1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include <linux/sched/mm.h>
22 #include "ctree.h"
23 #include "volumes.h"
24 #include "disk-io.h"
25 #include "ordered-data.h"
26 #include "transaction.h"
27 #include "backref.h"
28 #include "extent_io.h"
29 #include "dev-replace.h"
30 #include "check-integrity.h"
31 #include "rcu-string.h"
32 #include "raid56.h"
33
34 /*
35 * This is only the first step towards a full-features scrub. It reads all
36 * extent and super block and verifies the checksums. In case a bad checksum
37 * is found or the extent cannot be read, good data will be written back if
38 * any can be found.
39 *
40 * Future enhancements:
41 * - In case an unrepairable extent is encountered, track which files are
42 * affected and report them
43 * - track and record media errors, throw out bad devices
44 * - add a mode to also read unallocated space
45 */
46
47 struct scrub_block;
48 struct scrub_ctx;
49
50 /*
51 * the following three values only influence the performance.
52 * The last one configures the number of parallel and outstanding I/O
53 * operations. The first two values configure an upper limit for the number
54 * of (dynamically allocated) pages that are added to a bio.
55 */
56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
59
60 /*
61 * the following value times PAGE_SIZE needs to be large enough to match the
62 * largest node/leaf/sector size that shall be supported.
63 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 */
65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66
67 struct scrub_recover {
68 refcount_t refs;
69 struct btrfs_bio *bbio;
70 u64 map_length;
71 };
72
73 struct scrub_page {
74 struct scrub_block *sblock;
75 struct page *page;
76 struct btrfs_device *dev;
77 struct list_head list;
78 u64 flags; /* extent flags */
79 u64 generation;
80 u64 logical;
81 u64 physical;
82 u64 physical_for_dev_replace;
83 atomic_t refs;
84 struct {
85 unsigned int mirror_num:8;
86 unsigned int have_csum:1;
87 unsigned int io_error:1;
88 };
89 u8 csum[BTRFS_CSUM_SIZE];
90
91 struct scrub_recover *recover;
92 };
93
94 struct scrub_bio {
95 int index;
96 struct scrub_ctx *sctx;
97 struct btrfs_device *dev;
98 struct bio *bio;
99 blk_status_t status;
100 u64 logical;
101 u64 physical;
102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
104 #else
105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
106 #endif
107 int page_count;
108 int next_free;
109 struct btrfs_work work;
110 };
111
112 struct scrub_block {
113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 int page_count;
115 atomic_t outstanding_pages;
116 refcount_t refs; /* free mem on transition to zero */
117 struct scrub_ctx *sctx;
118 struct scrub_parity *sparity;
119 struct {
120 unsigned int header_error:1;
121 unsigned int checksum_error:1;
122 unsigned int no_io_error_seen:1;
123 unsigned int generation_error:1; /* also sets header_error */
124
125 /* The following is for the data used to check parity */
126 /* It is for the data with checksum */
127 unsigned int data_corrected:1;
128 };
129 struct btrfs_work work;
130 };
131
132 /* Used for the chunks with parity stripe such RAID5/6 */
133 struct scrub_parity {
134 struct scrub_ctx *sctx;
135
136 struct btrfs_device *scrub_dev;
137
138 u64 logic_start;
139
140 u64 logic_end;
141
142 int nsectors;
143
144 u64 stripe_len;
145
146 refcount_t refs;
147
148 struct list_head spages;
149
150 /* Work of parity check and repair */
151 struct btrfs_work work;
152
153 /* Mark the parity blocks which have data */
154 unsigned long *dbitmap;
155
156 /*
157 * Mark the parity blocks which have data, but errors happen when
158 * read data or check data
159 */
160 unsigned long *ebitmap;
161
162 unsigned long bitmap[0];
163 };
164
165 struct scrub_ctx {
166 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
167 struct btrfs_fs_info *fs_info;
168 int first_free;
169 int curr;
170 atomic_t bios_in_flight;
171 atomic_t workers_pending;
172 spinlock_t list_lock;
173 wait_queue_head_t list_wait;
174 u16 csum_size;
175 struct list_head csum_list;
176 atomic_t cancel_req;
177 int readonly;
178 int pages_per_rd_bio;
179
180 int is_dev_replace;
181
182 struct scrub_bio *wr_curr_bio;
183 struct mutex wr_lock;
184 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
185 struct btrfs_device *wr_tgtdev;
186 bool flush_all_writes;
187
188 /*
189 * statistics
190 */
191 struct btrfs_scrub_progress stat;
192 spinlock_t stat_lock;
193
194 /*
195 * Use a ref counter to avoid use-after-free issues. Scrub workers
196 * decrement bios_in_flight and workers_pending and then do a wakeup
197 * on the list_wait wait queue. We must ensure the main scrub task
198 * doesn't free the scrub context before or while the workers are
199 * doing the wakeup() call.
200 */
201 refcount_t refs;
202 };
203
204 struct scrub_fixup_nodatasum {
205 struct scrub_ctx *sctx;
206 struct btrfs_device *dev;
207 u64 logical;
208 struct btrfs_root *root;
209 struct btrfs_work work;
210 int mirror_num;
211 };
212
213 struct scrub_nocow_inode {
214 u64 inum;
215 u64 offset;
216 u64 root;
217 struct list_head list;
218 };
219
220 struct scrub_copy_nocow_ctx {
221 struct scrub_ctx *sctx;
222 u64 logical;
223 u64 len;
224 int mirror_num;
225 u64 physical_for_dev_replace;
226 struct list_head inodes;
227 struct btrfs_work work;
228 };
229
230 struct scrub_warning {
231 struct btrfs_path *path;
232 u64 extent_item_size;
233 const char *errstr;
234 sector_t sector;
235 u64 logical;
236 struct btrfs_device *dev;
237 };
238
239 struct full_stripe_lock {
240 struct rb_node node;
241 u64 logical;
242 u64 refs;
243 struct mutex mutex;
244 };
245
246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252 struct scrub_block *sblocks_for_recheck);
253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 struct scrub_block *sblock,
255 int retry_failed_mirror);
256 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258 struct scrub_block *sblock_good);
259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
260 struct scrub_block *sblock_good,
261 int page_num, int force_write);
262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
264 int page_num);
265 static int scrub_checksum_data(struct scrub_block *sblock);
266 static int scrub_checksum_tree_block(struct scrub_block *sblock);
267 static int scrub_checksum_super(struct scrub_block *sblock);
268 static void scrub_block_get(struct scrub_block *sblock);
269 static void scrub_block_put(struct scrub_block *sblock);
270 static void scrub_page_get(struct scrub_page *spage);
271 static void scrub_page_put(struct scrub_page *spage);
272 static void scrub_parity_get(struct scrub_parity *sparity);
273 static void scrub_parity_put(struct scrub_parity *sparity);
274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
275 struct scrub_page *spage);
276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277 u64 physical, struct btrfs_device *dev, u64 flags,
278 u64 gen, int mirror_num, u8 *csum, int force,
279 u64 physical_for_dev_replace);
280 static void scrub_bio_end_io(struct bio *bio);
281 static void scrub_bio_end_io_worker(struct btrfs_work *work);
282 static void scrub_block_complete(struct scrub_block *sblock);
283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
284 u64 extent_logical, u64 extent_len,
285 u64 *extent_physical,
286 struct btrfs_device **extent_dev,
287 int *extent_mirror_num);
288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
289 struct scrub_page *spage);
290 static void scrub_wr_submit(struct scrub_ctx *sctx);
291 static void scrub_wr_bio_end_io(struct bio *bio);
292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
293 static int write_page_nocow(struct scrub_ctx *sctx,
294 u64 physical_for_dev_replace, struct page *page);
295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296 struct scrub_copy_nocow_ctx *ctx);
297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
298 int mirror_num, u64 physical_for_dev_replace);
299 static void copy_nocow_pages_worker(struct btrfs_work *work);
300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302 static void scrub_put_ctx(struct scrub_ctx *sctx);
303
scrub_is_page_on_raid56(struct scrub_page * page)304 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
305 {
306 return page->recover &&
307 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
308 }
309
scrub_pending_bio_inc(struct scrub_ctx * sctx)310 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
311 {
312 refcount_inc(&sctx->refs);
313 atomic_inc(&sctx->bios_in_flight);
314 }
315
scrub_pending_bio_dec(struct scrub_ctx * sctx)316 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
317 {
318 atomic_dec(&sctx->bios_in_flight);
319 wake_up(&sctx->list_wait);
320 scrub_put_ctx(sctx);
321 }
322
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)323 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
324 {
325 while (atomic_read(&fs_info->scrub_pause_req)) {
326 mutex_unlock(&fs_info->scrub_lock);
327 wait_event(fs_info->scrub_pause_wait,
328 atomic_read(&fs_info->scrub_pause_req) == 0);
329 mutex_lock(&fs_info->scrub_lock);
330 }
331 }
332
scrub_pause_on(struct btrfs_fs_info * fs_info)333 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
334 {
335 atomic_inc(&fs_info->scrubs_paused);
336 wake_up(&fs_info->scrub_pause_wait);
337 }
338
scrub_pause_off(struct btrfs_fs_info * fs_info)339 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
340 {
341 mutex_lock(&fs_info->scrub_lock);
342 __scrub_blocked_if_needed(fs_info);
343 atomic_dec(&fs_info->scrubs_paused);
344 mutex_unlock(&fs_info->scrub_lock);
345
346 wake_up(&fs_info->scrub_pause_wait);
347 }
348
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)349 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
350 {
351 scrub_pause_on(fs_info);
352 scrub_pause_off(fs_info);
353 }
354
355 /*
356 * Insert new full stripe lock into full stripe locks tree
357 *
358 * Return pointer to existing or newly inserted full_stripe_lock structure if
359 * everything works well.
360 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
361 *
362 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
363 * function
364 */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)365 static struct full_stripe_lock *insert_full_stripe_lock(
366 struct btrfs_full_stripe_locks_tree *locks_root,
367 u64 fstripe_logical)
368 {
369 struct rb_node **p;
370 struct rb_node *parent = NULL;
371 struct full_stripe_lock *entry;
372 struct full_stripe_lock *ret;
373
374 WARN_ON(!mutex_is_locked(&locks_root->lock));
375
376 p = &locks_root->root.rb_node;
377 while (*p) {
378 parent = *p;
379 entry = rb_entry(parent, struct full_stripe_lock, node);
380 if (fstripe_logical < entry->logical) {
381 p = &(*p)->rb_left;
382 } else if (fstripe_logical > entry->logical) {
383 p = &(*p)->rb_right;
384 } else {
385 entry->refs++;
386 return entry;
387 }
388 }
389
390 /* Insert new lock */
391 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
392 if (!ret)
393 return ERR_PTR(-ENOMEM);
394 ret->logical = fstripe_logical;
395 ret->refs = 1;
396 mutex_init(&ret->mutex);
397
398 rb_link_node(&ret->node, parent, p);
399 rb_insert_color(&ret->node, &locks_root->root);
400 return ret;
401 }
402
403 /*
404 * Search for a full stripe lock of a block group
405 *
406 * Return pointer to existing full stripe lock if found
407 * Return NULL if not found
408 */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)409 static struct full_stripe_lock *search_full_stripe_lock(
410 struct btrfs_full_stripe_locks_tree *locks_root,
411 u64 fstripe_logical)
412 {
413 struct rb_node *node;
414 struct full_stripe_lock *entry;
415
416 WARN_ON(!mutex_is_locked(&locks_root->lock));
417
418 node = locks_root->root.rb_node;
419 while (node) {
420 entry = rb_entry(node, struct full_stripe_lock, node);
421 if (fstripe_logical < entry->logical)
422 node = node->rb_left;
423 else if (fstripe_logical > entry->logical)
424 node = node->rb_right;
425 else
426 return entry;
427 }
428 return NULL;
429 }
430
431 /*
432 * Helper to get full stripe logical from a normal bytenr.
433 *
434 * Caller must ensure @cache is a RAID56 block group.
435 */
get_full_stripe_logical(struct btrfs_block_group_cache * cache,u64 bytenr)436 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
437 u64 bytenr)
438 {
439 u64 ret;
440
441 /*
442 * Due to chunk item size limit, full stripe length should not be
443 * larger than U32_MAX. Just a sanity check here.
444 */
445 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
446
447 /*
448 * round_down() can only handle power of 2, while RAID56 full
449 * stripe length can be 64KiB * n, so we need to manually round down.
450 */
451 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
452 cache->full_stripe_len + cache->key.objectid;
453 return ret;
454 }
455
456 /*
457 * Lock a full stripe to avoid concurrency of recovery and read
458 *
459 * It's only used for profiles with parities (RAID5/6), for other profiles it
460 * does nothing.
461 *
462 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
463 * So caller must call unlock_full_stripe() at the same context.
464 *
465 * Return <0 if encounters error.
466 */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)467 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
468 bool *locked_ret)
469 {
470 struct btrfs_block_group_cache *bg_cache;
471 struct btrfs_full_stripe_locks_tree *locks_root;
472 struct full_stripe_lock *existing;
473 u64 fstripe_start;
474 int ret = 0;
475
476 *locked_ret = false;
477 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
478 if (!bg_cache) {
479 ASSERT(0);
480 return -ENOENT;
481 }
482
483 /* Profiles not based on parity don't need full stripe lock */
484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
485 goto out;
486 locks_root = &bg_cache->full_stripe_locks_root;
487
488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
489
490 /* Now insert the full stripe lock */
491 mutex_lock(&locks_root->lock);
492 existing = insert_full_stripe_lock(locks_root, fstripe_start);
493 mutex_unlock(&locks_root->lock);
494 if (IS_ERR(existing)) {
495 ret = PTR_ERR(existing);
496 goto out;
497 }
498 mutex_lock(&existing->mutex);
499 *locked_ret = true;
500 out:
501 btrfs_put_block_group(bg_cache);
502 return ret;
503 }
504
505 /*
506 * Unlock a full stripe.
507 *
508 * NOTE: Caller must ensure it's the same context calling corresponding
509 * lock_full_stripe().
510 *
511 * Return 0 if we unlock full stripe without problem.
512 * Return <0 for error
513 */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)514 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
515 bool locked)
516 {
517 struct btrfs_block_group_cache *bg_cache;
518 struct btrfs_full_stripe_locks_tree *locks_root;
519 struct full_stripe_lock *fstripe_lock;
520 u64 fstripe_start;
521 bool freeit = false;
522 int ret = 0;
523
524 /* If we didn't acquire full stripe lock, no need to continue */
525 if (!locked)
526 return 0;
527
528 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
529 if (!bg_cache) {
530 ASSERT(0);
531 return -ENOENT;
532 }
533 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
534 goto out;
535
536 locks_root = &bg_cache->full_stripe_locks_root;
537 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
538
539 mutex_lock(&locks_root->lock);
540 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
541 /* Unpaired unlock_full_stripe() detected */
542 if (!fstripe_lock) {
543 WARN_ON(1);
544 ret = -ENOENT;
545 mutex_unlock(&locks_root->lock);
546 goto out;
547 }
548
549 if (fstripe_lock->refs == 0) {
550 WARN_ON(1);
551 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
552 fstripe_lock->logical);
553 } else {
554 fstripe_lock->refs--;
555 }
556
557 if (fstripe_lock->refs == 0) {
558 rb_erase(&fstripe_lock->node, &locks_root->root);
559 freeit = true;
560 }
561 mutex_unlock(&locks_root->lock);
562
563 mutex_unlock(&fstripe_lock->mutex);
564 if (freeit)
565 kfree(fstripe_lock);
566 out:
567 btrfs_put_block_group(bg_cache);
568 return ret;
569 }
570
571 /*
572 * used for workers that require transaction commits (i.e., for the
573 * NOCOW case)
574 */
scrub_pending_trans_workers_inc(struct scrub_ctx * sctx)575 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
576 {
577 struct btrfs_fs_info *fs_info = sctx->fs_info;
578
579 refcount_inc(&sctx->refs);
580 /*
581 * increment scrubs_running to prevent cancel requests from
582 * completing as long as a worker is running. we must also
583 * increment scrubs_paused to prevent deadlocking on pause
584 * requests used for transactions commits (as the worker uses a
585 * transaction context). it is safe to regard the worker
586 * as paused for all matters practical. effectively, we only
587 * avoid cancellation requests from completing.
588 */
589 mutex_lock(&fs_info->scrub_lock);
590 atomic_inc(&fs_info->scrubs_running);
591 atomic_inc(&fs_info->scrubs_paused);
592 mutex_unlock(&fs_info->scrub_lock);
593
594 /*
595 * check if @scrubs_running=@scrubs_paused condition
596 * inside wait_event() is not an atomic operation.
597 * which means we may inc/dec @scrub_running/paused
598 * at any time. Let's wake up @scrub_pause_wait as
599 * much as we can to let commit transaction blocked less.
600 */
601 wake_up(&fs_info->scrub_pause_wait);
602
603 atomic_inc(&sctx->workers_pending);
604 }
605
606 /* used for workers that require transaction commits */
scrub_pending_trans_workers_dec(struct scrub_ctx * sctx)607 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
608 {
609 struct btrfs_fs_info *fs_info = sctx->fs_info;
610
611 /*
612 * see scrub_pending_trans_workers_inc() why we're pretending
613 * to be paused in the scrub counters
614 */
615 mutex_lock(&fs_info->scrub_lock);
616 atomic_dec(&fs_info->scrubs_running);
617 atomic_dec(&fs_info->scrubs_paused);
618 mutex_unlock(&fs_info->scrub_lock);
619 atomic_dec(&sctx->workers_pending);
620 wake_up(&fs_info->scrub_pause_wait);
621 wake_up(&sctx->list_wait);
622 scrub_put_ctx(sctx);
623 }
624
scrub_free_csums(struct scrub_ctx * sctx)625 static void scrub_free_csums(struct scrub_ctx *sctx)
626 {
627 while (!list_empty(&sctx->csum_list)) {
628 struct btrfs_ordered_sum *sum;
629 sum = list_first_entry(&sctx->csum_list,
630 struct btrfs_ordered_sum, list);
631 list_del(&sum->list);
632 kfree(sum);
633 }
634 }
635
scrub_free_ctx(struct scrub_ctx * sctx)636 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
637 {
638 int i;
639
640 if (!sctx)
641 return;
642
643 /* this can happen when scrub is cancelled */
644 if (sctx->curr != -1) {
645 struct scrub_bio *sbio = sctx->bios[sctx->curr];
646
647 for (i = 0; i < sbio->page_count; i++) {
648 WARN_ON(!sbio->pagev[i]->page);
649 scrub_block_put(sbio->pagev[i]->sblock);
650 }
651 bio_put(sbio->bio);
652 }
653
654 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
655 struct scrub_bio *sbio = sctx->bios[i];
656
657 if (!sbio)
658 break;
659 kfree(sbio);
660 }
661
662 kfree(sctx->wr_curr_bio);
663 scrub_free_csums(sctx);
664 kfree(sctx);
665 }
666
scrub_put_ctx(struct scrub_ctx * sctx)667 static void scrub_put_ctx(struct scrub_ctx *sctx)
668 {
669 if (refcount_dec_and_test(&sctx->refs))
670 scrub_free_ctx(sctx);
671 }
672
673 static noinline_for_stack
scrub_setup_ctx(struct btrfs_device * dev,int is_dev_replace)674 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
675 {
676 struct scrub_ctx *sctx;
677 int i;
678 struct btrfs_fs_info *fs_info = dev->fs_info;
679
680 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
681 if (!sctx)
682 goto nomem;
683 refcount_set(&sctx->refs, 1);
684 sctx->is_dev_replace = is_dev_replace;
685 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
686 sctx->curr = -1;
687 sctx->fs_info = dev->fs_info;
688 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
689 struct scrub_bio *sbio;
690
691 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
692 if (!sbio)
693 goto nomem;
694 sctx->bios[i] = sbio;
695
696 sbio->index = i;
697 sbio->sctx = sctx;
698 sbio->page_count = 0;
699 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
700 scrub_bio_end_io_worker, NULL, NULL);
701
702 if (i != SCRUB_BIOS_PER_SCTX - 1)
703 sctx->bios[i]->next_free = i + 1;
704 else
705 sctx->bios[i]->next_free = -1;
706 }
707 sctx->first_free = 0;
708 atomic_set(&sctx->bios_in_flight, 0);
709 atomic_set(&sctx->workers_pending, 0);
710 atomic_set(&sctx->cancel_req, 0);
711 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
712 INIT_LIST_HEAD(&sctx->csum_list);
713
714 spin_lock_init(&sctx->list_lock);
715 spin_lock_init(&sctx->stat_lock);
716 init_waitqueue_head(&sctx->list_wait);
717
718 WARN_ON(sctx->wr_curr_bio != NULL);
719 mutex_init(&sctx->wr_lock);
720 sctx->wr_curr_bio = NULL;
721 if (is_dev_replace) {
722 WARN_ON(!fs_info->dev_replace.tgtdev);
723 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
724 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
725 sctx->flush_all_writes = false;
726 }
727
728 return sctx;
729
730 nomem:
731 scrub_free_ctx(sctx);
732 return ERR_PTR(-ENOMEM);
733 }
734
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)735 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
736 void *warn_ctx)
737 {
738 u64 isize;
739 u32 nlink;
740 int ret;
741 int i;
742 unsigned nofs_flag;
743 struct extent_buffer *eb;
744 struct btrfs_inode_item *inode_item;
745 struct scrub_warning *swarn = warn_ctx;
746 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
747 struct inode_fs_paths *ipath = NULL;
748 struct btrfs_root *local_root;
749 struct btrfs_key root_key;
750 struct btrfs_key key;
751
752 root_key.objectid = root;
753 root_key.type = BTRFS_ROOT_ITEM_KEY;
754 root_key.offset = (u64)-1;
755 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
756 if (IS_ERR(local_root)) {
757 ret = PTR_ERR(local_root);
758 goto err;
759 }
760
761 /*
762 * this makes the path point to (inum INODE_ITEM ioff)
763 */
764 key.objectid = inum;
765 key.type = BTRFS_INODE_ITEM_KEY;
766 key.offset = 0;
767
768 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
769 if (ret) {
770 btrfs_release_path(swarn->path);
771 goto err;
772 }
773
774 eb = swarn->path->nodes[0];
775 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
776 struct btrfs_inode_item);
777 isize = btrfs_inode_size(eb, inode_item);
778 nlink = btrfs_inode_nlink(eb, inode_item);
779 btrfs_release_path(swarn->path);
780
781 /*
782 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
783 * uses GFP_NOFS in this context, so we keep it consistent but it does
784 * not seem to be strictly necessary.
785 */
786 nofs_flag = memalloc_nofs_save();
787 ipath = init_ipath(4096, local_root, swarn->path);
788 memalloc_nofs_restore(nofs_flag);
789 if (IS_ERR(ipath)) {
790 ret = PTR_ERR(ipath);
791 ipath = NULL;
792 goto err;
793 }
794 ret = paths_from_inode(inum, ipath);
795
796 if (ret < 0)
797 goto err;
798
799 /*
800 * we deliberately ignore the bit ipath might have been too small to
801 * hold all of the paths here
802 */
803 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
804 btrfs_warn_in_rcu(fs_info,
805 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
806 swarn->errstr, swarn->logical,
807 rcu_str_deref(swarn->dev->name),
808 (unsigned long long)swarn->sector,
809 root, inum, offset,
810 min(isize - offset, (u64)PAGE_SIZE), nlink,
811 (char *)(unsigned long)ipath->fspath->val[i]);
812
813 free_ipath(ipath);
814 return 0;
815
816 err:
817 btrfs_warn_in_rcu(fs_info,
818 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
819 swarn->errstr, swarn->logical,
820 rcu_str_deref(swarn->dev->name),
821 (unsigned long long)swarn->sector,
822 root, inum, offset, ret);
823
824 free_ipath(ipath);
825 return 0;
826 }
827
scrub_print_warning(const char * errstr,struct scrub_block * sblock)828 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
829 {
830 struct btrfs_device *dev;
831 struct btrfs_fs_info *fs_info;
832 struct btrfs_path *path;
833 struct btrfs_key found_key;
834 struct extent_buffer *eb;
835 struct btrfs_extent_item *ei;
836 struct scrub_warning swarn;
837 unsigned long ptr = 0;
838 u64 extent_item_pos;
839 u64 flags = 0;
840 u64 ref_root;
841 u32 item_size;
842 u8 ref_level = 0;
843 int ret;
844
845 WARN_ON(sblock->page_count < 1);
846 dev = sblock->pagev[0]->dev;
847 fs_info = sblock->sctx->fs_info;
848
849 path = btrfs_alloc_path();
850 if (!path)
851 return;
852
853 swarn.sector = (sblock->pagev[0]->physical) >> 9;
854 swarn.logical = sblock->pagev[0]->logical;
855 swarn.errstr = errstr;
856 swarn.dev = NULL;
857
858 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
859 &flags);
860 if (ret < 0)
861 goto out;
862
863 extent_item_pos = swarn.logical - found_key.objectid;
864 swarn.extent_item_size = found_key.offset;
865
866 eb = path->nodes[0];
867 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
868 item_size = btrfs_item_size_nr(eb, path->slots[0]);
869
870 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
871 do {
872 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
873 item_size, &ref_root,
874 &ref_level);
875 btrfs_warn_in_rcu(fs_info,
876 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
877 errstr, swarn.logical,
878 rcu_str_deref(dev->name),
879 (unsigned long long)swarn.sector,
880 ref_level ? "node" : "leaf",
881 ret < 0 ? -1 : ref_level,
882 ret < 0 ? -1 : ref_root);
883 } while (ret != 1);
884 btrfs_release_path(path);
885 } else {
886 btrfs_release_path(path);
887 swarn.path = path;
888 swarn.dev = dev;
889 iterate_extent_inodes(fs_info, found_key.objectid,
890 extent_item_pos, 1,
891 scrub_print_warning_inode, &swarn);
892 }
893
894 out:
895 btrfs_free_path(path);
896 }
897
scrub_fixup_readpage(u64 inum,u64 offset,u64 root,void * fixup_ctx)898 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
899 {
900 struct page *page = NULL;
901 unsigned long index;
902 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
903 int ret;
904 int corrected = 0;
905 struct btrfs_key key;
906 struct inode *inode = NULL;
907 struct btrfs_fs_info *fs_info;
908 u64 end = offset + PAGE_SIZE - 1;
909 struct btrfs_root *local_root;
910 int srcu_index;
911
912 key.objectid = root;
913 key.type = BTRFS_ROOT_ITEM_KEY;
914 key.offset = (u64)-1;
915
916 fs_info = fixup->root->fs_info;
917 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
918
919 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
920 if (IS_ERR(local_root)) {
921 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
922 return PTR_ERR(local_root);
923 }
924
925 key.type = BTRFS_INODE_ITEM_KEY;
926 key.objectid = inum;
927 key.offset = 0;
928 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
929 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
930 if (IS_ERR(inode))
931 return PTR_ERR(inode);
932
933 index = offset >> PAGE_SHIFT;
934
935 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
936 if (!page) {
937 ret = -ENOMEM;
938 goto out;
939 }
940
941 if (PageUptodate(page)) {
942 if (PageDirty(page)) {
943 /*
944 * we need to write the data to the defect sector. the
945 * data that was in that sector is not in memory,
946 * because the page was modified. we must not write the
947 * modified page to that sector.
948 *
949 * TODO: what could be done here: wait for the delalloc
950 * runner to write out that page (might involve
951 * COW) and see whether the sector is still
952 * referenced afterwards.
953 *
954 * For the meantime, we'll treat this error
955 * incorrectable, although there is a chance that a
956 * later scrub will find the bad sector again and that
957 * there's no dirty page in memory, then.
958 */
959 ret = -EIO;
960 goto out;
961 }
962 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
963 fixup->logical, page,
964 offset - page_offset(page),
965 fixup->mirror_num);
966 unlock_page(page);
967 corrected = !ret;
968 } else {
969 /*
970 * we need to get good data first. the general readpage path
971 * will call repair_io_failure for us, we just have to make
972 * sure we read the bad mirror.
973 */
974 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
975 EXTENT_DAMAGED);
976 if (ret) {
977 /* set_extent_bits should give proper error */
978 WARN_ON(ret > 0);
979 if (ret > 0)
980 ret = -EFAULT;
981 goto out;
982 }
983
984 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
985 btrfs_get_extent,
986 fixup->mirror_num);
987 wait_on_page_locked(page);
988
989 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
990 end, EXTENT_DAMAGED, 0, NULL);
991 if (!corrected)
992 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
993 EXTENT_DAMAGED);
994 }
995
996 out:
997 if (page)
998 put_page(page);
999
1000 iput(inode);
1001
1002 if (ret < 0)
1003 return ret;
1004
1005 if (ret == 0 && corrected) {
1006 /*
1007 * we only need to call readpage for one of the inodes belonging
1008 * to this extent. so make iterate_extent_inodes stop
1009 */
1010 return 1;
1011 }
1012
1013 return -EIO;
1014 }
1015
scrub_fixup_nodatasum(struct btrfs_work * work)1016 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1017 {
1018 struct btrfs_fs_info *fs_info;
1019 int ret;
1020 struct scrub_fixup_nodatasum *fixup;
1021 struct scrub_ctx *sctx;
1022 struct btrfs_trans_handle *trans = NULL;
1023 struct btrfs_path *path;
1024 int uncorrectable = 0;
1025
1026 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1027 sctx = fixup->sctx;
1028 fs_info = fixup->root->fs_info;
1029
1030 path = btrfs_alloc_path();
1031 if (!path) {
1032 spin_lock(&sctx->stat_lock);
1033 ++sctx->stat.malloc_errors;
1034 spin_unlock(&sctx->stat_lock);
1035 uncorrectable = 1;
1036 goto out;
1037 }
1038
1039 trans = btrfs_join_transaction(fixup->root);
1040 if (IS_ERR(trans)) {
1041 uncorrectable = 1;
1042 goto out;
1043 }
1044
1045 /*
1046 * the idea is to trigger a regular read through the standard path. we
1047 * read a page from the (failed) logical address by specifying the
1048 * corresponding copynum of the failed sector. thus, that readpage is
1049 * expected to fail.
1050 * that is the point where on-the-fly error correction will kick in
1051 * (once it's finished) and rewrite the failed sector if a good copy
1052 * can be found.
1053 */
1054 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1055 scrub_fixup_readpage, fixup);
1056 if (ret < 0) {
1057 uncorrectable = 1;
1058 goto out;
1059 }
1060 WARN_ON(ret != 1);
1061
1062 spin_lock(&sctx->stat_lock);
1063 ++sctx->stat.corrected_errors;
1064 spin_unlock(&sctx->stat_lock);
1065
1066 out:
1067 if (trans && !IS_ERR(trans))
1068 btrfs_end_transaction(trans);
1069 if (uncorrectable) {
1070 spin_lock(&sctx->stat_lock);
1071 ++sctx->stat.uncorrectable_errors;
1072 spin_unlock(&sctx->stat_lock);
1073 btrfs_dev_replace_stats_inc(
1074 &fs_info->dev_replace.num_uncorrectable_read_errors);
1075 btrfs_err_rl_in_rcu(fs_info,
1076 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1077 fixup->logical, rcu_str_deref(fixup->dev->name));
1078 }
1079
1080 btrfs_free_path(path);
1081 kfree(fixup);
1082
1083 scrub_pending_trans_workers_dec(sctx);
1084 }
1085
scrub_get_recover(struct scrub_recover * recover)1086 static inline void scrub_get_recover(struct scrub_recover *recover)
1087 {
1088 refcount_inc(&recover->refs);
1089 }
1090
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)1091 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1092 struct scrub_recover *recover)
1093 {
1094 if (refcount_dec_and_test(&recover->refs)) {
1095 btrfs_bio_counter_dec(fs_info);
1096 btrfs_put_bbio(recover->bbio);
1097 kfree(recover);
1098 }
1099 }
1100
1101 /*
1102 * scrub_handle_errored_block gets called when either verification of the
1103 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1104 * case, this function handles all pages in the bio, even though only one
1105 * may be bad.
1106 * The goal of this function is to repair the errored block by using the
1107 * contents of one of the mirrors.
1108 */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)1109 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1110 {
1111 struct scrub_ctx *sctx = sblock_to_check->sctx;
1112 struct btrfs_device *dev;
1113 struct btrfs_fs_info *fs_info;
1114 u64 length;
1115 u64 logical;
1116 unsigned int failed_mirror_index;
1117 unsigned int is_metadata;
1118 unsigned int have_csum;
1119 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1120 struct scrub_block *sblock_bad;
1121 int ret;
1122 int mirror_index;
1123 int page_num;
1124 int success;
1125 bool full_stripe_locked;
1126 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1127 DEFAULT_RATELIMIT_BURST);
1128
1129 BUG_ON(sblock_to_check->page_count < 1);
1130 fs_info = sctx->fs_info;
1131 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1132 /*
1133 * if we find an error in a super block, we just report it.
1134 * They will get written with the next transaction commit
1135 * anyway
1136 */
1137 spin_lock(&sctx->stat_lock);
1138 ++sctx->stat.super_errors;
1139 spin_unlock(&sctx->stat_lock);
1140 return 0;
1141 }
1142 length = sblock_to_check->page_count * PAGE_SIZE;
1143 logical = sblock_to_check->pagev[0]->logical;
1144 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1145 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1146 is_metadata = !(sblock_to_check->pagev[0]->flags &
1147 BTRFS_EXTENT_FLAG_DATA);
1148 have_csum = sblock_to_check->pagev[0]->have_csum;
1149 dev = sblock_to_check->pagev[0]->dev;
1150
1151 /*
1152 * For RAID5/6, race can happen for a different device scrub thread.
1153 * For data corruption, Parity and Data threads will both try
1154 * to recovery the data.
1155 * Race can lead to doubly added csum error, or even unrecoverable
1156 * error.
1157 */
1158 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1159 if (ret < 0) {
1160 spin_lock(&sctx->stat_lock);
1161 if (ret == -ENOMEM)
1162 sctx->stat.malloc_errors++;
1163 sctx->stat.read_errors++;
1164 sctx->stat.uncorrectable_errors++;
1165 spin_unlock(&sctx->stat_lock);
1166 return ret;
1167 }
1168
1169 /*
1170 * read all mirrors one after the other. This includes to
1171 * re-read the extent or metadata block that failed (that was
1172 * the cause that this fixup code is called) another time,
1173 * page by page this time in order to know which pages
1174 * caused I/O errors and which ones are good (for all mirrors).
1175 * It is the goal to handle the situation when more than one
1176 * mirror contains I/O errors, but the errors do not
1177 * overlap, i.e. the data can be repaired by selecting the
1178 * pages from those mirrors without I/O error on the
1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1180 * would be that mirror #1 has an I/O error on the first page,
1181 * the second page is good, and mirror #2 has an I/O error on
1182 * the second page, but the first page is good.
1183 * Then the first page of the first mirror can be repaired by
1184 * taking the first page of the second mirror, and the
1185 * second page of the second mirror can be repaired by
1186 * copying the contents of the 2nd page of the 1st mirror.
1187 * One more note: if the pages of one mirror contain I/O
1188 * errors, the checksum cannot be verified. In order to get
1189 * the best data for repairing, the first attempt is to find
1190 * a mirror without I/O errors and with a validated checksum.
1191 * Only if this is not possible, the pages are picked from
1192 * mirrors with I/O errors without considering the checksum.
1193 * If the latter is the case, at the end, the checksum of the
1194 * repaired area is verified in order to correctly maintain
1195 * the statistics.
1196 */
1197
1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1199 sizeof(*sblocks_for_recheck), GFP_NOFS);
1200 if (!sblocks_for_recheck) {
1201 spin_lock(&sctx->stat_lock);
1202 sctx->stat.malloc_errors++;
1203 sctx->stat.read_errors++;
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1207 goto out;
1208 }
1209
1210 /* setup the context, map the logical blocks and alloc the pages */
1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1212 if (ret) {
1213 spin_lock(&sctx->stat_lock);
1214 sctx->stat.read_errors++;
1215 sctx->stat.uncorrectable_errors++;
1216 spin_unlock(&sctx->stat_lock);
1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1218 goto out;
1219 }
1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1221 sblock_bad = sblocks_for_recheck + failed_mirror_index;
1222
1223 /* build and submit the bios for the failed mirror, check checksums */
1224 scrub_recheck_block(fs_info, sblock_bad, 1);
1225
1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1227 sblock_bad->no_io_error_seen) {
1228 /*
1229 * the error disappeared after reading page by page, or
1230 * the area was part of a huge bio and other parts of the
1231 * bio caused I/O errors, or the block layer merged several
1232 * read requests into one and the error is caused by a
1233 * different bio (usually one of the two latter cases is
1234 * the cause)
1235 */
1236 spin_lock(&sctx->stat_lock);
1237 sctx->stat.unverified_errors++;
1238 sblock_to_check->data_corrected = 1;
1239 spin_unlock(&sctx->stat_lock);
1240
1241 if (sctx->is_dev_replace)
1242 scrub_write_block_to_dev_replace(sblock_bad);
1243 goto out;
1244 }
1245
1246 if (!sblock_bad->no_io_error_seen) {
1247 spin_lock(&sctx->stat_lock);
1248 sctx->stat.read_errors++;
1249 spin_unlock(&sctx->stat_lock);
1250 if (__ratelimit(&_rs))
1251 scrub_print_warning("i/o error", sblock_to_check);
1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1253 } else if (sblock_bad->checksum_error) {
1254 spin_lock(&sctx->stat_lock);
1255 sctx->stat.csum_errors++;
1256 spin_unlock(&sctx->stat_lock);
1257 if (__ratelimit(&_rs))
1258 scrub_print_warning("checksum error", sblock_to_check);
1259 btrfs_dev_stat_inc_and_print(dev,
1260 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1261 } else if (sblock_bad->header_error) {
1262 spin_lock(&sctx->stat_lock);
1263 sctx->stat.verify_errors++;
1264 spin_unlock(&sctx->stat_lock);
1265 if (__ratelimit(&_rs))
1266 scrub_print_warning("checksum/header error",
1267 sblock_to_check);
1268 if (sblock_bad->generation_error)
1269 btrfs_dev_stat_inc_and_print(dev,
1270 BTRFS_DEV_STAT_GENERATION_ERRS);
1271 else
1272 btrfs_dev_stat_inc_and_print(dev,
1273 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1274 }
1275
1276 if (sctx->readonly) {
1277 ASSERT(!sctx->is_dev_replace);
1278 goto out;
1279 }
1280
1281 /*
1282 * NOTE: Even for nodatasum case, it's still possible that it's a
1283 * compressed data extent, thus scrub_fixup_nodatasum(), which write
1284 * inode page cache onto disk, could cause serious data corruption.
1285 *
1286 * So here we could only read from disk, and hope our recovery could
1287 * reach disk before the newer write.
1288 */
1289 if (0 && !is_metadata && !have_csum) {
1290 struct scrub_fixup_nodatasum *fixup_nodatasum;
1291
1292 WARN_ON(sctx->is_dev_replace);
1293
1294 /*
1295 * !is_metadata and !have_csum, this means that the data
1296 * might not be COWed, that it might be modified
1297 * concurrently. The general strategy to work on the
1298 * commit root does not help in the case when COW is not
1299 * used.
1300 */
1301 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1302 if (!fixup_nodatasum)
1303 goto did_not_correct_error;
1304 fixup_nodatasum->sctx = sctx;
1305 fixup_nodatasum->dev = dev;
1306 fixup_nodatasum->logical = logical;
1307 fixup_nodatasum->root = fs_info->extent_root;
1308 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1309 scrub_pending_trans_workers_inc(sctx);
1310 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1311 scrub_fixup_nodatasum, NULL, NULL);
1312 btrfs_queue_work(fs_info->scrub_workers,
1313 &fixup_nodatasum->work);
1314 goto out;
1315 }
1316
1317 /*
1318 * now build and submit the bios for the other mirrors, check
1319 * checksums.
1320 * First try to pick the mirror which is completely without I/O
1321 * errors and also does not have a checksum error.
1322 * If one is found, and if a checksum is present, the full block
1323 * that is known to contain an error is rewritten. Afterwards
1324 * the block is known to be corrected.
1325 * If a mirror is found which is completely correct, and no
1326 * checksum is present, only those pages are rewritten that had
1327 * an I/O error in the block to be repaired, since it cannot be
1328 * determined, which copy of the other pages is better (and it
1329 * could happen otherwise that a correct page would be
1330 * overwritten by a bad one).
1331 */
1332 for (mirror_index = 0; ;mirror_index++) {
1333 struct scrub_block *sblock_other;
1334
1335 if (mirror_index == failed_mirror_index)
1336 continue;
1337
1338 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1339 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1340 if (mirror_index >= BTRFS_MAX_MIRRORS)
1341 break;
1342 if (!sblocks_for_recheck[mirror_index].page_count)
1343 break;
1344
1345 sblock_other = sblocks_for_recheck + mirror_index;
1346 } else {
1347 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1348 int max_allowed = r->bbio->num_stripes -
1349 r->bbio->num_tgtdevs;
1350
1351 if (mirror_index >= max_allowed)
1352 break;
1353 if (!sblocks_for_recheck[1].page_count)
1354 break;
1355
1356 ASSERT(failed_mirror_index == 0);
1357 sblock_other = sblocks_for_recheck + 1;
1358 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1359 }
1360
1361 /* build and submit the bios, check checksums */
1362 scrub_recheck_block(fs_info, sblock_other, 0);
1363
1364 if (!sblock_other->header_error &&
1365 !sblock_other->checksum_error &&
1366 sblock_other->no_io_error_seen) {
1367 if (sctx->is_dev_replace) {
1368 scrub_write_block_to_dev_replace(sblock_other);
1369 goto corrected_error;
1370 } else {
1371 ret = scrub_repair_block_from_good_copy(
1372 sblock_bad, sblock_other);
1373 if (!ret)
1374 goto corrected_error;
1375 }
1376 }
1377 }
1378
1379 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1380 goto did_not_correct_error;
1381
1382 /*
1383 * In case of I/O errors in the area that is supposed to be
1384 * repaired, continue by picking good copies of those pages.
1385 * Select the good pages from mirrors to rewrite bad pages from
1386 * the area to fix. Afterwards verify the checksum of the block
1387 * that is supposed to be repaired. This verification step is
1388 * only done for the purpose of statistic counting and for the
1389 * final scrub report, whether errors remain.
1390 * A perfect algorithm could make use of the checksum and try
1391 * all possible combinations of pages from the different mirrors
1392 * until the checksum verification succeeds. For example, when
1393 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1394 * of mirror #2 is readable but the final checksum test fails,
1395 * then the 2nd page of mirror #3 could be tried, whether now
1396 * the final checksum succeeds. But this would be a rare
1397 * exception and is therefore not implemented. At least it is
1398 * avoided that the good copy is overwritten.
1399 * A more useful improvement would be to pick the sectors
1400 * without I/O error based on sector sizes (512 bytes on legacy
1401 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1402 * mirror could be repaired by taking 512 byte of a different
1403 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1404 * area are unreadable.
1405 */
1406 success = 1;
1407 for (page_num = 0; page_num < sblock_bad->page_count;
1408 page_num++) {
1409 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1410 struct scrub_block *sblock_other = NULL;
1411
1412 /* skip no-io-error page in scrub */
1413 if (!page_bad->io_error && !sctx->is_dev_replace)
1414 continue;
1415
1416 /* try to find no-io-error page in mirrors */
1417 if (page_bad->io_error) {
1418 for (mirror_index = 0;
1419 mirror_index < BTRFS_MAX_MIRRORS &&
1420 sblocks_for_recheck[mirror_index].page_count > 0;
1421 mirror_index++) {
1422 if (!sblocks_for_recheck[mirror_index].
1423 pagev[page_num]->io_error) {
1424 sblock_other = sblocks_for_recheck +
1425 mirror_index;
1426 break;
1427 }
1428 }
1429 if (!sblock_other)
1430 success = 0;
1431 }
1432
1433 if (sctx->is_dev_replace) {
1434 /*
1435 * did not find a mirror to fetch the page
1436 * from. scrub_write_page_to_dev_replace()
1437 * handles this case (page->io_error), by
1438 * filling the block with zeros before
1439 * submitting the write request
1440 */
1441 if (!sblock_other)
1442 sblock_other = sblock_bad;
1443
1444 if (scrub_write_page_to_dev_replace(sblock_other,
1445 page_num) != 0) {
1446 btrfs_dev_replace_stats_inc(
1447 &fs_info->dev_replace.num_write_errors);
1448 success = 0;
1449 }
1450 } else if (sblock_other) {
1451 ret = scrub_repair_page_from_good_copy(sblock_bad,
1452 sblock_other,
1453 page_num, 0);
1454 if (0 == ret)
1455 page_bad->io_error = 0;
1456 else
1457 success = 0;
1458 }
1459 }
1460
1461 if (success && !sctx->is_dev_replace) {
1462 if (is_metadata || have_csum) {
1463 /*
1464 * need to verify the checksum now that all
1465 * sectors on disk are repaired (the write
1466 * request for data to be repaired is on its way).
1467 * Just be lazy and use scrub_recheck_block()
1468 * which re-reads the data before the checksum
1469 * is verified, but most likely the data comes out
1470 * of the page cache.
1471 */
1472 scrub_recheck_block(fs_info, sblock_bad, 1);
1473 if (!sblock_bad->header_error &&
1474 !sblock_bad->checksum_error &&
1475 sblock_bad->no_io_error_seen)
1476 goto corrected_error;
1477 else
1478 goto did_not_correct_error;
1479 } else {
1480 corrected_error:
1481 spin_lock(&sctx->stat_lock);
1482 sctx->stat.corrected_errors++;
1483 sblock_to_check->data_corrected = 1;
1484 spin_unlock(&sctx->stat_lock);
1485 btrfs_err_rl_in_rcu(fs_info,
1486 "fixed up error at logical %llu on dev %s",
1487 logical, rcu_str_deref(dev->name));
1488 }
1489 } else {
1490 did_not_correct_error:
1491 spin_lock(&sctx->stat_lock);
1492 sctx->stat.uncorrectable_errors++;
1493 spin_unlock(&sctx->stat_lock);
1494 btrfs_err_rl_in_rcu(fs_info,
1495 "unable to fixup (regular) error at logical %llu on dev %s",
1496 logical, rcu_str_deref(dev->name));
1497 }
1498
1499 out:
1500 if (sblocks_for_recheck) {
1501 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1502 mirror_index++) {
1503 struct scrub_block *sblock = sblocks_for_recheck +
1504 mirror_index;
1505 struct scrub_recover *recover;
1506 int page_index;
1507
1508 for (page_index = 0; page_index < sblock->page_count;
1509 page_index++) {
1510 sblock->pagev[page_index]->sblock = NULL;
1511 recover = sblock->pagev[page_index]->recover;
1512 if (recover) {
1513 scrub_put_recover(fs_info, recover);
1514 sblock->pagev[page_index]->recover =
1515 NULL;
1516 }
1517 scrub_page_put(sblock->pagev[page_index]);
1518 }
1519 }
1520 kfree(sblocks_for_recheck);
1521 }
1522
1523 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1524 if (ret < 0)
1525 return ret;
1526 return 0;
1527 }
1528
scrub_nr_raid_mirrors(struct btrfs_bio * bbio)1529 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1530 {
1531 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1532 return 2;
1533 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1534 return 3;
1535 else
1536 return (int)bbio->num_stripes;
1537 }
1538
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1539 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1540 u64 *raid_map,
1541 u64 mapped_length,
1542 int nstripes, int mirror,
1543 int *stripe_index,
1544 u64 *stripe_offset)
1545 {
1546 int i;
1547
1548 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1549 /* RAID5/6 */
1550 for (i = 0; i < nstripes; i++) {
1551 if (raid_map[i] == RAID6_Q_STRIPE ||
1552 raid_map[i] == RAID5_P_STRIPE)
1553 continue;
1554
1555 if (logical >= raid_map[i] &&
1556 logical < raid_map[i] + mapped_length)
1557 break;
1558 }
1559
1560 *stripe_index = i;
1561 *stripe_offset = logical - raid_map[i];
1562 } else {
1563 /* The other RAID type */
1564 *stripe_index = mirror;
1565 *stripe_offset = 0;
1566 }
1567 }
1568
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1569 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1570 struct scrub_block *sblocks_for_recheck)
1571 {
1572 struct scrub_ctx *sctx = original_sblock->sctx;
1573 struct btrfs_fs_info *fs_info = sctx->fs_info;
1574 u64 length = original_sblock->page_count * PAGE_SIZE;
1575 u64 logical = original_sblock->pagev[0]->logical;
1576 u64 generation = original_sblock->pagev[0]->generation;
1577 u64 flags = original_sblock->pagev[0]->flags;
1578 u64 have_csum = original_sblock->pagev[0]->have_csum;
1579 struct scrub_recover *recover;
1580 struct btrfs_bio *bbio;
1581 u64 sublen;
1582 u64 mapped_length;
1583 u64 stripe_offset;
1584 int stripe_index;
1585 int page_index = 0;
1586 int mirror_index;
1587 int nmirrors;
1588 int ret;
1589
1590 /*
1591 * note: the two members refs and outstanding_pages
1592 * are not used (and not set) in the blocks that are used for
1593 * the recheck procedure
1594 */
1595
1596 while (length > 0) {
1597 sublen = min_t(u64, length, PAGE_SIZE);
1598 mapped_length = sublen;
1599 bbio = NULL;
1600
1601 /*
1602 * with a length of PAGE_SIZE, each returned stripe
1603 * represents one mirror
1604 */
1605 btrfs_bio_counter_inc_blocked(fs_info);
1606 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1607 logical, &mapped_length, &bbio);
1608 if (ret || !bbio || mapped_length < sublen) {
1609 btrfs_put_bbio(bbio);
1610 btrfs_bio_counter_dec(fs_info);
1611 return -EIO;
1612 }
1613
1614 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1615 if (!recover) {
1616 btrfs_put_bbio(bbio);
1617 btrfs_bio_counter_dec(fs_info);
1618 return -ENOMEM;
1619 }
1620
1621 refcount_set(&recover->refs, 1);
1622 recover->bbio = bbio;
1623 recover->map_length = mapped_length;
1624
1625 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1626
1627 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1628
1629 for (mirror_index = 0; mirror_index < nmirrors;
1630 mirror_index++) {
1631 struct scrub_block *sblock;
1632 struct scrub_page *page;
1633
1634 sblock = sblocks_for_recheck + mirror_index;
1635 sblock->sctx = sctx;
1636
1637 page = kzalloc(sizeof(*page), GFP_NOFS);
1638 if (!page) {
1639 leave_nomem:
1640 spin_lock(&sctx->stat_lock);
1641 sctx->stat.malloc_errors++;
1642 spin_unlock(&sctx->stat_lock);
1643 scrub_put_recover(fs_info, recover);
1644 return -ENOMEM;
1645 }
1646 scrub_page_get(page);
1647 sblock->pagev[page_index] = page;
1648 page->sblock = sblock;
1649 page->flags = flags;
1650 page->generation = generation;
1651 page->logical = logical;
1652 page->have_csum = have_csum;
1653 if (have_csum)
1654 memcpy(page->csum,
1655 original_sblock->pagev[0]->csum,
1656 sctx->csum_size);
1657
1658 scrub_stripe_index_and_offset(logical,
1659 bbio->map_type,
1660 bbio->raid_map,
1661 mapped_length,
1662 bbio->num_stripes -
1663 bbio->num_tgtdevs,
1664 mirror_index,
1665 &stripe_index,
1666 &stripe_offset);
1667 page->physical = bbio->stripes[stripe_index].physical +
1668 stripe_offset;
1669 page->dev = bbio->stripes[stripe_index].dev;
1670
1671 BUG_ON(page_index >= original_sblock->page_count);
1672 page->physical_for_dev_replace =
1673 original_sblock->pagev[page_index]->
1674 physical_for_dev_replace;
1675 /* for missing devices, dev->bdev is NULL */
1676 page->mirror_num = mirror_index + 1;
1677 sblock->page_count++;
1678 page->page = alloc_page(GFP_NOFS);
1679 if (!page->page)
1680 goto leave_nomem;
1681
1682 scrub_get_recover(recover);
1683 page->recover = recover;
1684 }
1685 scrub_put_recover(fs_info, recover);
1686 length -= sublen;
1687 logical += sublen;
1688 page_index++;
1689 }
1690
1691 return 0;
1692 }
1693
1694 struct scrub_bio_ret {
1695 struct completion event;
1696 blk_status_t status;
1697 };
1698
scrub_bio_wait_endio(struct bio * bio)1699 static void scrub_bio_wait_endio(struct bio *bio)
1700 {
1701 struct scrub_bio_ret *ret = bio->bi_private;
1702
1703 ret->status = bio->bi_status;
1704 complete(&ret->event);
1705 }
1706
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * page)1707 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1708 struct bio *bio,
1709 struct scrub_page *page)
1710 {
1711 struct scrub_bio_ret done;
1712 int ret;
1713 int mirror_num;
1714
1715 init_completion(&done.event);
1716 done.status = 0;
1717 bio->bi_iter.bi_sector = page->logical >> 9;
1718 bio->bi_private = &done;
1719 bio->bi_end_io = scrub_bio_wait_endio;
1720
1721 mirror_num = page->sblock->pagev[0]->mirror_num;
1722 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1723 page->recover->map_length,
1724 mirror_num, 0);
1725 if (ret)
1726 return ret;
1727
1728 wait_for_completion_io(&done.event);
1729 if (done.status)
1730 return -EIO;
1731
1732 return 0;
1733 }
1734
1735 /*
1736 * this function will check the on disk data for checksum errors, header
1737 * errors and read I/O errors. If any I/O errors happen, the exact pages
1738 * which are errored are marked as being bad. The goal is to enable scrub
1739 * to take those pages that are not errored from all the mirrors so that
1740 * the pages that are errored in the just handled mirror can be repaired.
1741 */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1742 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1743 struct scrub_block *sblock,
1744 int retry_failed_mirror)
1745 {
1746 int page_num;
1747
1748 sblock->no_io_error_seen = 1;
1749
1750 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1751 struct bio *bio;
1752 struct scrub_page *page = sblock->pagev[page_num];
1753
1754 if (page->dev->bdev == NULL) {
1755 page->io_error = 1;
1756 sblock->no_io_error_seen = 0;
1757 continue;
1758 }
1759
1760 WARN_ON(!page->page);
1761 bio = btrfs_io_bio_alloc(1);
1762 bio_set_dev(bio, page->dev->bdev);
1763
1764 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1765 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1766 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1767 page->io_error = 1;
1768 sblock->no_io_error_seen = 0;
1769 }
1770 } else {
1771 bio->bi_iter.bi_sector = page->physical >> 9;
1772 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1773
1774 if (btrfsic_submit_bio_wait(bio)) {
1775 page->io_error = 1;
1776 sblock->no_io_error_seen = 0;
1777 }
1778 }
1779
1780 bio_put(bio);
1781 }
1782
1783 if (sblock->no_io_error_seen)
1784 scrub_recheck_block_checksum(sblock);
1785 }
1786
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1787 static inline int scrub_check_fsid(u8 fsid[],
1788 struct scrub_page *spage)
1789 {
1790 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1791 int ret;
1792
1793 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1794 return !ret;
1795 }
1796
scrub_recheck_block_checksum(struct scrub_block * sblock)1797 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1798 {
1799 sblock->header_error = 0;
1800 sblock->checksum_error = 0;
1801 sblock->generation_error = 0;
1802
1803 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1804 scrub_checksum_data(sblock);
1805 else
1806 scrub_checksum_tree_block(sblock);
1807 }
1808
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1809 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1810 struct scrub_block *sblock_good)
1811 {
1812 int page_num;
1813 int ret = 0;
1814
1815 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1816 int ret_sub;
1817
1818 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1819 sblock_good,
1820 page_num, 1);
1821 if (ret_sub)
1822 ret = ret_sub;
1823 }
1824
1825 return ret;
1826 }
1827
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1828 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1829 struct scrub_block *sblock_good,
1830 int page_num, int force_write)
1831 {
1832 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1833 struct scrub_page *page_good = sblock_good->pagev[page_num];
1834 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1835
1836 BUG_ON(page_bad->page == NULL);
1837 BUG_ON(page_good->page == NULL);
1838 if (force_write || sblock_bad->header_error ||
1839 sblock_bad->checksum_error || page_bad->io_error) {
1840 struct bio *bio;
1841 int ret;
1842
1843 if (!page_bad->dev->bdev) {
1844 btrfs_warn_rl(fs_info,
1845 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1846 return -EIO;
1847 }
1848
1849 bio = btrfs_io_bio_alloc(1);
1850 bio_set_dev(bio, page_bad->dev->bdev);
1851 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1852 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1853
1854 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1855 if (PAGE_SIZE != ret) {
1856 bio_put(bio);
1857 return -EIO;
1858 }
1859
1860 if (btrfsic_submit_bio_wait(bio)) {
1861 btrfs_dev_stat_inc_and_print(page_bad->dev,
1862 BTRFS_DEV_STAT_WRITE_ERRS);
1863 btrfs_dev_replace_stats_inc(
1864 &fs_info->dev_replace.num_write_errors);
1865 bio_put(bio);
1866 return -EIO;
1867 }
1868 bio_put(bio);
1869 }
1870
1871 return 0;
1872 }
1873
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1874 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1875 {
1876 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1877 int page_num;
1878
1879 /*
1880 * This block is used for the check of the parity on the source device,
1881 * so the data needn't be written into the destination device.
1882 */
1883 if (sblock->sparity)
1884 return;
1885
1886 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1887 int ret;
1888
1889 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1890 if (ret)
1891 btrfs_dev_replace_stats_inc(
1892 &fs_info->dev_replace.num_write_errors);
1893 }
1894 }
1895
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1896 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1897 int page_num)
1898 {
1899 struct scrub_page *spage = sblock->pagev[page_num];
1900
1901 BUG_ON(spage->page == NULL);
1902 if (spage->io_error) {
1903 void *mapped_buffer = kmap_atomic(spage->page);
1904
1905 clear_page(mapped_buffer);
1906 flush_dcache_page(spage->page);
1907 kunmap_atomic(mapped_buffer);
1908 }
1909 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1910 }
1911
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1912 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1913 struct scrub_page *spage)
1914 {
1915 struct scrub_bio *sbio;
1916 int ret;
1917
1918 mutex_lock(&sctx->wr_lock);
1919 again:
1920 if (!sctx->wr_curr_bio) {
1921 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1922 GFP_KERNEL);
1923 if (!sctx->wr_curr_bio) {
1924 mutex_unlock(&sctx->wr_lock);
1925 return -ENOMEM;
1926 }
1927 sctx->wr_curr_bio->sctx = sctx;
1928 sctx->wr_curr_bio->page_count = 0;
1929 }
1930 sbio = sctx->wr_curr_bio;
1931 if (sbio->page_count == 0) {
1932 struct bio *bio;
1933
1934 sbio->physical = spage->physical_for_dev_replace;
1935 sbio->logical = spage->logical;
1936 sbio->dev = sctx->wr_tgtdev;
1937 bio = sbio->bio;
1938 if (!bio) {
1939 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1940 sbio->bio = bio;
1941 }
1942
1943 bio->bi_private = sbio;
1944 bio->bi_end_io = scrub_wr_bio_end_io;
1945 bio_set_dev(bio, sbio->dev->bdev);
1946 bio->bi_iter.bi_sector = sbio->physical >> 9;
1947 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1948 sbio->status = 0;
1949 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1950 spage->physical_for_dev_replace ||
1951 sbio->logical + sbio->page_count * PAGE_SIZE !=
1952 spage->logical) {
1953 scrub_wr_submit(sctx);
1954 goto again;
1955 }
1956
1957 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1958 if (ret != PAGE_SIZE) {
1959 if (sbio->page_count < 1) {
1960 bio_put(sbio->bio);
1961 sbio->bio = NULL;
1962 mutex_unlock(&sctx->wr_lock);
1963 return -EIO;
1964 }
1965 scrub_wr_submit(sctx);
1966 goto again;
1967 }
1968
1969 sbio->pagev[sbio->page_count] = spage;
1970 scrub_page_get(spage);
1971 sbio->page_count++;
1972 if (sbio->page_count == sctx->pages_per_wr_bio)
1973 scrub_wr_submit(sctx);
1974 mutex_unlock(&sctx->wr_lock);
1975
1976 return 0;
1977 }
1978
scrub_wr_submit(struct scrub_ctx * sctx)1979 static void scrub_wr_submit(struct scrub_ctx *sctx)
1980 {
1981 struct scrub_bio *sbio;
1982
1983 if (!sctx->wr_curr_bio)
1984 return;
1985
1986 sbio = sctx->wr_curr_bio;
1987 sctx->wr_curr_bio = NULL;
1988 WARN_ON(!sbio->bio->bi_disk);
1989 scrub_pending_bio_inc(sctx);
1990 /* process all writes in a single worker thread. Then the block layer
1991 * orders the requests before sending them to the driver which
1992 * doubled the write performance on spinning disks when measured
1993 * with Linux 3.5 */
1994 btrfsic_submit_bio(sbio->bio);
1995 }
1996
scrub_wr_bio_end_io(struct bio * bio)1997 static void scrub_wr_bio_end_io(struct bio *bio)
1998 {
1999 struct scrub_bio *sbio = bio->bi_private;
2000 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2001
2002 sbio->status = bio->bi_status;
2003 sbio->bio = bio;
2004
2005 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2006 scrub_wr_bio_end_io_worker, NULL, NULL);
2007 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2008 }
2009
scrub_wr_bio_end_io_worker(struct btrfs_work * work)2010 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2011 {
2012 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2013 struct scrub_ctx *sctx = sbio->sctx;
2014 int i;
2015
2016 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2017 if (sbio->status) {
2018 struct btrfs_dev_replace *dev_replace =
2019 &sbio->sctx->fs_info->dev_replace;
2020
2021 for (i = 0; i < sbio->page_count; i++) {
2022 struct scrub_page *spage = sbio->pagev[i];
2023
2024 spage->io_error = 1;
2025 btrfs_dev_replace_stats_inc(&dev_replace->
2026 num_write_errors);
2027 }
2028 }
2029
2030 for (i = 0; i < sbio->page_count; i++)
2031 scrub_page_put(sbio->pagev[i]);
2032
2033 bio_put(sbio->bio);
2034 kfree(sbio);
2035 scrub_pending_bio_dec(sctx);
2036 }
2037
scrub_checksum(struct scrub_block * sblock)2038 static int scrub_checksum(struct scrub_block *sblock)
2039 {
2040 u64 flags;
2041 int ret;
2042
2043 /*
2044 * No need to initialize these stats currently,
2045 * because this function only use return value
2046 * instead of these stats value.
2047 *
2048 * Todo:
2049 * always use stats
2050 */
2051 sblock->header_error = 0;
2052 sblock->generation_error = 0;
2053 sblock->checksum_error = 0;
2054
2055 WARN_ON(sblock->page_count < 1);
2056 flags = sblock->pagev[0]->flags;
2057 ret = 0;
2058 if (flags & BTRFS_EXTENT_FLAG_DATA)
2059 ret = scrub_checksum_data(sblock);
2060 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2061 ret = scrub_checksum_tree_block(sblock);
2062 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2063 (void)scrub_checksum_super(sblock);
2064 else
2065 WARN_ON(1);
2066 if (ret)
2067 scrub_handle_errored_block(sblock);
2068
2069 return ret;
2070 }
2071
scrub_checksum_data(struct scrub_block * sblock)2072 static int scrub_checksum_data(struct scrub_block *sblock)
2073 {
2074 struct scrub_ctx *sctx = sblock->sctx;
2075 u8 csum[BTRFS_CSUM_SIZE];
2076 u8 *on_disk_csum;
2077 struct page *page;
2078 void *buffer;
2079 u32 crc = ~(u32)0;
2080 u64 len;
2081 int index;
2082
2083 BUG_ON(sblock->page_count < 1);
2084 if (!sblock->pagev[0]->have_csum)
2085 return 0;
2086
2087 on_disk_csum = sblock->pagev[0]->csum;
2088 page = sblock->pagev[0]->page;
2089 buffer = kmap_atomic(page);
2090
2091 len = sctx->fs_info->sectorsize;
2092 index = 0;
2093 for (;;) {
2094 u64 l = min_t(u64, len, PAGE_SIZE);
2095
2096 crc = btrfs_csum_data(buffer, crc, l);
2097 kunmap_atomic(buffer);
2098 len -= l;
2099 if (len == 0)
2100 break;
2101 index++;
2102 BUG_ON(index >= sblock->page_count);
2103 BUG_ON(!sblock->pagev[index]->page);
2104 page = sblock->pagev[index]->page;
2105 buffer = kmap_atomic(page);
2106 }
2107
2108 btrfs_csum_final(crc, csum);
2109 if (memcmp(csum, on_disk_csum, sctx->csum_size))
2110 sblock->checksum_error = 1;
2111
2112 return sblock->checksum_error;
2113 }
2114
scrub_checksum_tree_block(struct scrub_block * sblock)2115 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2116 {
2117 struct scrub_ctx *sctx = sblock->sctx;
2118 struct btrfs_header *h;
2119 struct btrfs_fs_info *fs_info = sctx->fs_info;
2120 u8 calculated_csum[BTRFS_CSUM_SIZE];
2121 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2122 struct page *page;
2123 void *mapped_buffer;
2124 u64 mapped_size;
2125 void *p;
2126 u32 crc = ~(u32)0;
2127 u64 len;
2128 int index;
2129
2130 BUG_ON(sblock->page_count < 1);
2131 page = sblock->pagev[0]->page;
2132 mapped_buffer = kmap_atomic(page);
2133 h = (struct btrfs_header *)mapped_buffer;
2134 memcpy(on_disk_csum, h->csum, sctx->csum_size);
2135
2136 /*
2137 * we don't use the getter functions here, as we
2138 * a) don't have an extent buffer and
2139 * b) the page is already kmapped
2140 */
2141 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2142 sblock->header_error = 1;
2143
2144 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2145 sblock->header_error = 1;
2146 sblock->generation_error = 1;
2147 }
2148
2149 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2150 sblock->header_error = 1;
2151
2152 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2153 BTRFS_UUID_SIZE))
2154 sblock->header_error = 1;
2155
2156 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2157 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2158 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2159 index = 0;
2160 for (;;) {
2161 u64 l = min_t(u64, len, mapped_size);
2162
2163 crc = btrfs_csum_data(p, crc, l);
2164 kunmap_atomic(mapped_buffer);
2165 len -= l;
2166 if (len == 0)
2167 break;
2168 index++;
2169 BUG_ON(index >= sblock->page_count);
2170 BUG_ON(!sblock->pagev[index]->page);
2171 page = sblock->pagev[index]->page;
2172 mapped_buffer = kmap_atomic(page);
2173 mapped_size = PAGE_SIZE;
2174 p = mapped_buffer;
2175 }
2176
2177 btrfs_csum_final(crc, calculated_csum);
2178 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2179 sblock->checksum_error = 1;
2180
2181 return sblock->header_error || sblock->checksum_error;
2182 }
2183
scrub_checksum_super(struct scrub_block * sblock)2184 static int scrub_checksum_super(struct scrub_block *sblock)
2185 {
2186 struct btrfs_super_block *s;
2187 struct scrub_ctx *sctx = sblock->sctx;
2188 u8 calculated_csum[BTRFS_CSUM_SIZE];
2189 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2190 struct page *page;
2191 void *mapped_buffer;
2192 u64 mapped_size;
2193 void *p;
2194 u32 crc = ~(u32)0;
2195 int fail_gen = 0;
2196 int fail_cor = 0;
2197 u64 len;
2198 int index;
2199
2200 BUG_ON(sblock->page_count < 1);
2201 page = sblock->pagev[0]->page;
2202 mapped_buffer = kmap_atomic(page);
2203 s = (struct btrfs_super_block *)mapped_buffer;
2204 memcpy(on_disk_csum, s->csum, sctx->csum_size);
2205
2206 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2207 ++fail_cor;
2208
2209 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2210 ++fail_gen;
2211
2212 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2213 ++fail_cor;
2214
2215 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2216 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2217 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2218 index = 0;
2219 for (;;) {
2220 u64 l = min_t(u64, len, mapped_size);
2221
2222 crc = btrfs_csum_data(p, crc, l);
2223 kunmap_atomic(mapped_buffer);
2224 len -= l;
2225 if (len == 0)
2226 break;
2227 index++;
2228 BUG_ON(index >= sblock->page_count);
2229 BUG_ON(!sblock->pagev[index]->page);
2230 page = sblock->pagev[index]->page;
2231 mapped_buffer = kmap_atomic(page);
2232 mapped_size = PAGE_SIZE;
2233 p = mapped_buffer;
2234 }
2235
2236 btrfs_csum_final(crc, calculated_csum);
2237 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2238 ++fail_cor;
2239
2240 if (fail_cor + fail_gen) {
2241 /*
2242 * if we find an error in a super block, we just report it.
2243 * They will get written with the next transaction commit
2244 * anyway
2245 */
2246 spin_lock(&sctx->stat_lock);
2247 ++sctx->stat.super_errors;
2248 spin_unlock(&sctx->stat_lock);
2249 if (fail_cor)
2250 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2251 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2252 else
2253 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2254 BTRFS_DEV_STAT_GENERATION_ERRS);
2255 }
2256
2257 return fail_cor + fail_gen;
2258 }
2259
scrub_block_get(struct scrub_block * sblock)2260 static void scrub_block_get(struct scrub_block *sblock)
2261 {
2262 refcount_inc(&sblock->refs);
2263 }
2264
scrub_block_put(struct scrub_block * sblock)2265 static void scrub_block_put(struct scrub_block *sblock)
2266 {
2267 if (refcount_dec_and_test(&sblock->refs)) {
2268 int i;
2269
2270 if (sblock->sparity)
2271 scrub_parity_put(sblock->sparity);
2272
2273 for (i = 0; i < sblock->page_count; i++)
2274 scrub_page_put(sblock->pagev[i]);
2275 kfree(sblock);
2276 }
2277 }
2278
scrub_page_get(struct scrub_page * spage)2279 static void scrub_page_get(struct scrub_page *spage)
2280 {
2281 atomic_inc(&spage->refs);
2282 }
2283
scrub_page_put(struct scrub_page * spage)2284 static void scrub_page_put(struct scrub_page *spage)
2285 {
2286 if (atomic_dec_and_test(&spage->refs)) {
2287 if (spage->page)
2288 __free_page(spage->page);
2289 kfree(spage);
2290 }
2291 }
2292
scrub_submit(struct scrub_ctx * sctx)2293 static void scrub_submit(struct scrub_ctx *sctx)
2294 {
2295 struct scrub_bio *sbio;
2296
2297 if (sctx->curr == -1)
2298 return;
2299
2300 sbio = sctx->bios[sctx->curr];
2301 sctx->curr = -1;
2302 scrub_pending_bio_inc(sctx);
2303 btrfsic_submit_bio(sbio->bio);
2304 }
2305
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2306 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2307 struct scrub_page *spage)
2308 {
2309 struct scrub_block *sblock = spage->sblock;
2310 struct scrub_bio *sbio;
2311 int ret;
2312
2313 again:
2314 /*
2315 * grab a fresh bio or wait for one to become available
2316 */
2317 while (sctx->curr == -1) {
2318 spin_lock(&sctx->list_lock);
2319 sctx->curr = sctx->first_free;
2320 if (sctx->curr != -1) {
2321 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2322 sctx->bios[sctx->curr]->next_free = -1;
2323 sctx->bios[sctx->curr]->page_count = 0;
2324 spin_unlock(&sctx->list_lock);
2325 } else {
2326 spin_unlock(&sctx->list_lock);
2327 wait_event(sctx->list_wait, sctx->first_free != -1);
2328 }
2329 }
2330 sbio = sctx->bios[sctx->curr];
2331 if (sbio->page_count == 0) {
2332 struct bio *bio;
2333
2334 sbio->physical = spage->physical;
2335 sbio->logical = spage->logical;
2336 sbio->dev = spage->dev;
2337 bio = sbio->bio;
2338 if (!bio) {
2339 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2340 sbio->bio = bio;
2341 }
2342
2343 bio->bi_private = sbio;
2344 bio->bi_end_io = scrub_bio_end_io;
2345 bio_set_dev(bio, sbio->dev->bdev);
2346 bio->bi_iter.bi_sector = sbio->physical >> 9;
2347 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2348 sbio->status = 0;
2349 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2350 spage->physical ||
2351 sbio->logical + sbio->page_count * PAGE_SIZE !=
2352 spage->logical ||
2353 sbio->dev != spage->dev) {
2354 scrub_submit(sctx);
2355 goto again;
2356 }
2357
2358 sbio->pagev[sbio->page_count] = spage;
2359 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2360 if (ret != PAGE_SIZE) {
2361 if (sbio->page_count < 1) {
2362 bio_put(sbio->bio);
2363 sbio->bio = NULL;
2364 return -EIO;
2365 }
2366 scrub_submit(sctx);
2367 goto again;
2368 }
2369
2370 scrub_block_get(sblock); /* one for the page added to the bio */
2371 atomic_inc(&sblock->outstanding_pages);
2372 sbio->page_count++;
2373 if (sbio->page_count == sctx->pages_per_rd_bio)
2374 scrub_submit(sctx);
2375
2376 return 0;
2377 }
2378
scrub_missing_raid56_end_io(struct bio * bio)2379 static void scrub_missing_raid56_end_io(struct bio *bio)
2380 {
2381 struct scrub_block *sblock = bio->bi_private;
2382 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2383
2384 if (bio->bi_status)
2385 sblock->no_io_error_seen = 0;
2386
2387 bio_put(bio);
2388
2389 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2390 }
2391
scrub_missing_raid56_worker(struct btrfs_work * work)2392 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2393 {
2394 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2395 struct scrub_ctx *sctx = sblock->sctx;
2396 struct btrfs_fs_info *fs_info = sctx->fs_info;
2397 u64 logical;
2398 struct btrfs_device *dev;
2399
2400 logical = sblock->pagev[0]->logical;
2401 dev = sblock->pagev[0]->dev;
2402
2403 if (sblock->no_io_error_seen)
2404 scrub_recheck_block_checksum(sblock);
2405
2406 if (!sblock->no_io_error_seen) {
2407 spin_lock(&sctx->stat_lock);
2408 sctx->stat.read_errors++;
2409 spin_unlock(&sctx->stat_lock);
2410 btrfs_err_rl_in_rcu(fs_info,
2411 "IO error rebuilding logical %llu for dev %s",
2412 logical, rcu_str_deref(dev->name));
2413 } else if (sblock->header_error || sblock->checksum_error) {
2414 spin_lock(&sctx->stat_lock);
2415 sctx->stat.uncorrectable_errors++;
2416 spin_unlock(&sctx->stat_lock);
2417 btrfs_err_rl_in_rcu(fs_info,
2418 "failed to rebuild valid logical %llu for dev %s",
2419 logical, rcu_str_deref(dev->name));
2420 } else {
2421 scrub_write_block_to_dev_replace(sblock);
2422 }
2423
2424 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2425 mutex_lock(&sctx->wr_lock);
2426 scrub_wr_submit(sctx);
2427 mutex_unlock(&sctx->wr_lock);
2428 }
2429
2430 scrub_block_put(sblock);
2431 scrub_pending_bio_dec(sctx);
2432 }
2433
scrub_missing_raid56_pages(struct scrub_block * sblock)2434 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2435 {
2436 struct scrub_ctx *sctx = sblock->sctx;
2437 struct btrfs_fs_info *fs_info = sctx->fs_info;
2438 u64 length = sblock->page_count * PAGE_SIZE;
2439 u64 logical = sblock->pagev[0]->logical;
2440 struct btrfs_bio *bbio = NULL;
2441 struct bio *bio;
2442 struct btrfs_raid_bio *rbio;
2443 int ret;
2444 int i;
2445
2446 btrfs_bio_counter_inc_blocked(fs_info);
2447 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2448 &length, &bbio);
2449 if (ret || !bbio || !bbio->raid_map)
2450 goto bbio_out;
2451
2452 if (WARN_ON(!sctx->is_dev_replace ||
2453 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2454 /*
2455 * We shouldn't be scrubbing a missing device. Even for dev
2456 * replace, we should only get here for RAID 5/6. We either
2457 * managed to mount something with no mirrors remaining or
2458 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2459 */
2460 goto bbio_out;
2461 }
2462
2463 bio = btrfs_io_bio_alloc(0);
2464 bio->bi_iter.bi_sector = logical >> 9;
2465 bio->bi_private = sblock;
2466 bio->bi_end_io = scrub_missing_raid56_end_io;
2467
2468 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2469 if (!rbio)
2470 goto rbio_out;
2471
2472 for (i = 0; i < sblock->page_count; i++) {
2473 struct scrub_page *spage = sblock->pagev[i];
2474
2475 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2476 }
2477
2478 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2479 scrub_missing_raid56_worker, NULL, NULL);
2480 scrub_block_get(sblock);
2481 scrub_pending_bio_inc(sctx);
2482 raid56_submit_missing_rbio(rbio);
2483 return;
2484
2485 rbio_out:
2486 bio_put(bio);
2487 bbio_out:
2488 btrfs_bio_counter_dec(fs_info);
2489 btrfs_put_bbio(bbio);
2490 spin_lock(&sctx->stat_lock);
2491 sctx->stat.malloc_errors++;
2492 spin_unlock(&sctx->stat_lock);
2493 }
2494
scrub_pages(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,int force,u64 physical_for_dev_replace)2495 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2496 u64 physical, struct btrfs_device *dev, u64 flags,
2497 u64 gen, int mirror_num, u8 *csum, int force,
2498 u64 physical_for_dev_replace)
2499 {
2500 struct scrub_block *sblock;
2501 int index;
2502
2503 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2504 if (!sblock) {
2505 spin_lock(&sctx->stat_lock);
2506 sctx->stat.malloc_errors++;
2507 spin_unlock(&sctx->stat_lock);
2508 return -ENOMEM;
2509 }
2510
2511 /* one ref inside this function, plus one for each page added to
2512 * a bio later on */
2513 refcount_set(&sblock->refs, 1);
2514 sblock->sctx = sctx;
2515 sblock->no_io_error_seen = 1;
2516
2517 for (index = 0; len > 0; index++) {
2518 struct scrub_page *spage;
2519 u64 l = min_t(u64, len, PAGE_SIZE);
2520
2521 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2522 if (!spage) {
2523 leave_nomem:
2524 spin_lock(&sctx->stat_lock);
2525 sctx->stat.malloc_errors++;
2526 spin_unlock(&sctx->stat_lock);
2527 scrub_block_put(sblock);
2528 return -ENOMEM;
2529 }
2530 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2531 scrub_page_get(spage);
2532 sblock->pagev[index] = spage;
2533 spage->sblock = sblock;
2534 spage->dev = dev;
2535 spage->flags = flags;
2536 spage->generation = gen;
2537 spage->logical = logical;
2538 spage->physical = physical;
2539 spage->physical_for_dev_replace = physical_for_dev_replace;
2540 spage->mirror_num = mirror_num;
2541 if (csum) {
2542 spage->have_csum = 1;
2543 memcpy(spage->csum, csum, sctx->csum_size);
2544 } else {
2545 spage->have_csum = 0;
2546 }
2547 sblock->page_count++;
2548 spage->page = alloc_page(GFP_KERNEL);
2549 if (!spage->page)
2550 goto leave_nomem;
2551 len -= l;
2552 logical += l;
2553 physical += l;
2554 physical_for_dev_replace += l;
2555 }
2556
2557 WARN_ON(sblock->page_count == 0);
2558 if (dev->missing) {
2559 /*
2560 * This case should only be hit for RAID 5/6 device replace. See
2561 * the comment in scrub_missing_raid56_pages() for details.
2562 */
2563 scrub_missing_raid56_pages(sblock);
2564 } else {
2565 for (index = 0; index < sblock->page_count; index++) {
2566 struct scrub_page *spage = sblock->pagev[index];
2567 int ret;
2568
2569 ret = scrub_add_page_to_rd_bio(sctx, spage);
2570 if (ret) {
2571 scrub_block_put(sblock);
2572 return ret;
2573 }
2574 }
2575
2576 if (force)
2577 scrub_submit(sctx);
2578 }
2579
2580 /* last one frees, either here or in bio completion for last page */
2581 scrub_block_put(sblock);
2582 return 0;
2583 }
2584
scrub_bio_end_io(struct bio * bio)2585 static void scrub_bio_end_io(struct bio *bio)
2586 {
2587 struct scrub_bio *sbio = bio->bi_private;
2588 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2589
2590 sbio->status = bio->bi_status;
2591 sbio->bio = bio;
2592
2593 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2594 }
2595
scrub_bio_end_io_worker(struct btrfs_work * work)2596 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2597 {
2598 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2599 struct scrub_ctx *sctx = sbio->sctx;
2600 int i;
2601
2602 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2603 if (sbio->status) {
2604 for (i = 0; i < sbio->page_count; i++) {
2605 struct scrub_page *spage = sbio->pagev[i];
2606
2607 spage->io_error = 1;
2608 spage->sblock->no_io_error_seen = 0;
2609 }
2610 }
2611
2612 /* now complete the scrub_block items that have all pages completed */
2613 for (i = 0; i < sbio->page_count; i++) {
2614 struct scrub_page *spage = sbio->pagev[i];
2615 struct scrub_block *sblock = spage->sblock;
2616
2617 if (atomic_dec_and_test(&sblock->outstanding_pages))
2618 scrub_block_complete(sblock);
2619 scrub_block_put(sblock);
2620 }
2621
2622 bio_put(sbio->bio);
2623 sbio->bio = NULL;
2624 spin_lock(&sctx->list_lock);
2625 sbio->next_free = sctx->first_free;
2626 sctx->first_free = sbio->index;
2627 spin_unlock(&sctx->list_lock);
2628
2629 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2630 mutex_lock(&sctx->wr_lock);
2631 scrub_wr_submit(sctx);
2632 mutex_unlock(&sctx->wr_lock);
2633 }
2634
2635 scrub_pending_bio_dec(sctx);
2636 }
2637
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u64 len)2638 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2639 unsigned long *bitmap,
2640 u64 start, u64 len)
2641 {
2642 u64 offset;
2643 u64 nsectors64;
2644 u32 nsectors;
2645 int sectorsize = sparity->sctx->fs_info->sectorsize;
2646
2647 if (len >= sparity->stripe_len) {
2648 bitmap_set(bitmap, 0, sparity->nsectors);
2649 return;
2650 }
2651
2652 start -= sparity->logic_start;
2653 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2654 offset = div_u64(offset, sectorsize);
2655 nsectors64 = div_u64(len, sectorsize);
2656
2657 ASSERT(nsectors64 < UINT_MAX);
2658 nsectors = (u32)nsectors64;
2659
2660 if (offset + nsectors <= sparity->nsectors) {
2661 bitmap_set(bitmap, offset, nsectors);
2662 return;
2663 }
2664
2665 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2666 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2667 }
2668
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u64 len)2669 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2670 u64 start, u64 len)
2671 {
2672 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2673 }
2674
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u64 len)2675 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2676 u64 start, u64 len)
2677 {
2678 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2679 }
2680
scrub_block_complete(struct scrub_block * sblock)2681 static void scrub_block_complete(struct scrub_block *sblock)
2682 {
2683 int corrupted = 0;
2684
2685 if (!sblock->no_io_error_seen) {
2686 corrupted = 1;
2687 scrub_handle_errored_block(sblock);
2688 } else {
2689 /*
2690 * if has checksum error, write via repair mechanism in
2691 * dev replace case, otherwise write here in dev replace
2692 * case.
2693 */
2694 corrupted = scrub_checksum(sblock);
2695 if (!corrupted && sblock->sctx->is_dev_replace)
2696 scrub_write_block_to_dev_replace(sblock);
2697 }
2698
2699 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2700 u64 start = sblock->pagev[0]->logical;
2701 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2702 PAGE_SIZE;
2703
2704 scrub_parity_mark_sectors_error(sblock->sparity,
2705 start, end - start);
2706 }
2707 }
2708
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2709 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2710 {
2711 struct btrfs_ordered_sum *sum = NULL;
2712 unsigned long index;
2713 unsigned long num_sectors;
2714
2715 while (!list_empty(&sctx->csum_list)) {
2716 sum = list_first_entry(&sctx->csum_list,
2717 struct btrfs_ordered_sum, list);
2718 if (sum->bytenr > logical)
2719 return 0;
2720 if (sum->bytenr + sum->len > logical)
2721 break;
2722
2723 ++sctx->stat.csum_discards;
2724 list_del(&sum->list);
2725 kfree(sum);
2726 sum = NULL;
2727 }
2728 if (!sum)
2729 return 0;
2730
2731 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2732 ASSERT(index < UINT_MAX);
2733
2734 num_sectors = sum->len / sctx->fs_info->sectorsize;
2735 memcpy(csum, sum->sums + index, sctx->csum_size);
2736 if (index == num_sectors - 1) {
2737 list_del(&sum->list);
2738 kfree(sum);
2739 }
2740 return 1;
2741 }
2742
2743 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2744 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2745 u64 physical, struct btrfs_device *dev, u64 flags,
2746 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2747 {
2748 int ret;
2749 u8 csum[BTRFS_CSUM_SIZE];
2750 u32 blocksize;
2751
2752 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2753 blocksize = sctx->fs_info->sectorsize;
2754 spin_lock(&sctx->stat_lock);
2755 sctx->stat.data_extents_scrubbed++;
2756 sctx->stat.data_bytes_scrubbed += len;
2757 spin_unlock(&sctx->stat_lock);
2758 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2759 blocksize = sctx->fs_info->nodesize;
2760 spin_lock(&sctx->stat_lock);
2761 sctx->stat.tree_extents_scrubbed++;
2762 sctx->stat.tree_bytes_scrubbed += len;
2763 spin_unlock(&sctx->stat_lock);
2764 } else {
2765 blocksize = sctx->fs_info->sectorsize;
2766 WARN_ON(1);
2767 }
2768
2769 while (len) {
2770 u64 l = min_t(u64, len, blocksize);
2771 int have_csum = 0;
2772
2773 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2774 /* push csums to sbio */
2775 have_csum = scrub_find_csum(sctx, logical, csum);
2776 if (have_csum == 0)
2777 ++sctx->stat.no_csum;
2778 if (0 && sctx->is_dev_replace && !have_csum) {
2779 ret = copy_nocow_pages(sctx, logical, l,
2780 mirror_num,
2781 physical_for_dev_replace);
2782 goto behind_scrub_pages;
2783 }
2784 }
2785 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2786 mirror_num, have_csum ? csum : NULL, 0,
2787 physical_for_dev_replace);
2788 behind_scrub_pages:
2789 if (ret)
2790 return ret;
2791 len -= l;
2792 logical += l;
2793 physical += l;
2794 physical_for_dev_replace += l;
2795 }
2796 return 0;
2797 }
2798
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2799 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2800 u64 logical, u64 len,
2801 u64 physical, struct btrfs_device *dev,
2802 u64 flags, u64 gen, int mirror_num, u8 *csum)
2803 {
2804 struct scrub_ctx *sctx = sparity->sctx;
2805 struct scrub_block *sblock;
2806 int index;
2807
2808 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2809 if (!sblock) {
2810 spin_lock(&sctx->stat_lock);
2811 sctx->stat.malloc_errors++;
2812 spin_unlock(&sctx->stat_lock);
2813 return -ENOMEM;
2814 }
2815
2816 /* one ref inside this function, plus one for each page added to
2817 * a bio later on */
2818 refcount_set(&sblock->refs, 1);
2819 sblock->sctx = sctx;
2820 sblock->no_io_error_seen = 1;
2821 sblock->sparity = sparity;
2822 scrub_parity_get(sparity);
2823
2824 for (index = 0; len > 0; index++) {
2825 struct scrub_page *spage;
2826 u64 l = min_t(u64, len, PAGE_SIZE);
2827
2828 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2829 if (!spage) {
2830 leave_nomem:
2831 spin_lock(&sctx->stat_lock);
2832 sctx->stat.malloc_errors++;
2833 spin_unlock(&sctx->stat_lock);
2834 scrub_block_put(sblock);
2835 return -ENOMEM;
2836 }
2837 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2838 /* For scrub block */
2839 scrub_page_get(spage);
2840 sblock->pagev[index] = spage;
2841 /* For scrub parity */
2842 scrub_page_get(spage);
2843 list_add_tail(&spage->list, &sparity->spages);
2844 spage->sblock = sblock;
2845 spage->dev = dev;
2846 spage->flags = flags;
2847 spage->generation = gen;
2848 spage->logical = logical;
2849 spage->physical = physical;
2850 spage->mirror_num = mirror_num;
2851 if (csum) {
2852 spage->have_csum = 1;
2853 memcpy(spage->csum, csum, sctx->csum_size);
2854 } else {
2855 spage->have_csum = 0;
2856 }
2857 sblock->page_count++;
2858 spage->page = alloc_page(GFP_KERNEL);
2859 if (!spage->page)
2860 goto leave_nomem;
2861 len -= l;
2862 logical += l;
2863 physical += l;
2864 }
2865
2866 WARN_ON(sblock->page_count == 0);
2867 for (index = 0; index < sblock->page_count; index++) {
2868 struct scrub_page *spage = sblock->pagev[index];
2869 int ret;
2870
2871 ret = scrub_add_page_to_rd_bio(sctx, spage);
2872 if (ret) {
2873 scrub_block_put(sblock);
2874 return ret;
2875 }
2876 }
2877
2878 /* last one frees, either here or in bio completion for last page */
2879 scrub_block_put(sblock);
2880 return 0;
2881 }
2882
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2883 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2884 u64 logical, u64 len,
2885 u64 physical, struct btrfs_device *dev,
2886 u64 flags, u64 gen, int mirror_num)
2887 {
2888 struct scrub_ctx *sctx = sparity->sctx;
2889 int ret;
2890 u8 csum[BTRFS_CSUM_SIZE];
2891 u32 blocksize;
2892
2893 if (dev->missing) {
2894 scrub_parity_mark_sectors_error(sparity, logical, len);
2895 return 0;
2896 }
2897
2898 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2899 blocksize = sctx->fs_info->sectorsize;
2900 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2901 blocksize = sctx->fs_info->nodesize;
2902 } else {
2903 blocksize = sctx->fs_info->sectorsize;
2904 WARN_ON(1);
2905 }
2906
2907 while (len) {
2908 u64 l = min_t(u64, len, blocksize);
2909 int have_csum = 0;
2910
2911 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2912 /* push csums to sbio */
2913 have_csum = scrub_find_csum(sctx, logical, csum);
2914 if (have_csum == 0)
2915 goto skip;
2916 }
2917 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2918 flags, gen, mirror_num,
2919 have_csum ? csum : NULL);
2920 if (ret)
2921 return ret;
2922 skip:
2923 len -= l;
2924 logical += l;
2925 physical += l;
2926 }
2927 return 0;
2928 }
2929
2930 /*
2931 * Given a physical address, this will calculate it's
2932 * logical offset. if this is a parity stripe, it will return
2933 * the most left data stripe's logical offset.
2934 *
2935 * return 0 if it is a data stripe, 1 means parity stripe.
2936 */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2937 static int get_raid56_logic_offset(u64 physical, int num,
2938 struct map_lookup *map, u64 *offset,
2939 u64 *stripe_start)
2940 {
2941 int i;
2942 int j = 0;
2943 u64 stripe_nr;
2944 u64 last_offset;
2945 u32 stripe_index;
2946 u32 rot;
2947
2948 last_offset = (physical - map->stripes[num].physical) *
2949 nr_data_stripes(map);
2950 if (stripe_start)
2951 *stripe_start = last_offset;
2952
2953 *offset = last_offset;
2954 for (i = 0; i < nr_data_stripes(map); i++) {
2955 *offset = last_offset + i * map->stripe_len;
2956
2957 stripe_nr = div64_u64(*offset, map->stripe_len);
2958 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2959
2960 /* Work out the disk rotation on this stripe-set */
2961 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2962 /* calculate which stripe this data locates */
2963 rot += i;
2964 stripe_index = rot % map->num_stripes;
2965 if (stripe_index == num)
2966 return 0;
2967 if (stripe_index < num)
2968 j++;
2969 }
2970 *offset = last_offset + j * map->stripe_len;
2971 return 1;
2972 }
2973
scrub_free_parity(struct scrub_parity * sparity)2974 static void scrub_free_parity(struct scrub_parity *sparity)
2975 {
2976 struct scrub_ctx *sctx = sparity->sctx;
2977 struct scrub_page *curr, *next;
2978 int nbits;
2979
2980 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2981 if (nbits) {
2982 spin_lock(&sctx->stat_lock);
2983 sctx->stat.read_errors += nbits;
2984 sctx->stat.uncorrectable_errors += nbits;
2985 spin_unlock(&sctx->stat_lock);
2986 }
2987
2988 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2989 list_del_init(&curr->list);
2990 scrub_page_put(curr);
2991 }
2992
2993 kfree(sparity);
2994 }
2995
scrub_parity_bio_endio_worker(struct btrfs_work * work)2996 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2997 {
2998 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2999 work);
3000 struct scrub_ctx *sctx = sparity->sctx;
3001
3002 scrub_free_parity(sparity);
3003 scrub_pending_bio_dec(sctx);
3004 }
3005
scrub_parity_bio_endio(struct bio * bio)3006 static void scrub_parity_bio_endio(struct bio *bio)
3007 {
3008 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3009 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3010
3011 if (bio->bi_status)
3012 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3013 sparity->nsectors);
3014
3015 bio_put(bio);
3016
3017 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3018 scrub_parity_bio_endio_worker, NULL, NULL);
3019 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3020 }
3021
scrub_parity_check_and_repair(struct scrub_parity * sparity)3022 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3023 {
3024 struct scrub_ctx *sctx = sparity->sctx;
3025 struct btrfs_fs_info *fs_info = sctx->fs_info;
3026 struct bio *bio;
3027 struct btrfs_raid_bio *rbio;
3028 struct btrfs_bio *bbio = NULL;
3029 u64 length;
3030 int ret;
3031
3032 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3033 sparity->nsectors))
3034 goto out;
3035
3036 length = sparity->logic_end - sparity->logic_start;
3037
3038 btrfs_bio_counter_inc_blocked(fs_info);
3039 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3040 &length, &bbio);
3041 if (ret || !bbio || !bbio->raid_map)
3042 goto bbio_out;
3043
3044 bio = btrfs_io_bio_alloc(0);
3045 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3046 bio->bi_private = sparity;
3047 bio->bi_end_io = scrub_parity_bio_endio;
3048
3049 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3050 length, sparity->scrub_dev,
3051 sparity->dbitmap,
3052 sparity->nsectors);
3053 if (!rbio)
3054 goto rbio_out;
3055
3056 scrub_pending_bio_inc(sctx);
3057 raid56_parity_submit_scrub_rbio(rbio);
3058 return;
3059
3060 rbio_out:
3061 bio_put(bio);
3062 bbio_out:
3063 btrfs_bio_counter_dec(fs_info);
3064 btrfs_put_bbio(bbio);
3065 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3066 sparity->nsectors);
3067 spin_lock(&sctx->stat_lock);
3068 sctx->stat.malloc_errors++;
3069 spin_unlock(&sctx->stat_lock);
3070 out:
3071 scrub_free_parity(sparity);
3072 }
3073
scrub_calc_parity_bitmap_len(int nsectors)3074 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3075 {
3076 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3077 }
3078
scrub_parity_get(struct scrub_parity * sparity)3079 static void scrub_parity_get(struct scrub_parity *sparity)
3080 {
3081 refcount_inc(&sparity->refs);
3082 }
3083
scrub_parity_put(struct scrub_parity * sparity)3084 static void scrub_parity_put(struct scrub_parity *sparity)
3085 {
3086 if (!refcount_dec_and_test(&sparity->refs))
3087 return;
3088
3089 scrub_parity_check_and_repair(sparity);
3090 }
3091
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)3092 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3093 struct map_lookup *map,
3094 struct btrfs_device *sdev,
3095 struct btrfs_path *path,
3096 u64 logic_start,
3097 u64 logic_end)
3098 {
3099 struct btrfs_fs_info *fs_info = sctx->fs_info;
3100 struct btrfs_root *root = fs_info->extent_root;
3101 struct btrfs_root *csum_root = fs_info->csum_root;
3102 struct btrfs_extent_item *extent;
3103 struct btrfs_bio *bbio = NULL;
3104 u64 flags;
3105 int ret;
3106 int slot;
3107 struct extent_buffer *l;
3108 struct btrfs_key key;
3109 u64 generation;
3110 u64 extent_logical;
3111 u64 extent_physical;
3112 u64 extent_len;
3113 u64 mapped_length;
3114 struct btrfs_device *extent_dev;
3115 struct scrub_parity *sparity;
3116 int nsectors;
3117 int bitmap_len;
3118 int extent_mirror_num;
3119 int stop_loop = 0;
3120
3121 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3122 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3123 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3124 GFP_NOFS);
3125 if (!sparity) {
3126 spin_lock(&sctx->stat_lock);
3127 sctx->stat.malloc_errors++;
3128 spin_unlock(&sctx->stat_lock);
3129 return -ENOMEM;
3130 }
3131
3132 sparity->stripe_len = map->stripe_len;
3133 sparity->nsectors = nsectors;
3134 sparity->sctx = sctx;
3135 sparity->scrub_dev = sdev;
3136 sparity->logic_start = logic_start;
3137 sparity->logic_end = logic_end;
3138 refcount_set(&sparity->refs, 1);
3139 INIT_LIST_HEAD(&sparity->spages);
3140 sparity->dbitmap = sparity->bitmap;
3141 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3142
3143 ret = 0;
3144 while (logic_start < logic_end) {
3145 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3146 key.type = BTRFS_METADATA_ITEM_KEY;
3147 else
3148 key.type = BTRFS_EXTENT_ITEM_KEY;
3149 key.objectid = logic_start;
3150 key.offset = (u64)-1;
3151
3152 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3153 if (ret < 0)
3154 goto out;
3155
3156 if (ret > 0) {
3157 ret = btrfs_previous_extent_item(root, path, 0);
3158 if (ret < 0)
3159 goto out;
3160 if (ret > 0) {
3161 btrfs_release_path(path);
3162 ret = btrfs_search_slot(NULL, root, &key,
3163 path, 0, 0);
3164 if (ret < 0)
3165 goto out;
3166 }
3167 }
3168
3169 stop_loop = 0;
3170 while (1) {
3171 u64 bytes;
3172
3173 l = path->nodes[0];
3174 slot = path->slots[0];
3175 if (slot >= btrfs_header_nritems(l)) {
3176 ret = btrfs_next_leaf(root, path);
3177 if (ret == 0)
3178 continue;
3179 if (ret < 0)
3180 goto out;
3181
3182 stop_loop = 1;
3183 break;
3184 }
3185 btrfs_item_key_to_cpu(l, &key, slot);
3186
3187 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3188 key.type != BTRFS_METADATA_ITEM_KEY)
3189 goto next;
3190
3191 if (key.type == BTRFS_METADATA_ITEM_KEY)
3192 bytes = fs_info->nodesize;
3193 else
3194 bytes = key.offset;
3195
3196 if (key.objectid + bytes <= logic_start)
3197 goto next;
3198
3199 if (key.objectid >= logic_end) {
3200 stop_loop = 1;
3201 break;
3202 }
3203
3204 while (key.objectid >= logic_start + map->stripe_len)
3205 logic_start += map->stripe_len;
3206
3207 extent = btrfs_item_ptr(l, slot,
3208 struct btrfs_extent_item);
3209 flags = btrfs_extent_flags(l, extent);
3210 generation = btrfs_extent_generation(l, extent);
3211
3212 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3213 (key.objectid < logic_start ||
3214 key.objectid + bytes >
3215 logic_start + map->stripe_len)) {
3216 btrfs_err(fs_info,
3217 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3218 key.objectid, logic_start);
3219 spin_lock(&sctx->stat_lock);
3220 sctx->stat.uncorrectable_errors++;
3221 spin_unlock(&sctx->stat_lock);
3222 goto next;
3223 }
3224 again:
3225 extent_logical = key.objectid;
3226 extent_len = bytes;
3227
3228 if (extent_logical < logic_start) {
3229 extent_len -= logic_start - extent_logical;
3230 extent_logical = logic_start;
3231 }
3232
3233 if (extent_logical + extent_len >
3234 logic_start + map->stripe_len)
3235 extent_len = logic_start + map->stripe_len -
3236 extent_logical;
3237
3238 scrub_parity_mark_sectors_data(sparity, extent_logical,
3239 extent_len);
3240
3241 mapped_length = extent_len;
3242 bbio = NULL;
3243 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3244 extent_logical, &mapped_length, &bbio,
3245 0);
3246 if (!ret) {
3247 if (!bbio || mapped_length < extent_len)
3248 ret = -EIO;
3249 }
3250 if (ret) {
3251 btrfs_put_bbio(bbio);
3252 goto out;
3253 }
3254 extent_physical = bbio->stripes[0].physical;
3255 extent_mirror_num = bbio->mirror_num;
3256 extent_dev = bbio->stripes[0].dev;
3257 btrfs_put_bbio(bbio);
3258
3259 ret = btrfs_lookup_csums_range(csum_root,
3260 extent_logical,
3261 extent_logical + extent_len - 1,
3262 &sctx->csum_list, 1);
3263 if (ret)
3264 goto out;
3265
3266 ret = scrub_extent_for_parity(sparity, extent_logical,
3267 extent_len,
3268 extent_physical,
3269 extent_dev, flags,
3270 generation,
3271 extent_mirror_num);
3272
3273 scrub_free_csums(sctx);
3274
3275 if (ret)
3276 goto out;
3277
3278 if (extent_logical + extent_len <
3279 key.objectid + bytes) {
3280 logic_start += map->stripe_len;
3281
3282 if (logic_start >= logic_end) {
3283 stop_loop = 1;
3284 break;
3285 }
3286
3287 if (logic_start < key.objectid + bytes) {
3288 cond_resched();
3289 goto again;
3290 }
3291 }
3292 next:
3293 path->slots[0]++;
3294 }
3295
3296 btrfs_release_path(path);
3297
3298 if (stop_loop)
3299 break;
3300
3301 logic_start += map->stripe_len;
3302 }
3303 out:
3304 if (ret < 0)
3305 scrub_parity_mark_sectors_error(sparity, logic_start,
3306 logic_end - logic_start);
3307 scrub_parity_put(sparity);
3308 scrub_submit(sctx);
3309 mutex_lock(&sctx->wr_lock);
3310 scrub_wr_submit(sctx);
3311 mutex_unlock(&sctx->wr_lock);
3312
3313 btrfs_release_path(path);
3314 return ret < 0 ? ret : 0;
3315 }
3316
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length,int is_dev_replace)3317 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3318 struct map_lookup *map,
3319 struct btrfs_device *scrub_dev,
3320 int num, u64 base, u64 length,
3321 int is_dev_replace)
3322 {
3323 struct btrfs_path *path, *ppath;
3324 struct btrfs_fs_info *fs_info = sctx->fs_info;
3325 struct btrfs_root *root = fs_info->extent_root;
3326 struct btrfs_root *csum_root = fs_info->csum_root;
3327 struct btrfs_extent_item *extent;
3328 struct blk_plug plug;
3329 u64 flags;
3330 int ret;
3331 int slot;
3332 u64 nstripes;
3333 struct extent_buffer *l;
3334 u64 physical;
3335 u64 logical;
3336 u64 logic_end;
3337 u64 physical_end;
3338 u64 generation;
3339 int mirror_num;
3340 struct reada_control *reada1;
3341 struct reada_control *reada2;
3342 struct btrfs_key key;
3343 struct btrfs_key key_end;
3344 u64 increment = map->stripe_len;
3345 u64 offset;
3346 u64 extent_logical;
3347 u64 extent_physical;
3348 u64 extent_len;
3349 u64 stripe_logical;
3350 u64 stripe_end;
3351 struct btrfs_device *extent_dev;
3352 int extent_mirror_num;
3353 int stop_loop = 0;
3354
3355 physical = map->stripes[num].physical;
3356 offset = 0;
3357 nstripes = div64_u64(length, map->stripe_len);
3358 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3359 offset = map->stripe_len * num;
3360 increment = map->stripe_len * map->num_stripes;
3361 mirror_num = 1;
3362 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3363 int factor = map->num_stripes / map->sub_stripes;
3364 offset = map->stripe_len * (num / map->sub_stripes);
3365 increment = map->stripe_len * factor;
3366 mirror_num = num % map->sub_stripes + 1;
3367 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3368 increment = map->stripe_len;
3369 mirror_num = num % map->num_stripes + 1;
3370 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3371 increment = map->stripe_len;
3372 mirror_num = num % map->num_stripes + 1;
3373 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3374 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3375 increment = map->stripe_len * nr_data_stripes(map);
3376 mirror_num = 1;
3377 } else {
3378 increment = map->stripe_len;
3379 mirror_num = 1;
3380 }
3381
3382 path = btrfs_alloc_path();
3383 if (!path)
3384 return -ENOMEM;
3385
3386 ppath = btrfs_alloc_path();
3387 if (!ppath) {
3388 btrfs_free_path(path);
3389 return -ENOMEM;
3390 }
3391
3392 /*
3393 * work on commit root. The related disk blocks are static as
3394 * long as COW is applied. This means, it is save to rewrite
3395 * them to repair disk errors without any race conditions
3396 */
3397 path->search_commit_root = 1;
3398 path->skip_locking = 1;
3399
3400 ppath->search_commit_root = 1;
3401 ppath->skip_locking = 1;
3402 /*
3403 * trigger the readahead for extent tree csum tree and wait for
3404 * completion. During readahead, the scrub is officially paused
3405 * to not hold off transaction commits
3406 */
3407 logical = base + offset;
3408 physical_end = physical + nstripes * map->stripe_len;
3409 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3410 get_raid56_logic_offset(physical_end, num,
3411 map, &logic_end, NULL);
3412 logic_end += base;
3413 } else {
3414 logic_end = logical + increment * nstripes;
3415 }
3416 wait_event(sctx->list_wait,
3417 atomic_read(&sctx->bios_in_flight) == 0);
3418 scrub_blocked_if_needed(fs_info);
3419
3420 /* FIXME it might be better to start readahead at commit root */
3421 key.objectid = logical;
3422 key.type = BTRFS_EXTENT_ITEM_KEY;
3423 key.offset = (u64)0;
3424 key_end.objectid = logic_end;
3425 key_end.type = BTRFS_METADATA_ITEM_KEY;
3426 key_end.offset = (u64)-1;
3427 reada1 = btrfs_reada_add(root, &key, &key_end);
3428
3429 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3430 key.type = BTRFS_EXTENT_CSUM_KEY;
3431 key.offset = logical;
3432 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3433 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3434 key_end.offset = logic_end;
3435 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3436
3437 if (!IS_ERR(reada1))
3438 btrfs_reada_wait(reada1);
3439 if (!IS_ERR(reada2))
3440 btrfs_reada_wait(reada2);
3441
3442
3443 /*
3444 * collect all data csums for the stripe to avoid seeking during
3445 * the scrub. This might currently (crc32) end up to be about 1MB
3446 */
3447 blk_start_plug(&plug);
3448
3449 /*
3450 * now find all extents for each stripe and scrub them
3451 */
3452 ret = 0;
3453 while (physical < physical_end) {
3454 /*
3455 * canceled?
3456 */
3457 if (atomic_read(&fs_info->scrub_cancel_req) ||
3458 atomic_read(&sctx->cancel_req)) {
3459 ret = -ECANCELED;
3460 goto out;
3461 }
3462 /*
3463 * check to see if we have to pause
3464 */
3465 if (atomic_read(&fs_info->scrub_pause_req)) {
3466 /* push queued extents */
3467 sctx->flush_all_writes = true;
3468 scrub_submit(sctx);
3469 mutex_lock(&sctx->wr_lock);
3470 scrub_wr_submit(sctx);
3471 mutex_unlock(&sctx->wr_lock);
3472 wait_event(sctx->list_wait,
3473 atomic_read(&sctx->bios_in_flight) == 0);
3474 sctx->flush_all_writes = false;
3475 scrub_blocked_if_needed(fs_info);
3476 }
3477
3478 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3479 ret = get_raid56_logic_offset(physical, num, map,
3480 &logical,
3481 &stripe_logical);
3482 logical += base;
3483 if (ret) {
3484 /* it is parity strip */
3485 stripe_logical += base;
3486 stripe_end = stripe_logical + increment;
3487 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3488 ppath, stripe_logical,
3489 stripe_end);
3490 if (ret)
3491 goto out;
3492 goto skip;
3493 }
3494 }
3495
3496 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3497 key.type = BTRFS_METADATA_ITEM_KEY;
3498 else
3499 key.type = BTRFS_EXTENT_ITEM_KEY;
3500 key.objectid = logical;
3501 key.offset = (u64)-1;
3502
3503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3504 if (ret < 0)
3505 goto out;
3506
3507 if (ret > 0) {
3508 ret = btrfs_previous_extent_item(root, path, 0);
3509 if (ret < 0)
3510 goto out;
3511 if (ret > 0) {
3512 /* there's no smaller item, so stick with the
3513 * larger one */
3514 btrfs_release_path(path);
3515 ret = btrfs_search_slot(NULL, root, &key,
3516 path, 0, 0);
3517 if (ret < 0)
3518 goto out;
3519 }
3520 }
3521
3522 stop_loop = 0;
3523 while (1) {
3524 u64 bytes;
3525
3526 l = path->nodes[0];
3527 slot = path->slots[0];
3528 if (slot >= btrfs_header_nritems(l)) {
3529 ret = btrfs_next_leaf(root, path);
3530 if (ret == 0)
3531 continue;
3532 if (ret < 0)
3533 goto out;
3534
3535 stop_loop = 1;
3536 break;
3537 }
3538 btrfs_item_key_to_cpu(l, &key, slot);
3539
3540 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3541 key.type != BTRFS_METADATA_ITEM_KEY)
3542 goto next;
3543
3544 if (key.type == BTRFS_METADATA_ITEM_KEY)
3545 bytes = fs_info->nodesize;
3546 else
3547 bytes = key.offset;
3548
3549 if (key.objectid + bytes <= logical)
3550 goto next;
3551
3552 if (key.objectid >= logical + map->stripe_len) {
3553 /* out of this device extent */
3554 if (key.objectid >= logic_end)
3555 stop_loop = 1;
3556 break;
3557 }
3558
3559 extent = btrfs_item_ptr(l, slot,
3560 struct btrfs_extent_item);
3561 flags = btrfs_extent_flags(l, extent);
3562 generation = btrfs_extent_generation(l, extent);
3563
3564 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3565 (key.objectid < logical ||
3566 key.objectid + bytes >
3567 logical + map->stripe_len)) {
3568 btrfs_err(fs_info,
3569 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3570 key.objectid, logical);
3571 spin_lock(&sctx->stat_lock);
3572 sctx->stat.uncorrectable_errors++;
3573 spin_unlock(&sctx->stat_lock);
3574 goto next;
3575 }
3576
3577 again:
3578 extent_logical = key.objectid;
3579 extent_len = bytes;
3580
3581 /*
3582 * trim extent to this stripe
3583 */
3584 if (extent_logical < logical) {
3585 extent_len -= logical - extent_logical;
3586 extent_logical = logical;
3587 }
3588 if (extent_logical + extent_len >
3589 logical + map->stripe_len) {
3590 extent_len = logical + map->stripe_len -
3591 extent_logical;
3592 }
3593
3594 extent_physical = extent_logical - logical + physical;
3595 extent_dev = scrub_dev;
3596 extent_mirror_num = mirror_num;
3597 if (is_dev_replace)
3598 scrub_remap_extent(fs_info, extent_logical,
3599 extent_len, &extent_physical,
3600 &extent_dev,
3601 &extent_mirror_num);
3602
3603 ret = btrfs_lookup_csums_range(csum_root,
3604 extent_logical,
3605 extent_logical +
3606 extent_len - 1,
3607 &sctx->csum_list, 1);
3608 if (ret)
3609 goto out;
3610
3611 ret = scrub_extent(sctx, extent_logical, extent_len,
3612 extent_physical, extent_dev, flags,
3613 generation, extent_mirror_num,
3614 extent_logical - logical + physical);
3615
3616 scrub_free_csums(sctx);
3617
3618 if (ret)
3619 goto out;
3620
3621 if (extent_logical + extent_len <
3622 key.objectid + bytes) {
3623 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3624 /*
3625 * loop until we find next data stripe
3626 * or we have finished all stripes.
3627 */
3628 loop:
3629 physical += map->stripe_len;
3630 ret = get_raid56_logic_offset(physical,
3631 num, map, &logical,
3632 &stripe_logical);
3633 logical += base;
3634
3635 if (ret && physical < physical_end) {
3636 stripe_logical += base;
3637 stripe_end = stripe_logical +
3638 increment;
3639 ret = scrub_raid56_parity(sctx,
3640 map, scrub_dev, ppath,
3641 stripe_logical,
3642 stripe_end);
3643 if (ret)
3644 goto out;
3645 goto loop;
3646 }
3647 } else {
3648 physical += map->stripe_len;
3649 logical += increment;
3650 }
3651 if (logical < key.objectid + bytes) {
3652 cond_resched();
3653 goto again;
3654 }
3655
3656 if (physical >= physical_end) {
3657 stop_loop = 1;
3658 break;
3659 }
3660 }
3661 next:
3662 path->slots[0]++;
3663 }
3664 btrfs_release_path(path);
3665 skip:
3666 logical += increment;
3667 physical += map->stripe_len;
3668 spin_lock(&sctx->stat_lock);
3669 if (stop_loop)
3670 sctx->stat.last_physical = map->stripes[num].physical +
3671 length;
3672 else
3673 sctx->stat.last_physical = physical;
3674 spin_unlock(&sctx->stat_lock);
3675 if (stop_loop)
3676 break;
3677 }
3678 out:
3679 /* push queued extents */
3680 scrub_submit(sctx);
3681 mutex_lock(&sctx->wr_lock);
3682 scrub_wr_submit(sctx);
3683 mutex_unlock(&sctx->wr_lock);
3684
3685 blk_finish_plug(&plug);
3686 btrfs_free_path(path);
3687 btrfs_free_path(ppath);
3688 return ret < 0 ? ret : 0;
3689 }
3690
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group_cache * cache,int is_dev_replace)3691 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3692 struct btrfs_device *scrub_dev,
3693 u64 chunk_offset, u64 length,
3694 u64 dev_offset,
3695 struct btrfs_block_group_cache *cache,
3696 int is_dev_replace)
3697 {
3698 struct btrfs_fs_info *fs_info = sctx->fs_info;
3699 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3700 struct map_lookup *map;
3701 struct extent_map *em;
3702 int i;
3703 int ret = 0;
3704
3705 read_lock(&map_tree->map_tree.lock);
3706 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3707 read_unlock(&map_tree->map_tree.lock);
3708
3709 if (!em) {
3710 /*
3711 * Might have been an unused block group deleted by the cleaner
3712 * kthread or relocation.
3713 */
3714 spin_lock(&cache->lock);
3715 if (!cache->removed)
3716 ret = -EINVAL;
3717 spin_unlock(&cache->lock);
3718
3719 return ret;
3720 }
3721
3722 map = em->map_lookup;
3723 if (em->start != chunk_offset)
3724 goto out;
3725
3726 if (em->len < length)
3727 goto out;
3728
3729 for (i = 0; i < map->num_stripes; ++i) {
3730 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3731 map->stripes[i].physical == dev_offset) {
3732 ret = scrub_stripe(sctx, map, scrub_dev, i,
3733 chunk_offset, length,
3734 is_dev_replace);
3735 if (ret)
3736 goto out;
3737 }
3738 }
3739 out:
3740 free_extent_map(em);
3741
3742 return ret;
3743 }
3744
3745 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end,int is_dev_replace)3746 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3747 struct btrfs_device *scrub_dev, u64 start, u64 end,
3748 int is_dev_replace)
3749 {
3750 struct btrfs_dev_extent *dev_extent = NULL;
3751 struct btrfs_path *path;
3752 struct btrfs_fs_info *fs_info = sctx->fs_info;
3753 struct btrfs_root *root = fs_info->dev_root;
3754 u64 length;
3755 u64 chunk_offset;
3756 int ret = 0;
3757 int ro_set;
3758 int slot;
3759 struct extent_buffer *l;
3760 struct btrfs_key key;
3761 struct btrfs_key found_key;
3762 struct btrfs_block_group_cache *cache;
3763 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3764
3765 path = btrfs_alloc_path();
3766 if (!path)
3767 return -ENOMEM;
3768
3769 path->reada = READA_FORWARD;
3770 path->search_commit_root = 1;
3771 path->skip_locking = 1;
3772
3773 key.objectid = scrub_dev->devid;
3774 key.offset = 0ull;
3775 key.type = BTRFS_DEV_EXTENT_KEY;
3776
3777 while (1) {
3778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3779 if (ret < 0)
3780 break;
3781 if (ret > 0) {
3782 if (path->slots[0] >=
3783 btrfs_header_nritems(path->nodes[0])) {
3784 ret = btrfs_next_leaf(root, path);
3785 if (ret < 0)
3786 break;
3787 if (ret > 0) {
3788 ret = 0;
3789 break;
3790 }
3791 } else {
3792 ret = 0;
3793 }
3794 }
3795
3796 l = path->nodes[0];
3797 slot = path->slots[0];
3798
3799 btrfs_item_key_to_cpu(l, &found_key, slot);
3800
3801 if (found_key.objectid != scrub_dev->devid)
3802 break;
3803
3804 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3805 break;
3806
3807 if (found_key.offset >= end)
3808 break;
3809
3810 if (found_key.offset < key.offset)
3811 break;
3812
3813 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3814 length = btrfs_dev_extent_length(l, dev_extent);
3815
3816 if (found_key.offset + length <= start)
3817 goto skip;
3818
3819 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3820
3821 /*
3822 * get a reference on the corresponding block group to prevent
3823 * the chunk from going away while we scrub it
3824 */
3825 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3826
3827 /* some chunks are removed but not committed to disk yet,
3828 * continue scrubbing */
3829 if (!cache)
3830 goto skip;
3831
3832 /*
3833 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3834 * to avoid deadlock caused by:
3835 * btrfs_inc_block_group_ro()
3836 * -> btrfs_wait_for_commit()
3837 * -> btrfs_commit_transaction()
3838 * -> btrfs_scrub_pause()
3839 */
3840 scrub_pause_on(fs_info);
3841 ret = btrfs_inc_block_group_ro(fs_info, cache);
3842 if (!ret && is_dev_replace) {
3843 /*
3844 * If we are doing a device replace wait for any tasks
3845 * that started dellaloc right before we set the block
3846 * group to RO mode, as they might have just allocated
3847 * an extent from it or decided they could do a nocow
3848 * write. And if any such tasks did that, wait for their
3849 * ordered extents to complete and then commit the
3850 * current transaction, so that we can later see the new
3851 * extent items in the extent tree - the ordered extents
3852 * create delayed data references (for cow writes) when
3853 * they complete, which will be run and insert the
3854 * corresponding extent items into the extent tree when
3855 * we commit the transaction they used when running
3856 * inode.c:btrfs_finish_ordered_io(). We later use
3857 * the commit root of the extent tree to find extents
3858 * to copy from the srcdev into the tgtdev, and we don't
3859 * want to miss any new extents.
3860 */
3861 btrfs_wait_block_group_reservations(cache);
3862 btrfs_wait_nocow_writers(cache);
3863 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3864 cache->key.objectid,
3865 cache->key.offset);
3866 if (ret > 0) {
3867 struct btrfs_trans_handle *trans;
3868
3869 trans = btrfs_join_transaction(root);
3870 if (IS_ERR(trans))
3871 ret = PTR_ERR(trans);
3872 else
3873 ret = btrfs_commit_transaction(trans);
3874 if (ret) {
3875 scrub_pause_off(fs_info);
3876 btrfs_put_block_group(cache);
3877 break;
3878 }
3879 }
3880 }
3881 scrub_pause_off(fs_info);
3882
3883 if (ret == 0) {
3884 ro_set = 1;
3885 } else if (ret == -ENOSPC) {
3886 /*
3887 * btrfs_inc_block_group_ro return -ENOSPC when it
3888 * failed in creating new chunk for metadata.
3889 * It is not a problem for scrub/replace, because
3890 * metadata are always cowed, and our scrub paused
3891 * commit_transactions.
3892 */
3893 ro_set = 0;
3894 } else {
3895 btrfs_warn(fs_info,
3896 "failed setting block group ro: %d", ret);
3897 btrfs_put_block_group(cache);
3898 break;
3899 }
3900
3901 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3902 dev_replace->cursor_right = found_key.offset + length;
3903 dev_replace->cursor_left = found_key.offset;
3904 dev_replace->item_needs_writeback = 1;
3905 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3906 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3907 found_key.offset, cache, is_dev_replace);
3908
3909 /*
3910 * flush, submit all pending read and write bios, afterwards
3911 * wait for them.
3912 * Note that in the dev replace case, a read request causes
3913 * write requests that are submitted in the read completion
3914 * worker. Therefore in the current situation, it is required
3915 * that all write requests are flushed, so that all read and
3916 * write requests are really completed when bios_in_flight
3917 * changes to 0.
3918 */
3919 sctx->flush_all_writes = true;
3920 scrub_submit(sctx);
3921 mutex_lock(&sctx->wr_lock);
3922 scrub_wr_submit(sctx);
3923 mutex_unlock(&sctx->wr_lock);
3924
3925 wait_event(sctx->list_wait,
3926 atomic_read(&sctx->bios_in_flight) == 0);
3927
3928 scrub_pause_on(fs_info);
3929
3930 /*
3931 * must be called before we decrease @scrub_paused.
3932 * make sure we don't block transaction commit while
3933 * we are waiting pending workers finished.
3934 */
3935 wait_event(sctx->list_wait,
3936 atomic_read(&sctx->workers_pending) == 0);
3937 sctx->flush_all_writes = false;
3938
3939 scrub_pause_off(fs_info);
3940
3941 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3942 dev_replace->cursor_left = dev_replace->cursor_right;
3943 dev_replace->item_needs_writeback = 1;
3944 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3945
3946 if (ro_set)
3947 btrfs_dec_block_group_ro(cache);
3948
3949 /*
3950 * We might have prevented the cleaner kthread from deleting
3951 * this block group if it was already unused because we raced
3952 * and set it to RO mode first. So add it back to the unused
3953 * list, otherwise it might not ever be deleted unless a manual
3954 * balance is triggered or it becomes used and unused again.
3955 */
3956 spin_lock(&cache->lock);
3957 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3958 btrfs_block_group_used(&cache->item) == 0) {
3959 spin_unlock(&cache->lock);
3960 spin_lock(&fs_info->unused_bgs_lock);
3961 if (list_empty(&cache->bg_list)) {
3962 btrfs_get_block_group(cache);
3963 list_add_tail(&cache->bg_list,
3964 &fs_info->unused_bgs);
3965 }
3966 spin_unlock(&fs_info->unused_bgs_lock);
3967 } else {
3968 spin_unlock(&cache->lock);
3969 }
3970
3971 btrfs_put_block_group(cache);
3972 if (ret)
3973 break;
3974 if (is_dev_replace &&
3975 atomic64_read(&dev_replace->num_write_errors) > 0) {
3976 ret = -EIO;
3977 break;
3978 }
3979 if (sctx->stat.malloc_errors > 0) {
3980 ret = -ENOMEM;
3981 break;
3982 }
3983 skip:
3984 key.offset = found_key.offset + length;
3985 btrfs_release_path(path);
3986 }
3987
3988 btrfs_free_path(path);
3989
3990 return ret;
3991 }
3992
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3993 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3994 struct btrfs_device *scrub_dev)
3995 {
3996 int i;
3997 u64 bytenr;
3998 u64 gen;
3999 int ret;
4000 struct btrfs_fs_info *fs_info = sctx->fs_info;
4001
4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4003 return -EIO;
4004
4005 /* Seed devices of a new filesystem has their own generation. */
4006 if (scrub_dev->fs_devices != fs_info->fs_devices)
4007 gen = scrub_dev->generation;
4008 else
4009 gen = fs_info->last_trans_committed;
4010
4011 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4012 bytenr = btrfs_sb_offset(i);
4013 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4014 scrub_dev->commit_total_bytes)
4015 break;
4016
4017 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4018 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4019 NULL, 1, bytenr);
4020 if (ret)
4021 return ret;
4022 }
4023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4024
4025 return 0;
4026 }
4027
4028 /*
4029 * get a reference count on fs_info->scrub_workers. start worker if necessary
4030 */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)4031 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4032 int is_dev_replace)
4033 {
4034 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4035 int max_active = fs_info->thread_pool_size;
4036
4037 if (fs_info->scrub_workers_refcnt == 0) {
4038 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4039 flags, is_dev_replace ? 1 : max_active, 4);
4040 if (!fs_info->scrub_workers)
4041 goto fail_scrub_workers;
4042
4043 fs_info->scrub_wr_completion_workers =
4044 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4045 max_active, 2);
4046 if (!fs_info->scrub_wr_completion_workers)
4047 goto fail_scrub_wr_completion_workers;
4048
4049 fs_info->scrub_nocow_workers =
4050 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4051 if (!fs_info->scrub_nocow_workers)
4052 goto fail_scrub_nocow_workers;
4053 fs_info->scrub_parity_workers =
4054 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4055 max_active, 2);
4056 if (!fs_info->scrub_parity_workers)
4057 goto fail_scrub_parity_workers;
4058 }
4059 ++fs_info->scrub_workers_refcnt;
4060 return 0;
4061
4062 fail_scrub_parity_workers:
4063 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4064 fail_scrub_nocow_workers:
4065 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4066 fail_scrub_wr_completion_workers:
4067 btrfs_destroy_workqueue(fs_info->scrub_workers);
4068 fail_scrub_workers:
4069 return -ENOMEM;
4070 }
4071
scrub_workers_put(struct btrfs_fs_info * fs_info)4072 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4073 {
4074 if (--fs_info->scrub_workers_refcnt == 0) {
4075 btrfs_destroy_workqueue(fs_info->scrub_workers);
4076 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4077 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4078 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4079 }
4080 WARN_ON(fs_info->scrub_workers_refcnt < 0);
4081 }
4082
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)4083 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4084 u64 end, struct btrfs_scrub_progress *progress,
4085 int readonly, int is_dev_replace)
4086 {
4087 struct scrub_ctx *sctx;
4088 int ret;
4089 struct btrfs_device *dev;
4090 struct rcu_string *name;
4091
4092 if (btrfs_fs_closing(fs_info))
4093 return -EINVAL;
4094
4095 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4096 /*
4097 * in this case scrub is unable to calculate the checksum
4098 * the way scrub is implemented. Do not handle this
4099 * situation at all because it won't ever happen.
4100 */
4101 btrfs_err(fs_info,
4102 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4103 fs_info->nodesize,
4104 BTRFS_STRIPE_LEN);
4105 return -EINVAL;
4106 }
4107
4108 if (fs_info->sectorsize != PAGE_SIZE) {
4109 /* not supported for data w/o checksums */
4110 btrfs_err_rl(fs_info,
4111 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4112 fs_info->sectorsize, PAGE_SIZE);
4113 return -EINVAL;
4114 }
4115
4116 if (fs_info->nodesize >
4117 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4118 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4119 /*
4120 * would exhaust the array bounds of pagev member in
4121 * struct scrub_block
4122 */
4123 btrfs_err(fs_info,
4124 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4125 fs_info->nodesize,
4126 SCRUB_MAX_PAGES_PER_BLOCK,
4127 fs_info->sectorsize,
4128 SCRUB_MAX_PAGES_PER_BLOCK);
4129 return -EINVAL;
4130 }
4131
4132
4133 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4134 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4135 if (!dev || (dev->missing && !is_dev_replace)) {
4136 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4137 return -ENODEV;
4138 }
4139
4140 if (!is_dev_replace && !readonly && !dev->writeable) {
4141 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4142 rcu_read_lock();
4143 name = rcu_dereference(dev->name);
4144 btrfs_err(fs_info, "scrub: device %s is not writable",
4145 name->str);
4146 rcu_read_unlock();
4147 return -EROFS;
4148 }
4149
4150 mutex_lock(&fs_info->scrub_lock);
4151 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
4152 mutex_unlock(&fs_info->scrub_lock);
4153 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4154 return -EIO;
4155 }
4156
4157 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4158 if (dev->scrub_device ||
4159 (!is_dev_replace &&
4160 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4161 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4162 mutex_unlock(&fs_info->scrub_lock);
4163 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4164 return -EINPROGRESS;
4165 }
4166 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4167
4168 ret = scrub_workers_get(fs_info, is_dev_replace);
4169 if (ret) {
4170 mutex_unlock(&fs_info->scrub_lock);
4171 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4172 return ret;
4173 }
4174
4175 sctx = scrub_setup_ctx(dev, is_dev_replace);
4176 if (IS_ERR(sctx)) {
4177 mutex_unlock(&fs_info->scrub_lock);
4178 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4179 scrub_workers_put(fs_info);
4180 return PTR_ERR(sctx);
4181 }
4182 sctx->readonly = readonly;
4183 dev->scrub_device = sctx;
4184 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4185
4186 /*
4187 * checking @scrub_pause_req here, we can avoid
4188 * race between committing transaction and scrubbing.
4189 */
4190 __scrub_blocked_if_needed(fs_info);
4191 atomic_inc(&fs_info->scrubs_running);
4192 mutex_unlock(&fs_info->scrub_lock);
4193
4194 if (!is_dev_replace) {
4195 /*
4196 * by holding device list mutex, we can
4197 * kick off writing super in log tree sync.
4198 */
4199 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4200 ret = scrub_supers(sctx, dev);
4201 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4202 }
4203
4204 if (!ret)
4205 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4206 is_dev_replace);
4207
4208 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4209 atomic_dec(&fs_info->scrubs_running);
4210 wake_up(&fs_info->scrub_pause_wait);
4211
4212 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4213
4214 if (progress)
4215 memcpy(progress, &sctx->stat, sizeof(*progress));
4216
4217 mutex_lock(&fs_info->scrub_lock);
4218 dev->scrub_device = NULL;
4219 scrub_workers_put(fs_info);
4220 mutex_unlock(&fs_info->scrub_lock);
4221
4222 scrub_put_ctx(sctx);
4223
4224 return ret;
4225 }
4226
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)4227 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4228 {
4229 mutex_lock(&fs_info->scrub_lock);
4230 atomic_inc(&fs_info->scrub_pause_req);
4231 while (atomic_read(&fs_info->scrubs_paused) !=
4232 atomic_read(&fs_info->scrubs_running)) {
4233 mutex_unlock(&fs_info->scrub_lock);
4234 wait_event(fs_info->scrub_pause_wait,
4235 atomic_read(&fs_info->scrubs_paused) ==
4236 atomic_read(&fs_info->scrubs_running));
4237 mutex_lock(&fs_info->scrub_lock);
4238 }
4239 mutex_unlock(&fs_info->scrub_lock);
4240 }
4241
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)4242 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4243 {
4244 atomic_dec(&fs_info->scrub_pause_req);
4245 wake_up(&fs_info->scrub_pause_wait);
4246 }
4247
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)4248 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4249 {
4250 mutex_lock(&fs_info->scrub_lock);
4251 if (!atomic_read(&fs_info->scrubs_running)) {
4252 mutex_unlock(&fs_info->scrub_lock);
4253 return -ENOTCONN;
4254 }
4255
4256 atomic_inc(&fs_info->scrub_cancel_req);
4257 while (atomic_read(&fs_info->scrubs_running)) {
4258 mutex_unlock(&fs_info->scrub_lock);
4259 wait_event(fs_info->scrub_pause_wait,
4260 atomic_read(&fs_info->scrubs_running) == 0);
4261 mutex_lock(&fs_info->scrub_lock);
4262 }
4263 atomic_dec(&fs_info->scrub_cancel_req);
4264 mutex_unlock(&fs_info->scrub_lock);
4265
4266 return 0;
4267 }
4268
btrfs_scrub_cancel_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)4269 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4270 struct btrfs_device *dev)
4271 {
4272 struct scrub_ctx *sctx;
4273
4274 mutex_lock(&fs_info->scrub_lock);
4275 sctx = dev->scrub_device;
4276 if (!sctx) {
4277 mutex_unlock(&fs_info->scrub_lock);
4278 return -ENOTCONN;
4279 }
4280 atomic_inc(&sctx->cancel_req);
4281 while (dev->scrub_device) {
4282 mutex_unlock(&fs_info->scrub_lock);
4283 wait_event(fs_info->scrub_pause_wait,
4284 dev->scrub_device == NULL);
4285 mutex_lock(&fs_info->scrub_lock);
4286 }
4287 mutex_unlock(&fs_info->scrub_lock);
4288
4289 return 0;
4290 }
4291
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)4292 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4293 struct btrfs_scrub_progress *progress)
4294 {
4295 struct btrfs_device *dev;
4296 struct scrub_ctx *sctx = NULL;
4297
4298 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4299 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4300 if (dev)
4301 sctx = dev->scrub_device;
4302 if (sctx)
4303 memcpy(progress, &sctx->stat, sizeof(*progress));
4304 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4305
4306 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4307 }
4308
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u64 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4309 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4310 u64 extent_logical, u64 extent_len,
4311 u64 *extent_physical,
4312 struct btrfs_device **extent_dev,
4313 int *extent_mirror_num)
4314 {
4315 u64 mapped_length;
4316 struct btrfs_bio *bbio = NULL;
4317 int ret;
4318
4319 mapped_length = extent_len;
4320 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4321 &mapped_length, &bbio, 0);
4322 if (ret || !bbio || mapped_length < extent_len ||
4323 !bbio->stripes[0].dev->bdev) {
4324 btrfs_put_bbio(bbio);
4325 return;
4326 }
4327
4328 *extent_physical = bbio->stripes[0].physical;
4329 *extent_mirror_num = bbio->mirror_num;
4330 *extent_dev = bbio->stripes[0].dev;
4331 btrfs_put_bbio(bbio);
4332 }
4333
copy_nocow_pages(struct scrub_ctx * sctx,u64 logical,u64 len,int mirror_num,u64 physical_for_dev_replace)4334 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4335 int mirror_num, u64 physical_for_dev_replace)
4336 {
4337 struct scrub_copy_nocow_ctx *nocow_ctx;
4338 struct btrfs_fs_info *fs_info = sctx->fs_info;
4339
4340 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4341 if (!nocow_ctx) {
4342 spin_lock(&sctx->stat_lock);
4343 sctx->stat.malloc_errors++;
4344 spin_unlock(&sctx->stat_lock);
4345 return -ENOMEM;
4346 }
4347
4348 scrub_pending_trans_workers_inc(sctx);
4349
4350 nocow_ctx->sctx = sctx;
4351 nocow_ctx->logical = logical;
4352 nocow_ctx->len = len;
4353 nocow_ctx->mirror_num = mirror_num;
4354 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4355 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4356 copy_nocow_pages_worker, NULL, NULL);
4357 INIT_LIST_HEAD(&nocow_ctx->inodes);
4358 btrfs_queue_work(fs_info->scrub_nocow_workers,
4359 &nocow_ctx->work);
4360
4361 return 0;
4362 }
4363
record_inode_for_nocow(u64 inum,u64 offset,u64 root,void * ctx)4364 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4365 {
4366 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4367 struct scrub_nocow_inode *nocow_inode;
4368
4369 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4370 if (!nocow_inode)
4371 return -ENOMEM;
4372 nocow_inode->inum = inum;
4373 nocow_inode->offset = offset;
4374 nocow_inode->root = root;
4375 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4376 return 0;
4377 }
4378
4379 #define COPY_COMPLETE 1
4380
copy_nocow_pages_worker(struct btrfs_work * work)4381 static void copy_nocow_pages_worker(struct btrfs_work *work)
4382 {
4383 struct scrub_copy_nocow_ctx *nocow_ctx =
4384 container_of(work, struct scrub_copy_nocow_ctx, work);
4385 struct scrub_ctx *sctx = nocow_ctx->sctx;
4386 struct btrfs_fs_info *fs_info = sctx->fs_info;
4387 struct btrfs_root *root = fs_info->extent_root;
4388 u64 logical = nocow_ctx->logical;
4389 u64 len = nocow_ctx->len;
4390 int mirror_num = nocow_ctx->mirror_num;
4391 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4392 int ret;
4393 struct btrfs_trans_handle *trans = NULL;
4394 struct btrfs_path *path;
4395 int not_written = 0;
4396
4397 path = btrfs_alloc_path();
4398 if (!path) {
4399 spin_lock(&sctx->stat_lock);
4400 sctx->stat.malloc_errors++;
4401 spin_unlock(&sctx->stat_lock);
4402 not_written = 1;
4403 goto out;
4404 }
4405
4406 trans = btrfs_join_transaction(root);
4407 if (IS_ERR(trans)) {
4408 not_written = 1;
4409 goto out;
4410 }
4411
4412 ret = iterate_inodes_from_logical(logical, fs_info, path,
4413 record_inode_for_nocow, nocow_ctx);
4414 if (ret != 0 && ret != -ENOENT) {
4415 btrfs_warn(fs_info,
4416 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4417 logical, physical_for_dev_replace, len, mirror_num,
4418 ret);
4419 not_written = 1;
4420 goto out;
4421 }
4422
4423 btrfs_end_transaction(trans);
4424 trans = NULL;
4425 while (!list_empty(&nocow_ctx->inodes)) {
4426 struct scrub_nocow_inode *entry;
4427 entry = list_first_entry(&nocow_ctx->inodes,
4428 struct scrub_nocow_inode,
4429 list);
4430 list_del_init(&entry->list);
4431 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4432 entry->root, nocow_ctx);
4433 kfree(entry);
4434 if (ret == COPY_COMPLETE) {
4435 ret = 0;
4436 break;
4437 } else if (ret) {
4438 break;
4439 }
4440 }
4441 out:
4442 while (!list_empty(&nocow_ctx->inodes)) {
4443 struct scrub_nocow_inode *entry;
4444 entry = list_first_entry(&nocow_ctx->inodes,
4445 struct scrub_nocow_inode,
4446 list);
4447 list_del_init(&entry->list);
4448 kfree(entry);
4449 }
4450 if (trans && !IS_ERR(trans))
4451 btrfs_end_transaction(trans);
4452 if (not_written)
4453 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4454 num_uncorrectable_read_errors);
4455
4456 btrfs_free_path(path);
4457 kfree(nocow_ctx);
4458
4459 scrub_pending_trans_workers_dec(sctx);
4460 }
4461
check_extent_to_block(struct btrfs_inode * inode,u64 start,u64 len,u64 logical)4462 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4463 u64 logical)
4464 {
4465 struct extent_state *cached_state = NULL;
4466 struct btrfs_ordered_extent *ordered;
4467 struct extent_io_tree *io_tree;
4468 struct extent_map *em;
4469 u64 lockstart = start, lockend = start + len - 1;
4470 int ret = 0;
4471
4472 io_tree = &inode->io_tree;
4473
4474 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4475 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4476 if (ordered) {
4477 btrfs_put_ordered_extent(ordered);
4478 ret = 1;
4479 goto out_unlock;
4480 }
4481
4482 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4483 if (IS_ERR(em)) {
4484 ret = PTR_ERR(em);
4485 goto out_unlock;
4486 }
4487
4488 /*
4489 * This extent does not actually cover the logical extent anymore,
4490 * move on to the next inode.
4491 */
4492 if (em->block_start > logical ||
4493 em->block_start + em->block_len < logical + len) {
4494 free_extent_map(em);
4495 ret = 1;
4496 goto out_unlock;
4497 }
4498 free_extent_map(em);
4499
4500 out_unlock:
4501 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4502 GFP_NOFS);
4503 return ret;
4504 }
4505
copy_nocow_pages_for_inode(u64 inum,u64 offset,u64 root,struct scrub_copy_nocow_ctx * nocow_ctx)4506 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4507 struct scrub_copy_nocow_ctx *nocow_ctx)
4508 {
4509 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4510 struct btrfs_key key;
4511 struct inode *inode;
4512 struct page *page;
4513 struct btrfs_root *local_root;
4514 struct extent_io_tree *io_tree;
4515 u64 physical_for_dev_replace;
4516 u64 nocow_ctx_logical;
4517 u64 len = nocow_ctx->len;
4518 unsigned long index;
4519 int srcu_index;
4520 int ret = 0;
4521 int err = 0;
4522
4523 key.objectid = root;
4524 key.type = BTRFS_ROOT_ITEM_KEY;
4525 key.offset = (u64)-1;
4526
4527 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4528
4529 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4530 if (IS_ERR(local_root)) {
4531 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4532 return PTR_ERR(local_root);
4533 }
4534
4535 key.type = BTRFS_INODE_ITEM_KEY;
4536 key.objectid = inum;
4537 key.offset = 0;
4538 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4539 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4540 if (IS_ERR(inode))
4541 return PTR_ERR(inode);
4542
4543 /* Avoid truncate/dio/punch hole.. */
4544 inode_lock(inode);
4545 inode_dio_wait(inode);
4546
4547 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4548 io_tree = &BTRFS_I(inode)->io_tree;
4549 nocow_ctx_logical = nocow_ctx->logical;
4550
4551 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4552 nocow_ctx_logical);
4553 if (ret) {
4554 ret = ret > 0 ? 0 : ret;
4555 goto out;
4556 }
4557
4558 while (len >= PAGE_SIZE) {
4559 index = offset >> PAGE_SHIFT;
4560 again:
4561 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4562 if (!page) {
4563 btrfs_err(fs_info, "find_or_create_page() failed");
4564 ret = -ENOMEM;
4565 goto out;
4566 }
4567
4568 if (PageUptodate(page)) {
4569 if (PageDirty(page))
4570 goto next_page;
4571 } else {
4572 ClearPageError(page);
4573 err = extent_read_full_page(io_tree, page,
4574 btrfs_get_extent,
4575 nocow_ctx->mirror_num);
4576 if (err) {
4577 ret = err;
4578 goto next_page;
4579 }
4580
4581 lock_page(page);
4582 /*
4583 * If the page has been remove from the page cache,
4584 * the data on it is meaningless, because it may be
4585 * old one, the new data may be written into the new
4586 * page in the page cache.
4587 */
4588 if (page->mapping != inode->i_mapping) {
4589 unlock_page(page);
4590 put_page(page);
4591 goto again;
4592 }
4593 if (!PageUptodate(page)) {
4594 ret = -EIO;
4595 goto next_page;
4596 }
4597 }
4598
4599 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4600 nocow_ctx_logical);
4601 if (ret) {
4602 ret = ret > 0 ? 0 : ret;
4603 goto next_page;
4604 }
4605
4606 err = write_page_nocow(nocow_ctx->sctx,
4607 physical_for_dev_replace, page);
4608 if (err)
4609 ret = err;
4610 next_page:
4611 unlock_page(page);
4612 put_page(page);
4613
4614 if (ret)
4615 break;
4616
4617 offset += PAGE_SIZE;
4618 physical_for_dev_replace += PAGE_SIZE;
4619 nocow_ctx_logical += PAGE_SIZE;
4620 len -= PAGE_SIZE;
4621 }
4622 ret = COPY_COMPLETE;
4623 out:
4624 inode_unlock(inode);
4625 iput(inode);
4626 return ret;
4627 }
4628
write_page_nocow(struct scrub_ctx * sctx,u64 physical_for_dev_replace,struct page * page)4629 static int write_page_nocow(struct scrub_ctx *sctx,
4630 u64 physical_for_dev_replace, struct page *page)
4631 {
4632 struct bio *bio;
4633 struct btrfs_device *dev;
4634 int ret;
4635
4636 dev = sctx->wr_tgtdev;
4637 if (!dev)
4638 return -EIO;
4639 if (!dev->bdev) {
4640 btrfs_warn_rl(dev->fs_info,
4641 "scrub write_page_nocow(bdev == NULL) is unexpected");
4642 return -EIO;
4643 }
4644 bio = btrfs_io_bio_alloc(1);
4645 bio->bi_iter.bi_size = 0;
4646 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4647 bio_set_dev(bio, dev->bdev);
4648 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4649 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4650 if (ret != PAGE_SIZE) {
4651 leave_with_eio:
4652 bio_put(bio);
4653 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4654 return -EIO;
4655 }
4656
4657 if (btrfsic_submit_bio_wait(bio))
4658 goto leave_with_eio;
4659
4660 bio_put(bio);
4661 return 0;
4662 }
4663