112 }
4113
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4114 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4115 struct btrfs_fs_info *fs_info)
4116 {
4117 struct rb_node *node;
4118 struct btrfs_delayed_ref_root *delayed_refs;
4119 struct btrfs_delayed_ref_node *ref;
4120 int ret = 0;
4121
4122 delayed_refs = &trans->delayed_refs;
4123
4124 spin_lock(&delayed_refs->lock);
4125 if (atomic_read(&delayed_refs->num_entries) == 0) {
4126 spin_unlock(&delayed_refs->lock);
4127 btrfs_info(fs_info, "delayed_refs has NO entry");
4128 return ret;
4129 }
4130
4131 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4132 struct btrfs_delayed_ref_head *head;
4133 struct btrfs_delayed_ref_node *tmp;
4134 bool pin_bytes = false;
4135
4136 head = rb_entry(node, struct btrfs_delayed_ref_head,
4137 href_node);
4138 if (!mutex_trylock(&head->mutex)) {
4139 refcount_inc(&head->node.refs);
4140 spin_unlock(&delayed_refs->lock);
4141
4142 mutex_lock(&head->mutex);
4143 mutex_unlock(&head->mutex);
4144 btrfs_put_delayed_ref(&head->node);
4145 spin_lock(&delayed_refs->lock);
4146 continue;
4147 }
4148 spin_lock(&head->lock);
4149 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4150 list) {
4151 ref->in_tree = 0;
4152 list_del(&ref->list);
4153 if (!list_empty(&ref->add_list))
4154 list_del(&ref->add_list);
4155 atomic_dec(&delayed_refs->num_entries);
4156 btrfs_put_delayed_ref(ref);
4157 }
4158 if (head->must_insert_reserved)
4159 pin_bytes = true;
4160 btrfs_free_delayed_extent_op(head->extent_op);
4161 delayed_refs->num_heads--;
4162 if (head->processing == 0)
4163 delayed_refs->num_heads_ready--;
4164 atomic_dec(&delayed_refs->num_entries);
4165 head->node.in_tree = 0;
4166 rb_erase(&head->href_node, &delayed_refs->href_root);
4167 spin_unlock(&head->lock);
4168 spin_unlock(&delayed_refs->lock);
4169 mutex_unlock(&head->mutex);
4170
4171 if (pin_bytes)
4172 btrfs_pin_extent(fs_info, head->node.bytenr,
4173 head->node.num_bytes, 1);
4174 btrfs_put_delayed_ref(&head->node);
4175 cond_resched();
4176 spin_lock(&delayed_refs->lock);
4177 }
4178
4179 spin_unlock(&delayed_refs->lock);
4180
4181 return ret;
4182 }
4183
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4184 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4185 {
4186 struct btrfs_inode *btrfs_inode;
4187 struct list_head splice;
4188
4189 INIT_LIST_HEAD(&splice);
4190
4191 spin_lock(&root->delalloc_lock);
4192 list_splice_init(&root->delalloc_inodes, &splice);
4193
4194 while (!list_empty(&splice)) {
4195 struct inode *inode = NULL;
4196 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4197 delalloc_inodes);
4198 __btrfs_del_delalloc_inode(root, btrfs_inode);
4199 spin_unlock(&root->delalloc_lock);
4200
4201 /*
4202 * Make sure we get a live inode and that it'll not disappear
4203 * meanwhile.
4204 */
4205 inode = igrab(&btrfs_inode->vfs_inode);
4206 if (inode) {
4207 invalidate_inode_pages2(inode->i_mapping);
4208 iput(inode);
4209 }
4210 spin_lock(&root->delalloc_lock);
4211 }
4212 spin_unlock(&root->delalloc_lock);
4213 }
4214
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4215 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4216 {
4217 struct btrfs_root *root;
4218 struct list_head splice;
4219
4220 INIT_LIST_HEAD(&splice);
4221
4222 spin_lock(&fs_info->delalloc_root_lock);
4223 list_splice_init(&fs_info->delalloc_roots, &splice);
4224 while (!list_empty(&splice)) {
4225 root = list_first_entry(&splice, struct btrfs_root,
4226 delalloc_root);
4227 root = btrfs_grab_fs_root(root);
4228 BUG_ON(!root);
4229 spin_unlock(&fs_info->delalloc_root_lock);
4230
4231 btrfs_destroy_delalloc_inodes(root);
4232 btrfs_put_fs_root(root);
4233
4234 spin_lock(&fs_info->delalloc_root_lock);
4235 }
4236 spin_unlock(&fs_info->delalloc_root_lock);
4237 }
4238
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4239 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4240 struct extent_io_tree *dirty_pages,
4241 int mark)
4242 {
4243 int ret;
4244 struct extent_buffer *eb;
4245 u64 start = 0;
4246 u64 end;
4247
4248 while (1) {
4249 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4250 mark, NULL);
4251 if (ret)
4252 break;
4253
4254 clear_extent_bits(dirty_pages, start, end, mark);
4255 while (start <= end) {
4256 eb = find_extent_buffer(fs_info, start);
4257 start += fs_info->nodesize;
4258 if (!eb)
4259 continue;
4260 wait_on_extent_buffer_writeback(eb);
4261
4262 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4263 &eb->bflags))
4264 clear_extent_buffer_dirty(eb);
4265 free_extent_buffer_stale(eb);
4266 }
4267 }
4268
4269 return ret;
4270 }
4271
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4272 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4273 struct extent_io_tree *pinned_extents)
4274 {
4275 struct extent_io_tree *unpin;
4276 u64 start;
4277 u64 end;
4278 int ret;
4279 bool loop = true;
4280
4281 unpin = pinned_extents;
4282 again:
4283 while (1) {
4284 /*
4285 * The btrfs_finish_extent_commit() may get the same range as
4286 * ours between find_first_extent_bit and clear_extent_dirty.
4287 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4288 * the same extent range.
4289 */
4290 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4291 ret = find_first_extent_bit(unpin, 0, &start, &end,
4292 EXTENT_DIRTY, NULL);
4293 if (ret) {
4294 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4295 break;
4296 }
4297
4298 clear_extent_dirty(unpin, start, end);
4299 btrfs_error_unpin_extent_range(fs_info, start, end);
4300 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4301 cond_resched();
4302 }
4303
4304 if (loop) {
4305 if (unpin == &fs_info->freed_extents[0])
4306 unpin = &fs_info->freed_extents[1];
4307 else
4308 unpin = &fs_info->freed_extents[0];
4309 loop = false;
4310 goto again;
4311 }
4312
4313 return 0;
4314 }
4315
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4316 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4317 {
4318 struct inode *inode;
4319
4320 inode = cache->io_ctl.inode;
4321 if (inode) {
4322 invalidate_inode_pages2(inode->i_mapping);
4323 BTRFS_I(inode)->generation = 0;
4324 cache->io_ctl.inode = NULL;
4325 iput(inode);
4326 }
4327 btrfs_put_block_group(cache);
4328 }
4329
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4330 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4331 struct btrfs_fs_info *fs_info)
4332 {
4333 struct btrfs_block_group_cache *cache;
4334
4335 spin_lock(&cur_trans->dirty_bgs_lock);
4336 while (!list_empty(&cur_trans->dirty_bgs)) {
4337 cache = list_first_entry(&cur_trans->dirty_bgs,
4338 struct btrfs_block_group_cache,
4339 dirty_list);
4340 if (!cache) {
4341 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4342 spin_unlock(&cur_trans->dirty_bgs_lock);
4343 return;
4344 }
4345
4346 if (!list_empty(&cache->io_list)) {
4347 spin_unlock(&cur_trans->dirty_bgs_lock);
4348 list_del_init(&cache->io_list);
4349 btrfs_cleanup_bg_io(cache);
4350 spin_lock(&cur_trans->dirty_bgs_lock);
4351 }
4352
4353 list_del_init(&cache->dirty_list);
4354 spin_lock(&cache->lock);
4355 cache->disk_cache_state = BTRFS_DC_ERROR;
4356 spin_unlock(&cache->lock);
4357
4358 spin_unlock(&cur_trans->dirty_bgs_lock);
4359 btrfs_put_block_group(cache);
4360 spin_lock(&cur_trans->dirty_bgs_lock);
4361 }
4362 spin_unlock(&cur_trans->dirty_bgs_lock);
4363
4364 while (!list_empty(&cur_trans->io_bgs)) {
4365 cache = list_first_entry(&cur_trans->io_bgs,
4366 struct btrfs_block_group_cache,
4367 io_list);
4368 if (!cache) {
4369 btrfs_err(fs_info, "orphan block group on io_bgs list");
4370 return;
4371 }
4372
4373 list_del_init(&cache->io_list);
4374 spin_lock(&cache->lock);
4375 cache->disk_cache_state = BTRFS_DC_ERROR;
4376 spin_unlock(&cache->lock);
4377 btrfs_cleanup_bg_io(cache);
4378 }
4379 }
4380
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4381 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4382 struct btrfs_fs_info *fs_info)
4383 {
4384 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4385 ASSERT(list_empty(&cur_trans->dirty_bgs));
4386 ASSERT(list_empty(&cur_trans->io_bgs));
4387
4388 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4389
4390 cur_trans->state = TRANS_STATE_COMMIT_START;
4391 wake_up(&fs_info->transaction_blocked_wait);
4392
4393 cur_trans->state = TRANS_STATE_UNBLOCKED;
4394 wake_up(&fs_info->transaction_wait);
4395
4396 btrfs_destroy_delayed_inodes(fs_info);
4397
4398 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4399 EXTENT_DIRTY);
4400 btrfs_destroy_pinned_extent(fs_info,
4401 fs_info->pinned_extents);
4402
4403 cur_trans->state =TRANS_STATE_COMPLETED;
4404 wake_up(&cur_trans->commit_wait);
4405 }
4406
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4407 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4408 {
4409 struct btrfs_transaction *t;
4410
4411 mutex_lock(&fs_info->transaction_kthread_mutex);
4412
4413 spin_lock(&fs_info->trans_lock);
4414 while (!list_empty(&fs_info->trans_list)) {
4415 t = list_first_entry(&fs_info->trans_list,
4416 struct btrfs_transaction, list);
4417 if (t->state >= TRANS_STATE_COMMIT_START) {
4418 refcount_inc(&t->use_count);
4419 spin_unlock(&fs_info->trans_lock);
4420 btrfs_wait_for_commit(fs_info, t->transid);
4421 btrfs_put_transaction(t);
4422 spin_lock(&fs_info->trans_lock);
4423 continue;
4424 }
4425 if (t == fs_info->running_transaction) {
4426 t->state = TRANS_STATE_COMMIT_DOING;
4427 spin_unlock(&fs_info->trans_lock);
4428 /*
4429 * We wait for 0 num_writers since we don't hold a trans
4430 * handle open currently for this transaction.
4431 */
4432 wait_event(t->writer_wait,
4433 atomic_read(&t->num_writers) == 0);
4434 } else {
4435 spin_unlock(&fs_info->trans_lock);
4436 }
4437 btrfs_cleanup_one_transaction(t, fs_info);
4438
4439 spin_lock(&fs_info->trans_lock);
4440 if (t == fs_info->running_transaction)
4441 fs_info->running_transaction = NULL;
4442 list_del_init(&t->list);
4443 spin_unlock(&fs_info->trans_lock);
4444
4445 btrfs_put_transaction(t);
4446 trace_btrfs_transaction_commit(fs_info->tree_root);
4447 spin_lock(&fs_info->trans_lock);
4448 }
4449 spin_unlock(&fs_info->trans_lock);
4450 btrfs_destroy_all_ordered_extents(fs_info);
4451 btrfs_destroy_delayed_inodes(fs_info);
4452 btrfs_assert_delayed_root_empty(fs_info);
4453 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4454 btrfs_destroy_all_delalloc_inodes(fs_info);
4455 mutex_unlock(&fs_info->transaction_kthread_mutex);
4456
4457 return 0;
4458 }
4459
btree_fs_info(void * private_data)4460 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4461 {
4462 struct inode *inode = private_data;
4463 return btrfs_sb(inode->i_sb);
4464 }
4465
4466 static const struct extent_io_ops btree_extent_io_ops = {
4467 /* mandatory callbacks */
4468 .submit_bio_hook = btree_submit_bio_hook,
4469 .readpage_end_io_hook = btree_readpage_end_io_hook,
4470 /* note we're sharing with inode.c for the merge bio hook */
4471 .merge_bio_hook = btrfs_merge_bio_hook,
4472 .readpage_io_failed_hook = btree_io_failed_hook,
4473 .set_range_writeback = btrfs_set_range_writeback,
4474 .tree_fs_info = btree_fs_info,
4475
4476 /* optional callbacks */
4477 };
4478