1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45 * control flags for do_chunk_alloc's force field
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
57 */
58 enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 struct btrfs_fs_info *fs_info, u64 bytenr,
66 u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_fs_info *fs_info,
69 struct btrfs_delayed_ref_node *node, u64 parent,
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
72 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 struct btrfs_fs_info *fs_info,
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 struct btrfs_fs_info *fs_info,
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
85 int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 struct btrfs_fs_info *fs_info, u64 flags,
88 int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
btrfs_get_block_group(struct btrfs_block_group_cache * cache)125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
btrfs_put_block_group(struct btrfs_block_group_cache * cache)130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
147 }
148 }
149
150 /*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group_cache *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188 }
189
190 /*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197 {
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
226 if (ret) {
227 btrfs_get_block_group(ret);
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234 }
235
add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 u64 start, u64 num_bytes)
238 {
239 u64 end = start + num_bytes - 1;
240 set_extent_bits(&fs_info->freed_extents[0],
241 start, end, EXTENT_UPTODATE);
242 set_extent_bits(&fs_info->freed_extents[1],
243 start, end, EXTENT_UPTODATE);
244 return 0;
245 }
246
free_excluded_extents(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 start, end;
251
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
255 clear_extent_bits(&fs_info->freed_extents[0],
256 start, end, EXTENT_UPTODATE);
257 clear_extent_bits(&fs_info->freed_extents[1],
258 start, end, EXTENT_UPTODATE);
259 }
260
exclude_super_stripes(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 struct btrfs_block_group_cache *cache)
263 {
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(fs_info, cache->key.objectid,
273 stripe_len);
274 if (ret)
275 return ret;
276 }
277
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 bytenr, 0, &logical, &nr, &stripe_len);
282 if (ret)
283 return ret;
284
285 while (nr--) {
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
306 ret = add_excluded_extent(fs_info, start, len);
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
311 }
312
313 kfree(logical);
314 }
315 return 0;
316 }
317
318 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 refcount_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
put_caching_control(struct btrfs_caching_control * ctl)335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (refcount_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 struct btrfs_fs_info *fs_info = block_group->fs_info;
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 fs_info->nodesize : fs_info->sectorsize;
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359 }
360 #endif
361
362 /*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 u64 extent_start, extent_end, size, total_added = 0;
371 int ret;
372
373 while (start < end) {
374 ret = find_first_extent_bit(info->pinned_extents, start,
375 &extent_start, &extent_end,
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
378 if (ret)
379 break;
380
381 if (extent_start <= start) {
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start,
387 size);
388 BUG_ON(ret); /* -ENOMEM or logic error */
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
397 total_added += size;
398 ret = btrfs_add_free_space(block_group, start, size);
399 BUG_ON(ret); /* -ENOMEM or logic error */
400 }
401
402 return total_added;
403 }
404
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
410 struct btrfs_path *path;
411 struct extent_buffer *leaf;
412 struct btrfs_key key;
413 u64 total_found = 0;
414 u64 last = 0;
415 u32 nritems;
416 int ret;
417 bool wakeup = true;
418
419 path = btrfs_alloc_path();
420 if (!path)
421 return -ENOMEM;
422
423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(block_group))
432 wakeup = false;
433 #endif
434 /*
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
439 */
440 path->skip_locking = 1;
441 path->search_commit_root = 1;
442 path->reada = READA_FORWARD;
443
444 key.objectid = last;
445 key.offset = 0;
446 key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 if (ret < 0)
451 goto out;
452
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
456 while (1) {
457 if (btrfs_fs_closing(fs_info) > 1) {
458 last = (u64)-1;
459 break;
460 }
461
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
467 break;
468
469 if (need_resched() ||
470 rwsem_is_contended(&fs_info->commit_root_sem)) {
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 up_read(&fs_info->commit_root_sem);
475 mutex_unlock(&caching_ctl->mutex);
476 cond_resched();
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
480 }
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
484 goto out;
485 if (ret)
486 break;
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
490 }
491
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
497 if (wakeup)
498 caching_ctl->progress = last;
499 btrfs_release_path(path);
500 goto next;
501 }
502
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
505 continue;
506 }
507
508 if (key.objectid >= block_group->key.objectid +
509 block_group->key.offset)
510 break;
511
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
519 fs_info->nodesize;
520 else
521 last = key.objectid + key.offset;
522
523 if (total_found > CACHING_CTL_WAKE_UP) {
524 total_found = 0;
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
527 }
528 }
529 path->slots[0]++;
530 }
531 ret = 0;
532
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
536 caching_ctl->progress = (u64)-1;
537
538 out:
539 btrfs_free_path(path);
540 return ret;
541 }
542
caching_thread(struct btrfs_work * work)543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
548 struct btrfs_root *extent_root;
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
554 extent_root = fs_info->extent_root;
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
563
564 spin_lock(&block_group->lock);
565 block_group->caching_ctl = NULL;
566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570 if (btrfs_should_fragment_free_space(block_group)) {
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
580 fragment_free_space(block_group);
581 }
582 #endif
583
584 caching_ctl->progress = (u64)-1;
585
586 up_read(&fs_info->commit_root_sem);
587 free_excluded_extents(fs_info, block_group);
588 mutex_unlock(&caching_ctl->mutex);
589
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
593 btrfs_put_block_group(block_group);
594 }
595
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 int load_cache_only)
598 {
599 DEFINE_WAIT(wait);
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
602 int ret = 0;
603
604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 if (!caching_ctl)
606 return -ENOMEM;
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
613 refcount_set(&caching_ctl->count, 1);
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
634 refcount_inc(&ctl->count);
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
648 return 0;
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
654
655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 mutex_lock(&caching_ctl->mutex);
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
664 caching_ctl->progress = (u64)-1;
665 } else {
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
671 cache->has_caching_ctl = 1;
672 }
673 }
674 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
677 btrfs_should_fragment_free_space(cache)) {
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
687 fragment_free_space(cache);
688 }
689 #endif
690 mutex_unlock(&caching_ctl->mutex);
691
692 wake_up(&caching_ctl->wait);
693 if (ret == 1) {
694 put_caching_control(caching_ctl);
695 free_excluded_extents(fs_info, cache);
696 return 0;
697 }
698 } else {
699 /*
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
709 cache->has_caching_ctl = 1;
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
713 }
714
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
717 return 0;
718 }
719
720 down_write(&fs_info->commit_root_sem);
721 refcount_inc(&caching_ctl->count);
722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 up_write(&fs_info->commit_root_sem);
724
725 btrfs_get_block_group(cache);
726
727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729 return ret;
730 }
731
732 /*
733 * return the block group that starts at or after bytenr
734 */
735 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742 * return the block group that contains the given bytenr
743 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
747 {
748 return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
__find_space_info(struct btrfs_fs_info * info,u64 flags)751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
753 {
754 struct list_head *head = &info->space_info;
755 struct btrfs_space_info *found;
756
757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
761 if (found->flags & flags) {
762 rcu_read_unlock();
763 return found;
764 }
765 }
766 rcu_read_unlock();
767 return NULL;
768 }
769
add_pinned_bytes(struct btrfs_fs_info * fs_info,s64 num_bytes,u64 owner,u64 root_objectid)770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772 {
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
786 ASSERT(space_info);
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808 int ret;
809 struct btrfs_key key;
810 struct btrfs_path *path;
811
812 path = btrfs_alloc_path();
813 if (!path)
814 return -ENOMEM;
815
816 key.objectid = start;
817 key.offset = len;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 btrfs_free_path(path);
821 return ret;
822 }
823
824 /*
825 * helper function to lookup reference count and flags of a tree block.
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
854 metadata = 0;
855 }
856
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
865
866 search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875 if (ret < 0)
876 goto out_free;
877
878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
885 key.offset == fs_info->nodesize)
886 ret = 0;
887 }
888 }
889
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908 BUG();
909 #endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
926 refcount_inc(&head->node.refs);
927 spin_unlock(&delayed_refs->lock);
928
929 btrfs_release_path(path);
930
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
938 goto search_again;
939 }
940 spin_lock(&head->lock);
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
947 spin_unlock(&head->lock);
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951 out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957 out_free:
958 btrfs_free_path(path);
959 return ret;
960 }
961
962 /*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
994 * When a tree block is COWed through a tree, there are four cases:
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
1024 * - different files inside a single subvolume
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
1027 * The extent ref structure for the implicit back refs has fields for:
1028 *
1029 * - Objectid of the subvolume root
1030 * - objectid of the file holding the reference
1031 * - original offset in the file
1032 * - how many bookend extents
1033 *
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
1036 *
1037 * The extent ref structure for the full back refs has field for:
1038 *
1039 * - number of pointers in the tree leaf
1040 *
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
1043 *
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
1046 *
1047 * (root_key.objectid, inode objectid, offset in file, 1)
1048 *
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
1051 *
1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 *
1054 * Btree extents can be referenced by:
1055 *
1056 * - Different subvolumes
1057 *
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
1062 *
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
1066 */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 owner,u32 extra_size)1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 struct btrfs_fs_info *fs_info,
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
1073 {
1074 struct btrfs_root *root = fs_info->extent_root;
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
1080 struct btrfs_key key;
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
1100 BUG_ON(ret > 0); /* Corruption */
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
1116 btrfs_release_path(path);
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
1126 BUG_ON(ret); /* Corruption */
1127
1128 btrfs_extend_item(fs_info, path, new_size);
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148 }
1149 #endif
1150
1151 /*
1152 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1153 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1154 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1155 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)1156 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1157 struct btrfs_extent_inline_ref *iref,
1158 enum btrfs_inline_ref_type is_data)
1159 {
1160 int type = btrfs_extent_inline_ref_type(eb, iref);
1161 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1162
1163 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1164 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1165 type == BTRFS_SHARED_DATA_REF_KEY ||
1166 type == BTRFS_EXTENT_DATA_REF_KEY) {
1167 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1168 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1169 return type;
1170 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1171 ASSERT(eb->fs_info);
1172 /*
1173 * Every shared one has parent tree
1174 * block, which must be aligned to
1175 * nodesize.
1176 */
1177 if (offset &&
1178 IS_ALIGNED(offset, eb->fs_info->nodesize))
1179 return type;
1180 }
1181 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1182 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1183 return type;
1184 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1185 ASSERT(eb->fs_info);
1186 /*
1187 * Every shared one has parent tree
1188 * block, which must be aligned to
1189 * nodesize.
1190 */
1191 if (offset &&
1192 IS_ALIGNED(offset, eb->fs_info->nodesize))
1193 return type;
1194 }
1195 } else {
1196 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1197 return type;
1198 }
1199 }
1200
1201 btrfs_print_leaf((struct extent_buffer *)eb);
1202 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1203 eb->start, type);
1204 WARN_ON(1);
1205
1206 return BTRFS_REF_TYPE_INVALID;
1207 }
1208
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1209 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1210 {
1211 u32 high_crc = ~(u32)0;
1212 u32 low_crc = ~(u32)0;
1213 __le64 lenum;
1214
1215 lenum = cpu_to_le64(root_objectid);
1216 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1217 lenum = cpu_to_le64(owner);
1218 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1219 lenum = cpu_to_le64(offset);
1220 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1221
1222 return ((u64)high_crc << 31) ^ (u64)low_crc;
1223 }
1224
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1225 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1226 struct btrfs_extent_data_ref *ref)
1227 {
1228 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1229 btrfs_extent_data_ref_objectid(leaf, ref),
1230 btrfs_extent_data_ref_offset(leaf, ref));
1231 }
1232
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1233 static int match_extent_data_ref(struct extent_buffer *leaf,
1234 struct btrfs_extent_data_ref *ref,
1235 u64 root_objectid, u64 owner, u64 offset)
1236 {
1237 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1238 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1239 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1240 return 0;
1241 return 1;
1242 }
1243
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1244 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info,
1246 struct btrfs_path *path,
1247 u64 bytenr, u64 parent,
1248 u64 root_objectid,
1249 u64 owner, u64 offset)
1250 {
1251 struct btrfs_root *root = fs_info->extent_root;
1252 struct btrfs_key key;
1253 struct btrfs_extent_data_ref *ref;
1254 struct extent_buffer *leaf;
1255 u32 nritems;
1256 int ret;
1257 int recow;
1258 int err = -ENOENT;
1259
1260 key.objectid = bytenr;
1261 if (parent) {
1262 key.type = BTRFS_SHARED_DATA_REF_KEY;
1263 key.offset = parent;
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 }
1269 again:
1270 recow = 0;
1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1272 if (ret < 0) {
1273 err = ret;
1274 goto fail;
1275 }
1276
1277 if (parent) {
1278 if (!ret)
1279 return 0;
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 key.type = BTRFS_EXTENT_REF_V0_KEY;
1282 btrfs_release_path(path);
1283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284 if (ret < 0) {
1285 err = ret;
1286 goto fail;
1287 }
1288 if (!ret)
1289 return 0;
1290 #endif
1291 goto fail;
1292 }
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 while (1) {
1297 if (path->slots[0] >= nritems) {
1298 ret = btrfs_next_leaf(root, path);
1299 if (ret < 0)
1300 err = ret;
1301 if (ret)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 nritems = btrfs_header_nritems(leaf);
1306 recow = 1;
1307 }
1308
1309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1310 if (key.objectid != bytenr ||
1311 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1312 goto fail;
1313
1314 ref = btrfs_item_ptr(leaf, path->slots[0],
1315 struct btrfs_extent_data_ref);
1316
1317 if (match_extent_data_ref(leaf, ref, root_objectid,
1318 owner, offset)) {
1319 if (recow) {
1320 btrfs_release_path(path);
1321 goto again;
1322 }
1323 err = 0;
1324 break;
1325 }
1326 path->slots[0]++;
1327 }
1328 fail:
1329 return err;
1330 }
1331
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1332 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info,
1334 struct btrfs_path *path,
1335 u64 bytenr, u64 parent,
1336 u64 root_objectid, u64 owner,
1337 u64 offset, int refs_to_add)
1338 {
1339 struct btrfs_root *root = fs_info->extent_root;
1340 struct btrfs_key key;
1341 struct extent_buffer *leaf;
1342 u32 size;
1343 u32 num_refs;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_DATA_REF_KEY;
1349 key.offset = parent;
1350 size = sizeof(struct btrfs_shared_data_ref);
1351 } else {
1352 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1353 key.offset = hash_extent_data_ref(root_objectid,
1354 owner, offset);
1355 size = sizeof(struct btrfs_extent_data_ref);
1356 }
1357
1358 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1359 if (ret && ret != -EEXIST)
1360 goto fail;
1361
1362 leaf = path->nodes[0];
1363 if (parent) {
1364 struct btrfs_shared_data_ref *ref;
1365 ref = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 if (ret == 0) {
1368 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1369 } else {
1370 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1371 num_refs += refs_to_add;
1372 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1373 }
1374 } else {
1375 struct btrfs_extent_data_ref *ref;
1376 while (ret == -EEXIST) {
1377 ref = btrfs_item_ptr(leaf, path->slots[0],
1378 struct btrfs_extent_data_ref);
1379 if (match_extent_data_ref(leaf, ref, root_objectid,
1380 owner, offset))
1381 break;
1382 btrfs_release_path(path);
1383 key.offset++;
1384 ret = btrfs_insert_empty_item(trans, root, path, &key,
1385 size);
1386 if (ret && ret != -EEXIST)
1387 goto fail;
1388
1389 leaf = path->nodes[0];
1390 }
1391 ref = btrfs_item_ptr(leaf, path->slots[0],
1392 struct btrfs_extent_data_ref);
1393 if (ret == 0) {
1394 btrfs_set_extent_data_ref_root(leaf, ref,
1395 root_objectid);
1396 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1397 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1398 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1399 } else {
1400 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1401 num_refs += refs_to_add;
1402 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1403 }
1404 }
1405 btrfs_mark_buffer_dirty(leaf);
1406 ret = 0;
1407 fail:
1408 btrfs_release_path(path);
1409 return ret;
1410 }
1411
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,int refs_to_drop,int * last_ref)1412 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info,
1414 struct btrfs_path *path,
1415 int refs_to_drop, int *last_ref)
1416 {
1417 struct btrfs_key key;
1418 struct btrfs_extent_data_ref *ref1 = NULL;
1419 struct btrfs_shared_data_ref *ref2 = NULL;
1420 struct extent_buffer *leaf;
1421 u32 num_refs = 0;
1422 int ret = 0;
1423
1424 leaf = path->nodes[0];
1425 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1426
1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1428 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_data_ref);
1430 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1431 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1432 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1433 struct btrfs_shared_data_ref);
1434 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1435 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1436 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1437 struct btrfs_extent_ref_v0 *ref0;
1438 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1439 struct btrfs_extent_ref_v0);
1440 num_refs = btrfs_ref_count_v0(leaf, ref0);
1441 #endif
1442 } else {
1443 BUG();
1444 }
1445
1446 BUG_ON(num_refs < refs_to_drop);
1447 num_refs -= refs_to_drop;
1448
1449 if (num_refs == 0) {
1450 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1451 *last_ref = 1;
1452 } else {
1453 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1454 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1455 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1456 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1457 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1458 else {
1459 struct btrfs_extent_ref_v0 *ref0;
1460 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1461 struct btrfs_extent_ref_v0);
1462 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1463 }
1464 #endif
1465 btrfs_mark_buffer_dirty(leaf);
1466 }
1467 return ret;
1468 }
1469
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1470 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref *iref)
1472 {
1473 struct btrfs_key key;
1474 struct extent_buffer *leaf;
1475 struct btrfs_extent_data_ref *ref1;
1476 struct btrfs_shared_data_ref *ref2;
1477 u32 num_refs = 0;
1478 int type;
1479
1480 leaf = path->nodes[0];
1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1482 if (iref) {
1483 /*
1484 * If type is invalid, we should have bailed out earlier than
1485 * this call.
1486 */
1487 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1488 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1489 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1490 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1491 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1492 } else {
1493 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1494 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1495 }
1496 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1497 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_data_ref);
1499 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1500 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1501 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1502 struct btrfs_shared_data_ref);
1503 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1504 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1505 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1506 struct btrfs_extent_ref_v0 *ref0;
1507 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1508 struct btrfs_extent_ref_v0);
1509 num_refs = btrfs_ref_count_v0(leaf, ref0);
1510 #endif
1511 } else {
1512 WARN_ON(1);
1513 }
1514 return num_refs;
1515 }
1516
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1517 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1518 struct btrfs_fs_info *fs_info,
1519 struct btrfs_path *path,
1520 u64 bytenr, u64 parent,
1521 u64 root_objectid)
1522 {
1523 struct btrfs_root *root = fs_info->extent_root;
1524 struct btrfs_key key;
1525 int ret;
1526
1527 key.objectid = bytenr;
1528 if (parent) {
1529 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1530 key.offset = parent;
1531 } else {
1532 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1533 key.offset = root_objectid;
1534 }
1535
1536 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1537 if (ret > 0)
1538 ret = -ENOENT;
1539 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1540 if (ret == -ENOENT && parent) {
1541 btrfs_release_path(path);
1542 key.type = BTRFS_EXTENT_REF_V0_KEY;
1543 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1544 if (ret > 0)
1545 ret = -ENOENT;
1546 }
1547 #endif
1548 return ret;
1549 }
1550
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1551 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1552 struct btrfs_fs_info *fs_info,
1553 struct btrfs_path *path,
1554 u64 bytenr, u64 parent,
1555 u64 root_objectid)
1556 {
1557 struct btrfs_key key;
1558 int ret;
1559
1560 key.objectid = bytenr;
1561 if (parent) {
1562 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1563 key.offset = parent;
1564 } else {
1565 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1566 key.offset = root_objectid;
1567 }
1568
1569 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1570 path, &key, 0);
1571 btrfs_release_path(path);
1572 return ret;
1573 }
1574
extent_ref_type(u64 parent,u64 owner)1575 static inline int extent_ref_type(u64 parent, u64 owner)
1576 {
1577 int type;
1578 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1579 if (parent > 0)
1580 type = BTRFS_SHARED_BLOCK_REF_KEY;
1581 else
1582 type = BTRFS_TREE_BLOCK_REF_KEY;
1583 } else {
1584 if (parent > 0)
1585 type = BTRFS_SHARED_DATA_REF_KEY;
1586 else
1587 type = BTRFS_EXTENT_DATA_REF_KEY;
1588 }
1589 return type;
1590 }
1591
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1592 static int find_next_key(struct btrfs_path *path, int level,
1593 struct btrfs_key *key)
1594
1595 {
1596 for (; level < BTRFS_MAX_LEVEL; level++) {
1597 if (!path->nodes[level])
1598 break;
1599 if (path->slots[level] + 1 >=
1600 btrfs_header_nritems(path->nodes[level]))
1601 continue;
1602 if (level == 0)
1603 btrfs_item_key_to_cpu(path->nodes[level], key,
1604 path->slots[level] + 1);
1605 else
1606 btrfs_node_key_to_cpu(path->nodes[level], key,
1607 path->slots[level] + 1);
1608 return 0;
1609 }
1610 return 1;
1611 }
1612
1613 /*
1614 * look for inline back ref. if back ref is found, *ref_ret is set
1615 * to the address of inline back ref, and 0 is returned.
1616 *
1617 * if back ref isn't found, *ref_ret is set to the address where it
1618 * should be inserted, and -ENOENT is returned.
1619 *
1620 * if insert is true and there are too many inline back refs, the path
1621 * points to the extent item, and -EAGAIN is returned.
1622 *
1623 * NOTE: inline back refs are ordered in the same way that back ref
1624 * items in the tree are ordered.
1625 */
1626 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1627 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1628 struct btrfs_fs_info *fs_info,
1629 struct btrfs_path *path,
1630 struct btrfs_extent_inline_ref **ref_ret,
1631 u64 bytenr, u64 num_bytes,
1632 u64 parent, u64 root_objectid,
1633 u64 owner, u64 offset, int insert)
1634 {
1635 struct btrfs_root *root = fs_info->extent_root;
1636 struct btrfs_key key;
1637 struct extent_buffer *leaf;
1638 struct btrfs_extent_item *ei;
1639 struct btrfs_extent_inline_ref *iref;
1640 u64 flags;
1641 u64 item_size;
1642 unsigned long ptr;
1643 unsigned long end;
1644 int extra_size;
1645 int type;
1646 int want;
1647 int ret;
1648 int err = 0;
1649 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1650 int needed;
1651
1652 key.objectid = bytenr;
1653 key.type = BTRFS_EXTENT_ITEM_KEY;
1654 key.offset = num_bytes;
1655
1656 want = extent_ref_type(parent, owner);
1657 if (insert) {
1658 extra_size = btrfs_extent_inline_ref_size(want);
1659 path->keep_locks = 1;
1660 } else
1661 extra_size = -1;
1662
1663 /*
1664 * Owner is our parent level, so we can just add one to get the level
1665 * for the block we are interested in.
1666 */
1667 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1668 key.type = BTRFS_METADATA_ITEM_KEY;
1669 key.offset = owner;
1670 }
1671
1672 again:
1673 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1674 if (ret < 0) {
1675 err = ret;
1676 goto out;
1677 }
1678
1679 /*
1680 * We may be a newly converted file system which still has the old fat
1681 * extent entries for metadata, so try and see if we have one of those.
1682 */
1683 if (ret > 0 && skinny_metadata) {
1684 skinny_metadata = false;
1685 if (path->slots[0]) {
1686 path->slots[0]--;
1687 btrfs_item_key_to_cpu(path->nodes[0], &key,
1688 path->slots[0]);
1689 if (key.objectid == bytenr &&
1690 key.type == BTRFS_EXTENT_ITEM_KEY &&
1691 key.offset == num_bytes)
1692 ret = 0;
1693 }
1694 if (ret) {
1695 key.objectid = bytenr;
1696 key.type = BTRFS_EXTENT_ITEM_KEY;
1697 key.offset = num_bytes;
1698 btrfs_release_path(path);
1699 goto again;
1700 }
1701 }
1702
1703 if (ret && !insert) {
1704 err = -ENOENT;
1705 goto out;
1706 } else if (WARN_ON(ret)) {
1707 err = -EIO;
1708 goto out;
1709 }
1710
1711 leaf = path->nodes[0];
1712 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1713 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1714 if (item_size < sizeof(*ei)) {
1715 if (!insert) {
1716 err = -ENOENT;
1717 goto out;
1718 }
1719 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1720 extra_size);
1721 if (ret < 0) {
1722 err = ret;
1723 goto out;
1724 }
1725 leaf = path->nodes[0];
1726 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1727 }
1728 #endif
1729 BUG_ON(item_size < sizeof(*ei));
1730
1731 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1732 flags = btrfs_extent_flags(leaf, ei);
1733
1734 ptr = (unsigned long)(ei + 1);
1735 end = (unsigned long)ei + item_size;
1736
1737 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1738 ptr += sizeof(struct btrfs_tree_block_info);
1739 BUG_ON(ptr > end);
1740 }
1741
1742 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1743 needed = BTRFS_REF_TYPE_DATA;
1744 else
1745 needed = BTRFS_REF_TYPE_BLOCK;
1746
1747 err = -ENOENT;
1748 while (1) {
1749 if (ptr >= end) {
1750 WARN_ON(ptr > end);
1751 break;
1752 }
1753 iref = (struct btrfs_extent_inline_ref *)ptr;
1754 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1755 if (type == BTRFS_REF_TYPE_INVALID) {
1756 err = -EINVAL;
1757 goto out;
1758 }
1759
1760 if (want < type)
1761 break;
1762 if (want > type) {
1763 ptr += btrfs_extent_inline_ref_size(type);
1764 continue;
1765 }
1766
1767 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1768 struct btrfs_extent_data_ref *dref;
1769 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1770 if (match_extent_data_ref(leaf, dref, root_objectid,
1771 owner, offset)) {
1772 err = 0;
1773 break;
1774 }
1775 if (hash_extent_data_ref_item(leaf, dref) <
1776 hash_extent_data_ref(root_objectid, owner, offset))
1777 break;
1778 } else {
1779 u64 ref_offset;
1780 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1781 if (parent > 0) {
1782 if (parent == ref_offset) {
1783 err = 0;
1784 break;
1785 }
1786 if (ref_offset < parent)
1787 break;
1788 } else {
1789 if (root_objectid == ref_offset) {
1790 err = 0;
1791 break;
1792 }
1793 if (ref_offset < root_objectid)
1794 break;
1795 }
1796 }
1797 ptr += btrfs_extent_inline_ref_size(type);
1798 }
1799 if (err == -ENOENT && insert) {
1800 if (item_size + extra_size >=
1801 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1802 err = -EAGAIN;
1803 goto out;
1804 }
1805 /*
1806 * To add new inline back ref, we have to make sure
1807 * there is no corresponding back ref item.
1808 * For simplicity, we just do not add new inline back
1809 * ref if there is any kind of item for this block
1810 */
1811 if (find_next_key(path, 0, &key) == 0 &&
1812 key.objectid == bytenr &&
1813 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1814 err = -EAGAIN;
1815 goto out;
1816 }
1817 }
1818 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1819 out:
1820 if (insert) {
1821 path->keep_locks = 0;
1822 btrfs_unlock_up_safe(path, 1);
1823 }
1824 return err;
1825 }
1826
1827 /*
1828 * helper to add new inline back ref
1829 */
1830 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1831 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1832 struct btrfs_path *path,
1833 struct btrfs_extent_inline_ref *iref,
1834 u64 parent, u64 root_objectid,
1835 u64 owner, u64 offset, int refs_to_add,
1836 struct btrfs_delayed_extent_op *extent_op)
1837 {
1838 struct extent_buffer *leaf;
1839 struct btrfs_extent_item *ei;
1840 unsigned long ptr;
1841 unsigned long end;
1842 unsigned long item_offset;
1843 u64 refs;
1844 int size;
1845 int type;
1846
1847 leaf = path->nodes[0];
1848 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1849 item_offset = (unsigned long)iref - (unsigned long)ei;
1850
1851 type = extent_ref_type(parent, owner);
1852 size = btrfs_extent_inline_ref_size(type);
1853
1854 btrfs_extend_item(fs_info, path, size);
1855
1856 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1857 refs = btrfs_extent_refs(leaf, ei);
1858 refs += refs_to_add;
1859 btrfs_set_extent_refs(leaf, ei, refs);
1860 if (extent_op)
1861 __run_delayed_extent_op(extent_op, leaf, ei);
1862
1863 ptr = (unsigned long)ei + item_offset;
1864 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1865 if (ptr < end - size)
1866 memmove_extent_buffer(leaf, ptr + size, ptr,
1867 end - size - ptr);
1868
1869 iref = (struct btrfs_extent_inline_ref *)ptr;
1870 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 struct btrfs_extent_data_ref *dref;
1873 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1874 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1875 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1876 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1878 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1879 struct btrfs_shared_data_ref *sref;
1880 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1881 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1882 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1883 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1884 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1885 } else {
1886 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1891 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1892 struct btrfs_fs_info *fs_info,
1893 struct btrfs_path *path,
1894 struct btrfs_extent_inline_ref **ref_ret,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner, u64 offset)
1897 {
1898 int ret;
1899
1900 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1901 bytenr, num_bytes, parent,
1902 root_objectid, owner, offset, 0);
1903 if (ret != -ENOENT)
1904 return ret;
1905
1906 btrfs_release_path(path);
1907 *ref_ret = NULL;
1908
1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1910 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1911 parent, root_objectid);
1912 } else {
1913 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1914 parent, root_objectid, owner,
1915 offset);
1916 }
1917 return ret;
1918 }
1919
1920 /*
1921 * helper to update/remove inline back ref
1922 */
1923 static noinline_for_stack
update_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1924 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1925 struct btrfs_path *path,
1926 struct btrfs_extent_inline_ref *iref,
1927 int refs_to_mod,
1928 struct btrfs_delayed_extent_op *extent_op,
1929 int *last_ref)
1930 {
1931 struct extent_buffer *leaf;
1932 struct btrfs_extent_item *ei;
1933 struct btrfs_extent_data_ref *dref = NULL;
1934 struct btrfs_shared_data_ref *sref = NULL;
1935 unsigned long ptr;
1936 unsigned long end;
1937 u32 item_size;
1938 int size;
1939 int type;
1940 u64 refs;
1941
1942 leaf = path->nodes[0];
1943 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1944 refs = btrfs_extent_refs(leaf, ei);
1945 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1946 refs += refs_to_mod;
1947 btrfs_set_extent_refs(leaf, ei, refs);
1948 if (extent_op)
1949 __run_delayed_extent_op(extent_op, leaf, ei);
1950
1951 /*
1952 * If type is invalid, we should have bailed out after
1953 * lookup_inline_extent_backref().
1954 */
1955 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1956 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1957
1958 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1959 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1960 refs = btrfs_extent_data_ref_count(leaf, dref);
1961 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1962 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1963 refs = btrfs_shared_data_ref_count(leaf, sref);
1964 } else {
1965 refs = 1;
1966 BUG_ON(refs_to_mod != -1);
1967 }
1968
1969 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1970 refs += refs_to_mod;
1971
1972 if (refs > 0) {
1973 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1974 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1975 else
1976 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1977 } else {
1978 *last_ref = 1;
1979 size = btrfs_extent_inline_ref_size(type);
1980 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1981 ptr = (unsigned long)iref;
1982 end = (unsigned long)ei + item_size;
1983 if (ptr + size < end)
1984 memmove_extent_buffer(leaf, ptr, ptr + size,
1985 end - ptr - size);
1986 item_size -= size;
1987 btrfs_truncate_item(fs_info, path, item_size, 1);
1988 }
1989 btrfs_mark_buffer_dirty(leaf);
1990 }
1991
1992 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1993 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1994 struct btrfs_fs_info *fs_info,
1995 struct btrfs_path *path,
1996 u64 bytenr, u64 num_bytes, u64 parent,
1997 u64 root_objectid, u64 owner,
1998 u64 offset, int refs_to_add,
1999 struct btrfs_delayed_extent_op *extent_op)
2000 {
2001 struct btrfs_extent_inline_ref *iref;
2002 int ret;
2003
2004 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
2005 bytenr, num_bytes, parent,
2006 root_objectid, owner, offset, 1);
2007 if (ret == 0) {
2008 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
2009 update_inline_extent_backref(fs_info, path, iref,
2010 refs_to_add, extent_op, NULL);
2011 } else if (ret == -ENOENT) {
2012 setup_inline_extent_backref(fs_info, path, iref, parent,
2013 root_objectid, owner, offset,
2014 refs_to_add, extent_op);
2015 ret = 0;
2016 }
2017 return ret;
2018 }
2019
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)2020 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2021 struct btrfs_fs_info *fs_info,
2022 struct btrfs_path *path,
2023 u64 bytenr, u64 parent, u64 root_objectid,
2024 u64 owner, u64 offset, int refs_to_add)
2025 {
2026 int ret;
2027 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2028 BUG_ON(refs_to_add != 1);
2029 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2030 parent, root_objectid);
2031 } else {
2032 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2033 parent, root_objectid,
2034 owner, offset, refs_to_add);
2035 }
2036 return ret;
2037 }
2038
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)2039 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2040 struct btrfs_fs_info *fs_info,
2041 struct btrfs_path *path,
2042 struct btrfs_extent_inline_ref *iref,
2043 int refs_to_drop, int is_data, int *last_ref)
2044 {
2045 int ret = 0;
2046
2047 BUG_ON(!is_data && refs_to_drop != 1);
2048 if (iref) {
2049 update_inline_extent_backref(fs_info, path, iref,
2050 -refs_to_drop, NULL, last_ref);
2051 } else if (is_data) {
2052 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2053 last_ref);
2054 } else {
2055 *last_ref = 1;
2056 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2057 }
2058 return ret;
2059 }
2060
2061 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)2062 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2063 u64 *discarded_bytes)
2064 {
2065 int j, ret = 0;
2066 u64 bytes_left, end;
2067 u64 aligned_start = ALIGN(start, 1 << 9);
2068
2069 if (WARN_ON(start != aligned_start)) {
2070 len -= aligned_start - start;
2071 len = round_down(len, 1 << 9);
2072 start = aligned_start;
2073 }
2074
2075 *discarded_bytes = 0;
2076
2077 if (!len)
2078 return 0;
2079
2080 end = start + len;
2081 bytes_left = len;
2082
2083 /* Skip any superblocks on this device. */
2084 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2085 u64 sb_start = btrfs_sb_offset(j);
2086 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2087 u64 size = sb_start - start;
2088
2089 if (!in_range(sb_start, start, bytes_left) &&
2090 !in_range(sb_end, start, bytes_left) &&
2091 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2092 continue;
2093
2094 /*
2095 * Superblock spans beginning of range. Adjust start and
2096 * try again.
2097 */
2098 if (sb_start <= start) {
2099 start += sb_end - start;
2100 if (start > end) {
2101 bytes_left = 0;
2102 break;
2103 }
2104 bytes_left = end - start;
2105 continue;
2106 }
2107
2108 if (size) {
2109 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2110 GFP_NOFS, 0);
2111 if (!ret)
2112 *discarded_bytes += size;
2113 else if (ret != -EOPNOTSUPP)
2114 return ret;
2115 }
2116
2117 start = sb_end;
2118 if (start > end) {
2119 bytes_left = 0;
2120 break;
2121 }
2122 bytes_left = end - start;
2123 }
2124
2125 if (bytes_left) {
2126 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2127 GFP_NOFS, 0);
2128 if (!ret)
2129 *discarded_bytes += bytes_left;
2130 }
2131 return ret;
2132 }
2133
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)2134 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2135 u64 num_bytes, u64 *actual_bytes)
2136 {
2137 int ret;
2138 u64 discarded_bytes = 0;
2139 struct btrfs_bio *bbio = NULL;
2140
2141
2142 /*
2143 * Avoid races with device replace and make sure our bbio has devices
2144 * associated to its stripes that don't go away while we are discarding.
2145 */
2146 btrfs_bio_counter_inc_blocked(fs_info);
2147 /* Tell the block device(s) that the sectors can be discarded */
2148 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2149 &bbio, 0);
2150 /* Error condition is -ENOMEM */
2151 if (!ret) {
2152 struct btrfs_bio_stripe *stripe = bbio->stripes;
2153 int i;
2154
2155
2156 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2157 u64 bytes;
2158 if (!stripe->dev->can_discard)
2159 continue;
2160
2161 ret = btrfs_issue_discard(stripe->dev->bdev,
2162 stripe->physical,
2163 stripe->length,
2164 &bytes);
2165 if (!ret)
2166 discarded_bytes += bytes;
2167 else if (ret != -EOPNOTSUPP)
2168 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2169
2170 /*
2171 * Just in case we get back EOPNOTSUPP for some reason,
2172 * just ignore the return value so we don't screw up
2173 * people calling discard_extent.
2174 */
2175 ret = 0;
2176 }
2177 btrfs_put_bbio(bbio);
2178 }
2179 btrfs_bio_counter_dec(fs_info);
2180
2181 if (actual_bytes)
2182 *actual_bytes = discarded_bytes;
2183
2184
2185 if (ret == -EOPNOTSUPP)
2186 ret = 0;
2187 return ret;
2188 }
2189
2190 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2191 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2192 struct btrfs_fs_info *fs_info,
2193 u64 bytenr, u64 num_bytes, u64 parent,
2194 u64 root_objectid, u64 owner, u64 offset)
2195 {
2196 int old_ref_mod, new_ref_mod;
2197 int ret;
2198
2199 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2200 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2201
2202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2203 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2204 num_bytes, parent,
2205 root_objectid, (int)owner,
2206 BTRFS_ADD_DELAYED_REF, NULL,
2207 &old_ref_mod, &new_ref_mod);
2208 } else {
2209 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2210 num_bytes, parent,
2211 root_objectid, owner, offset,
2212 0, BTRFS_ADD_DELAYED_REF,
2213 &old_ref_mod, &new_ref_mod);
2214 }
2215
2216 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2217 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2218
2219 return ret;
2220 }
2221
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2222 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2223 struct btrfs_fs_info *fs_info,
2224 struct btrfs_delayed_ref_node *node,
2225 u64 parent, u64 root_objectid,
2226 u64 owner, u64 offset, int refs_to_add,
2227 struct btrfs_delayed_extent_op *extent_op)
2228 {
2229 struct btrfs_path *path;
2230 struct extent_buffer *leaf;
2231 struct btrfs_extent_item *item;
2232 struct btrfs_key key;
2233 u64 bytenr = node->bytenr;
2234 u64 num_bytes = node->num_bytes;
2235 u64 refs;
2236 int ret;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 path->reada = READA_FORWARD;
2243 path->leave_spinning = 1;
2244 /* this will setup the path even if it fails to insert the back ref */
2245 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2246 num_bytes, parent, root_objectid,
2247 owner, offset,
2248 refs_to_add, extent_op);
2249 if ((ret < 0 && ret != -EAGAIN) || !ret)
2250 goto out;
2251
2252 /*
2253 * Ok we had -EAGAIN which means we didn't have space to insert and
2254 * inline extent ref, so just update the reference count and add a
2255 * normal backref.
2256 */
2257 leaf = path->nodes[0];
2258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2259 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2260 refs = btrfs_extent_refs(leaf, item);
2261 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2262 if (extent_op)
2263 __run_delayed_extent_op(extent_op, leaf, item);
2264
2265 btrfs_mark_buffer_dirty(leaf);
2266 btrfs_release_path(path);
2267
2268 path->reada = READA_FORWARD;
2269 path->leave_spinning = 1;
2270 /* now insert the actual backref */
2271 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2272 root_objectid, owner, offset, refs_to_add);
2273 if (ret)
2274 btrfs_abort_transaction(trans, ret);
2275 out:
2276 btrfs_free_path(path);
2277 return ret;
2278 }
2279
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2280 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2281 struct btrfs_fs_info *fs_info,
2282 struct btrfs_delayed_ref_node *node,
2283 struct btrfs_delayed_extent_op *extent_op,
2284 int insert_reserved)
2285 {
2286 int ret = 0;
2287 struct btrfs_delayed_data_ref *ref;
2288 struct btrfs_key ins;
2289 u64 parent = 0;
2290 u64 ref_root = 0;
2291 u64 flags = 0;
2292
2293 ins.objectid = node->bytenr;
2294 ins.offset = node->num_bytes;
2295 ins.type = BTRFS_EXTENT_ITEM_KEY;
2296
2297 ref = btrfs_delayed_node_to_data_ref(node);
2298 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2299
2300 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2301 parent = ref->parent;
2302 ref_root = ref->root;
2303
2304 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2305 if (extent_op)
2306 flags |= extent_op->flags_to_set;
2307 ret = alloc_reserved_file_extent(trans, fs_info,
2308 parent, ref_root, flags,
2309 ref->objectid, ref->offset,
2310 &ins, node->ref_mod);
2311 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2312 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2313 ref_root, ref->objectid,
2314 ref->offset, node->ref_mod,
2315 extent_op);
2316 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2317 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2318 ref_root, ref->objectid,
2319 ref->offset, node->ref_mod,
2320 extent_op);
2321 } else {
2322 BUG();
2323 }
2324 return ret;
2325 }
2326
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2327 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2328 struct extent_buffer *leaf,
2329 struct btrfs_extent_item *ei)
2330 {
2331 u64 flags = btrfs_extent_flags(leaf, ei);
2332 if (extent_op->update_flags) {
2333 flags |= extent_op->flags_to_set;
2334 btrfs_set_extent_flags(leaf, ei, flags);
2335 }
2336
2337 if (extent_op->update_key) {
2338 struct btrfs_tree_block_info *bi;
2339 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2340 bi = (struct btrfs_tree_block_info *)(ei + 1);
2341 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2342 }
2343 }
2344
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2345 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2346 struct btrfs_fs_info *fs_info,
2347 struct btrfs_delayed_ref_node *node,
2348 struct btrfs_delayed_extent_op *extent_op)
2349 {
2350 struct btrfs_key key;
2351 struct btrfs_path *path;
2352 struct btrfs_extent_item *ei;
2353 struct extent_buffer *leaf;
2354 u32 item_size;
2355 int ret;
2356 int err = 0;
2357 int metadata = !extent_op->is_data;
2358
2359 if (trans->aborted)
2360 return 0;
2361
2362 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2363 metadata = 0;
2364
2365 path = btrfs_alloc_path();
2366 if (!path)
2367 return -ENOMEM;
2368
2369 key.objectid = node->bytenr;
2370
2371 if (metadata) {
2372 key.type = BTRFS_METADATA_ITEM_KEY;
2373 key.offset = extent_op->level;
2374 } else {
2375 key.type = BTRFS_EXTENT_ITEM_KEY;
2376 key.offset = node->num_bytes;
2377 }
2378
2379 again:
2380 path->reada = READA_FORWARD;
2381 path->leave_spinning = 1;
2382 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2383 if (ret < 0) {
2384 err = ret;
2385 goto out;
2386 }
2387 if (ret > 0) {
2388 if (metadata) {
2389 if (path->slots[0] > 0) {
2390 path->slots[0]--;
2391 btrfs_item_key_to_cpu(path->nodes[0], &key,
2392 path->slots[0]);
2393 if (key.objectid == node->bytenr &&
2394 key.type == BTRFS_EXTENT_ITEM_KEY &&
2395 key.offset == node->num_bytes)
2396 ret = 0;
2397 }
2398 if (ret > 0) {
2399 btrfs_release_path(path);
2400 metadata = 0;
2401
2402 key.objectid = node->bytenr;
2403 key.offset = node->num_bytes;
2404 key.type = BTRFS_EXTENT_ITEM_KEY;
2405 goto again;
2406 }
2407 } else {
2408 err = -EIO;
2409 goto out;
2410 }
2411 }
2412
2413 leaf = path->nodes[0];
2414 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2415 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2416 if (item_size < sizeof(*ei)) {
2417 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2418 if (ret < 0) {
2419 err = ret;
2420 goto out;
2421 }
2422 leaf = path->nodes[0];
2423 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2424 }
2425 #endif
2426 BUG_ON(item_size < sizeof(*ei));
2427 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2428 __run_delayed_extent_op(extent_op, leaf, ei);
2429
2430 btrfs_mark_buffer_dirty(leaf);
2431 out:
2432 btrfs_free_path(path);
2433 return err;
2434 }
2435
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2436 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2437 struct btrfs_fs_info *fs_info,
2438 struct btrfs_delayed_ref_node *node,
2439 struct btrfs_delayed_extent_op *extent_op,
2440 int insert_reserved)
2441 {
2442 int ret = 0;
2443 struct btrfs_delayed_tree_ref *ref;
2444 struct btrfs_key ins;
2445 u64 parent = 0;
2446 u64 ref_root = 0;
2447 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2448
2449 ref = btrfs_delayed_node_to_tree_ref(node);
2450 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2451
2452 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2453 parent = ref->parent;
2454 ref_root = ref->root;
2455
2456 ins.objectid = node->bytenr;
2457 if (skinny_metadata) {
2458 ins.offset = ref->level;
2459 ins.type = BTRFS_METADATA_ITEM_KEY;
2460 } else {
2461 ins.offset = node->num_bytes;
2462 ins.type = BTRFS_EXTENT_ITEM_KEY;
2463 }
2464
2465 if (node->ref_mod != 1) {
2466 btrfs_err(fs_info,
2467 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2468 node->bytenr, node->ref_mod, node->action, ref_root,
2469 parent);
2470 return -EIO;
2471 }
2472 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2473 BUG_ON(!extent_op || !extent_op->update_flags);
2474 ret = alloc_reserved_tree_block(trans, fs_info,
2475 parent, ref_root,
2476 extent_op->flags_to_set,
2477 &extent_op->key,
2478 ref->level, &ins);
2479 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2480 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2481 parent, ref_root,
2482 ref->level, 0, 1,
2483 extent_op);
2484 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2485 ret = __btrfs_free_extent(trans, fs_info, node,
2486 parent, ref_root,
2487 ref->level, 0, 1, extent_op);
2488 } else {
2489 BUG();
2490 }
2491 return ret;
2492 }
2493
2494 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2495 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2496 struct btrfs_fs_info *fs_info,
2497 struct btrfs_delayed_ref_node *node,
2498 struct btrfs_delayed_extent_op *extent_op,
2499 int insert_reserved)
2500 {
2501 int ret = 0;
2502
2503 if (trans->aborted) {
2504 if (insert_reserved)
2505 btrfs_pin_extent(fs_info, node->bytenr,
2506 node->num_bytes, 1);
2507 return 0;
2508 }
2509
2510 if (btrfs_delayed_ref_is_head(node)) {
2511 struct btrfs_delayed_ref_head *head;
2512 /*
2513 * we've hit the end of the chain and we were supposed
2514 * to insert this extent into the tree. But, it got
2515 * deleted before we ever needed to insert it, so all
2516 * we have to do is clean up the accounting
2517 */
2518 BUG_ON(extent_op);
2519 head = btrfs_delayed_node_to_head(node);
2520 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2521
2522 if (head->total_ref_mod < 0) {
2523 struct btrfs_block_group_cache *cache;
2524
2525 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2526 ASSERT(cache);
2527 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2528 -node->num_bytes);
2529 btrfs_put_block_group(cache);
2530 }
2531
2532 if (insert_reserved) {
2533 btrfs_pin_extent(fs_info, node->bytenr,
2534 node->num_bytes, 1);
2535 if (head->is_data) {
2536 ret = btrfs_del_csums(trans, fs_info,
2537 node->bytenr,
2538 node->num_bytes);
2539 }
2540 }
2541
2542 /* Also free its reserved qgroup space */
2543 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2544 head->qgroup_reserved);
2545 return ret;
2546 }
2547
2548 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2549 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2550 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2551 insert_reserved);
2552 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2553 node->type == BTRFS_SHARED_DATA_REF_KEY)
2554 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2555 insert_reserved);
2556 else
2557 BUG();
2558 return ret;
2559 }
2560
2561 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2562 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2563 {
2564 struct btrfs_delayed_ref_node *ref;
2565
2566 if (list_empty(&head->ref_list))
2567 return NULL;
2568
2569 /*
2570 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2571 * This is to prevent a ref count from going down to zero, which deletes
2572 * the extent item from the extent tree, when there still are references
2573 * to add, which would fail because they would not find the extent item.
2574 */
2575 if (!list_empty(&head->ref_add_list))
2576 return list_first_entry(&head->ref_add_list,
2577 struct btrfs_delayed_ref_node, add_list);
2578
2579 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2580 list);
2581 ASSERT(list_empty(&ref->add_list));
2582 return ref;
2583 }
2584
2585 /*
2586 * Returns 0 on success or if called with an already aborted transaction.
2587 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2588 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,unsigned long nr)2589 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2590 struct btrfs_fs_info *fs_info,
2591 unsigned long nr)
2592 {
2593 struct btrfs_delayed_ref_root *delayed_refs;
2594 struct btrfs_delayed_ref_node *ref;
2595 struct btrfs_delayed_ref_head *locked_ref = NULL;
2596 struct btrfs_delayed_extent_op *extent_op;
2597 ktime_t start = ktime_get();
2598 int ret;
2599 unsigned long count = 0;
2600 unsigned long actual_count = 0;
2601 int must_insert_reserved = 0;
2602
2603 delayed_refs = &trans->transaction->delayed_refs;
2604 while (1) {
2605 if (!locked_ref) {
2606 if (count >= nr)
2607 break;
2608
2609 spin_lock(&delayed_refs->lock);
2610 locked_ref = btrfs_select_ref_head(trans);
2611 if (!locked_ref) {
2612 spin_unlock(&delayed_refs->lock);
2613 break;
2614 }
2615
2616 /* grab the lock that says we are going to process
2617 * all the refs for this head */
2618 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2619 spin_unlock(&delayed_refs->lock);
2620 /*
2621 * we may have dropped the spin lock to get the head
2622 * mutex lock, and that might have given someone else
2623 * time to free the head. If that's true, it has been
2624 * removed from our list and we can move on.
2625 */
2626 if (ret == -EAGAIN) {
2627 locked_ref = NULL;
2628 count++;
2629 continue;
2630 }
2631 }
2632
2633 /*
2634 * We need to try and merge add/drops of the same ref since we
2635 * can run into issues with relocate dropping the implicit ref
2636 * and then it being added back again before the drop can
2637 * finish. If we merged anything we need to re-loop so we can
2638 * get a good ref.
2639 * Or we can get node references of the same type that weren't
2640 * merged when created due to bumps in the tree mod seq, and
2641 * we need to merge them to prevent adding an inline extent
2642 * backref before dropping it (triggering a BUG_ON at
2643 * insert_inline_extent_backref()).
2644 */
2645 spin_lock(&locked_ref->lock);
2646 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2647 locked_ref);
2648
2649 /*
2650 * locked_ref is the head node, so we have to go one
2651 * node back for any delayed ref updates
2652 */
2653 ref = select_delayed_ref(locked_ref);
2654
2655 if (ref && ref->seq &&
2656 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2657 spin_unlock(&locked_ref->lock);
2658 spin_lock(&delayed_refs->lock);
2659 locked_ref->processing = 0;
2660 delayed_refs->num_heads_ready++;
2661 spin_unlock(&delayed_refs->lock);
2662 btrfs_delayed_ref_unlock(locked_ref);
2663 locked_ref = NULL;
2664 cond_resched();
2665 count++;
2666 continue;
2667 }
2668
2669 /*
2670 * record the must insert reserved flag before we
2671 * drop the spin lock.
2672 */
2673 must_insert_reserved = locked_ref->must_insert_reserved;
2674 locked_ref->must_insert_reserved = 0;
2675
2676 extent_op = locked_ref->extent_op;
2677 locked_ref->extent_op = NULL;
2678
2679 if (!ref) {
2680
2681
2682 /* All delayed refs have been processed, Go ahead
2683 * and send the head node to run_one_delayed_ref,
2684 * so that any accounting fixes can happen
2685 */
2686 ref = &locked_ref->node;
2687
2688 if (extent_op && must_insert_reserved) {
2689 btrfs_free_delayed_extent_op(extent_op);
2690 extent_op = NULL;
2691 }
2692
2693 if (extent_op) {
2694 spin_unlock(&locked_ref->lock);
2695 ret = run_delayed_extent_op(trans, fs_info,
2696 ref, extent_op);
2697 btrfs_free_delayed_extent_op(extent_op);
2698
2699 if (ret) {
2700 /*
2701 * Need to reset must_insert_reserved if
2702 * there was an error so the abort stuff
2703 * can cleanup the reserved space
2704 * properly.
2705 */
2706 if (must_insert_reserved)
2707 locked_ref->must_insert_reserved = 1;
2708 spin_lock(&delayed_refs->lock);
2709 locked_ref->processing = 0;
2710 delayed_refs->num_heads_ready++;
2711 spin_unlock(&delayed_refs->lock);
2712 btrfs_debug(fs_info,
2713 "run_delayed_extent_op returned %d",
2714 ret);
2715 btrfs_delayed_ref_unlock(locked_ref);
2716 return ret;
2717 }
2718 continue;
2719 }
2720
2721 /*
2722 * Need to drop our head ref lock and re-acquire the
2723 * delayed ref lock and then re-check to make sure
2724 * nobody got added.
2725 */
2726 spin_unlock(&locked_ref->lock);
2727 spin_lock(&delayed_refs->lock);
2728 spin_lock(&locked_ref->lock);
2729 if (!list_empty(&locked_ref->ref_list) ||
2730 locked_ref->extent_op) {
2731 spin_unlock(&locked_ref->lock);
2732 spin_unlock(&delayed_refs->lock);
2733 continue;
2734 }
2735 ref->in_tree = 0;
2736 delayed_refs->num_heads--;
2737 rb_erase(&locked_ref->href_node,
2738 &delayed_refs->href_root);
2739 spin_unlock(&delayed_refs->lock);
2740 } else {
2741 actual_count++;
2742 ref->in_tree = 0;
2743 list_del(&ref->list);
2744 if (!list_empty(&ref->add_list))
2745 list_del(&ref->add_list);
2746 }
2747 atomic_dec(&delayed_refs->num_entries);
2748
2749 if (!btrfs_delayed_ref_is_head(ref)) {
2750 /*
2751 * when we play the delayed ref, also correct the
2752 * ref_mod on head
2753 */
2754 switch (ref->action) {
2755 case BTRFS_ADD_DELAYED_REF:
2756 case BTRFS_ADD_DELAYED_EXTENT:
2757 locked_ref->node.ref_mod -= ref->ref_mod;
2758 break;
2759 case BTRFS_DROP_DELAYED_REF:
2760 locked_ref->node.ref_mod += ref->ref_mod;
2761 break;
2762 default:
2763 WARN_ON(1);
2764 }
2765 }
2766 spin_unlock(&locked_ref->lock);
2767
2768 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2769 must_insert_reserved);
2770
2771 btrfs_free_delayed_extent_op(extent_op);
2772 if (ret) {
2773 spin_lock(&delayed_refs->lock);
2774 locked_ref->processing = 0;
2775 delayed_refs->num_heads_ready++;
2776 spin_unlock(&delayed_refs->lock);
2777 btrfs_delayed_ref_unlock(locked_ref);
2778 btrfs_put_delayed_ref(ref);
2779 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2780 ret);
2781 return ret;
2782 }
2783
2784 /*
2785 * If this node is a head, that means all the refs in this head
2786 * have been dealt with, and we will pick the next head to deal
2787 * with, so we must unlock the head and drop it from the cluster
2788 * list before we release it.
2789 */
2790 if (btrfs_delayed_ref_is_head(ref)) {
2791 if (locked_ref->is_data &&
2792 locked_ref->total_ref_mod < 0) {
2793 spin_lock(&delayed_refs->lock);
2794 delayed_refs->pending_csums -= ref->num_bytes;
2795 spin_unlock(&delayed_refs->lock);
2796 }
2797 btrfs_delayed_ref_unlock(locked_ref);
2798 locked_ref = NULL;
2799 }
2800 btrfs_put_delayed_ref(ref);
2801 count++;
2802 cond_resched();
2803 }
2804
2805 /*
2806 * We don't want to include ref heads since we can have empty ref heads
2807 * and those will drastically skew our runtime down since we just do
2808 * accounting, no actual extent tree updates.
2809 */
2810 if (actual_count > 0) {
2811 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2812 u64 avg;
2813
2814 /*
2815 * We weigh the current average higher than our current runtime
2816 * to avoid large swings in the average.
2817 */
2818 spin_lock(&delayed_refs->lock);
2819 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2820 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2821 spin_unlock(&delayed_refs->lock);
2822 }
2823 return 0;
2824 }
2825
2826 #ifdef SCRAMBLE_DELAYED_REFS
2827 /*
2828 * Normally delayed refs get processed in ascending bytenr order. This
2829 * correlates in most cases to the order added. To expose dependencies on this
2830 * order, we start to process the tree in the middle instead of the beginning
2831 */
find_middle(struct rb_root * root)2832 static u64 find_middle(struct rb_root *root)
2833 {
2834 struct rb_node *n = root->rb_node;
2835 struct btrfs_delayed_ref_node *entry;
2836 int alt = 1;
2837 u64 middle;
2838 u64 first = 0, last = 0;
2839
2840 n = rb_first(root);
2841 if (n) {
2842 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2843 first = entry->bytenr;
2844 }
2845 n = rb_last(root);
2846 if (n) {
2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 last = entry->bytenr;
2849 }
2850 n = root->rb_node;
2851
2852 while (n) {
2853 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2854 WARN_ON(!entry->in_tree);
2855
2856 middle = entry->bytenr;
2857
2858 if (alt)
2859 n = n->rb_left;
2860 else
2861 n = n->rb_right;
2862
2863 alt = 1 - alt;
2864 }
2865 return middle;
2866 }
2867 #endif
2868
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2869 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2870 {
2871 u64 num_bytes;
2872
2873 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2874 sizeof(struct btrfs_extent_inline_ref));
2875 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2876 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2877
2878 /*
2879 * We don't ever fill up leaves all the way so multiply by 2 just to be
2880 * closer to what we're really going to want to use.
2881 */
2882 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2883 }
2884
2885 /*
2886 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2887 * would require to store the csums for that many bytes.
2888 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2889 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2890 {
2891 u64 csum_size;
2892 u64 num_csums_per_leaf;
2893 u64 num_csums;
2894
2895 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2896 num_csums_per_leaf = div64_u64(csum_size,
2897 (u64)btrfs_super_csum_size(fs_info->super_copy));
2898 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2899 num_csums += num_csums_per_leaf - 1;
2900 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2901 return num_csums;
2902 }
2903
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2904 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2905 struct btrfs_fs_info *fs_info)
2906 {
2907 struct btrfs_block_rsv *global_rsv;
2908 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2909 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2910 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2911 u64 num_bytes, num_dirty_bgs_bytes;
2912 int ret = 0;
2913
2914 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2915 num_heads = heads_to_leaves(fs_info, num_heads);
2916 if (num_heads > 1)
2917 num_bytes += (num_heads - 1) * fs_info->nodesize;
2918 num_bytes <<= 1;
2919 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2920 fs_info->nodesize;
2921 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2922 num_dirty_bgs);
2923 global_rsv = &fs_info->global_block_rsv;
2924
2925 /*
2926 * If we can't allocate any more chunks lets make sure we have _lots_ of
2927 * wiggle room since running delayed refs can create more delayed refs.
2928 */
2929 if (global_rsv->space_info->full) {
2930 num_dirty_bgs_bytes <<= 1;
2931 num_bytes <<= 1;
2932 }
2933
2934 spin_lock(&global_rsv->lock);
2935 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2936 ret = 1;
2937 spin_unlock(&global_rsv->lock);
2938 return ret;
2939 }
2940
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2941 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2942 struct btrfs_fs_info *fs_info)
2943 {
2944 u64 num_entries =
2945 atomic_read(&trans->transaction->delayed_refs.num_entries);
2946 u64 avg_runtime;
2947 u64 val;
2948
2949 smp_mb();
2950 avg_runtime = fs_info->avg_delayed_ref_runtime;
2951 val = num_entries * avg_runtime;
2952 if (val >= NSEC_PER_SEC)
2953 return 1;
2954 if (val >= NSEC_PER_SEC / 2)
2955 return 2;
2956
2957 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2958 }
2959
2960 struct async_delayed_refs {
2961 struct btrfs_root *root;
2962 u64 transid;
2963 int count;
2964 int error;
2965 int sync;
2966 struct completion wait;
2967 struct btrfs_work work;
2968 };
2969
2970 static inline struct async_delayed_refs *
to_async_delayed_refs(struct btrfs_work * work)2971 to_async_delayed_refs(struct btrfs_work *work)
2972 {
2973 return container_of(work, struct async_delayed_refs, work);
2974 }
2975
delayed_ref_async_start(struct btrfs_work * work)2976 static void delayed_ref_async_start(struct btrfs_work *work)
2977 {
2978 struct async_delayed_refs *async = to_async_delayed_refs(work);
2979 struct btrfs_trans_handle *trans;
2980 struct btrfs_fs_info *fs_info = async->root->fs_info;
2981 int ret;
2982
2983 /* if the commit is already started, we don't need to wait here */
2984 if (btrfs_transaction_blocked(fs_info))
2985 goto done;
2986
2987 trans = btrfs_join_transaction(async->root);
2988 if (IS_ERR(trans)) {
2989 async->error = PTR_ERR(trans);
2990 goto done;
2991 }
2992
2993 /*
2994 * trans->sync means that when we call end_transaction, we won't
2995 * wait on delayed refs
2996 */
2997 trans->sync = true;
2998
2999 /* Don't bother flushing if we got into a different transaction */
3000 if (trans->transid > async->transid)
3001 goto end;
3002
3003 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
3004 if (ret)
3005 async->error = ret;
3006 end:
3007 ret = btrfs_end_transaction(trans);
3008 if (ret && !async->error)
3009 async->error = ret;
3010 done:
3011 if (async->sync)
3012 complete(&async->wait);
3013 else
3014 kfree(async);
3015 }
3016
btrfs_async_run_delayed_refs(struct btrfs_fs_info * fs_info,unsigned long count,u64 transid,int wait)3017 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3018 unsigned long count, u64 transid, int wait)
3019 {
3020 struct async_delayed_refs *async;
3021 int ret;
3022
3023 async = kmalloc(sizeof(*async), GFP_NOFS);
3024 if (!async)
3025 return -ENOMEM;
3026
3027 async->root = fs_info->tree_root;
3028 async->count = count;
3029 async->error = 0;
3030 async->transid = transid;
3031 if (wait)
3032 async->sync = 1;
3033 else
3034 async->sync = 0;
3035 init_completion(&async->wait);
3036
3037 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3038 delayed_ref_async_start, NULL, NULL);
3039
3040 btrfs_queue_work(fs_info->extent_workers, &async->work);
3041
3042 if (wait) {
3043 wait_for_completion(&async->wait);
3044 ret = async->error;
3045 kfree(async);
3046 return ret;
3047 }
3048 return 0;
3049 }
3050
3051 /*
3052 * this starts processing the delayed reference count updates and
3053 * extent insertions we have queued up so far. count can be
3054 * 0, which means to process everything in the tree at the start
3055 * of the run (but not newly added entries), or it can be some target
3056 * number you'd like to process.
3057 *
3058 * Returns 0 on success or if called with an aborted transaction
3059 * Returns <0 on error and aborts the transaction
3060 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,unsigned long count)3061 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3062 struct btrfs_fs_info *fs_info, unsigned long count)
3063 {
3064 struct rb_node *node;
3065 struct btrfs_delayed_ref_root *delayed_refs;
3066 struct btrfs_delayed_ref_head *head;
3067 int ret;
3068 int run_all = count == (unsigned long)-1;
3069 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3070
3071 /* We'll clean this up in btrfs_cleanup_transaction */
3072 if (trans->aborted)
3073 return 0;
3074
3075 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3076 return 0;
3077
3078 delayed_refs = &trans->transaction->delayed_refs;
3079 if (count == 0)
3080 count = atomic_read(&delayed_refs->num_entries) * 2;
3081
3082 again:
3083 #ifdef SCRAMBLE_DELAYED_REFS
3084 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3085 #endif
3086 trans->can_flush_pending_bgs = false;
3087 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3088 if (ret < 0) {
3089 btrfs_abort_transaction(trans, ret);
3090 return ret;
3091 }
3092
3093 if (run_all) {
3094 if (!list_empty(&trans->new_bgs))
3095 btrfs_create_pending_block_groups(trans, fs_info);
3096
3097 spin_lock(&delayed_refs->lock);
3098 node = rb_first(&delayed_refs->href_root);
3099 if (!node) {
3100 spin_unlock(&delayed_refs->lock);
3101 goto out;
3102 }
3103
3104 while (node) {
3105 head = rb_entry(node, struct btrfs_delayed_ref_head,
3106 href_node);
3107 if (btrfs_delayed_ref_is_head(&head->node)) {
3108 struct btrfs_delayed_ref_node *ref;
3109
3110 ref = &head->node;
3111 refcount_inc(&ref->refs);
3112
3113 spin_unlock(&delayed_refs->lock);
3114 /*
3115 * Mutex was contended, block until it's
3116 * released and try again
3117 */
3118 mutex_lock(&head->mutex);
3119 mutex_unlock(&head->mutex);
3120
3121 btrfs_put_delayed_ref(ref);
3122 cond_resched();
3123 goto again;
3124 } else {
3125 WARN_ON(1);
3126 }
3127 node = rb_next(node);
3128 }
3129 spin_unlock(&delayed_refs->lock);
3130 cond_resched();
3131 goto again;
3132 }
3133 out:
3134 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3135 return 0;
3136 }
3137
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)3138 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3139 struct btrfs_fs_info *fs_info,
3140 u64 bytenr, u64 num_bytes, u64 flags,
3141 int level, int is_data)
3142 {
3143 struct btrfs_delayed_extent_op *extent_op;
3144 int ret;
3145
3146 extent_op = btrfs_alloc_delayed_extent_op();
3147 if (!extent_op)
3148 return -ENOMEM;
3149
3150 extent_op->flags_to_set = flags;
3151 extent_op->update_flags = true;
3152 extent_op->update_key = false;
3153 extent_op->is_data = is_data ? true : false;
3154 extent_op->level = level;
3155
3156 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3157 num_bytes, extent_op);
3158 if (ret)
3159 btrfs_free_delayed_extent_op(extent_op);
3160 return ret;
3161 }
3162
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3163 static noinline int check_delayed_ref(struct btrfs_root *root,
3164 struct btrfs_path *path,
3165 u64 objectid, u64 offset, u64 bytenr)
3166 {
3167 struct btrfs_delayed_ref_head *head;
3168 struct btrfs_delayed_ref_node *ref;
3169 struct btrfs_delayed_data_ref *data_ref;
3170 struct btrfs_delayed_ref_root *delayed_refs;
3171 struct btrfs_transaction *cur_trans;
3172 int ret = 0;
3173
3174 spin_lock(&root->fs_info->trans_lock);
3175 cur_trans = root->fs_info->running_transaction;
3176 if (cur_trans)
3177 refcount_inc(&cur_trans->use_count);
3178 spin_unlock(&root->fs_info->trans_lock);
3179 if (!cur_trans)
3180 return 0;
3181
3182 delayed_refs = &cur_trans->delayed_refs;
3183 spin_lock(&delayed_refs->lock);
3184 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3185 if (!head) {
3186 spin_unlock(&delayed_refs->lock);
3187 btrfs_put_transaction(cur_trans);
3188 return 0;
3189 }
3190
3191 if (!mutex_trylock(&head->mutex)) {
3192 refcount_inc(&head->node.refs);
3193 spin_unlock(&delayed_refs->lock);
3194
3195 btrfs_release_path(path);
3196
3197 /*
3198 * Mutex was contended, block until it's released and let
3199 * caller try again
3200 */
3201 mutex_lock(&head->mutex);
3202 mutex_unlock(&head->mutex);
3203 btrfs_put_delayed_ref(&head->node);
3204 btrfs_put_transaction(cur_trans);
3205 return -EAGAIN;
3206 }
3207 spin_unlock(&delayed_refs->lock);
3208
3209 spin_lock(&head->lock);
3210 list_for_each_entry(ref, &head->ref_list, list) {
3211 /* If it's a shared ref we know a cross reference exists */
3212 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3213 ret = 1;
3214 break;
3215 }
3216
3217 data_ref = btrfs_delayed_node_to_data_ref(ref);
3218
3219 /*
3220 * If our ref doesn't match the one we're currently looking at
3221 * then we have a cross reference.
3222 */
3223 if (data_ref->root != root->root_key.objectid ||
3224 data_ref->objectid != objectid ||
3225 data_ref->offset != offset) {
3226 ret = 1;
3227 break;
3228 }
3229 }
3230 spin_unlock(&head->lock);
3231 mutex_unlock(&head->mutex);
3232 btrfs_put_transaction(cur_trans);
3233 return ret;
3234 }
3235
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3236 static noinline int check_committed_ref(struct btrfs_root *root,
3237 struct btrfs_path *path,
3238 u64 objectid, u64 offset, u64 bytenr)
3239 {
3240 struct btrfs_fs_info *fs_info = root->fs_info;
3241 struct btrfs_root *extent_root = fs_info->extent_root;
3242 struct extent_buffer *leaf;
3243 struct btrfs_extent_data_ref *ref;
3244 struct btrfs_extent_inline_ref *iref;
3245 struct btrfs_extent_item *ei;
3246 struct btrfs_key key;
3247 u32 item_size;
3248 int type;
3249 int ret;
3250
3251 key.objectid = bytenr;
3252 key.offset = (u64)-1;
3253 key.type = BTRFS_EXTENT_ITEM_KEY;
3254
3255 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3256 if (ret < 0)
3257 goto out;
3258 BUG_ON(ret == 0); /* Corruption */
3259
3260 ret = -ENOENT;
3261 if (path->slots[0] == 0)
3262 goto out;
3263
3264 path->slots[0]--;
3265 leaf = path->nodes[0];
3266 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3267
3268 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3269 goto out;
3270
3271 ret = 1;
3272 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3273 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3274 if (item_size < sizeof(*ei)) {
3275 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3276 goto out;
3277 }
3278 #endif
3279 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3280
3281 if (item_size != sizeof(*ei) +
3282 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3283 goto out;
3284
3285 if (btrfs_extent_generation(leaf, ei) <=
3286 btrfs_root_last_snapshot(&root->root_item))
3287 goto out;
3288
3289 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3290
3291 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3292 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3293 goto out;
3294
3295 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3296 if (btrfs_extent_refs(leaf, ei) !=
3297 btrfs_extent_data_ref_count(leaf, ref) ||
3298 btrfs_extent_data_ref_root(leaf, ref) !=
3299 root->root_key.objectid ||
3300 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3301 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3302 goto out;
3303
3304 ret = 0;
3305 out:
3306 return ret;
3307 }
3308
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3309 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3310 u64 bytenr)
3311 {
3312 struct btrfs_path *path;
3313 int ret;
3314 int ret2;
3315
3316 path = btrfs_alloc_path();
3317 if (!path)
3318 return -ENOENT;
3319
3320 do {
3321 ret = check_committed_ref(root, path, objectid,
3322 offset, bytenr);
3323 if (ret && ret != -ENOENT)
3324 goto out;
3325
3326 ret2 = check_delayed_ref(root, path, objectid,
3327 offset, bytenr);
3328 } while (ret2 == -EAGAIN);
3329
3330 if (ret2 && ret2 != -ENOENT) {
3331 ret = ret2;
3332 goto out;
3333 }
3334
3335 if (ret != -ENOENT || ret2 != -ENOENT)
3336 ret = 0;
3337 out:
3338 btrfs_free_path(path);
3339 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3340 WARN_ON(ret > 0);
3341 return ret;
3342 }
3343
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3344 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *root,
3346 struct extent_buffer *buf,
3347 int full_backref, int inc)
3348 {
3349 struct btrfs_fs_info *fs_info = root->fs_info;
3350 u64 bytenr;
3351 u64 num_bytes;
3352 u64 parent;
3353 u64 ref_root;
3354 u32 nritems;
3355 struct btrfs_key key;
3356 struct btrfs_file_extent_item *fi;
3357 int i;
3358 int level;
3359 int ret = 0;
3360 int (*process_func)(struct btrfs_trans_handle *,
3361 struct btrfs_fs_info *,
3362 u64, u64, u64, u64, u64, u64);
3363
3364
3365 if (btrfs_is_testing(fs_info))
3366 return 0;
3367
3368 ref_root = btrfs_header_owner(buf);
3369 nritems = btrfs_header_nritems(buf);
3370 level = btrfs_header_level(buf);
3371
3372 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3373 return 0;
3374
3375 if (inc)
3376 process_func = btrfs_inc_extent_ref;
3377 else
3378 process_func = btrfs_free_extent;
3379
3380 if (full_backref)
3381 parent = buf->start;
3382 else
3383 parent = 0;
3384
3385 for (i = 0; i < nritems; i++) {
3386 if (level == 0) {
3387 btrfs_item_key_to_cpu(buf, &key, i);
3388 if (key.type != BTRFS_EXTENT_DATA_KEY)
3389 continue;
3390 fi = btrfs_item_ptr(buf, i,
3391 struct btrfs_file_extent_item);
3392 if (btrfs_file_extent_type(buf, fi) ==
3393 BTRFS_FILE_EXTENT_INLINE)
3394 continue;
3395 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3396 if (bytenr == 0)
3397 continue;
3398
3399 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3400 key.offset -= btrfs_file_extent_offset(buf, fi);
3401 ret = process_func(trans, fs_info, bytenr, num_bytes,
3402 parent, ref_root, key.objectid,
3403 key.offset);
3404 if (ret)
3405 goto fail;
3406 } else {
3407 bytenr = btrfs_node_blockptr(buf, i);
3408 num_bytes = fs_info->nodesize;
3409 ret = process_func(trans, fs_info, bytenr, num_bytes,
3410 parent, ref_root, level - 1, 0);
3411 if (ret)
3412 goto fail;
3413 }
3414 }
3415 return 0;
3416 fail:
3417 return ret;
3418 }
3419
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3420 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3421 struct extent_buffer *buf, int full_backref)
3422 {
3423 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3424 }
3425
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3426 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3427 struct extent_buffer *buf, int full_backref)
3428 {
3429 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3430 }
3431
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3432 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3433 struct btrfs_fs_info *fs_info,
3434 struct btrfs_path *path,
3435 struct btrfs_block_group_cache *cache)
3436 {
3437 int ret;
3438 struct btrfs_root *extent_root = fs_info->extent_root;
3439 unsigned long bi;
3440 struct extent_buffer *leaf;
3441
3442 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3443 if (ret) {
3444 if (ret > 0)
3445 ret = -ENOENT;
3446 goto fail;
3447 }
3448
3449 leaf = path->nodes[0];
3450 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3451 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3452 btrfs_mark_buffer_dirty(leaf);
3453 fail:
3454 btrfs_release_path(path);
3455 return ret;
3456
3457 }
3458
3459 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)3460 next_block_group(struct btrfs_fs_info *fs_info,
3461 struct btrfs_block_group_cache *cache)
3462 {
3463 struct rb_node *node;
3464
3465 spin_lock(&fs_info->block_group_cache_lock);
3466
3467 /* If our block group was removed, we need a full search. */
3468 if (RB_EMPTY_NODE(&cache->cache_node)) {
3469 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3470
3471 spin_unlock(&fs_info->block_group_cache_lock);
3472 btrfs_put_block_group(cache);
3473 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3474 }
3475 node = rb_next(&cache->cache_node);
3476 btrfs_put_block_group(cache);
3477 if (node) {
3478 cache = rb_entry(node, struct btrfs_block_group_cache,
3479 cache_node);
3480 btrfs_get_block_group(cache);
3481 } else
3482 cache = NULL;
3483 spin_unlock(&fs_info->block_group_cache_lock);
3484 return cache;
3485 }
3486
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3487 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3488 struct btrfs_trans_handle *trans,
3489 struct btrfs_path *path)
3490 {
3491 struct btrfs_fs_info *fs_info = block_group->fs_info;
3492 struct btrfs_root *root = fs_info->tree_root;
3493 struct inode *inode = NULL;
3494 struct extent_changeset *data_reserved = NULL;
3495 u64 alloc_hint = 0;
3496 int dcs = BTRFS_DC_ERROR;
3497 u64 num_pages = 0;
3498 int retries = 0;
3499 int ret = 0;
3500
3501 /*
3502 * If this block group is smaller than 100 megs don't bother caching the
3503 * block group.
3504 */
3505 if (block_group->key.offset < (100 * SZ_1M)) {
3506 spin_lock(&block_group->lock);
3507 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3508 spin_unlock(&block_group->lock);
3509 return 0;
3510 }
3511
3512 if (trans->aborted)
3513 return 0;
3514 again:
3515 inode = lookup_free_space_inode(fs_info, block_group, path);
3516 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3517 ret = PTR_ERR(inode);
3518 btrfs_release_path(path);
3519 goto out;
3520 }
3521
3522 if (IS_ERR(inode)) {
3523 BUG_ON(retries);
3524 retries++;
3525
3526 if (block_group->ro)
3527 goto out_free;
3528
3529 ret = create_free_space_inode(fs_info, trans, block_group,
3530 path);
3531 if (ret)
3532 goto out_free;
3533 goto again;
3534 }
3535
3536 /*
3537 * We want to set the generation to 0, that way if anything goes wrong
3538 * from here on out we know not to trust this cache when we load up next
3539 * time.
3540 */
3541 BTRFS_I(inode)->generation = 0;
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret) {
3544 /*
3545 * So theoretically we could recover from this, simply set the
3546 * super cache generation to 0 so we know to invalidate the
3547 * cache, but then we'd have to keep track of the block groups
3548 * that fail this way so we know we _have_ to reset this cache
3549 * before the next commit or risk reading stale cache. So to
3550 * limit our exposure to horrible edge cases lets just abort the
3551 * transaction, this only happens in really bad situations
3552 * anyway.
3553 */
3554 btrfs_abort_transaction(trans, ret);
3555 goto out_put;
3556 }
3557 WARN_ON(ret);
3558
3559 /* We've already setup this transaction, go ahead and exit */
3560 if (block_group->cache_generation == trans->transid &&
3561 i_size_read(inode)) {
3562 dcs = BTRFS_DC_SETUP;
3563 goto out_put;
3564 }
3565
3566 if (i_size_read(inode) > 0) {
3567 ret = btrfs_check_trunc_cache_free_space(fs_info,
3568 &fs_info->global_block_rsv);
3569 if (ret)
3570 goto out_put;
3571
3572 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3573 if (ret)
3574 goto out_put;
3575 }
3576
3577 spin_lock(&block_group->lock);
3578 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3579 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3580 /*
3581 * don't bother trying to write stuff out _if_
3582 * a) we're not cached,
3583 * b) we're with nospace_cache mount option,
3584 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3585 */
3586 dcs = BTRFS_DC_WRITTEN;
3587 spin_unlock(&block_group->lock);
3588 goto out_put;
3589 }
3590 spin_unlock(&block_group->lock);
3591
3592 /*
3593 * We hit an ENOSPC when setting up the cache in this transaction, just
3594 * skip doing the setup, we've already cleared the cache so we're safe.
3595 */
3596 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3597 ret = -ENOSPC;
3598 goto out_put;
3599 }
3600
3601 /*
3602 * Try to preallocate enough space based on how big the block group is.
3603 * Keep in mind this has to include any pinned space which could end up
3604 * taking up quite a bit since it's not folded into the other space
3605 * cache.
3606 */
3607 num_pages = div_u64(block_group->key.offset, SZ_256M);
3608 if (!num_pages)
3609 num_pages = 1;
3610
3611 num_pages *= 16;
3612 num_pages *= PAGE_SIZE;
3613
3614 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3615 if (ret)
3616 goto out_put;
3617
3618 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3619 num_pages, num_pages,
3620 &alloc_hint);
3621 /*
3622 * Our cache requires contiguous chunks so that we don't modify a bunch
3623 * of metadata or split extents when writing the cache out, which means
3624 * we can enospc if we are heavily fragmented in addition to just normal
3625 * out of space conditions. So if we hit this just skip setting up any
3626 * other block groups for this transaction, maybe we'll unpin enough
3627 * space the next time around.
3628 */
3629 if (!ret)
3630 dcs = BTRFS_DC_SETUP;
3631 else if (ret == -ENOSPC)
3632 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3633
3634 out_put:
3635 iput(inode);
3636 out_free:
3637 btrfs_release_path(path);
3638 out:
3639 spin_lock(&block_group->lock);
3640 if (!ret && dcs == BTRFS_DC_SETUP)
3641 block_group->cache_generation = trans->transid;
3642 block_group->disk_cache_state = dcs;
3643 spin_unlock(&block_group->lock);
3644
3645 extent_changeset_free(data_reserved);
3646 return ret;
3647 }
3648
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3649 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3650 struct btrfs_fs_info *fs_info)
3651 {
3652 struct btrfs_block_group_cache *cache, *tmp;
3653 struct btrfs_transaction *cur_trans = trans->transaction;
3654 struct btrfs_path *path;
3655
3656 if (list_empty(&cur_trans->dirty_bgs) ||
3657 !btrfs_test_opt(fs_info, SPACE_CACHE))
3658 return 0;
3659
3660 path = btrfs_alloc_path();
3661 if (!path)
3662 return -ENOMEM;
3663
3664 /* Could add new block groups, use _safe just in case */
3665 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3666 dirty_list) {
3667 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3668 cache_save_setup(cache, trans, path);
3669 }
3670
3671 btrfs_free_path(path);
3672 return 0;
3673 }
3674
3675 /*
3676 * transaction commit does final block group cache writeback during a
3677 * critical section where nothing is allowed to change the FS. This is
3678 * required in order for the cache to actually match the block group,
3679 * but can introduce a lot of latency into the commit.
3680 *
3681 * So, btrfs_start_dirty_block_groups is here to kick off block group
3682 * cache IO. There's a chance we'll have to redo some of it if the
3683 * block group changes again during the commit, but it greatly reduces
3684 * the commit latency by getting rid of the easy block groups while
3685 * we're still allowing others to join the commit.
3686 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3687 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3688 struct btrfs_fs_info *fs_info)
3689 {
3690 struct btrfs_block_group_cache *cache;
3691 struct btrfs_transaction *cur_trans = trans->transaction;
3692 int ret = 0;
3693 int should_put;
3694 struct btrfs_path *path = NULL;
3695 LIST_HEAD(dirty);
3696 struct list_head *io = &cur_trans->io_bgs;
3697 int num_started = 0;
3698 int loops = 0;
3699
3700 spin_lock(&cur_trans->dirty_bgs_lock);
3701 if (list_empty(&cur_trans->dirty_bgs)) {
3702 spin_unlock(&cur_trans->dirty_bgs_lock);
3703 return 0;
3704 }
3705 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3706 spin_unlock(&cur_trans->dirty_bgs_lock);
3707
3708 again:
3709 /*
3710 * make sure all the block groups on our dirty list actually
3711 * exist
3712 */
3713 btrfs_create_pending_block_groups(trans, fs_info);
3714
3715 if (!path) {
3716 path = btrfs_alloc_path();
3717 if (!path)
3718 return -ENOMEM;
3719 }
3720
3721 /*
3722 * cache_write_mutex is here only to save us from balance or automatic
3723 * removal of empty block groups deleting this block group while we are
3724 * writing out the cache
3725 */
3726 mutex_lock(&trans->transaction->cache_write_mutex);
3727 while (!list_empty(&dirty)) {
3728 cache = list_first_entry(&dirty,
3729 struct btrfs_block_group_cache,
3730 dirty_list);
3731 /*
3732 * this can happen if something re-dirties a block
3733 * group that is already under IO. Just wait for it to
3734 * finish and then do it all again
3735 */
3736 if (!list_empty(&cache->io_list)) {
3737 list_del_init(&cache->io_list);
3738 btrfs_wait_cache_io(trans, cache, path);
3739 btrfs_put_block_group(cache);
3740 }
3741
3742
3743 /*
3744 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3745 * if it should update the cache_state. Don't delete
3746 * until after we wait.
3747 *
3748 * Since we're not running in the commit critical section
3749 * we need the dirty_bgs_lock to protect from update_block_group
3750 */
3751 spin_lock(&cur_trans->dirty_bgs_lock);
3752 list_del_init(&cache->dirty_list);
3753 spin_unlock(&cur_trans->dirty_bgs_lock);
3754
3755 should_put = 1;
3756
3757 cache_save_setup(cache, trans, path);
3758
3759 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3760 cache->io_ctl.inode = NULL;
3761 ret = btrfs_write_out_cache(fs_info, trans,
3762 cache, path);
3763 if (ret == 0 && cache->io_ctl.inode) {
3764 num_started++;
3765 should_put = 0;
3766
3767 /*
3768 * the cache_write_mutex is protecting
3769 * the io_list
3770 */
3771 list_add_tail(&cache->io_list, io);
3772 } else {
3773 /*
3774 * if we failed to write the cache, the
3775 * generation will be bad and life goes on
3776 */
3777 ret = 0;
3778 }
3779 }
3780 if (!ret) {
3781 ret = write_one_cache_group(trans, fs_info,
3782 path, cache);
3783 /*
3784 * Our block group might still be attached to the list
3785 * of new block groups in the transaction handle of some
3786 * other task (struct btrfs_trans_handle->new_bgs). This
3787 * means its block group item isn't yet in the extent
3788 * tree. If this happens ignore the error, as we will
3789 * try again later in the critical section of the
3790 * transaction commit.
3791 */
3792 if (ret == -ENOENT) {
3793 ret = 0;
3794 spin_lock(&cur_trans->dirty_bgs_lock);
3795 if (list_empty(&cache->dirty_list)) {
3796 list_add_tail(&cache->dirty_list,
3797 &cur_trans->dirty_bgs);
3798 btrfs_get_block_group(cache);
3799 }
3800 spin_unlock(&cur_trans->dirty_bgs_lock);
3801 } else if (ret) {
3802 btrfs_abort_transaction(trans, ret);
3803 }
3804 }
3805
3806 /* if its not on the io list, we need to put the block group */
3807 if (should_put)
3808 btrfs_put_block_group(cache);
3809
3810 if (ret)
3811 break;
3812
3813 /*
3814 * Avoid blocking other tasks for too long. It might even save
3815 * us from writing caches for block groups that are going to be
3816 * removed.
3817 */
3818 mutex_unlock(&trans->transaction->cache_write_mutex);
3819 mutex_lock(&trans->transaction->cache_write_mutex);
3820 }
3821 mutex_unlock(&trans->transaction->cache_write_mutex);
3822
3823 /*
3824 * go through delayed refs for all the stuff we've just kicked off
3825 * and then loop back (just once)
3826 */
3827 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3828 if (!ret && loops == 0) {
3829 loops++;
3830 spin_lock(&cur_trans->dirty_bgs_lock);
3831 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3832 /*
3833 * dirty_bgs_lock protects us from concurrent block group
3834 * deletes too (not just cache_write_mutex).
3835 */
3836 if (!list_empty(&dirty)) {
3837 spin_unlock(&cur_trans->dirty_bgs_lock);
3838 goto again;
3839 }
3840 spin_unlock(&cur_trans->dirty_bgs_lock);
3841 } else if (ret < 0) {
3842 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3843 }
3844
3845 btrfs_free_path(path);
3846 return ret;
3847 }
3848
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3849 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3850 struct btrfs_fs_info *fs_info)
3851 {
3852 struct btrfs_block_group_cache *cache;
3853 struct btrfs_transaction *cur_trans = trans->transaction;
3854 int ret = 0;
3855 int should_put;
3856 struct btrfs_path *path;
3857 struct list_head *io = &cur_trans->io_bgs;
3858 int num_started = 0;
3859
3860 path = btrfs_alloc_path();
3861 if (!path)
3862 return -ENOMEM;
3863
3864 /*
3865 * Even though we are in the critical section of the transaction commit,
3866 * we can still have concurrent tasks adding elements to this
3867 * transaction's list of dirty block groups. These tasks correspond to
3868 * endio free space workers started when writeback finishes for a
3869 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3870 * allocate new block groups as a result of COWing nodes of the root
3871 * tree when updating the free space inode. The writeback for the space
3872 * caches is triggered by an earlier call to
3873 * btrfs_start_dirty_block_groups() and iterations of the following
3874 * loop.
3875 * Also we want to do the cache_save_setup first and then run the
3876 * delayed refs to make sure we have the best chance at doing this all
3877 * in one shot.
3878 */
3879 spin_lock(&cur_trans->dirty_bgs_lock);
3880 while (!list_empty(&cur_trans->dirty_bgs)) {
3881 cache = list_first_entry(&cur_trans->dirty_bgs,
3882 struct btrfs_block_group_cache,
3883 dirty_list);
3884
3885 /*
3886 * this can happen if cache_save_setup re-dirties a block
3887 * group that is already under IO. Just wait for it to
3888 * finish and then do it all again
3889 */
3890 if (!list_empty(&cache->io_list)) {
3891 spin_unlock(&cur_trans->dirty_bgs_lock);
3892 list_del_init(&cache->io_list);
3893 btrfs_wait_cache_io(trans, cache, path);
3894 btrfs_put_block_group(cache);
3895 spin_lock(&cur_trans->dirty_bgs_lock);
3896 }
3897
3898 /*
3899 * don't remove from the dirty list until after we've waited
3900 * on any pending IO
3901 */
3902 list_del_init(&cache->dirty_list);
3903 spin_unlock(&cur_trans->dirty_bgs_lock);
3904 should_put = 1;
3905
3906 cache_save_setup(cache, trans, path);
3907
3908 if (!ret)
3909 ret = btrfs_run_delayed_refs(trans, fs_info,
3910 (unsigned long) -1);
3911
3912 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3913 cache->io_ctl.inode = NULL;
3914 ret = btrfs_write_out_cache(fs_info, trans,
3915 cache, path);
3916 if (ret == 0 && cache->io_ctl.inode) {
3917 num_started++;
3918 should_put = 0;
3919 list_add_tail(&cache->io_list, io);
3920 } else {
3921 /*
3922 * if we failed to write the cache, the
3923 * generation will be bad and life goes on
3924 */
3925 ret = 0;
3926 }
3927 }
3928 if (!ret) {
3929 ret = write_one_cache_group(trans, fs_info,
3930 path, cache);
3931 /*
3932 * One of the free space endio workers might have
3933 * created a new block group while updating a free space
3934 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3935 * and hasn't released its transaction handle yet, in
3936 * which case the new block group is still attached to
3937 * its transaction handle and its creation has not
3938 * finished yet (no block group item in the extent tree
3939 * yet, etc). If this is the case, wait for all free
3940 * space endio workers to finish and retry. This is a
3941 * a very rare case so no need for a more efficient and
3942 * complex approach.
3943 */
3944 if (ret == -ENOENT) {
3945 wait_event(cur_trans->writer_wait,
3946 atomic_read(&cur_trans->num_writers) == 1);
3947 ret = write_one_cache_group(trans, fs_info,
3948 path, cache);
3949 }
3950 if (ret)
3951 btrfs_abort_transaction(trans, ret);
3952 }
3953
3954 /* if its not on the io list, we need to put the block group */
3955 if (should_put)
3956 btrfs_put_block_group(cache);
3957 spin_lock(&cur_trans->dirty_bgs_lock);
3958 }
3959 spin_unlock(&cur_trans->dirty_bgs_lock);
3960
3961 while (!list_empty(io)) {
3962 cache = list_first_entry(io, struct btrfs_block_group_cache,
3963 io_list);
3964 list_del_init(&cache->io_list);
3965 btrfs_wait_cache_io(trans, cache, path);
3966 btrfs_put_block_group(cache);
3967 }
3968
3969 btrfs_free_path(path);
3970 return ret;
3971 }
3972
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)3973 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3974 {
3975 struct btrfs_block_group_cache *block_group;
3976 int readonly = 0;
3977
3978 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3979 if (!block_group || block_group->ro)
3980 readonly = 1;
3981 if (block_group)
3982 btrfs_put_block_group(block_group);
3983 return readonly;
3984 }
3985
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3986 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3987 {
3988 struct btrfs_block_group_cache *bg;
3989 bool ret = true;
3990
3991 bg = btrfs_lookup_block_group(fs_info, bytenr);
3992 if (!bg)
3993 return false;
3994
3995 spin_lock(&bg->lock);
3996 if (bg->ro)
3997 ret = false;
3998 else
3999 atomic_inc(&bg->nocow_writers);
4000 spin_unlock(&bg->lock);
4001
4002 /* no put on block group, done by btrfs_dec_nocow_writers */
4003 if (!ret)
4004 btrfs_put_block_group(bg);
4005
4006 return ret;
4007
4008 }
4009
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)4010 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
4011 {
4012 struct btrfs_block_group_cache *bg;
4013
4014 bg = btrfs_lookup_block_group(fs_info, bytenr);
4015 ASSERT(bg);
4016 if (atomic_dec_and_test(&bg->nocow_writers))
4017 wake_up_atomic_t(&bg->nocow_writers);
4018 /*
4019 * Once for our lookup and once for the lookup done by a previous call
4020 * to btrfs_inc_nocow_writers()
4021 */
4022 btrfs_put_block_group(bg);
4023 btrfs_put_block_group(bg);
4024 }
4025
btrfs_wait_nocow_writers_atomic_t(atomic_t * a)4026 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
4027 {
4028 schedule();
4029 return 0;
4030 }
4031
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)4032 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4033 {
4034 wait_on_atomic_t(&bg->nocow_writers,
4035 btrfs_wait_nocow_writers_atomic_t,
4036 TASK_UNINTERRUPTIBLE);
4037 }
4038
alloc_name(u64 flags)4039 static const char *alloc_name(u64 flags)
4040 {
4041 switch (flags) {
4042 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4043 return "mixed";
4044 case BTRFS_BLOCK_GROUP_METADATA:
4045 return "metadata";
4046 case BTRFS_BLOCK_GROUP_DATA:
4047 return "data";
4048 case BTRFS_BLOCK_GROUP_SYSTEM:
4049 return "system";
4050 default:
4051 WARN_ON(1);
4052 return "invalid-combination";
4053 };
4054 }
4055
create_space_info(struct btrfs_fs_info * info,u64 flags,struct btrfs_space_info ** new)4056 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4057 struct btrfs_space_info **new)
4058 {
4059
4060 struct btrfs_space_info *space_info;
4061 int i;
4062 int ret;
4063
4064 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4065 if (!space_info)
4066 return -ENOMEM;
4067
4068 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4069 GFP_KERNEL);
4070 if (ret) {
4071 kfree(space_info);
4072 return ret;
4073 }
4074
4075 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4076 INIT_LIST_HEAD(&space_info->block_groups[i]);
4077 init_rwsem(&space_info->groups_sem);
4078 spin_lock_init(&space_info->lock);
4079 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4080 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4081 init_waitqueue_head(&space_info->wait);
4082 INIT_LIST_HEAD(&space_info->ro_bgs);
4083 INIT_LIST_HEAD(&space_info->tickets);
4084 INIT_LIST_HEAD(&space_info->priority_tickets);
4085
4086 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4087 info->space_info_kobj, "%s",
4088 alloc_name(space_info->flags));
4089 if (ret) {
4090 kobject_put(&space_info->kobj);
4091 return ret;
4092 }
4093
4094 *new = space_info;
4095 list_add_rcu(&space_info->list, &info->space_info);
4096 if (flags & BTRFS_BLOCK_GROUP_DATA)
4097 info->data_sinfo = space_info;
4098
4099 return ret;
4100 }
4101
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)4102 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4103 u64 total_bytes, u64 bytes_used,
4104 u64 bytes_readonly,
4105 struct btrfs_space_info **space_info)
4106 {
4107 struct btrfs_space_info *found;
4108 int factor;
4109
4110 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4111 BTRFS_BLOCK_GROUP_RAID10))
4112 factor = 2;
4113 else
4114 factor = 1;
4115
4116 found = __find_space_info(info, flags);
4117 ASSERT(found);
4118 spin_lock(&found->lock);
4119 found->total_bytes += total_bytes;
4120 found->disk_total += total_bytes * factor;
4121 found->bytes_used += bytes_used;
4122 found->disk_used += bytes_used * factor;
4123 found->bytes_readonly += bytes_readonly;
4124 if (total_bytes > 0)
4125 found->full = 0;
4126 space_info_add_new_bytes(info, found, total_bytes -
4127 bytes_used - bytes_readonly);
4128 spin_unlock(&found->lock);
4129 *space_info = found;
4130 }
4131
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)4132 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4133 {
4134 u64 extra_flags = chunk_to_extended(flags) &
4135 BTRFS_EXTENDED_PROFILE_MASK;
4136
4137 write_seqlock(&fs_info->profiles_lock);
4138 if (flags & BTRFS_BLOCK_GROUP_DATA)
4139 fs_info->avail_data_alloc_bits |= extra_flags;
4140 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4141 fs_info->avail_metadata_alloc_bits |= extra_flags;
4142 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4143 fs_info->avail_system_alloc_bits |= extra_flags;
4144 write_sequnlock(&fs_info->profiles_lock);
4145 }
4146
4147 /*
4148 * returns target flags in extended format or 0 if restripe for this
4149 * chunk_type is not in progress
4150 *
4151 * should be called with either volume_mutex or balance_lock held
4152 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)4153 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4154 {
4155 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4156 u64 target = 0;
4157
4158 if (!bctl)
4159 return 0;
4160
4161 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4162 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4163 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4164 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4165 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4166 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4167 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4168 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4169 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4170 }
4171
4172 return target;
4173 }
4174
4175 /*
4176 * @flags: available profiles in extended format (see ctree.h)
4177 *
4178 * Returns reduced profile in chunk format. If profile changing is in
4179 * progress (either running or paused) picks the target profile (if it's
4180 * already available), otherwise falls back to plain reducing.
4181 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)4182 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4183 {
4184 u64 num_devices = fs_info->fs_devices->rw_devices;
4185 u64 target;
4186 u64 raid_type;
4187 u64 allowed = 0;
4188
4189 /*
4190 * see if restripe for this chunk_type is in progress, if so
4191 * try to reduce to the target profile
4192 */
4193 spin_lock(&fs_info->balance_lock);
4194 target = get_restripe_target(fs_info, flags);
4195 if (target) {
4196 /* pick target profile only if it's already available */
4197 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4198 spin_unlock(&fs_info->balance_lock);
4199 return extended_to_chunk(target);
4200 }
4201 }
4202 spin_unlock(&fs_info->balance_lock);
4203
4204 /* First, mask out the RAID levels which aren't possible */
4205 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4206 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4207 allowed |= btrfs_raid_group[raid_type];
4208 }
4209 allowed &= flags;
4210
4211 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4212 allowed = BTRFS_BLOCK_GROUP_RAID6;
4213 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4214 allowed = BTRFS_BLOCK_GROUP_RAID5;
4215 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4216 allowed = BTRFS_BLOCK_GROUP_RAID10;
4217 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4218 allowed = BTRFS_BLOCK_GROUP_RAID1;
4219 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4220 allowed = BTRFS_BLOCK_GROUP_RAID0;
4221
4222 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4223
4224 return extended_to_chunk(flags | allowed);
4225 }
4226
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)4227 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4228 {
4229 unsigned seq;
4230 u64 flags;
4231
4232 do {
4233 flags = orig_flags;
4234 seq = read_seqbegin(&fs_info->profiles_lock);
4235
4236 if (flags & BTRFS_BLOCK_GROUP_DATA)
4237 flags |= fs_info->avail_data_alloc_bits;
4238 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4239 flags |= fs_info->avail_system_alloc_bits;
4240 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4241 flags |= fs_info->avail_metadata_alloc_bits;
4242 } while (read_seqretry(&fs_info->profiles_lock, seq));
4243
4244 return btrfs_reduce_alloc_profile(fs_info, flags);
4245 }
4246
get_alloc_profile_by_root(struct btrfs_root * root,int data)4247 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4248 {
4249 struct btrfs_fs_info *fs_info = root->fs_info;
4250 u64 flags;
4251 u64 ret;
4252
4253 if (data)
4254 flags = BTRFS_BLOCK_GROUP_DATA;
4255 else if (root == fs_info->chunk_root)
4256 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4257 else
4258 flags = BTRFS_BLOCK_GROUP_METADATA;
4259
4260 ret = get_alloc_profile(fs_info, flags);
4261 return ret;
4262 }
4263
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)4264 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4265 {
4266 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4267 }
4268
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)4269 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4270 {
4271 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4272 }
4273
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)4274 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4275 {
4276 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4277 }
4278
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)4279 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4280 bool may_use_included)
4281 {
4282 ASSERT(s_info);
4283 return s_info->bytes_used + s_info->bytes_reserved +
4284 s_info->bytes_pinned + s_info->bytes_readonly +
4285 (may_use_included ? s_info->bytes_may_use : 0);
4286 }
4287
btrfs_alloc_data_chunk_ondemand(struct btrfs_inode * inode,u64 bytes)4288 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4289 {
4290 struct btrfs_root *root = inode->root;
4291 struct btrfs_fs_info *fs_info = root->fs_info;
4292 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4293 u64 used;
4294 int ret = 0;
4295 int need_commit = 2;
4296 int have_pinned_space;
4297
4298 /* make sure bytes are sectorsize aligned */
4299 bytes = ALIGN(bytes, fs_info->sectorsize);
4300
4301 if (btrfs_is_free_space_inode(inode)) {
4302 need_commit = 0;
4303 ASSERT(current->journal_info);
4304 }
4305
4306 again:
4307 /* make sure we have enough space to handle the data first */
4308 spin_lock(&data_sinfo->lock);
4309 used = btrfs_space_info_used(data_sinfo, true);
4310
4311 if (used + bytes > data_sinfo->total_bytes) {
4312 struct btrfs_trans_handle *trans;
4313
4314 /*
4315 * if we don't have enough free bytes in this space then we need
4316 * to alloc a new chunk.
4317 */
4318 if (!data_sinfo->full) {
4319 u64 alloc_target;
4320
4321 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4322 spin_unlock(&data_sinfo->lock);
4323
4324 alloc_target = btrfs_data_alloc_profile(fs_info);
4325 /*
4326 * It is ugly that we don't call nolock join
4327 * transaction for the free space inode case here.
4328 * But it is safe because we only do the data space
4329 * reservation for the free space cache in the
4330 * transaction context, the common join transaction
4331 * just increase the counter of the current transaction
4332 * handler, doesn't try to acquire the trans_lock of
4333 * the fs.
4334 */
4335 trans = btrfs_join_transaction(root);
4336 if (IS_ERR(trans))
4337 return PTR_ERR(trans);
4338
4339 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4340 CHUNK_ALLOC_NO_FORCE);
4341 btrfs_end_transaction(trans);
4342 if (ret < 0) {
4343 if (ret != -ENOSPC)
4344 return ret;
4345 else {
4346 have_pinned_space = 1;
4347 goto commit_trans;
4348 }
4349 }
4350
4351 goto again;
4352 }
4353
4354 /*
4355 * If we don't have enough pinned space to deal with this
4356 * allocation, and no removed chunk in current transaction,
4357 * don't bother committing the transaction.
4358 */
4359 have_pinned_space = percpu_counter_compare(
4360 &data_sinfo->total_bytes_pinned,
4361 used + bytes - data_sinfo->total_bytes);
4362 spin_unlock(&data_sinfo->lock);
4363
4364 /* commit the current transaction and try again */
4365 commit_trans:
4366 if (need_commit &&
4367 !atomic_read(&fs_info->open_ioctl_trans)) {
4368 need_commit--;
4369
4370 if (need_commit > 0) {
4371 btrfs_start_delalloc_roots(fs_info, 0, -1);
4372 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4373 (u64)-1);
4374 }
4375
4376 trans = btrfs_join_transaction(root);
4377 if (IS_ERR(trans))
4378 return PTR_ERR(trans);
4379 if (have_pinned_space >= 0 ||
4380 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4381 &trans->transaction->flags) ||
4382 need_commit > 0) {
4383 ret = btrfs_commit_transaction(trans);
4384 if (ret)
4385 return ret;
4386 /*
4387 * The cleaner kthread might still be doing iput
4388 * operations. Wait for it to finish so that
4389 * more space is released.
4390 */
4391 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4392 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4393 goto again;
4394 } else {
4395 btrfs_end_transaction(trans);
4396 }
4397 }
4398
4399 trace_btrfs_space_reservation(fs_info,
4400 "space_info:enospc",
4401 data_sinfo->flags, bytes, 1);
4402 return -ENOSPC;
4403 }
4404 data_sinfo->bytes_may_use += bytes;
4405 trace_btrfs_space_reservation(fs_info, "space_info",
4406 data_sinfo->flags, bytes, 1);
4407 spin_unlock(&data_sinfo->lock);
4408
4409 return 0;
4410 }
4411
btrfs_check_data_free_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)4412 int btrfs_check_data_free_space(struct inode *inode,
4413 struct extent_changeset **reserved, u64 start, u64 len)
4414 {
4415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4416 int ret;
4417
4418 /* align the range */
4419 len = round_up(start + len, fs_info->sectorsize) -
4420 round_down(start, fs_info->sectorsize);
4421 start = round_down(start, fs_info->sectorsize);
4422
4423 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4424 if (ret < 0)
4425 return ret;
4426
4427 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4428 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4429 if (ret < 0)
4430 btrfs_free_reserved_data_space_noquota(inode, start, len);
4431 else
4432 ret = 0;
4433 return ret;
4434 }
4435
4436 /*
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4439 *
4440 * This one will *NOT* use accurate qgroup reserved space API, just for case
4441 * which we can't sleep and is sure it won't affect qgroup reserved space.
4442 * Like clear_bit_hook().
4443 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4444 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4445 u64 len)
4446 {
4447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4448 struct btrfs_space_info *data_sinfo;
4449
4450 /* Make sure the range is aligned to sectorsize */
4451 len = round_up(start + len, fs_info->sectorsize) -
4452 round_down(start, fs_info->sectorsize);
4453 start = round_down(start, fs_info->sectorsize);
4454
4455 data_sinfo = fs_info->data_sinfo;
4456 spin_lock(&data_sinfo->lock);
4457 if (WARN_ON(data_sinfo->bytes_may_use < len))
4458 data_sinfo->bytes_may_use = 0;
4459 else
4460 data_sinfo->bytes_may_use -= len;
4461 trace_btrfs_space_reservation(fs_info, "space_info",
4462 data_sinfo->flags, len, 0);
4463 spin_unlock(&data_sinfo->lock);
4464 }
4465
4466 /*
4467 * Called if we need to clear a data reservation for this inode
4468 * Normally in a error case.
4469 *
4470 * This one will handle the per-inode data rsv map for accurate reserved
4471 * space framework.
4472 */
btrfs_free_reserved_data_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)4473 void btrfs_free_reserved_data_space(struct inode *inode,
4474 struct extent_changeset *reserved, u64 start, u64 len)
4475 {
4476 struct btrfs_root *root = BTRFS_I(inode)->root;
4477
4478 /* Make sure the range is aligned to sectorsize */
4479 len = round_up(start + len, root->fs_info->sectorsize) -
4480 round_down(start, root->fs_info->sectorsize);
4481 start = round_down(start, root->fs_info->sectorsize);
4482
4483 btrfs_free_reserved_data_space_noquota(inode, start, len);
4484 btrfs_qgroup_free_data(inode, reserved, start, len);
4485 }
4486
force_metadata_allocation(struct btrfs_fs_info * info)4487 static void force_metadata_allocation(struct btrfs_fs_info *info)
4488 {
4489 struct list_head *head = &info->space_info;
4490 struct btrfs_space_info *found;
4491
4492 rcu_read_lock();
4493 list_for_each_entry_rcu(found, head, list) {
4494 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4495 found->force_alloc = CHUNK_ALLOC_FORCE;
4496 }
4497 rcu_read_unlock();
4498 }
4499
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4500 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4501 {
4502 return (global->size << 1);
4503 }
4504
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)4505 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4506 struct btrfs_space_info *sinfo, int force)
4507 {
4508 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4509 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4510 u64 thresh;
4511
4512 if (force == CHUNK_ALLOC_FORCE)
4513 return 1;
4514
4515 /*
4516 * We need to take into account the global rsv because for all intents
4517 * and purposes it's used space. Don't worry about locking the
4518 * global_rsv, it doesn't change except when the transaction commits.
4519 */
4520 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4521 bytes_used += calc_global_rsv_need_space(global_rsv);
4522
4523 /*
4524 * in limited mode, we want to have some free space up to
4525 * about 1% of the FS size.
4526 */
4527 if (force == CHUNK_ALLOC_LIMITED) {
4528 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4529 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4530
4531 if (sinfo->total_bytes - bytes_used < thresh)
4532 return 1;
4533 }
4534
4535 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4536 return 0;
4537 return 1;
4538 }
4539
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4540 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4541 {
4542 u64 num_dev;
4543
4544 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4545 BTRFS_BLOCK_GROUP_RAID0 |
4546 BTRFS_BLOCK_GROUP_RAID5 |
4547 BTRFS_BLOCK_GROUP_RAID6))
4548 num_dev = fs_info->fs_devices->rw_devices;
4549 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4550 num_dev = 2;
4551 else
4552 num_dev = 1; /* DUP or single */
4553
4554 return num_dev;
4555 }
4556
4557 /*
4558 * If @is_allocation is true, reserve space in the system space info necessary
4559 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4560 * removing a chunk.
4561 */
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 type)4562 void check_system_chunk(struct btrfs_trans_handle *trans,
4563 struct btrfs_fs_info *fs_info, u64 type)
4564 {
4565 struct btrfs_space_info *info;
4566 u64 left;
4567 u64 thresh;
4568 int ret = 0;
4569 u64 num_devs;
4570
4571 /*
4572 * Needed because we can end up allocating a system chunk and for an
4573 * atomic and race free space reservation in the chunk block reserve.
4574 */
4575 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4576
4577 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4578 spin_lock(&info->lock);
4579 left = info->total_bytes - btrfs_space_info_used(info, true);
4580 spin_unlock(&info->lock);
4581
4582 num_devs = get_profile_num_devs(fs_info, type);
4583
4584 /* num_devs device items to update and 1 chunk item to add or remove */
4585 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4586 btrfs_calc_trans_metadata_size(fs_info, 1);
4587
4588 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4589 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4590 left, thresh, type);
4591 dump_space_info(fs_info, info, 0, 0);
4592 }
4593
4594 if (left < thresh) {
4595 u64 flags = btrfs_system_alloc_profile(fs_info);
4596
4597 /*
4598 * Ignore failure to create system chunk. We might end up not
4599 * needing it, as we might not need to COW all nodes/leafs from
4600 * the paths we visit in the chunk tree (they were already COWed
4601 * or created in the current transaction for example).
4602 */
4603 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4604 }
4605
4606 if (!ret) {
4607 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4608 &fs_info->chunk_block_rsv,
4609 thresh, BTRFS_RESERVE_NO_FLUSH);
4610 if (!ret)
4611 trans->chunk_bytes_reserved += thresh;
4612 }
4613 }
4614
4615 /*
4616 * If force is CHUNK_ALLOC_FORCE:
4617 * - return 1 if it successfully allocates a chunk,
4618 * - return errors including -ENOSPC otherwise.
4619 * If force is NOT CHUNK_ALLOC_FORCE:
4620 * - return 0 if it doesn't need to allocate a new chunk,
4621 * - return 1 if it successfully allocates a chunk,
4622 * - return errors including -ENOSPC otherwise.
4623 */
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 flags,int force)4624 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4625 struct btrfs_fs_info *fs_info, u64 flags, int force)
4626 {
4627 struct btrfs_space_info *space_info;
4628 int wait_for_alloc = 0;
4629 int ret = 0;
4630
4631 /* Don't re-enter if we're already allocating a chunk */
4632 if (trans->allocating_chunk)
4633 return -ENOSPC;
4634
4635 space_info = __find_space_info(fs_info, flags);
4636 if (!space_info) {
4637 ret = create_space_info(fs_info, flags, &space_info);
4638 if (ret)
4639 return ret;
4640 }
4641
4642 again:
4643 spin_lock(&space_info->lock);
4644 if (force < space_info->force_alloc)
4645 force = space_info->force_alloc;
4646 if (space_info->full) {
4647 if (should_alloc_chunk(fs_info, space_info, force))
4648 ret = -ENOSPC;
4649 else
4650 ret = 0;
4651 spin_unlock(&space_info->lock);
4652 return ret;
4653 }
4654
4655 if (!should_alloc_chunk(fs_info, space_info, force)) {
4656 spin_unlock(&space_info->lock);
4657 return 0;
4658 } else if (space_info->chunk_alloc) {
4659 wait_for_alloc = 1;
4660 } else {
4661 space_info->chunk_alloc = 1;
4662 }
4663
4664 spin_unlock(&space_info->lock);
4665
4666 mutex_lock(&fs_info->chunk_mutex);
4667
4668 /*
4669 * The chunk_mutex is held throughout the entirety of a chunk
4670 * allocation, so once we've acquired the chunk_mutex we know that the
4671 * other guy is done and we need to recheck and see if we should
4672 * allocate.
4673 */
4674 if (wait_for_alloc) {
4675 mutex_unlock(&fs_info->chunk_mutex);
4676 wait_for_alloc = 0;
4677 cond_resched();
4678 goto again;
4679 }
4680
4681 trans->allocating_chunk = true;
4682
4683 /*
4684 * If we have mixed data/metadata chunks we want to make sure we keep
4685 * allocating mixed chunks instead of individual chunks.
4686 */
4687 if (btrfs_mixed_space_info(space_info))
4688 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4689
4690 /*
4691 * if we're doing a data chunk, go ahead and make sure that
4692 * we keep a reasonable number of metadata chunks allocated in the
4693 * FS as well.
4694 */
4695 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4696 fs_info->data_chunk_allocations++;
4697 if (!(fs_info->data_chunk_allocations %
4698 fs_info->metadata_ratio))
4699 force_metadata_allocation(fs_info);
4700 }
4701
4702 /*
4703 * Check if we have enough space in SYSTEM chunk because we may need
4704 * to update devices.
4705 */
4706 check_system_chunk(trans, fs_info, flags);
4707
4708 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4709 trans->allocating_chunk = false;
4710
4711 spin_lock(&space_info->lock);
4712 if (ret < 0 && ret != -ENOSPC)
4713 goto out;
4714 if (ret)
4715 space_info->full = 1;
4716 else
4717 ret = 1;
4718
4719 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4720 out:
4721 space_info->chunk_alloc = 0;
4722 spin_unlock(&space_info->lock);
4723 mutex_unlock(&fs_info->chunk_mutex);
4724 /*
4725 * When we allocate a new chunk we reserve space in the chunk block
4726 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4727 * add new nodes/leafs to it if we end up needing to do it when
4728 * inserting the chunk item and updating device items as part of the
4729 * second phase of chunk allocation, performed by
4730 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4731 * large number of new block groups to create in our transaction
4732 * handle's new_bgs list to avoid exhausting the chunk block reserve
4733 * in extreme cases - like having a single transaction create many new
4734 * block groups when starting to write out the free space caches of all
4735 * the block groups that were made dirty during the lifetime of the
4736 * transaction.
4737 */
4738 if (trans->can_flush_pending_bgs &&
4739 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4740 btrfs_create_pending_block_groups(trans, fs_info);
4741 btrfs_trans_release_chunk_metadata(trans);
4742 }
4743 return ret;
4744 }
4745
can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)4746 static int can_overcommit(struct btrfs_fs_info *fs_info,
4747 struct btrfs_space_info *space_info, u64 bytes,
4748 enum btrfs_reserve_flush_enum flush,
4749 bool system_chunk)
4750 {
4751 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4752 u64 profile;
4753 u64 space_size;
4754 u64 avail;
4755 u64 used;
4756
4757 /* Don't overcommit when in mixed mode. */
4758 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4759 return 0;
4760
4761 if (system_chunk)
4762 profile = btrfs_system_alloc_profile(fs_info);
4763 else
4764 profile = btrfs_metadata_alloc_profile(fs_info);
4765
4766 used = btrfs_space_info_used(space_info, false);
4767
4768 /*
4769 * We only want to allow over committing if we have lots of actual space
4770 * free, but if we don't have enough space to handle the global reserve
4771 * space then we could end up having a real enospc problem when trying
4772 * to allocate a chunk or some other such important allocation.
4773 */
4774 spin_lock(&global_rsv->lock);
4775 space_size = calc_global_rsv_need_space(global_rsv);
4776 spin_unlock(&global_rsv->lock);
4777 if (used + space_size >= space_info->total_bytes)
4778 return 0;
4779
4780 used += space_info->bytes_may_use;
4781
4782 avail = atomic64_read(&fs_info->free_chunk_space);
4783
4784 /*
4785 * If we have dup, raid1 or raid10 then only half of the free
4786 * space is actually useable. For raid56, the space info used
4787 * doesn't include the parity drive, so we don't have to
4788 * change the math
4789 */
4790 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4791 BTRFS_BLOCK_GROUP_RAID1 |
4792 BTRFS_BLOCK_GROUP_RAID10))
4793 avail >>= 1;
4794
4795 /*
4796 * If we aren't flushing all things, let us overcommit up to
4797 * 1/2th of the space. If we can flush, don't let us overcommit
4798 * too much, let it overcommit up to 1/8 of the space.
4799 */
4800 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4801 avail >>= 3;
4802 else
4803 avail >>= 1;
4804
4805 if (used + bytes < space_info->total_bytes + avail)
4806 return 1;
4807 return 0;
4808 }
4809
btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info * fs_info,unsigned long nr_pages,int nr_items)4810 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4811 unsigned long nr_pages, int nr_items)
4812 {
4813 struct super_block *sb = fs_info->sb;
4814
4815 if (down_read_trylock(&sb->s_umount)) {
4816 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4817 up_read(&sb->s_umount);
4818 } else {
4819 /*
4820 * We needn't worry the filesystem going from r/w to r/o though
4821 * we don't acquire ->s_umount mutex, because the filesystem
4822 * should guarantee the delalloc inodes list be empty after
4823 * the filesystem is readonly(all dirty pages are written to
4824 * the disk).
4825 */
4826 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4827 if (!current->journal_info)
4828 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4829 }
4830 }
4831
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)4832 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4833 u64 to_reclaim)
4834 {
4835 u64 bytes;
4836 u64 nr;
4837
4838 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4839 nr = div64_u64(to_reclaim, bytes);
4840 if (!nr)
4841 nr = 1;
4842 return nr;
4843 }
4844
4845 #define EXTENT_SIZE_PER_ITEM SZ_256K
4846
4847 /*
4848 * shrink metadata reservation for delalloc
4849 */
shrink_delalloc(struct btrfs_fs_info * fs_info,u64 to_reclaim,u64 orig,bool wait_ordered)4850 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4851 u64 orig, bool wait_ordered)
4852 {
4853 struct btrfs_block_rsv *block_rsv;
4854 struct btrfs_space_info *space_info;
4855 struct btrfs_trans_handle *trans;
4856 u64 delalloc_bytes;
4857 u64 max_reclaim;
4858 u64 items;
4859 long time_left;
4860 unsigned long nr_pages;
4861 int loops;
4862 enum btrfs_reserve_flush_enum flush;
4863
4864 /* Calc the number of the pages we need flush for space reservation */
4865 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4866 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4867
4868 trans = (struct btrfs_trans_handle *)current->journal_info;
4869 block_rsv = &fs_info->delalloc_block_rsv;
4870 space_info = block_rsv->space_info;
4871
4872 delalloc_bytes = percpu_counter_sum_positive(
4873 &fs_info->delalloc_bytes);
4874 if (delalloc_bytes == 0) {
4875 if (trans)
4876 return;
4877 if (wait_ordered)
4878 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4879 return;
4880 }
4881
4882 loops = 0;
4883 while (delalloc_bytes && loops < 3) {
4884 max_reclaim = min(delalloc_bytes, to_reclaim);
4885 nr_pages = max_reclaim >> PAGE_SHIFT;
4886 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4887 /*
4888 * We need to wait for the async pages to actually start before
4889 * we do anything.
4890 */
4891 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4892 if (!max_reclaim)
4893 goto skip_async;
4894
4895 if (max_reclaim <= nr_pages)
4896 max_reclaim = 0;
4897 else
4898 max_reclaim -= nr_pages;
4899
4900 wait_event(fs_info->async_submit_wait,
4901 atomic_read(&fs_info->async_delalloc_pages) <=
4902 (int)max_reclaim);
4903 skip_async:
4904 if (!trans)
4905 flush = BTRFS_RESERVE_FLUSH_ALL;
4906 else
4907 flush = BTRFS_RESERVE_NO_FLUSH;
4908 spin_lock(&space_info->lock);
4909 if (list_empty(&space_info->tickets) &&
4910 list_empty(&space_info->priority_tickets)) {
4911 spin_unlock(&space_info->lock);
4912 break;
4913 }
4914 spin_unlock(&space_info->lock);
4915
4916 loops++;
4917 if (wait_ordered && !trans) {
4918 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4919 } else {
4920 time_left = schedule_timeout_killable(1);
4921 if (time_left)
4922 break;
4923 }
4924 delalloc_bytes = percpu_counter_sum_positive(
4925 &fs_info->delalloc_bytes);
4926 }
4927 }
4928
4929 struct reserve_ticket {
4930 u64 bytes;
4931 int error;
4932 struct list_head list;
4933 wait_queue_head_t wait;
4934 };
4935
4936 /**
4937 * maybe_commit_transaction - possibly commit the transaction if its ok to
4938 * @root - the root we're allocating for
4939 * @bytes - the number of bytes we want to reserve
4940 * @force - force the commit
4941 *
4942 * This will check to make sure that committing the transaction will actually
4943 * get us somewhere and then commit the transaction if it does. Otherwise it
4944 * will return -ENOSPC.
4945 */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)4946 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4947 struct btrfs_space_info *space_info)
4948 {
4949 struct reserve_ticket *ticket = NULL;
4950 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4951 struct btrfs_trans_handle *trans;
4952 u64 bytes;
4953
4954 trans = (struct btrfs_trans_handle *)current->journal_info;
4955 if (trans)
4956 return -EAGAIN;
4957
4958 spin_lock(&space_info->lock);
4959 if (!list_empty(&space_info->priority_tickets))
4960 ticket = list_first_entry(&space_info->priority_tickets,
4961 struct reserve_ticket, list);
4962 else if (!list_empty(&space_info->tickets))
4963 ticket = list_first_entry(&space_info->tickets,
4964 struct reserve_ticket, list);
4965 bytes = (ticket) ? ticket->bytes : 0;
4966 spin_unlock(&space_info->lock);
4967
4968 if (!bytes)
4969 return 0;
4970
4971 /* See if there is enough pinned space to make this reservation */
4972 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4973 bytes) >= 0)
4974 goto commit;
4975
4976 /*
4977 * See if there is some space in the delayed insertion reservation for
4978 * this reservation.
4979 */
4980 if (space_info != delayed_rsv->space_info)
4981 return -ENOSPC;
4982
4983 spin_lock(&delayed_rsv->lock);
4984 if (delayed_rsv->size > bytes)
4985 bytes = 0;
4986 else
4987 bytes -= delayed_rsv->size;
4988 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4989 bytes) < 0) {
4990 spin_unlock(&delayed_rsv->lock);
4991 return -ENOSPC;
4992 }
4993 spin_unlock(&delayed_rsv->lock);
4994
4995 commit:
4996 trans = btrfs_join_transaction(fs_info->extent_root);
4997 if (IS_ERR(trans))
4998 return -ENOSPC;
4999
5000 return btrfs_commit_transaction(trans);
5001 }
5002
5003 /*
5004 * Try to flush some data based on policy set by @state. This is only advisory
5005 * and may fail for various reasons. The caller is supposed to examine the
5006 * state of @space_info to detect the outcome.
5007 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)5008 static void flush_space(struct btrfs_fs_info *fs_info,
5009 struct btrfs_space_info *space_info, u64 num_bytes,
5010 int state)
5011 {
5012 struct btrfs_root *root = fs_info->extent_root;
5013 struct btrfs_trans_handle *trans;
5014 int nr;
5015 int ret = 0;
5016
5017 switch (state) {
5018 case FLUSH_DELAYED_ITEMS_NR:
5019 case FLUSH_DELAYED_ITEMS:
5020 if (state == FLUSH_DELAYED_ITEMS_NR)
5021 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
5022 else
5023 nr = -1;
5024
5025 trans = btrfs_join_transaction(root);
5026 if (IS_ERR(trans)) {
5027 ret = PTR_ERR(trans);
5028 break;
5029 }
5030 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
5031 btrfs_end_transaction(trans);
5032 break;
5033 case FLUSH_DELALLOC:
5034 case FLUSH_DELALLOC_WAIT:
5035 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5036 state == FLUSH_DELALLOC_WAIT);
5037 break;
5038 case ALLOC_CHUNK:
5039 trans = btrfs_join_transaction(root);
5040 if (IS_ERR(trans)) {
5041 ret = PTR_ERR(trans);
5042 break;
5043 }
5044 ret = do_chunk_alloc(trans, fs_info,
5045 btrfs_metadata_alloc_profile(fs_info),
5046 CHUNK_ALLOC_NO_FORCE);
5047 btrfs_end_transaction(trans);
5048 if (ret > 0 || ret == -ENOSPC)
5049 ret = 0;
5050 break;
5051 case COMMIT_TRANS:
5052 ret = may_commit_transaction(fs_info, space_info);
5053 break;
5054 default:
5055 ret = -ENOSPC;
5056 break;
5057 }
5058
5059 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5060 ret);
5061 return;
5062 }
5063
5064 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool system_chunk)5065 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5066 struct btrfs_space_info *space_info,
5067 bool system_chunk)
5068 {
5069 struct reserve_ticket *ticket;
5070 u64 used;
5071 u64 expected;
5072 u64 to_reclaim = 0;
5073
5074 list_for_each_entry(ticket, &space_info->tickets, list)
5075 to_reclaim += ticket->bytes;
5076 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5077 to_reclaim += ticket->bytes;
5078 if (to_reclaim)
5079 return to_reclaim;
5080
5081 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5082 if (can_overcommit(fs_info, space_info, to_reclaim,
5083 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5084 return 0;
5085
5086 used = btrfs_space_info_used(space_info, true);
5087
5088 if (can_overcommit(fs_info, space_info, SZ_1M,
5089 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5090 expected = div_factor_fine(space_info->total_bytes, 95);
5091 else
5092 expected = div_factor_fine(space_info->total_bytes, 90);
5093
5094 if (used > expected)
5095 to_reclaim = used - expected;
5096 else
5097 to_reclaim = 0;
5098 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5099 space_info->bytes_reserved);
5100 return to_reclaim;
5101 }
5102
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used,bool system_chunk)5103 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5104 struct btrfs_space_info *space_info,
5105 u64 used, bool system_chunk)
5106 {
5107 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5108
5109 /* If we're just plain full then async reclaim just slows us down. */
5110 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5111 return 0;
5112
5113 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 system_chunk))
5115 return 0;
5116
5117 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5118 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5119 }
5120
wake_all_tickets(struct list_head * head)5121 static void wake_all_tickets(struct list_head *head)
5122 {
5123 struct reserve_ticket *ticket;
5124
5125 while (!list_empty(head)) {
5126 ticket = list_first_entry(head, struct reserve_ticket, list);
5127 list_del_init(&ticket->list);
5128 ticket->error = -ENOSPC;
5129 wake_up(&ticket->wait);
5130 }
5131 }
5132
5133 /*
5134 * This is for normal flushers, we can wait all goddamned day if we want to. We
5135 * will loop and continuously try to flush as long as we are making progress.
5136 * We count progress as clearing off tickets each time we have to loop.
5137 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)5138 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5139 {
5140 struct btrfs_fs_info *fs_info;
5141 struct btrfs_space_info *space_info;
5142 u64 to_reclaim;
5143 int flush_state;
5144 int commit_cycles = 0;
5145 u64 last_tickets_id;
5146
5147 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5148 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5149
5150 spin_lock(&space_info->lock);
5151 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5152 false);
5153 if (!to_reclaim) {
5154 space_info->flush = 0;
5155 spin_unlock(&space_info->lock);
5156 return;
5157 }
5158 last_tickets_id = space_info->tickets_id;
5159 spin_unlock(&space_info->lock);
5160
5161 flush_state = FLUSH_DELAYED_ITEMS_NR;
5162 do {
5163 flush_space(fs_info, space_info, to_reclaim, flush_state);
5164 spin_lock(&space_info->lock);
5165 if (list_empty(&space_info->tickets)) {
5166 space_info->flush = 0;
5167 spin_unlock(&space_info->lock);
5168 return;
5169 }
5170 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5171 space_info,
5172 false);
5173 if (last_tickets_id == space_info->tickets_id) {
5174 flush_state++;
5175 } else {
5176 last_tickets_id = space_info->tickets_id;
5177 flush_state = FLUSH_DELAYED_ITEMS_NR;
5178 if (commit_cycles)
5179 commit_cycles--;
5180 }
5181
5182 if (flush_state > COMMIT_TRANS) {
5183 commit_cycles++;
5184 if (commit_cycles > 2) {
5185 wake_all_tickets(&space_info->tickets);
5186 space_info->flush = 0;
5187 } else {
5188 flush_state = FLUSH_DELAYED_ITEMS_NR;
5189 }
5190 }
5191 spin_unlock(&space_info->lock);
5192 } while (flush_state <= COMMIT_TRANS);
5193 }
5194
btrfs_init_async_reclaim_work(struct work_struct * work)5195 void btrfs_init_async_reclaim_work(struct work_struct *work)
5196 {
5197 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5198 }
5199
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5200 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5201 struct btrfs_space_info *space_info,
5202 struct reserve_ticket *ticket)
5203 {
5204 u64 to_reclaim;
5205 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5206
5207 spin_lock(&space_info->lock);
5208 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5209 false);
5210 if (!to_reclaim) {
5211 spin_unlock(&space_info->lock);
5212 return;
5213 }
5214 spin_unlock(&space_info->lock);
5215
5216 do {
5217 flush_space(fs_info, space_info, to_reclaim, flush_state);
5218 flush_state++;
5219 spin_lock(&space_info->lock);
5220 if (ticket->bytes == 0) {
5221 spin_unlock(&space_info->lock);
5222 return;
5223 }
5224 spin_unlock(&space_info->lock);
5225
5226 /*
5227 * Priority flushers can't wait on delalloc without
5228 * deadlocking.
5229 */
5230 if (flush_state == FLUSH_DELALLOC ||
5231 flush_state == FLUSH_DELALLOC_WAIT)
5232 flush_state = ALLOC_CHUNK;
5233 } while (flush_state < COMMIT_TRANS);
5234 }
5235
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5236 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5237 struct btrfs_space_info *space_info,
5238 struct reserve_ticket *ticket, u64 orig_bytes)
5239
5240 {
5241 DEFINE_WAIT(wait);
5242 int ret = 0;
5243
5244 spin_lock(&space_info->lock);
5245 while (ticket->bytes > 0 && ticket->error == 0) {
5246 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5247 if (ret) {
5248 ret = -EINTR;
5249 break;
5250 }
5251 spin_unlock(&space_info->lock);
5252
5253 schedule();
5254
5255 finish_wait(&ticket->wait, &wait);
5256 spin_lock(&space_info->lock);
5257 }
5258 if (!ret)
5259 ret = ticket->error;
5260 if (!list_empty(&ticket->list))
5261 list_del_init(&ticket->list);
5262 if (ticket->bytes && ticket->bytes < orig_bytes) {
5263 u64 num_bytes = orig_bytes - ticket->bytes;
5264 space_info->bytes_may_use -= num_bytes;
5265 trace_btrfs_space_reservation(fs_info, "space_info",
5266 space_info->flags, num_bytes, 0);
5267 }
5268 spin_unlock(&space_info->lock);
5269
5270 return ret;
5271 }
5272
5273 /**
5274 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5275 * @root - the root we're allocating for
5276 * @space_info - the space info we want to allocate from
5277 * @orig_bytes - the number of bytes we want
5278 * @flush - whether or not we can flush to make our reservation
5279 *
5280 * This will reserve orig_bytes number of bytes from the space info associated
5281 * with the block_rsv. If there is not enough space it will make an attempt to
5282 * flush out space to make room. It will do this by flushing delalloc if
5283 * possible or committing the transaction. If flush is 0 then no attempts to
5284 * regain reservations will be made and this will fail if there is not enough
5285 * space already.
5286 */
__reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)5287 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5288 struct btrfs_space_info *space_info,
5289 u64 orig_bytes,
5290 enum btrfs_reserve_flush_enum flush,
5291 bool system_chunk)
5292 {
5293 struct reserve_ticket ticket;
5294 u64 used;
5295 int ret = 0;
5296
5297 ASSERT(orig_bytes);
5298 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5299
5300 spin_lock(&space_info->lock);
5301 ret = -ENOSPC;
5302 used = btrfs_space_info_used(space_info, true);
5303
5304 /*
5305 * If we have enough space then hooray, make our reservation and carry
5306 * on. If not see if we can overcommit, and if we can, hooray carry on.
5307 * If not things get more complicated.
5308 */
5309 if (used + orig_bytes <= space_info->total_bytes) {
5310 space_info->bytes_may_use += orig_bytes;
5311 trace_btrfs_space_reservation(fs_info, "space_info",
5312 space_info->flags, orig_bytes, 1);
5313 ret = 0;
5314 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5315 system_chunk)) {
5316 space_info->bytes_may_use += orig_bytes;
5317 trace_btrfs_space_reservation(fs_info, "space_info",
5318 space_info->flags, orig_bytes, 1);
5319 ret = 0;
5320 }
5321
5322 /*
5323 * If we couldn't make a reservation then setup our reservation ticket
5324 * and kick the async worker if it's not already running.
5325 *
5326 * If we are a priority flusher then we just need to add our ticket to
5327 * the list and we will do our own flushing further down.
5328 */
5329 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5330 ticket.bytes = orig_bytes;
5331 ticket.error = 0;
5332 init_waitqueue_head(&ticket.wait);
5333 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5334 list_add_tail(&ticket.list, &space_info->tickets);
5335 if (!space_info->flush) {
5336 space_info->flush = 1;
5337 trace_btrfs_trigger_flush(fs_info,
5338 space_info->flags,
5339 orig_bytes, flush,
5340 "enospc");
5341 queue_work(system_unbound_wq,
5342 &fs_info->async_reclaim_work);
5343 }
5344 } else {
5345 list_add_tail(&ticket.list,
5346 &space_info->priority_tickets);
5347 }
5348 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5349 used += orig_bytes;
5350 /*
5351 * We will do the space reservation dance during log replay,
5352 * which means we won't have fs_info->fs_root set, so don't do
5353 * the async reclaim as we will panic.
5354 */
5355 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5356 need_do_async_reclaim(fs_info, space_info,
5357 used, system_chunk) &&
5358 !work_busy(&fs_info->async_reclaim_work)) {
5359 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5360 orig_bytes, flush, "preempt");
5361 queue_work(system_unbound_wq,
5362 &fs_info->async_reclaim_work);
5363 }
5364 }
5365 spin_unlock(&space_info->lock);
5366 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5367 return ret;
5368
5369 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5370 return wait_reserve_ticket(fs_info, space_info, &ticket,
5371 orig_bytes);
5372
5373 ret = 0;
5374 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5375 spin_lock(&space_info->lock);
5376 if (ticket.bytes) {
5377 if (ticket.bytes < orig_bytes) {
5378 u64 num_bytes = orig_bytes - ticket.bytes;
5379 space_info->bytes_may_use -= num_bytes;
5380 trace_btrfs_space_reservation(fs_info, "space_info",
5381 space_info->flags,
5382 num_bytes, 0);
5383
5384 }
5385 list_del_init(&ticket.list);
5386 ret = -ENOSPC;
5387 }
5388 spin_unlock(&space_info->lock);
5389 ASSERT(list_empty(&ticket.list));
5390 return ret;
5391 }
5392
5393 /**
5394 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5395 * @root - the root we're allocating for
5396 * @block_rsv - the block_rsv we're allocating for
5397 * @orig_bytes - the number of bytes we want
5398 * @flush - whether or not we can flush to make our reservation
5399 *
5400 * This will reserve orgi_bytes number of bytes from the space info associated
5401 * with the block_rsv. If there is not enough space it will make an attempt to
5402 * flush out space to make room. It will do this by flushing delalloc if
5403 * possible or committing the transaction. If flush is 0 then no attempts to
5404 * regain reservations will be made and this will fail if there is not enough
5405 * space already.
5406 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5407 static int reserve_metadata_bytes(struct btrfs_root *root,
5408 struct btrfs_block_rsv *block_rsv,
5409 u64 orig_bytes,
5410 enum btrfs_reserve_flush_enum flush)
5411 {
5412 struct btrfs_fs_info *fs_info = root->fs_info;
5413 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5414 int ret;
5415 bool system_chunk = (root == fs_info->chunk_root);
5416
5417 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5418 orig_bytes, flush, system_chunk);
5419 if (ret == -ENOSPC &&
5420 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5421 if (block_rsv != global_rsv &&
5422 !block_rsv_use_bytes(global_rsv, orig_bytes))
5423 ret = 0;
5424 }
5425 if (ret == -ENOSPC)
5426 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5427 block_rsv->space_info->flags,
5428 orig_bytes, 1);
5429 return ret;
5430 }
5431
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5432 static struct btrfs_block_rsv *get_block_rsv(
5433 const struct btrfs_trans_handle *trans,
5434 const struct btrfs_root *root)
5435 {
5436 struct btrfs_fs_info *fs_info = root->fs_info;
5437 struct btrfs_block_rsv *block_rsv = NULL;
5438
5439 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5440 (root == fs_info->csum_root && trans->adding_csums) ||
5441 (root == fs_info->uuid_root))
5442 block_rsv = trans->block_rsv;
5443
5444 if (!block_rsv)
5445 block_rsv = root->block_rsv;
5446
5447 if (!block_rsv)
5448 block_rsv = &fs_info->empty_block_rsv;
5449
5450 return block_rsv;
5451 }
5452
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5453 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5454 u64 num_bytes)
5455 {
5456 int ret = -ENOSPC;
5457 spin_lock(&block_rsv->lock);
5458 if (block_rsv->reserved >= num_bytes) {
5459 block_rsv->reserved -= num_bytes;
5460 if (block_rsv->reserved < block_rsv->size)
5461 block_rsv->full = 0;
5462 ret = 0;
5463 }
5464 spin_unlock(&block_rsv->lock);
5465 return ret;
5466 }
5467
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5468 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5469 u64 num_bytes, int update_size)
5470 {
5471 spin_lock(&block_rsv->lock);
5472 block_rsv->reserved += num_bytes;
5473 if (update_size)
5474 block_rsv->size += num_bytes;
5475 else if (block_rsv->reserved >= block_rsv->size)
5476 block_rsv->full = 1;
5477 spin_unlock(&block_rsv->lock);
5478 }
5479
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5480 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5481 struct btrfs_block_rsv *dest, u64 num_bytes,
5482 int min_factor)
5483 {
5484 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5485 u64 min_bytes;
5486
5487 if (global_rsv->space_info != dest->space_info)
5488 return -ENOSPC;
5489
5490 spin_lock(&global_rsv->lock);
5491 min_bytes = div_factor(global_rsv->size, min_factor);
5492 if (global_rsv->reserved < min_bytes + num_bytes) {
5493 spin_unlock(&global_rsv->lock);
5494 return -ENOSPC;
5495 }
5496 global_rsv->reserved -= num_bytes;
5497 if (global_rsv->reserved < global_rsv->size)
5498 global_rsv->full = 0;
5499 spin_unlock(&global_rsv->lock);
5500
5501 block_rsv_add_bytes(dest, num_bytes, 1);
5502 return 0;
5503 }
5504
5505 /*
5506 * This is for space we already have accounted in space_info->bytes_may_use, so
5507 * basically when we're returning space from block_rsv's.
5508 */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5509 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5510 struct btrfs_space_info *space_info,
5511 u64 num_bytes)
5512 {
5513 struct reserve_ticket *ticket;
5514 struct list_head *head;
5515 u64 used;
5516 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5517 bool check_overcommit = false;
5518
5519 spin_lock(&space_info->lock);
5520 head = &space_info->priority_tickets;
5521
5522 /*
5523 * If we are over our limit then we need to check and see if we can
5524 * overcommit, and if we can't then we just need to free up our space
5525 * and not satisfy any requests.
5526 */
5527 used = btrfs_space_info_used(space_info, true);
5528 if (used - num_bytes >= space_info->total_bytes)
5529 check_overcommit = true;
5530 again:
5531 while (!list_empty(head) && num_bytes) {
5532 ticket = list_first_entry(head, struct reserve_ticket,
5533 list);
5534 /*
5535 * We use 0 bytes because this space is already reserved, so
5536 * adding the ticket space would be a double count.
5537 */
5538 if (check_overcommit &&
5539 !can_overcommit(fs_info, space_info, 0, flush, false))
5540 break;
5541 if (num_bytes >= ticket->bytes) {
5542 list_del_init(&ticket->list);
5543 num_bytes -= ticket->bytes;
5544 ticket->bytes = 0;
5545 space_info->tickets_id++;
5546 wake_up(&ticket->wait);
5547 } else {
5548 ticket->bytes -= num_bytes;
5549 num_bytes = 0;
5550 }
5551 }
5552
5553 if (num_bytes && head == &space_info->priority_tickets) {
5554 head = &space_info->tickets;
5555 flush = BTRFS_RESERVE_FLUSH_ALL;
5556 goto again;
5557 }
5558 space_info->bytes_may_use -= num_bytes;
5559 trace_btrfs_space_reservation(fs_info, "space_info",
5560 space_info->flags, num_bytes, 0);
5561 spin_unlock(&space_info->lock);
5562 }
5563
5564 /*
5565 * This is for newly allocated space that isn't accounted in
5566 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5567 * we use this helper.
5568 */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5569 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5570 struct btrfs_space_info *space_info,
5571 u64 num_bytes)
5572 {
5573 struct reserve_ticket *ticket;
5574 struct list_head *head = &space_info->priority_tickets;
5575
5576 again:
5577 while (!list_empty(head) && num_bytes) {
5578 ticket = list_first_entry(head, struct reserve_ticket,
5579 list);
5580 if (num_bytes >= ticket->bytes) {
5581 trace_btrfs_space_reservation(fs_info, "space_info",
5582 space_info->flags,
5583 ticket->bytes, 1);
5584 list_del_init(&ticket->list);
5585 num_bytes -= ticket->bytes;
5586 space_info->bytes_may_use += ticket->bytes;
5587 ticket->bytes = 0;
5588 space_info->tickets_id++;
5589 wake_up(&ticket->wait);
5590 } else {
5591 trace_btrfs_space_reservation(fs_info, "space_info",
5592 space_info->flags,
5593 num_bytes, 1);
5594 space_info->bytes_may_use += num_bytes;
5595 ticket->bytes -= num_bytes;
5596 num_bytes = 0;
5597 }
5598 }
5599
5600 if (num_bytes && head == &space_info->priority_tickets) {
5601 head = &space_info->tickets;
5602 goto again;
5603 }
5604 }
5605
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)5606 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5607 struct btrfs_block_rsv *block_rsv,
5608 struct btrfs_block_rsv *dest, u64 num_bytes)
5609 {
5610 struct btrfs_space_info *space_info = block_rsv->space_info;
5611
5612 spin_lock(&block_rsv->lock);
5613 if (num_bytes == (u64)-1)
5614 num_bytes = block_rsv->size;
5615 block_rsv->size -= num_bytes;
5616 if (block_rsv->reserved >= block_rsv->size) {
5617 num_bytes = block_rsv->reserved - block_rsv->size;
5618 block_rsv->reserved = block_rsv->size;
5619 block_rsv->full = 1;
5620 } else {
5621 num_bytes = 0;
5622 }
5623 spin_unlock(&block_rsv->lock);
5624
5625 if (num_bytes > 0) {
5626 if (dest) {
5627 spin_lock(&dest->lock);
5628 if (!dest->full) {
5629 u64 bytes_to_add;
5630
5631 bytes_to_add = dest->size - dest->reserved;
5632 bytes_to_add = min(num_bytes, bytes_to_add);
5633 dest->reserved += bytes_to_add;
5634 if (dest->reserved >= dest->size)
5635 dest->full = 1;
5636 num_bytes -= bytes_to_add;
5637 }
5638 spin_unlock(&dest->lock);
5639 }
5640 if (num_bytes)
5641 space_info_add_old_bytes(fs_info, space_info,
5642 num_bytes);
5643 }
5644 }
5645
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5646 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5647 struct btrfs_block_rsv *dst, u64 num_bytes,
5648 int update_size)
5649 {
5650 int ret;
5651
5652 ret = block_rsv_use_bytes(src, num_bytes);
5653 if (ret)
5654 return ret;
5655
5656 block_rsv_add_bytes(dst, num_bytes, update_size);
5657 return 0;
5658 }
5659
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5660 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5661 {
5662 memset(rsv, 0, sizeof(*rsv));
5663 spin_lock_init(&rsv->lock);
5664 rsv->type = type;
5665 }
5666
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)5667 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5668 unsigned short type)
5669 {
5670 struct btrfs_block_rsv *block_rsv;
5671
5672 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5673 if (!block_rsv)
5674 return NULL;
5675
5676 btrfs_init_block_rsv(block_rsv, type);
5677 block_rsv->space_info = __find_space_info(fs_info,
5678 BTRFS_BLOCK_GROUP_METADATA);
5679 return block_rsv;
5680 }
5681
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5682 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5683 struct btrfs_block_rsv *rsv)
5684 {
5685 if (!rsv)
5686 return;
5687 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5688 kfree(rsv);
5689 }
5690
__btrfs_free_block_rsv(struct btrfs_block_rsv * rsv)5691 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5692 {
5693 kfree(rsv);
5694 }
5695
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5696 int btrfs_block_rsv_add(struct btrfs_root *root,
5697 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5698 enum btrfs_reserve_flush_enum flush)
5699 {
5700 int ret;
5701
5702 if (num_bytes == 0)
5703 return 0;
5704
5705 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5706 if (!ret) {
5707 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5708 return 0;
5709 }
5710
5711 return ret;
5712 }
5713
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)5714 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5715 {
5716 u64 num_bytes = 0;
5717 int ret = -ENOSPC;
5718
5719 if (!block_rsv)
5720 return 0;
5721
5722 spin_lock(&block_rsv->lock);
5723 num_bytes = div_factor(block_rsv->size, min_factor);
5724 if (block_rsv->reserved >= num_bytes)
5725 ret = 0;
5726 spin_unlock(&block_rsv->lock);
5727
5728 return ret;
5729 }
5730
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5731 int btrfs_block_rsv_refill(struct btrfs_root *root,
5732 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5733 enum btrfs_reserve_flush_enum flush)
5734 {
5735 u64 num_bytes = 0;
5736 int ret = -ENOSPC;
5737
5738 if (!block_rsv)
5739 return 0;
5740
5741 spin_lock(&block_rsv->lock);
5742 num_bytes = min_reserved;
5743 if (block_rsv->reserved >= num_bytes)
5744 ret = 0;
5745 else
5746 num_bytes -= block_rsv->reserved;
5747 spin_unlock(&block_rsv->lock);
5748
5749 if (!ret)
5750 return 0;
5751
5752 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5753 if (!ret) {
5754 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5755 return 0;
5756 }
5757
5758 return ret;
5759 }
5760
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5761 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5762 struct btrfs_block_rsv *block_rsv,
5763 u64 num_bytes)
5764 {
5765 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5766
5767 if (global_rsv == block_rsv ||
5768 block_rsv->space_info != global_rsv->space_info)
5769 global_rsv = NULL;
5770 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5771 }
5772
update_global_block_rsv(struct btrfs_fs_info * fs_info)5773 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5774 {
5775 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5776 struct btrfs_space_info *sinfo = block_rsv->space_info;
5777 u64 num_bytes;
5778
5779 /*
5780 * The global block rsv is based on the size of the extent tree, the
5781 * checksum tree and the root tree. If the fs is empty we want to set
5782 * it to a minimal amount for safety.
5783 */
5784 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5785 btrfs_root_used(&fs_info->csum_root->root_item) +
5786 btrfs_root_used(&fs_info->tree_root->root_item);
5787 num_bytes = max_t(u64, num_bytes, SZ_16M);
5788
5789 spin_lock(&sinfo->lock);
5790 spin_lock(&block_rsv->lock);
5791
5792 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5793
5794 if (block_rsv->reserved < block_rsv->size) {
5795 num_bytes = btrfs_space_info_used(sinfo, true);
5796 if (sinfo->total_bytes > num_bytes) {
5797 num_bytes = sinfo->total_bytes - num_bytes;
5798 num_bytes = min(num_bytes,
5799 block_rsv->size - block_rsv->reserved);
5800 block_rsv->reserved += num_bytes;
5801 sinfo->bytes_may_use += num_bytes;
5802 trace_btrfs_space_reservation(fs_info, "space_info",
5803 sinfo->flags, num_bytes,
5804 1);
5805 }
5806 } else if (block_rsv->reserved > block_rsv->size) {
5807 num_bytes = block_rsv->reserved - block_rsv->size;
5808 sinfo->bytes_may_use -= num_bytes;
5809 trace_btrfs_space_reservation(fs_info, "space_info",
5810 sinfo->flags, num_bytes, 0);
5811 block_rsv->reserved = block_rsv->size;
5812 }
5813
5814 if (block_rsv->reserved == block_rsv->size)
5815 block_rsv->full = 1;
5816 else
5817 block_rsv->full = 0;
5818
5819 spin_unlock(&block_rsv->lock);
5820 spin_unlock(&sinfo->lock);
5821 }
5822
init_global_block_rsv(struct btrfs_fs_info * fs_info)5823 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5824 {
5825 struct btrfs_space_info *space_info;
5826
5827 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5828 fs_info->chunk_block_rsv.space_info = space_info;
5829
5830 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5831 fs_info->global_block_rsv.space_info = space_info;
5832 fs_info->delalloc_block_rsv.space_info = space_info;
5833 fs_info->trans_block_rsv.space_info = space_info;
5834 fs_info->empty_block_rsv.space_info = space_info;
5835 fs_info->delayed_block_rsv.space_info = space_info;
5836
5837 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5838 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5839 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5840 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5841 if (fs_info->quota_root)
5842 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5843 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5844
5845 update_global_block_rsv(fs_info);
5846 }
5847
release_global_block_rsv(struct btrfs_fs_info * fs_info)5848 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5849 {
5850 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5851 (u64)-1);
5852 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5853 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5854 WARN_ON(fs_info->trans_block_rsv.size > 0);
5855 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5856 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5857 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5858 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5859 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5860 }
5861
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)5862 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5863 struct btrfs_fs_info *fs_info)
5864 {
5865 if (!trans->block_rsv)
5866 return;
5867
5868 if (!trans->bytes_reserved)
5869 return;
5870
5871 trace_btrfs_space_reservation(fs_info, "transaction",
5872 trans->transid, trans->bytes_reserved, 0);
5873 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5874 trans->bytes_reserved);
5875 trans->bytes_reserved = 0;
5876 }
5877
5878 /*
5879 * To be called after all the new block groups attached to the transaction
5880 * handle have been created (btrfs_create_pending_block_groups()).
5881 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5882 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5883 {
5884 struct btrfs_fs_info *fs_info = trans->fs_info;
5885
5886 if (!trans->chunk_bytes_reserved)
5887 return;
5888
5889 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5890
5891 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5892 trans->chunk_bytes_reserved);
5893 trans->chunk_bytes_reserved = 0;
5894 }
5895
5896 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5897 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5898 struct btrfs_inode *inode)
5899 {
5900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5901 struct btrfs_root *root = inode->root;
5902 /*
5903 * We always use trans->block_rsv here as we will have reserved space
5904 * for our orphan when starting the transaction, using get_block_rsv()
5905 * here will sometimes make us choose the wrong block rsv as we could be
5906 * doing a reloc inode for a non refcounted root.
5907 */
5908 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5909 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5910
5911 /*
5912 * We need to hold space in order to delete our orphan item once we've
5913 * added it, so this takes the reservation so we can release it later
5914 * when we are truly done with the orphan item.
5915 */
5916 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5917
5918 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5919 num_bytes, 1);
5920 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5921 }
5922
btrfs_orphan_release_metadata(struct btrfs_inode * inode)5923 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5924 {
5925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5926 struct btrfs_root *root = inode->root;
5927 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5928
5929 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5930 num_bytes, 0);
5931 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5932 }
5933
5934 /*
5935 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5936 * root: the root of the parent directory
5937 * rsv: block reservation
5938 * items: the number of items that we need do reservation
5939 * qgroup_reserved: used to return the reserved size in qgroup
5940 *
5941 * This function is used to reserve the space for snapshot/subvolume
5942 * creation and deletion. Those operations are different with the
5943 * common file/directory operations, they change two fs/file trees
5944 * and root tree, the number of items that the qgroup reserves is
5945 * different with the free space reservation. So we can not use
5946 * the space reservation mechanism in start_transaction().
5947 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,u64 * qgroup_reserved,bool use_global_rsv)5948 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5949 struct btrfs_block_rsv *rsv,
5950 int items,
5951 u64 *qgroup_reserved,
5952 bool use_global_rsv)
5953 {
5954 u64 num_bytes;
5955 int ret;
5956 struct btrfs_fs_info *fs_info = root->fs_info;
5957 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5958
5959 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5960 /* One for parent inode, two for dir entries */
5961 num_bytes = 3 * fs_info->nodesize;
5962 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5963 if (ret)
5964 return ret;
5965 } else {
5966 num_bytes = 0;
5967 }
5968
5969 *qgroup_reserved = num_bytes;
5970
5971 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5972 rsv->space_info = __find_space_info(fs_info,
5973 BTRFS_BLOCK_GROUP_METADATA);
5974 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5975 BTRFS_RESERVE_FLUSH_ALL);
5976
5977 if (ret == -ENOSPC && use_global_rsv)
5978 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5979
5980 if (ret && *qgroup_reserved)
5981 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5982
5983 return ret;
5984 }
5985
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5986 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5987 struct btrfs_block_rsv *rsv)
5988 {
5989 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5990 }
5991
5992 /**
5993 * drop_outstanding_extent - drop an outstanding extent
5994 * @inode: the inode we're dropping the extent for
5995 * @num_bytes: the number of bytes we're releasing.
5996 *
5997 * This is called when we are freeing up an outstanding extent, either called
5998 * after an error or after an extent is written. This will return the number of
5999 * reserved extents that need to be freed. This must be called with
6000 * BTRFS_I(inode)->lock held.
6001 */
drop_outstanding_extent(struct btrfs_inode * inode,u64 num_bytes)6002 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
6003 u64 num_bytes)
6004 {
6005 unsigned drop_inode_space = 0;
6006 unsigned dropped_extents = 0;
6007 unsigned num_extents;
6008
6009 num_extents = count_max_extents(num_bytes);
6010 ASSERT(num_extents);
6011 ASSERT(inode->outstanding_extents >= num_extents);
6012 inode->outstanding_extents -= num_extents;
6013
6014 if (inode->outstanding_extents == 0 &&
6015 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6016 &inode->runtime_flags))
6017 drop_inode_space = 1;
6018
6019 /*
6020 * If we have more or the same amount of outstanding extents than we have
6021 * reserved then we need to leave the reserved extents count alone.
6022 */
6023 if (inode->outstanding_extents >= inode->reserved_extents)
6024 return drop_inode_space;
6025
6026 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
6027 inode->reserved_extents -= dropped_extents;
6028 return dropped_extents + drop_inode_space;
6029 }
6030
6031 /**
6032 * calc_csum_metadata_size - return the amount of metadata space that must be
6033 * reserved/freed for the given bytes.
6034 * @inode: the inode we're manipulating
6035 * @num_bytes: the number of bytes in question
6036 * @reserve: 1 if we are reserving space, 0 if we are freeing space
6037 *
6038 * This adjusts the number of csum_bytes in the inode and then returns the
6039 * correct amount of metadata that must either be reserved or freed. We
6040 * calculate how many checksums we can fit into one leaf and then divide the
6041 * number of bytes that will need to be checksumed by this value to figure out
6042 * how many checksums will be required. If we are adding bytes then the number
6043 * may go up and we will return the number of additional bytes that must be
6044 * reserved. If it is going down we will return the number of bytes that must
6045 * be freed.
6046 *
6047 * This must be called with BTRFS_I(inode)->lock held.
6048 */
calc_csum_metadata_size(struct btrfs_inode * inode,u64 num_bytes,int reserve)6049 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
6050 int reserve)
6051 {
6052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6053 u64 old_csums, num_csums;
6054
6055 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
6056 return 0;
6057
6058 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
6059 if (reserve)
6060 inode->csum_bytes += num_bytes;
6061 else
6062 inode->csum_bytes -= num_bytes;
6063 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
6064
6065 /* No change, no need to reserve more */
6066 if (old_csums == num_csums)
6067 return 0;
6068
6069 if (reserve)
6070 return btrfs_calc_trans_metadata_size(fs_info,
6071 num_csums - old_csums);
6072
6073 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
6074 }
6075
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes)6076 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6077 {
6078 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6079 struct btrfs_root *root = inode->root;
6080 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
6081 u64 to_reserve = 0;
6082 u64 csum_bytes;
6083 unsigned nr_extents;
6084 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6085 int ret = 0;
6086 bool delalloc_lock = true;
6087 u64 to_free = 0;
6088 unsigned dropped;
6089 bool release_extra = false;
6090
6091 /* If we are a free space inode we need to not flush since we will be in
6092 * the middle of a transaction commit. We also don't need the delalloc
6093 * mutex since we won't race with anybody. We need this mostly to make
6094 * lockdep shut its filthy mouth.
6095 *
6096 * If we have a transaction open (can happen if we call truncate_block
6097 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6098 */
6099 if (btrfs_is_free_space_inode(inode)) {
6100 flush = BTRFS_RESERVE_NO_FLUSH;
6101 delalloc_lock = false;
6102 } else if (current->journal_info) {
6103 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6104 }
6105
6106 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6107 btrfs_transaction_in_commit(fs_info))
6108 schedule_timeout(1);
6109
6110 if (delalloc_lock)
6111 mutex_lock(&inode->delalloc_mutex);
6112
6113 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6114
6115 spin_lock(&inode->lock);
6116 nr_extents = count_max_extents(num_bytes);
6117 inode->outstanding_extents += nr_extents;
6118
6119 nr_extents = 0;
6120 if (inode->outstanding_extents > inode->reserved_extents)
6121 nr_extents += inode->outstanding_extents -
6122 inode->reserved_extents;
6123
6124 /* We always want to reserve a slot for updating the inode. */
6125 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6126 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6127 csum_bytes = inode->csum_bytes;
6128 spin_unlock(&inode->lock);
6129
6130 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6131 ret = btrfs_qgroup_reserve_meta(root,
6132 nr_extents * fs_info->nodesize, true);
6133 if (ret)
6134 goto out_fail;
6135 }
6136
6137 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6138 if (unlikely(ret)) {
6139 btrfs_qgroup_free_meta(root,
6140 nr_extents * fs_info->nodesize);
6141 goto out_fail;
6142 }
6143
6144 spin_lock(&inode->lock);
6145 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6146 &inode->runtime_flags)) {
6147 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6148 release_extra = true;
6149 }
6150 inode->reserved_extents += nr_extents;
6151 spin_unlock(&inode->lock);
6152
6153 if (delalloc_lock)
6154 mutex_unlock(&inode->delalloc_mutex);
6155
6156 if (to_reserve)
6157 trace_btrfs_space_reservation(fs_info, "delalloc",
6158 btrfs_ino(inode), to_reserve, 1);
6159 if (release_extra)
6160 btrfs_block_rsv_release(fs_info, block_rsv,
6161 btrfs_calc_trans_metadata_size(fs_info, 1));
6162 return 0;
6163
6164 out_fail:
6165 spin_lock(&inode->lock);
6166 dropped = drop_outstanding_extent(inode, num_bytes);
6167 /*
6168 * If the inodes csum_bytes is the same as the original
6169 * csum_bytes then we know we haven't raced with any free()ers
6170 * so we can just reduce our inodes csum bytes and carry on.
6171 */
6172 if (inode->csum_bytes == csum_bytes) {
6173 calc_csum_metadata_size(inode, num_bytes, 0);
6174 } else {
6175 u64 orig_csum_bytes = inode->csum_bytes;
6176 u64 bytes;
6177
6178 /*
6179 * This is tricky, but first we need to figure out how much we
6180 * freed from any free-ers that occurred during this
6181 * reservation, so we reset ->csum_bytes to the csum_bytes
6182 * before we dropped our lock, and then call the free for the
6183 * number of bytes that were freed while we were trying our
6184 * reservation.
6185 */
6186 bytes = csum_bytes - inode->csum_bytes;
6187 inode->csum_bytes = csum_bytes;
6188 to_free = calc_csum_metadata_size(inode, bytes, 0);
6189
6190
6191 /*
6192 * Now we need to see how much we would have freed had we not
6193 * been making this reservation and our ->csum_bytes were not
6194 * artificially inflated.
6195 */
6196 inode->csum_bytes = csum_bytes - num_bytes;
6197 bytes = csum_bytes - orig_csum_bytes;
6198 bytes = calc_csum_metadata_size(inode, bytes, 0);
6199
6200 /*
6201 * Now reset ->csum_bytes to what it should be. If bytes is
6202 * more than to_free then we would have freed more space had we
6203 * not had an artificially high ->csum_bytes, so we need to free
6204 * the remainder. If bytes is the same or less then we don't
6205 * need to do anything, the other free-ers did the correct
6206 * thing.
6207 */
6208 inode->csum_bytes = orig_csum_bytes - num_bytes;
6209 if (bytes > to_free)
6210 to_free = bytes - to_free;
6211 else
6212 to_free = 0;
6213 }
6214 spin_unlock(&inode->lock);
6215 if (dropped)
6216 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6217
6218 if (to_free) {
6219 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6220 trace_btrfs_space_reservation(fs_info, "delalloc",
6221 btrfs_ino(inode), to_free, 0);
6222 }
6223 if (delalloc_lock)
6224 mutex_unlock(&inode->delalloc_mutex);
6225 return ret;
6226 }
6227
6228 /**
6229 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6230 * @inode: the inode to release the reservation for
6231 * @num_bytes: the number of bytes we're releasing
6232 *
6233 * This will release the metadata reservation for an inode. This can be called
6234 * once we complete IO for a given set of bytes to release their metadata
6235 * reservations.
6236 */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes)6237 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6238 {
6239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6240 u64 to_free = 0;
6241 unsigned dropped;
6242
6243 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6244 spin_lock(&inode->lock);
6245 dropped = drop_outstanding_extent(inode, num_bytes);
6246
6247 if (num_bytes)
6248 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6249 spin_unlock(&inode->lock);
6250 if (dropped > 0)
6251 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6252
6253 if (btrfs_is_testing(fs_info))
6254 return;
6255
6256 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6257 to_free, 0);
6258
6259 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6260 }
6261
6262 /**
6263 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6264 * delalloc
6265 * @inode: inode we're writing to
6266 * @start: start range we are writing to
6267 * @len: how long the range we are writing to
6268 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6269 * current reservation.
6270 *
6271 * This will do the following things
6272 *
6273 * o reserve space in data space info for num bytes
6274 * and reserve precious corresponding qgroup space
6275 * (Done in check_data_free_space)
6276 *
6277 * o reserve space for metadata space, based on the number of outstanding
6278 * extents and how much csums will be needed
6279 * also reserve metadata space in a per root over-reserve method.
6280 * o add to the inodes->delalloc_bytes
6281 * o add it to the fs_info's delalloc inodes list.
6282 * (Above 3 all done in delalloc_reserve_metadata)
6283 *
6284 * Return 0 for success
6285 * Return <0 for error(-ENOSPC or -EQUOT)
6286 */
btrfs_delalloc_reserve_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)6287 int btrfs_delalloc_reserve_space(struct inode *inode,
6288 struct extent_changeset **reserved, u64 start, u64 len)
6289 {
6290 int ret;
6291
6292 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6293 if (ret < 0)
6294 return ret;
6295 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6296 if (ret < 0)
6297 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6298 return ret;
6299 }
6300
6301 /**
6302 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6303 * @inode: inode we're releasing space for
6304 * @start: start position of the space already reserved
6305 * @len: the len of the space already reserved
6306 *
6307 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6308 * called in the case that we don't need the metadata AND data reservations
6309 * anymore. So if there is an error or we insert an inline extent.
6310 *
6311 * This function will release the metadata space that was not used and will
6312 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6313 * list if there are no delalloc bytes left.
6314 * Also it will handle the qgroup reserved space.
6315 */
btrfs_delalloc_release_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)6316 void btrfs_delalloc_release_space(struct inode *inode,
6317 struct extent_changeset *reserved, u64 start, u64 len)
6318 {
6319 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6320 btrfs_free_reserved_data_space(inode, reserved, start, len);
6321 }
6322
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,u64 bytenr,u64 num_bytes,int alloc)6323 static int update_block_group(struct btrfs_trans_handle *trans,
6324 struct btrfs_fs_info *info, u64 bytenr,
6325 u64 num_bytes, int alloc)
6326 {
6327 struct btrfs_block_group_cache *cache = NULL;
6328 u64 total = num_bytes;
6329 u64 old_val;
6330 u64 byte_in_group;
6331 int factor;
6332
6333 /* block accounting for super block */
6334 spin_lock(&info->delalloc_root_lock);
6335 old_val = btrfs_super_bytes_used(info->super_copy);
6336 if (alloc)
6337 old_val += num_bytes;
6338 else
6339 old_val -= num_bytes;
6340 btrfs_set_super_bytes_used(info->super_copy, old_val);
6341 spin_unlock(&info->delalloc_root_lock);
6342
6343 while (total) {
6344 cache = btrfs_lookup_block_group(info, bytenr);
6345 if (!cache)
6346 return -ENOENT;
6347 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6348 BTRFS_BLOCK_GROUP_RAID1 |
6349 BTRFS_BLOCK_GROUP_RAID10))
6350 factor = 2;
6351 else
6352 factor = 1;
6353 /*
6354 * If this block group has free space cache written out, we
6355 * need to make sure to load it if we are removing space. This
6356 * is because we need the unpinning stage to actually add the
6357 * space back to the block group, otherwise we will leak space.
6358 */
6359 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6360 cache_block_group(cache, 1);
6361
6362 byte_in_group = bytenr - cache->key.objectid;
6363 WARN_ON(byte_in_group > cache->key.offset);
6364
6365 spin_lock(&cache->space_info->lock);
6366 spin_lock(&cache->lock);
6367
6368 if (btrfs_test_opt(info, SPACE_CACHE) &&
6369 cache->disk_cache_state < BTRFS_DC_CLEAR)
6370 cache->disk_cache_state = BTRFS_DC_CLEAR;
6371
6372 old_val = btrfs_block_group_used(&cache->item);
6373 num_bytes = min(total, cache->key.offset - byte_in_group);
6374 if (alloc) {
6375 old_val += num_bytes;
6376 btrfs_set_block_group_used(&cache->item, old_val);
6377 cache->reserved -= num_bytes;
6378 cache->space_info->bytes_reserved -= num_bytes;
6379 cache->space_info->bytes_used += num_bytes;
6380 cache->space_info->disk_used += num_bytes * factor;
6381 spin_unlock(&cache->lock);
6382 spin_unlock(&cache->space_info->lock);
6383 } else {
6384 old_val -= num_bytes;
6385 btrfs_set_block_group_used(&cache->item, old_val);
6386 cache->pinned += num_bytes;
6387 cache->space_info->bytes_pinned += num_bytes;
6388 cache->space_info->bytes_used -= num_bytes;
6389 cache->space_info->disk_used -= num_bytes * factor;
6390 spin_unlock(&cache->lock);
6391 spin_unlock(&cache->space_info->lock);
6392
6393 trace_btrfs_space_reservation(info, "pinned",
6394 cache->space_info->flags,
6395 num_bytes, 1);
6396 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6397 num_bytes);
6398 set_extent_dirty(info->pinned_extents,
6399 bytenr, bytenr + num_bytes - 1,
6400 GFP_NOFS | __GFP_NOFAIL);
6401 }
6402
6403 spin_lock(&trans->transaction->dirty_bgs_lock);
6404 if (list_empty(&cache->dirty_list)) {
6405 list_add_tail(&cache->dirty_list,
6406 &trans->transaction->dirty_bgs);
6407 trans->transaction->num_dirty_bgs++;
6408 btrfs_get_block_group(cache);
6409 }
6410 spin_unlock(&trans->transaction->dirty_bgs_lock);
6411
6412 /*
6413 * No longer have used bytes in this block group, queue it for
6414 * deletion. We do this after adding the block group to the
6415 * dirty list to avoid races between cleaner kthread and space
6416 * cache writeout.
6417 */
6418 if (!alloc && old_val == 0) {
6419 spin_lock(&info->unused_bgs_lock);
6420 if (list_empty(&cache->bg_list)) {
6421 btrfs_get_block_group(cache);
6422 list_add_tail(&cache->bg_list,
6423 &info->unused_bgs);
6424 }
6425 spin_unlock(&info->unused_bgs_lock);
6426 }
6427
6428 btrfs_put_block_group(cache);
6429 total -= num_bytes;
6430 bytenr += num_bytes;
6431 }
6432 return 0;
6433 }
6434
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)6435 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6436 {
6437 struct btrfs_block_group_cache *cache;
6438 u64 bytenr;
6439
6440 spin_lock(&fs_info->block_group_cache_lock);
6441 bytenr = fs_info->first_logical_byte;
6442 spin_unlock(&fs_info->block_group_cache_lock);
6443
6444 if (bytenr < (u64)-1)
6445 return bytenr;
6446
6447 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6448 if (!cache)
6449 return 0;
6450
6451 bytenr = cache->key.objectid;
6452 btrfs_put_block_group(cache);
6453
6454 return bytenr;
6455 }
6456
pin_down_extent(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6457 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6458 struct btrfs_block_group_cache *cache,
6459 u64 bytenr, u64 num_bytes, int reserved)
6460 {
6461 spin_lock(&cache->space_info->lock);
6462 spin_lock(&cache->lock);
6463 cache->pinned += num_bytes;
6464 cache->space_info->bytes_pinned += num_bytes;
6465 if (reserved) {
6466 cache->reserved -= num_bytes;
6467 cache->space_info->bytes_reserved -= num_bytes;
6468 }
6469 spin_unlock(&cache->lock);
6470 spin_unlock(&cache->space_info->lock);
6471
6472 trace_btrfs_space_reservation(fs_info, "pinned",
6473 cache->space_info->flags, num_bytes, 1);
6474 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6475 set_extent_dirty(fs_info->pinned_extents, bytenr,
6476 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6477 return 0;
6478 }
6479
6480 /*
6481 * this function must be called within transaction
6482 */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)6483 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6484 u64 bytenr, u64 num_bytes, int reserved)
6485 {
6486 struct btrfs_block_group_cache *cache;
6487
6488 cache = btrfs_lookup_block_group(fs_info, bytenr);
6489 BUG_ON(!cache); /* Logic error */
6490
6491 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6492
6493 btrfs_put_block_group(cache);
6494 return 0;
6495 }
6496
6497 /*
6498 * this function must be called within transaction
6499 */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)6500 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6501 u64 bytenr, u64 num_bytes)
6502 {
6503 struct btrfs_block_group_cache *cache;
6504 int ret;
6505
6506 cache = btrfs_lookup_block_group(fs_info, bytenr);
6507 if (!cache)
6508 return -EINVAL;
6509
6510 /*
6511 * pull in the free space cache (if any) so that our pin
6512 * removes the free space from the cache. We have load_only set
6513 * to one because the slow code to read in the free extents does check
6514 * the pinned extents.
6515 */
6516 cache_block_group(cache, 1);
6517
6518 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6519
6520 /* remove us from the free space cache (if we're there at all) */
6521 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6522 btrfs_put_block_group(cache);
6523 return ret;
6524 }
6525
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)6526 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6527 u64 start, u64 num_bytes)
6528 {
6529 int ret;
6530 struct btrfs_block_group_cache *block_group;
6531 struct btrfs_caching_control *caching_ctl;
6532
6533 block_group = btrfs_lookup_block_group(fs_info, start);
6534 if (!block_group)
6535 return -EINVAL;
6536
6537 cache_block_group(block_group, 0);
6538 caching_ctl = get_caching_control(block_group);
6539
6540 if (!caching_ctl) {
6541 /* Logic error */
6542 BUG_ON(!block_group_cache_done(block_group));
6543 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6544 } else {
6545 mutex_lock(&caching_ctl->mutex);
6546
6547 if (start >= caching_ctl->progress) {
6548 ret = add_excluded_extent(fs_info, start, num_bytes);
6549 } else if (start + num_bytes <= caching_ctl->progress) {
6550 ret = btrfs_remove_free_space(block_group,
6551 start, num_bytes);
6552 } else {
6553 num_bytes = caching_ctl->progress - start;
6554 ret = btrfs_remove_free_space(block_group,
6555 start, num_bytes);
6556 if (ret)
6557 goto out_lock;
6558
6559 num_bytes = (start + num_bytes) -
6560 caching_ctl->progress;
6561 start = caching_ctl->progress;
6562 ret = add_excluded_extent(fs_info, start, num_bytes);
6563 }
6564 out_lock:
6565 mutex_unlock(&caching_ctl->mutex);
6566 put_caching_control(caching_ctl);
6567 }
6568 btrfs_put_block_group(block_group);
6569 return ret;
6570 }
6571
btrfs_exclude_logged_extents(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)6572 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6573 struct extent_buffer *eb)
6574 {
6575 struct btrfs_file_extent_item *item;
6576 struct btrfs_key key;
6577 int found_type;
6578 int i;
6579
6580 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6581 return 0;
6582
6583 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6584 btrfs_item_key_to_cpu(eb, &key, i);
6585 if (key.type != BTRFS_EXTENT_DATA_KEY)
6586 continue;
6587 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6588 found_type = btrfs_file_extent_type(eb, item);
6589 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6590 continue;
6591 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6592 continue;
6593 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6594 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6595 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6596 }
6597
6598 return 0;
6599 }
6600
6601 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6602 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6603 {
6604 atomic_inc(&bg->reservations);
6605 }
6606
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6607 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6608 const u64 start)
6609 {
6610 struct btrfs_block_group_cache *bg;
6611
6612 bg = btrfs_lookup_block_group(fs_info, start);
6613 ASSERT(bg);
6614 if (atomic_dec_and_test(&bg->reservations))
6615 wake_up_atomic_t(&bg->reservations);
6616 btrfs_put_block_group(bg);
6617 }
6618
btrfs_wait_bg_reservations_atomic_t(atomic_t * a)6619 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6620 {
6621 schedule();
6622 return 0;
6623 }
6624
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6625 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6626 {
6627 struct btrfs_space_info *space_info = bg->space_info;
6628
6629 ASSERT(bg->ro);
6630
6631 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6632 return;
6633
6634 /*
6635 * Our block group is read only but before we set it to read only,
6636 * some task might have had allocated an extent from it already, but it
6637 * has not yet created a respective ordered extent (and added it to a
6638 * root's list of ordered extents).
6639 * Therefore wait for any task currently allocating extents, since the
6640 * block group's reservations counter is incremented while a read lock
6641 * on the groups' semaphore is held and decremented after releasing
6642 * the read access on that semaphore and creating the ordered extent.
6643 */
6644 down_write(&space_info->groups_sem);
6645 up_write(&space_info->groups_sem);
6646
6647 wait_on_atomic_t(&bg->reservations,
6648 btrfs_wait_bg_reservations_atomic_t,
6649 TASK_UNINTERRUPTIBLE);
6650 }
6651
6652 /**
6653 * btrfs_add_reserved_bytes - update the block_group and space info counters
6654 * @cache: The cache we are manipulating
6655 * @ram_bytes: The number of bytes of file content, and will be same to
6656 * @num_bytes except for the compress path.
6657 * @num_bytes: The number of bytes in question
6658 * @delalloc: The blocks are allocated for the delalloc write
6659 *
6660 * This is called by the allocator when it reserves space. If this is a
6661 * reservation and the block group has become read only we cannot make the
6662 * reservation and return -EAGAIN, otherwise this function always succeeds.
6663 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6664 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6665 u64 ram_bytes, u64 num_bytes, int delalloc)
6666 {
6667 struct btrfs_space_info *space_info = cache->space_info;
6668 int ret = 0;
6669
6670 spin_lock(&space_info->lock);
6671 spin_lock(&cache->lock);
6672 if (cache->ro) {
6673 ret = -EAGAIN;
6674 } else {
6675 cache->reserved += num_bytes;
6676 space_info->bytes_reserved += num_bytes;
6677
6678 trace_btrfs_space_reservation(cache->fs_info,
6679 "space_info", space_info->flags,
6680 ram_bytes, 0);
6681 space_info->bytes_may_use -= ram_bytes;
6682 if (delalloc)
6683 cache->delalloc_bytes += num_bytes;
6684 }
6685 spin_unlock(&cache->lock);
6686 spin_unlock(&space_info->lock);
6687 return ret;
6688 }
6689
6690 /**
6691 * btrfs_free_reserved_bytes - update the block_group and space info counters
6692 * @cache: The cache we are manipulating
6693 * @num_bytes: The number of bytes in question
6694 * @delalloc: The blocks are allocated for the delalloc write
6695 *
6696 * This is called by somebody who is freeing space that was never actually used
6697 * on disk. For example if you reserve some space for a new leaf in transaction
6698 * A and before transaction A commits you free that leaf, you call this with
6699 * reserve set to 0 in order to clear the reservation.
6700 */
6701
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6702 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6703 u64 num_bytes, int delalloc)
6704 {
6705 struct btrfs_space_info *space_info = cache->space_info;
6706 int ret = 0;
6707
6708 spin_lock(&space_info->lock);
6709 spin_lock(&cache->lock);
6710 if (cache->ro)
6711 space_info->bytes_readonly += num_bytes;
6712 cache->reserved -= num_bytes;
6713 space_info->bytes_reserved -= num_bytes;
6714
6715 if (delalloc)
6716 cache->delalloc_bytes -= num_bytes;
6717 spin_unlock(&cache->lock);
6718 spin_unlock(&space_info->lock);
6719 return ret;
6720 }
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)6721 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6722 {
6723 struct btrfs_caching_control *next;
6724 struct btrfs_caching_control *caching_ctl;
6725 struct btrfs_block_group_cache *cache;
6726
6727 down_write(&fs_info->commit_root_sem);
6728
6729 list_for_each_entry_safe(caching_ctl, next,
6730 &fs_info->caching_block_groups, list) {
6731 cache = caching_ctl->block_group;
6732 if (block_group_cache_done(cache)) {
6733 cache->last_byte_to_unpin = (u64)-1;
6734 list_del_init(&caching_ctl->list);
6735 put_caching_control(caching_ctl);
6736 } else {
6737 cache->last_byte_to_unpin = caching_ctl->progress;
6738 }
6739 }
6740
6741 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6742 fs_info->pinned_extents = &fs_info->freed_extents[1];
6743 else
6744 fs_info->pinned_extents = &fs_info->freed_extents[0];
6745
6746 up_write(&fs_info->commit_root_sem);
6747
6748 update_global_block_rsv(fs_info);
6749 }
6750
6751 /*
6752 * Returns the free cluster for the given space info and sets empty_cluster to
6753 * what it should be based on the mount options.
6754 */
6755 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)6756 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6757 struct btrfs_space_info *space_info, u64 *empty_cluster)
6758 {
6759 struct btrfs_free_cluster *ret = NULL;
6760
6761 *empty_cluster = 0;
6762 if (btrfs_mixed_space_info(space_info))
6763 return ret;
6764
6765 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6766 ret = &fs_info->meta_alloc_cluster;
6767 if (btrfs_test_opt(fs_info, SSD))
6768 *empty_cluster = SZ_2M;
6769 else
6770 *empty_cluster = SZ_64K;
6771 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6772 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6773 *empty_cluster = SZ_2M;
6774 ret = &fs_info->data_alloc_cluster;
6775 }
6776
6777 return ret;
6778 }
6779
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)6780 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6781 u64 start, u64 end,
6782 const bool return_free_space)
6783 {
6784 struct btrfs_block_group_cache *cache = NULL;
6785 struct btrfs_space_info *space_info;
6786 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6787 struct btrfs_free_cluster *cluster = NULL;
6788 u64 len;
6789 u64 total_unpinned = 0;
6790 u64 empty_cluster = 0;
6791 bool readonly;
6792
6793 while (start <= end) {
6794 readonly = false;
6795 if (!cache ||
6796 start >= cache->key.objectid + cache->key.offset) {
6797 if (cache)
6798 btrfs_put_block_group(cache);
6799 total_unpinned = 0;
6800 cache = btrfs_lookup_block_group(fs_info, start);
6801 BUG_ON(!cache); /* Logic error */
6802
6803 cluster = fetch_cluster_info(fs_info,
6804 cache->space_info,
6805 &empty_cluster);
6806 empty_cluster <<= 1;
6807 }
6808
6809 len = cache->key.objectid + cache->key.offset - start;
6810 len = min(len, end + 1 - start);
6811
6812 if (start < cache->last_byte_to_unpin) {
6813 len = min(len, cache->last_byte_to_unpin - start);
6814 if (return_free_space)
6815 btrfs_add_free_space(cache, start, len);
6816 }
6817
6818 start += len;
6819 total_unpinned += len;
6820 space_info = cache->space_info;
6821
6822 /*
6823 * If this space cluster has been marked as fragmented and we've
6824 * unpinned enough in this block group to potentially allow a
6825 * cluster to be created inside of it go ahead and clear the
6826 * fragmented check.
6827 */
6828 if (cluster && cluster->fragmented &&
6829 total_unpinned > empty_cluster) {
6830 spin_lock(&cluster->lock);
6831 cluster->fragmented = 0;
6832 spin_unlock(&cluster->lock);
6833 }
6834
6835 spin_lock(&space_info->lock);
6836 spin_lock(&cache->lock);
6837 cache->pinned -= len;
6838 space_info->bytes_pinned -= len;
6839
6840 trace_btrfs_space_reservation(fs_info, "pinned",
6841 space_info->flags, len, 0);
6842 space_info->max_extent_size = 0;
6843 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6844 if (cache->ro) {
6845 space_info->bytes_readonly += len;
6846 readonly = true;
6847 }
6848 spin_unlock(&cache->lock);
6849 if (!readonly && return_free_space &&
6850 global_rsv->space_info == space_info) {
6851 u64 to_add = len;
6852
6853 spin_lock(&global_rsv->lock);
6854 if (!global_rsv->full) {
6855 to_add = min(len, global_rsv->size -
6856 global_rsv->reserved);
6857 global_rsv->reserved += to_add;
6858 space_info->bytes_may_use += to_add;
6859 if (global_rsv->reserved >= global_rsv->size)
6860 global_rsv->full = 1;
6861 trace_btrfs_space_reservation(fs_info,
6862 "space_info",
6863 space_info->flags,
6864 to_add, 1);
6865 len -= to_add;
6866 }
6867 spin_unlock(&global_rsv->lock);
6868 /* Add to any tickets we may have */
6869 if (len)
6870 space_info_add_new_bytes(fs_info, space_info,
6871 len);
6872 }
6873 spin_unlock(&space_info->lock);
6874 }
6875
6876 if (cache)
6877 btrfs_put_block_group(cache);
6878 return 0;
6879 }
6880
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)6881 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6882 struct btrfs_fs_info *fs_info)
6883 {
6884 struct btrfs_block_group_cache *block_group, *tmp;
6885 struct list_head *deleted_bgs;
6886 struct extent_io_tree *unpin;
6887 u64 start;
6888 u64 end;
6889 int ret;
6890
6891 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6892 unpin = &fs_info->freed_extents[1];
6893 else
6894 unpin = &fs_info->freed_extents[0];
6895
6896 while (!trans->aborted) {
6897 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6898 ret = find_first_extent_bit(unpin, 0, &start, &end,
6899 EXTENT_DIRTY, NULL);
6900 if (ret) {
6901 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6902 break;
6903 }
6904
6905 if (btrfs_test_opt(fs_info, DISCARD))
6906 ret = btrfs_discard_extent(fs_info, start,
6907 end + 1 - start, NULL);
6908
6909 clear_extent_dirty(unpin, start, end);
6910 unpin_extent_range(fs_info, start, end, true);
6911 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6912 cond_resched();
6913 }
6914
6915 /*
6916 * Transaction is finished. We don't need the lock anymore. We
6917 * do need to clean up the block groups in case of a transaction
6918 * abort.
6919 */
6920 deleted_bgs = &trans->transaction->deleted_bgs;
6921 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6922 u64 trimmed = 0;
6923
6924 ret = -EROFS;
6925 if (!trans->aborted)
6926 ret = btrfs_discard_extent(fs_info,
6927 block_group->key.objectid,
6928 block_group->key.offset,
6929 &trimmed);
6930
6931 list_del_init(&block_group->bg_list);
6932 btrfs_put_block_group_trimming(block_group);
6933 btrfs_put_block_group(block_group);
6934
6935 if (ret) {
6936 const char *errstr = btrfs_decode_error(ret);
6937 btrfs_warn(fs_info,
6938 "discard failed while removing blockgroup: errno=%d %s",
6939 ret, errstr);
6940 }
6941 }
6942
6943 return 0;
6944 }
6945
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6946 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6947 struct btrfs_fs_info *info,
6948 struct btrfs_delayed_ref_node *node, u64 parent,
6949 u64 root_objectid, u64 owner_objectid,
6950 u64 owner_offset, int refs_to_drop,
6951 struct btrfs_delayed_extent_op *extent_op)
6952 {
6953 struct btrfs_key key;
6954 struct btrfs_path *path;
6955 struct btrfs_root *extent_root = info->extent_root;
6956 struct extent_buffer *leaf;
6957 struct btrfs_extent_item *ei;
6958 struct btrfs_extent_inline_ref *iref;
6959 int ret;
6960 int is_data;
6961 int extent_slot = 0;
6962 int found_extent = 0;
6963 int num_to_del = 1;
6964 u32 item_size;
6965 u64 refs;
6966 u64 bytenr = node->bytenr;
6967 u64 num_bytes = node->num_bytes;
6968 int last_ref = 0;
6969 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6970
6971 path = btrfs_alloc_path();
6972 if (!path)
6973 return -ENOMEM;
6974
6975 path->reada = READA_FORWARD;
6976 path->leave_spinning = 1;
6977
6978 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6979 BUG_ON(!is_data && refs_to_drop != 1);
6980
6981 if (is_data)
6982 skinny_metadata = 0;
6983
6984 ret = lookup_extent_backref(trans, info, path, &iref,
6985 bytenr, num_bytes, parent,
6986 root_objectid, owner_objectid,
6987 owner_offset);
6988 if (ret == 0) {
6989 extent_slot = path->slots[0];
6990 while (extent_slot >= 0) {
6991 btrfs_item_key_to_cpu(path->nodes[0], &key,
6992 extent_slot);
6993 if (key.objectid != bytenr)
6994 break;
6995 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6996 key.offset == num_bytes) {
6997 found_extent = 1;
6998 break;
6999 }
7000 if (key.type == BTRFS_METADATA_ITEM_KEY &&
7001 key.offset == owner_objectid) {
7002 found_extent = 1;
7003 break;
7004 }
7005 if (path->slots[0] - extent_slot > 5)
7006 break;
7007 extent_slot--;
7008 }
7009 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7010 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
7011 if (found_extent && item_size < sizeof(*ei))
7012 found_extent = 0;
7013 #endif
7014 if (!found_extent) {
7015 BUG_ON(iref);
7016 ret = remove_extent_backref(trans, info, path, NULL,
7017 refs_to_drop,
7018 is_data, &last_ref);
7019 if (ret) {
7020 btrfs_abort_transaction(trans, ret);
7021 goto out;
7022 }
7023 btrfs_release_path(path);
7024 path->leave_spinning = 1;
7025
7026 key.objectid = bytenr;
7027 key.type = BTRFS_EXTENT_ITEM_KEY;
7028 key.offset = num_bytes;
7029
7030 if (!is_data && skinny_metadata) {
7031 key.type = BTRFS_METADATA_ITEM_KEY;
7032 key.offset = owner_objectid;
7033 }
7034
7035 ret = btrfs_search_slot(trans, extent_root,
7036 &key, path, -1, 1);
7037 if (ret > 0 && skinny_metadata && path->slots[0]) {
7038 /*
7039 * Couldn't find our skinny metadata item,
7040 * see if we have ye olde extent item.
7041 */
7042 path->slots[0]--;
7043 btrfs_item_key_to_cpu(path->nodes[0], &key,
7044 path->slots[0]);
7045 if (key.objectid == bytenr &&
7046 key.type == BTRFS_EXTENT_ITEM_KEY &&
7047 key.offset == num_bytes)
7048 ret = 0;
7049 }
7050
7051 if (ret > 0 && skinny_metadata) {
7052 skinny_metadata = false;
7053 key.objectid = bytenr;
7054 key.type = BTRFS_EXTENT_ITEM_KEY;
7055 key.offset = num_bytes;
7056 btrfs_release_path(path);
7057 ret = btrfs_search_slot(trans, extent_root,
7058 &key, path, -1, 1);
7059 }
7060
7061 if (ret) {
7062 btrfs_err(info,
7063 "umm, got %d back from search, was looking for %llu",
7064 ret, bytenr);
7065 if (ret > 0)
7066 btrfs_print_leaf(path->nodes[0]);
7067 }
7068 if (ret < 0) {
7069 btrfs_abort_transaction(trans, ret);
7070 goto out;
7071 }
7072 extent_slot = path->slots[0];
7073 }
7074 } else if (WARN_ON(ret == -ENOENT)) {
7075 btrfs_print_leaf(path->nodes[0]);
7076 btrfs_err(info,
7077 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
7078 bytenr, parent, root_objectid, owner_objectid,
7079 owner_offset);
7080 btrfs_abort_transaction(trans, ret);
7081 goto out;
7082 } else {
7083 btrfs_abort_transaction(trans, ret);
7084 goto out;
7085 }
7086
7087 leaf = path->nodes[0];
7088 item_size = btrfs_item_size_nr(leaf, extent_slot);
7089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7090 if (item_size < sizeof(*ei)) {
7091 BUG_ON(found_extent || extent_slot != path->slots[0]);
7092 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7093 0);
7094 if (ret < 0) {
7095 btrfs_abort_transaction(trans, ret);
7096 goto out;
7097 }
7098
7099 btrfs_release_path(path);
7100 path->leave_spinning = 1;
7101
7102 key.objectid = bytenr;
7103 key.type = BTRFS_EXTENT_ITEM_KEY;
7104 key.offset = num_bytes;
7105
7106 ret = btrfs_search_slot(trans, extent_root, &key, path,
7107 -1, 1);
7108 if (ret) {
7109 btrfs_err(info,
7110 "umm, got %d back from search, was looking for %llu",
7111 ret, bytenr);
7112 btrfs_print_leaf(path->nodes[0]);
7113 }
7114 if (ret < 0) {
7115 btrfs_abort_transaction(trans, ret);
7116 goto out;
7117 }
7118
7119 extent_slot = path->slots[0];
7120 leaf = path->nodes[0];
7121 item_size = btrfs_item_size_nr(leaf, extent_slot);
7122 }
7123 #endif
7124 BUG_ON(item_size < sizeof(*ei));
7125 ei = btrfs_item_ptr(leaf, extent_slot,
7126 struct btrfs_extent_item);
7127 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7128 key.type == BTRFS_EXTENT_ITEM_KEY) {
7129 struct btrfs_tree_block_info *bi;
7130 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7131 bi = (struct btrfs_tree_block_info *)(ei + 1);
7132 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7133 }
7134
7135 refs = btrfs_extent_refs(leaf, ei);
7136 if (refs < refs_to_drop) {
7137 btrfs_err(info,
7138 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7139 refs_to_drop, refs, bytenr);
7140 ret = -EINVAL;
7141 btrfs_abort_transaction(trans, ret);
7142 goto out;
7143 }
7144 refs -= refs_to_drop;
7145
7146 if (refs > 0) {
7147 if (extent_op)
7148 __run_delayed_extent_op(extent_op, leaf, ei);
7149 /*
7150 * In the case of inline back ref, reference count will
7151 * be updated by remove_extent_backref
7152 */
7153 if (iref) {
7154 BUG_ON(!found_extent);
7155 } else {
7156 btrfs_set_extent_refs(leaf, ei, refs);
7157 btrfs_mark_buffer_dirty(leaf);
7158 }
7159 if (found_extent) {
7160 ret = remove_extent_backref(trans, info, path,
7161 iref, refs_to_drop,
7162 is_data, &last_ref);
7163 if (ret) {
7164 btrfs_abort_transaction(trans, ret);
7165 goto out;
7166 }
7167 }
7168 } else {
7169 if (found_extent) {
7170 BUG_ON(is_data && refs_to_drop !=
7171 extent_data_ref_count(path, iref));
7172 if (iref) {
7173 BUG_ON(path->slots[0] != extent_slot);
7174 } else {
7175 BUG_ON(path->slots[0] != extent_slot + 1);
7176 path->slots[0] = extent_slot;
7177 num_to_del = 2;
7178 }
7179 }
7180
7181 last_ref = 1;
7182 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7183 num_to_del);
7184 if (ret) {
7185 btrfs_abort_transaction(trans, ret);
7186 goto out;
7187 }
7188 btrfs_release_path(path);
7189
7190 if (is_data) {
7191 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7192 if (ret) {
7193 btrfs_abort_transaction(trans, ret);
7194 goto out;
7195 }
7196 }
7197
7198 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7199 if (ret) {
7200 btrfs_abort_transaction(trans, ret);
7201 goto out;
7202 }
7203
7204 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7205 if (ret) {
7206 btrfs_abort_transaction(trans, ret);
7207 goto out;
7208 }
7209 }
7210 btrfs_release_path(path);
7211
7212 out:
7213 btrfs_free_path(path);
7214 return ret;
7215 }
7216
7217 /*
7218 * when we free an block, it is possible (and likely) that we free the last
7219 * delayed ref for that extent as well. This searches the delayed ref tree for
7220 * a given extent, and if there are no other delayed refs to be processed, it
7221 * removes it from the tree.
7222 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)7223 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7224 u64 bytenr)
7225 {
7226 struct btrfs_delayed_ref_head *head;
7227 struct btrfs_delayed_ref_root *delayed_refs;
7228 int ret = 0;
7229
7230 delayed_refs = &trans->transaction->delayed_refs;
7231 spin_lock(&delayed_refs->lock);
7232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7233 if (!head)
7234 goto out_delayed_unlock;
7235
7236 spin_lock(&head->lock);
7237 if (!list_empty(&head->ref_list))
7238 goto out;
7239
7240 if (head->extent_op) {
7241 if (!head->must_insert_reserved)
7242 goto out;
7243 btrfs_free_delayed_extent_op(head->extent_op);
7244 head->extent_op = NULL;
7245 }
7246
7247 /*
7248 * waiting for the lock here would deadlock. If someone else has it
7249 * locked they are already in the process of dropping it anyway
7250 */
7251 if (!mutex_trylock(&head->mutex))
7252 goto out;
7253
7254 /*
7255 * at this point we have a head with no other entries. Go
7256 * ahead and process it.
7257 */
7258 head->node.in_tree = 0;
7259 rb_erase(&head->href_node, &delayed_refs->href_root);
7260
7261 atomic_dec(&delayed_refs->num_entries);
7262
7263 /*
7264 * we don't take a ref on the node because we're removing it from the
7265 * tree, so we just steal the ref the tree was holding.
7266 */
7267 delayed_refs->num_heads--;
7268 if (head->processing == 0)
7269 delayed_refs->num_heads_ready--;
7270 head->processing = 0;
7271 spin_unlock(&head->lock);
7272 spin_unlock(&delayed_refs->lock);
7273
7274 BUG_ON(head->extent_op);
7275 if (head->must_insert_reserved)
7276 ret = 1;
7277
7278 mutex_unlock(&head->mutex);
7279 btrfs_put_delayed_ref(&head->node);
7280 return ret;
7281 out:
7282 spin_unlock(&head->lock);
7283
7284 out_delayed_unlock:
7285 spin_unlock(&delayed_refs->lock);
7286 return 0;
7287 }
7288
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)7289 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7290 struct btrfs_root *root,
7291 struct extent_buffer *buf,
7292 u64 parent, int last_ref)
7293 {
7294 struct btrfs_fs_info *fs_info = root->fs_info;
7295 int pin = 1;
7296 int ret;
7297
7298 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7299 int old_ref_mod, new_ref_mod;
7300
7301 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7302 buf->len, parent,
7303 root->root_key.objectid,
7304 btrfs_header_level(buf),
7305 BTRFS_DROP_DELAYED_REF, NULL,
7306 &old_ref_mod, &new_ref_mod);
7307 BUG_ON(ret); /* -ENOMEM */
7308 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7309 }
7310
7311 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7312 struct btrfs_block_group_cache *cache;
7313
7314 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7315 ret = check_ref_cleanup(trans, buf->start);
7316 if (!ret)
7317 goto out;
7318 }
7319
7320 pin = 0;
7321 cache = btrfs_lookup_block_group(fs_info, buf->start);
7322
7323 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7324 pin_down_extent(fs_info, cache, buf->start,
7325 buf->len, 1);
7326 btrfs_put_block_group(cache);
7327 goto out;
7328 }
7329
7330 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7331
7332 btrfs_add_free_space(cache, buf->start, buf->len);
7333 btrfs_free_reserved_bytes(cache, buf->len, 0);
7334 btrfs_put_block_group(cache);
7335 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7336 }
7337 out:
7338 if (pin)
7339 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7340 root->root_key.objectid);
7341
7342 if (last_ref) {
7343 /*
7344 * Deleting the buffer, clear the corrupt flag since it doesn't
7345 * matter anymore.
7346 */
7347 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7348 }
7349 }
7350
7351 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7352 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7353 struct btrfs_fs_info *fs_info,
7354 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7355 u64 owner, u64 offset)
7356 {
7357 int old_ref_mod, new_ref_mod;
7358 int ret;
7359
7360 if (btrfs_is_testing(fs_info))
7361 return 0;
7362
7363
7364 /*
7365 * tree log blocks never actually go into the extent allocation
7366 * tree, just update pinning info and exit early.
7367 */
7368 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7369 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7370 /* unlocks the pinned mutex */
7371 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7372 old_ref_mod = new_ref_mod = 0;
7373 ret = 0;
7374 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7375 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7376 num_bytes, parent,
7377 root_objectid, (int)owner,
7378 BTRFS_DROP_DELAYED_REF, NULL,
7379 &old_ref_mod, &new_ref_mod);
7380 } else {
7381 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7382 num_bytes, parent,
7383 root_objectid, owner, offset,
7384 0, BTRFS_DROP_DELAYED_REF,
7385 &old_ref_mod, &new_ref_mod);
7386 }
7387
7388 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7389 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7390
7391 return ret;
7392 }
7393
7394 /*
7395 * when we wait for progress in the block group caching, its because
7396 * our allocation attempt failed at least once. So, we must sleep
7397 * and let some progress happen before we try again.
7398 *
7399 * This function will sleep at least once waiting for new free space to
7400 * show up, and then it will check the block group free space numbers
7401 * for our min num_bytes. Another option is to have it go ahead
7402 * and look in the rbtree for a free extent of a given size, but this
7403 * is a good start.
7404 *
7405 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7406 * any of the information in this block group.
7407 */
7408 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7409 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7410 u64 num_bytes)
7411 {
7412 struct btrfs_caching_control *caching_ctl;
7413
7414 caching_ctl = get_caching_control(cache);
7415 if (!caching_ctl)
7416 return;
7417
7418 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7419 (cache->free_space_ctl->free_space >= num_bytes));
7420
7421 put_caching_control(caching_ctl);
7422 }
7423
7424 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7425 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7426 {
7427 struct btrfs_caching_control *caching_ctl;
7428 int ret = 0;
7429
7430 caching_ctl = get_caching_control(cache);
7431 if (!caching_ctl)
7432 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7433
7434 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7435 if (cache->cached == BTRFS_CACHE_ERROR)
7436 ret = -EIO;
7437 put_caching_control(caching_ctl);
7438 return ret;
7439 }
7440
__get_raid_index(u64 flags)7441 int __get_raid_index(u64 flags)
7442 {
7443 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7444 return BTRFS_RAID_RAID10;
7445 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7446 return BTRFS_RAID_RAID1;
7447 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7448 return BTRFS_RAID_DUP;
7449 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7450 return BTRFS_RAID_RAID0;
7451 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7452 return BTRFS_RAID_RAID5;
7453 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7454 return BTRFS_RAID_RAID6;
7455
7456 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7457 }
7458
get_block_group_index(struct btrfs_block_group_cache * cache)7459 int get_block_group_index(struct btrfs_block_group_cache *cache)
7460 {
7461 return __get_raid_index(cache->flags);
7462 }
7463
7464 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7465 [BTRFS_RAID_RAID10] = "raid10",
7466 [BTRFS_RAID_RAID1] = "raid1",
7467 [BTRFS_RAID_DUP] = "dup",
7468 [BTRFS_RAID_RAID0] = "raid0",
7469 [BTRFS_RAID_SINGLE] = "single",
7470 [BTRFS_RAID_RAID5] = "raid5",
7471 [BTRFS_RAID_RAID6] = "raid6",
7472 };
7473
get_raid_name(enum btrfs_raid_types type)7474 static const char *get_raid_name(enum btrfs_raid_types type)
7475 {
7476 if (type >= BTRFS_NR_RAID_TYPES)
7477 return NULL;
7478
7479 return btrfs_raid_type_names[type];
7480 }
7481
7482 enum btrfs_loop_type {
7483 LOOP_CACHING_NOWAIT = 0,
7484 LOOP_CACHING_WAIT = 1,
7485 LOOP_ALLOC_CHUNK = 2,
7486 LOOP_NO_EMPTY_SIZE = 3,
7487 };
7488
7489 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7490 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7491 int delalloc)
7492 {
7493 if (delalloc)
7494 down_read(&cache->data_rwsem);
7495 }
7496
7497 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7498 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7499 int delalloc)
7500 {
7501 btrfs_get_block_group(cache);
7502 if (delalloc)
7503 down_read(&cache->data_rwsem);
7504 }
7505
7506 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7507 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7508 struct btrfs_free_cluster *cluster,
7509 int delalloc)
7510 {
7511 struct btrfs_block_group_cache *used_bg = NULL;
7512
7513 spin_lock(&cluster->refill_lock);
7514 while (1) {
7515 used_bg = cluster->block_group;
7516 if (!used_bg)
7517 return NULL;
7518
7519 if (used_bg == block_group)
7520 return used_bg;
7521
7522 btrfs_get_block_group(used_bg);
7523
7524 if (!delalloc)
7525 return used_bg;
7526
7527 if (down_read_trylock(&used_bg->data_rwsem))
7528 return used_bg;
7529
7530 spin_unlock(&cluster->refill_lock);
7531
7532 /* We should only have one-level nested. */
7533 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7534
7535 spin_lock(&cluster->refill_lock);
7536 if (used_bg == cluster->block_group)
7537 return used_bg;
7538
7539 up_read(&used_bg->data_rwsem);
7540 btrfs_put_block_group(used_bg);
7541 }
7542 }
7543
7544 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7545 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7546 int delalloc)
7547 {
7548 if (delalloc)
7549 up_read(&cache->data_rwsem);
7550 btrfs_put_block_group(cache);
7551 }
7552
7553 /*
7554 * walks the btree of allocated extents and find a hole of a given size.
7555 * The key ins is changed to record the hole:
7556 * ins->objectid == start position
7557 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7558 * ins->offset == the size of the hole.
7559 * Any available blocks before search_start are skipped.
7560 *
7561 * If there is no suitable free space, we will record the max size of
7562 * the free space extent currently.
7563 */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7564 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7565 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7566 u64 hint_byte, struct btrfs_key *ins,
7567 u64 flags, int delalloc)
7568 {
7569 int ret = 0;
7570 struct btrfs_root *root = fs_info->extent_root;
7571 struct btrfs_free_cluster *last_ptr = NULL;
7572 struct btrfs_block_group_cache *block_group = NULL;
7573 u64 search_start = 0;
7574 u64 max_extent_size = 0;
7575 u64 max_free_space = 0;
7576 u64 empty_cluster = 0;
7577 struct btrfs_space_info *space_info;
7578 int loop = 0;
7579 int index = __get_raid_index(flags);
7580 bool failed_cluster_refill = false;
7581 bool failed_alloc = false;
7582 bool use_cluster = true;
7583 bool have_caching_bg = false;
7584 bool orig_have_caching_bg = false;
7585 bool full_search = false;
7586
7587 WARN_ON(num_bytes < fs_info->sectorsize);
7588 ins->type = BTRFS_EXTENT_ITEM_KEY;
7589 ins->objectid = 0;
7590 ins->offset = 0;
7591
7592 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7593
7594 space_info = __find_space_info(fs_info, flags);
7595 if (!space_info) {
7596 btrfs_err(fs_info, "No space info for %llu", flags);
7597 return -ENOSPC;
7598 }
7599
7600 /*
7601 * If our free space is heavily fragmented we may not be able to make
7602 * big contiguous allocations, so instead of doing the expensive search
7603 * for free space, simply return ENOSPC with our max_extent_size so we
7604 * can go ahead and search for a more manageable chunk.
7605 *
7606 * If our max_extent_size is large enough for our allocation simply
7607 * disable clustering since we will likely not be able to find enough
7608 * space to create a cluster and induce latency trying.
7609 */
7610 if (unlikely(space_info->max_extent_size)) {
7611 spin_lock(&space_info->lock);
7612 if (space_info->max_extent_size &&
7613 num_bytes > space_info->max_extent_size) {
7614 ins->offset = space_info->max_extent_size;
7615 spin_unlock(&space_info->lock);
7616 return -ENOSPC;
7617 } else if (space_info->max_extent_size) {
7618 use_cluster = false;
7619 }
7620 spin_unlock(&space_info->lock);
7621 }
7622
7623 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7624 if (last_ptr) {
7625 spin_lock(&last_ptr->lock);
7626 if (last_ptr->block_group)
7627 hint_byte = last_ptr->window_start;
7628 if (last_ptr->fragmented) {
7629 /*
7630 * We still set window_start so we can keep track of the
7631 * last place we found an allocation to try and save
7632 * some time.
7633 */
7634 hint_byte = last_ptr->window_start;
7635 use_cluster = false;
7636 }
7637 spin_unlock(&last_ptr->lock);
7638 }
7639
7640 search_start = max(search_start, first_logical_byte(fs_info, 0));
7641 search_start = max(search_start, hint_byte);
7642 if (search_start == hint_byte) {
7643 block_group = btrfs_lookup_block_group(fs_info, search_start);
7644 /*
7645 * we don't want to use the block group if it doesn't match our
7646 * allocation bits, or if its not cached.
7647 *
7648 * However if we are re-searching with an ideal block group
7649 * picked out then we don't care that the block group is cached.
7650 */
7651 if (block_group && block_group_bits(block_group, flags) &&
7652 block_group->cached != BTRFS_CACHE_NO) {
7653 down_read(&space_info->groups_sem);
7654 if (list_empty(&block_group->list) ||
7655 block_group->ro) {
7656 /*
7657 * someone is removing this block group,
7658 * we can't jump into the have_block_group
7659 * target because our list pointers are not
7660 * valid
7661 */
7662 btrfs_put_block_group(block_group);
7663 up_read(&space_info->groups_sem);
7664 } else {
7665 index = get_block_group_index(block_group);
7666 btrfs_lock_block_group(block_group, delalloc);
7667 goto have_block_group;
7668 }
7669 } else if (block_group) {
7670 btrfs_put_block_group(block_group);
7671 }
7672 }
7673 search:
7674 have_caching_bg = false;
7675 if (index == 0 || index == __get_raid_index(flags))
7676 full_search = true;
7677 down_read(&space_info->groups_sem);
7678 list_for_each_entry(block_group, &space_info->block_groups[index],
7679 list) {
7680 u64 offset;
7681 int cached;
7682
7683 /* If the block group is read-only, we can skip it entirely. */
7684 if (unlikely(block_group->ro))
7685 continue;
7686
7687 btrfs_grab_block_group(block_group, delalloc);
7688 search_start = block_group->key.objectid;
7689
7690 /*
7691 * this can happen if we end up cycling through all the
7692 * raid types, but we want to make sure we only allocate
7693 * for the proper type.
7694 */
7695 if (!block_group_bits(block_group, flags)) {
7696 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7697 BTRFS_BLOCK_GROUP_RAID1 |
7698 BTRFS_BLOCK_GROUP_RAID5 |
7699 BTRFS_BLOCK_GROUP_RAID6 |
7700 BTRFS_BLOCK_GROUP_RAID10;
7701
7702 /*
7703 * if they asked for extra copies and this block group
7704 * doesn't provide them, bail. This does allow us to
7705 * fill raid0 from raid1.
7706 */
7707 if ((flags & extra) && !(block_group->flags & extra))
7708 goto loop;
7709
7710 /*
7711 * This block group has different flags than we want.
7712 * It's possible that we have MIXED_GROUP flag but no
7713 * block group is mixed. Just skip such block group.
7714 */
7715 btrfs_release_block_group(block_group, delalloc);
7716 continue;
7717 }
7718
7719 have_block_group:
7720 cached = block_group_cache_done(block_group);
7721 if (unlikely(!cached)) {
7722 have_caching_bg = true;
7723 ret = cache_block_group(block_group, 0);
7724 BUG_ON(ret < 0);
7725 ret = 0;
7726 }
7727
7728 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7729 goto loop;
7730
7731 /*
7732 * Ok we want to try and use the cluster allocator, so
7733 * lets look there
7734 */
7735 if (last_ptr && use_cluster) {
7736 struct btrfs_block_group_cache *used_block_group;
7737 unsigned long aligned_cluster;
7738 /*
7739 * the refill lock keeps out other
7740 * people trying to start a new cluster
7741 */
7742 used_block_group = btrfs_lock_cluster(block_group,
7743 last_ptr,
7744 delalloc);
7745 if (!used_block_group)
7746 goto refill_cluster;
7747
7748 if (used_block_group != block_group &&
7749 (used_block_group->ro ||
7750 !block_group_bits(used_block_group, flags)))
7751 goto release_cluster;
7752
7753 offset = btrfs_alloc_from_cluster(used_block_group,
7754 last_ptr,
7755 num_bytes,
7756 used_block_group->key.objectid,
7757 &max_extent_size);
7758 if (offset) {
7759 /* we have a block, we're done */
7760 spin_unlock(&last_ptr->refill_lock);
7761 trace_btrfs_reserve_extent_cluster(fs_info,
7762 used_block_group,
7763 search_start, num_bytes);
7764 if (used_block_group != block_group) {
7765 btrfs_release_block_group(block_group,
7766 delalloc);
7767 block_group = used_block_group;
7768 }
7769 goto checks;
7770 }
7771
7772 WARN_ON(last_ptr->block_group != used_block_group);
7773 release_cluster:
7774 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7775 * set up a new clusters, so lets just skip it
7776 * and let the allocator find whatever block
7777 * it can find. If we reach this point, we
7778 * will have tried the cluster allocator
7779 * plenty of times and not have found
7780 * anything, so we are likely way too
7781 * fragmented for the clustering stuff to find
7782 * anything.
7783 *
7784 * However, if the cluster is taken from the
7785 * current block group, release the cluster
7786 * first, so that we stand a better chance of
7787 * succeeding in the unclustered
7788 * allocation. */
7789 if (loop >= LOOP_NO_EMPTY_SIZE &&
7790 used_block_group != block_group) {
7791 spin_unlock(&last_ptr->refill_lock);
7792 btrfs_release_block_group(used_block_group,
7793 delalloc);
7794 goto unclustered_alloc;
7795 }
7796
7797 /*
7798 * this cluster didn't work out, free it and
7799 * start over
7800 */
7801 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7802
7803 if (used_block_group != block_group)
7804 btrfs_release_block_group(used_block_group,
7805 delalloc);
7806 refill_cluster:
7807 if (loop >= LOOP_NO_EMPTY_SIZE) {
7808 spin_unlock(&last_ptr->refill_lock);
7809 goto unclustered_alloc;
7810 }
7811
7812 aligned_cluster = max_t(unsigned long,
7813 empty_cluster + empty_size,
7814 block_group->full_stripe_len);
7815
7816 /* allocate a cluster in this block group */
7817 ret = btrfs_find_space_cluster(fs_info, block_group,
7818 last_ptr, search_start,
7819 num_bytes,
7820 aligned_cluster);
7821 if (ret == 0) {
7822 /*
7823 * now pull our allocation out of this
7824 * cluster
7825 */
7826 offset = btrfs_alloc_from_cluster(block_group,
7827 last_ptr,
7828 num_bytes,
7829 search_start,
7830 &max_extent_size);
7831 if (offset) {
7832 /* we found one, proceed */
7833 spin_unlock(&last_ptr->refill_lock);
7834 trace_btrfs_reserve_extent_cluster(fs_info,
7835 block_group, search_start,
7836 num_bytes);
7837 goto checks;
7838 }
7839 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7840 && !failed_cluster_refill) {
7841 spin_unlock(&last_ptr->refill_lock);
7842
7843 failed_cluster_refill = true;
7844 wait_block_group_cache_progress(block_group,
7845 num_bytes + empty_cluster + empty_size);
7846 goto have_block_group;
7847 }
7848
7849 /*
7850 * at this point we either didn't find a cluster
7851 * or we weren't able to allocate a block from our
7852 * cluster. Free the cluster we've been trying
7853 * to use, and go to the next block group
7854 */
7855 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7856 spin_unlock(&last_ptr->refill_lock);
7857 goto loop;
7858 }
7859
7860 unclustered_alloc:
7861 /*
7862 * We are doing an unclustered alloc, set the fragmented flag so
7863 * we don't bother trying to setup a cluster again until we get
7864 * more space.
7865 */
7866 if (unlikely(last_ptr)) {
7867 spin_lock(&last_ptr->lock);
7868 last_ptr->fragmented = 1;
7869 spin_unlock(&last_ptr->lock);
7870 }
7871 if (cached) {
7872 struct btrfs_free_space_ctl *ctl =
7873 block_group->free_space_ctl;
7874
7875 spin_lock(&ctl->tree_lock);
7876 if (ctl->free_space <
7877 num_bytes + empty_cluster + empty_size) {
7878 max_free_space = max(max_free_space,
7879 ctl->free_space);
7880 spin_unlock(&ctl->tree_lock);
7881 goto loop;
7882 }
7883 spin_unlock(&ctl->tree_lock);
7884 }
7885
7886 offset = btrfs_find_space_for_alloc(block_group, search_start,
7887 num_bytes, empty_size,
7888 &max_extent_size);
7889 /*
7890 * If we didn't find a chunk, and we haven't failed on this
7891 * block group before, and this block group is in the middle of
7892 * caching and we are ok with waiting, then go ahead and wait
7893 * for progress to be made, and set failed_alloc to true.
7894 *
7895 * If failed_alloc is true then we've already waited on this
7896 * block group once and should move on to the next block group.
7897 */
7898 if (!offset && !failed_alloc && !cached &&
7899 loop > LOOP_CACHING_NOWAIT) {
7900 wait_block_group_cache_progress(block_group,
7901 num_bytes + empty_size);
7902 failed_alloc = true;
7903 goto have_block_group;
7904 } else if (!offset) {
7905 goto loop;
7906 }
7907 checks:
7908 search_start = ALIGN(offset, fs_info->stripesize);
7909
7910 /* move on to the next group */
7911 if (search_start + num_bytes >
7912 block_group->key.objectid + block_group->key.offset) {
7913 btrfs_add_free_space(block_group, offset, num_bytes);
7914 goto loop;
7915 }
7916
7917 if (offset < search_start)
7918 btrfs_add_free_space(block_group, offset,
7919 search_start - offset);
7920 BUG_ON(offset > search_start);
7921
7922 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7923 num_bytes, delalloc);
7924 if (ret == -EAGAIN) {
7925 btrfs_add_free_space(block_group, offset, num_bytes);
7926 goto loop;
7927 }
7928 btrfs_inc_block_group_reservations(block_group);
7929
7930 /* we are all good, lets return */
7931 ins->objectid = search_start;
7932 ins->offset = num_bytes;
7933
7934 trace_btrfs_reserve_extent(fs_info, block_group,
7935 search_start, num_bytes);
7936 btrfs_release_block_group(block_group, delalloc);
7937 break;
7938 loop:
7939 failed_cluster_refill = false;
7940 failed_alloc = false;
7941 BUG_ON(index != get_block_group_index(block_group));
7942 btrfs_release_block_group(block_group, delalloc);
7943 cond_resched();
7944 }
7945 up_read(&space_info->groups_sem);
7946
7947 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7948 && !orig_have_caching_bg)
7949 orig_have_caching_bg = true;
7950
7951 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7952 goto search;
7953
7954 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7955 goto search;
7956
7957 /*
7958 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7959 * caching kthreads as we move along
7960 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7961 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7962 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7963 * again
7964 */
7965 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7966 index = 0;
7967 if (loop == LOOP_CACHING_NOWAIT) {
7968 /*
7969 * We want to skip the LOOP_CACHING_WAIT step if we
7970 * don't have any uncached bgs and we've already done a
7971 * full search through.
7972 */
7973 if (orig_have_caching_bg || !full_search)
7974 loop = LOOP_CACHING_WAIT;
7975 else
7976 loop = LOOP_ALLOC_CHUNK;
7977 } else {
7978 loop++;
7979 }
7980
7981 if (loop == LOOP_ALLOC_CHUNK) {
7982 struct btrfs_trans_handle *trans;
7983 int exist = 0;
7984
7985 trans = current->journal_info;
7986 if (trans)
7987 exist = 1;
7988 else
7989 trans = btrfs_join_transaction(root);
7990
7991 if (IS_ERR(trans)) {
7992 ret = PTR_ERR(trans);
7993 goto out;
7994 }
7995
7996 ret = do_chunk_alloc(trans, fs_info, flags,
7997 CHUNK_ALLOC_FORCE);
7998
7999 /*
8000 * If we can't allocate a new chunk we've already looped
8001 * through at least once, move on to the NO_EMPTY_SIZE
8002 * case.
8003 */
8004 if (ret == -ENOSPC)
8005 loop = LOOP_NO_EMPTY_SIZE;
8006
8007 /*
8008 * Do not bail out on ENOSPC since we
8009 * can do more things.
8010 */
8011 if (ret < 0 && ret != -ENOSPC)
8012 btrfs_abort_transaction(trans, ret);
8013 else
8014 ret = 0;
8015 if (!exist)
8016 btrfs_end_transaction(trans);
8017 if (ret)
8018 goto out;
8019 }
8020
8021 if (loop == LOOP_NO_EMPTY_SIZE) {
8022 /*
8023 * Don't loop again if we already have no empty_size and
8024 * no empty_cluster.
8025 */
8026 if (empty_size == 0 &&
8027 empty_cluster == 0) {
8028 ret = -ENOSPC;
8029 goto out;
8030 }
8031 empty_size = 0;
8032 empty_cluster = 0;
8033 }
8034
8035 goto search;
8036 } else if (!ins->objectid) {
8037 ret = -ENOSPC;
8038 } else if (ins->objectid) {
8039 if (!use_cluster && last_ptr) {
8040 spin_lock(&last_ptr->lock);
8041 last_ptr->window_start = ins->objectid;
8042 spin_unlock(&last_ptr->lock);
8043 }
8044 ret = 0;
8045 }
8046 out:
8047 if (ret == -ENOSPC) {
8048 if (!max_extent_size)
8049 max_extent_size = max_free_space;
8050 spin_lock(&space_info->lock);
8051 space_info->max_extent_size = max_extent_size;
8052 spin_unlock(&space_info->lock);
8053 ins->offset = max_extent_size;
8054 }
8055 return ret;
8056 }
8057
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)8058 static void dump_space_info(struct btrfs_fs_info *fs_info,
8059 struct btrfs_space_info *info, u64 bytes,
8060 int dump_block_groups)
8061 {
8062 struct btrfs_block_group_cache *cache;
8063 int index = 0;
8064
8065 spin_lock(&info->lock);
8066 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8067 info->flags,
8068 info->total_bytes - btrfs_space_info_used(info, true),
8069 info->full ? "" : "not ");
8070 btrfs_info(fs_info,
8071 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8072 info->total_bytes, info->bytes_used, info->bytes_pinned,
8073 info->bytes_reserved, info->bytes_may_use,
8074 info->bytes_readonly);
8075 spin_unlock(&info->lock);
8076
8077 if (!dump_block_groups)
8078 return;
8079
8080 down_read(&info->groups_sem);
8081 again:
8082 list_for_each_entry(cache, &info->block_groups[index], list) {
8083 spin_lock(&cache->lock);
8084 btrfs_info(fs_info,
8085 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8086 cache->key.objectid, cache->key.offset,
8087 btrfs_block_group_used(&cache->item), cache->pinned,
8088 cache->reserved, cache->ro ? "[readonly]" : "");
8089 btrfs_dump_free_space(cache, bytes);
8090 spin_unlock(&cache->lock);
8091 }
8092 if (++index < BTRFS_NR_RAID_TYPES)
8093 goto again;
8094 up_read(&info->groups_sem);
8095 }
8096
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)8097 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8098 u64 num_bytes, u64 min_alloc_size,
8099 u64 empty_size, u64 hint_byte,
8100 struct btrfs_key *ins, int is_data, int delalloc)
8101 {
8102 struct btrfs_fs_info *fs_info = root->fs_info;
8103 bool final_tried = num_bytes == min_alloc_size;
8104 u64 flags;
8105 int ret;
8106
8107 flags = get_alloc_profile_by_root(root, is_data);
8108 again:
8109 WARN_ON(num_bytes < fs_info->sectorsize);
8110 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8111 hint_byte, ins, flags, delalloc);
8112 if (!ret && !is_data) {
8113 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8114 } else if (ret == -ENOSPC) {
8115 if (!final_tried && ins->offset) {
8116 num_bytes = min(num_bytes >> 1, ins->offset);
8117 num_bytes = round_down(num_bytes,
8118 fs_info->sectorsize);
8119 num_bytes = max(num_bytes, min_alloc_size);
8120 ram_bytes = num_bytes;
8121 if (num_bytes == min_alloc_size)
8122 final_tried = true;
8123 goto again;
8124 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8125 struct btrfs_space_info *sinfo;
8126
8127 sinfo = __find_space_info(fs_info, flags);
8128 btrfs_err(fs_info,
8129 "allocation failed flags %llu, wanted %llu",
8130 flags, num_bytes);
8131 if (sinfo)
8132 dump_space_info(fs_info, sinfo, num_bytes, 1);
8133 }
8134 }
8135
8136 return ret;
8137 }
8138
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)8139 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8140 u64 start, u64 len,
8141 int pin, int delalloc)
8142 {
8143 struct btrfs_block_group_cache *cache;
8144 int ret = 0;
8145
8146 cache = btrfs_lookup_block_group(fs_info, start);
8147 if (!cache) {
8148 btrfs_err(fs_info, "Unable to find block group for %llu",
8149 start);
8150 return -ENOSPC;
8151 }
8152
8153 if (pin)
8154 pin_down_extent(fs_info, cache, start, len, 1);
8155 else {
8156 if (btrfs_test_opt(fs_info, DISCARD))
8157 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8158 btrfs_add_free_space(cache, start, len);
8159 btrfs_free_reserved_bytes(cache, len, delalloc);
8160 trace_btrfs_reserved_extent_free(fs_info, start, len);
8161 }
8162
8163 btrfs_put_block_group(cache);
8164 return ret;
8165 }
8166
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)8167 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8168 u64 start, u64 len, int delalloc)
8169 {
8170 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8171 }
8172
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)8173 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8174 u64 start, u64 len)
8175 {
8176 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8177 }
8178
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)8179 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8180 struct btrfs_fs_info *fs_info,
8181 u64 parent, u64 root_objectid,
8182 u64 flags, u64 owner, u64 offset,
8183 struct btrfs_key *ins, int ref_mod)
8184 {
8185 int ret;
8186 struct btrfs_extent_item *extent_item;
8187 struct btrfs_extent_inline_ref *iref;
8188 struct btrfs_path *path;
8189 struct extent_buffer *leaf;
8190 int type;
8191 u32 size;
8192
8193 if (parent > 0)
8194 type = BTRFS_SHARED_DATA_REF_KEY;
8195 else
8196 type = BTRFS_EXTENT_DATA_REF_KEY;
8197
8198 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8199
8200 path = btrfs_alloc_path();
8201 if (!path)
8202 return -ENOMEM;
8203
8204 path->leave_spinning = 1;
8205 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8206 ins, size);
8207 if (ret) {
8208 btrfs_free_path(path);
8209 return ret;
8210 }
8211
8212 leaf = path->nodes[0];
8213 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8214 struct btrfs_extent_item);
8215 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8216 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8217 btrfs_set_extent_flags(leaf, extent_item,
8218 flags | BTRFS_EXTENT_FLAG_DATA);
8219
8220 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8221 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8222 if (parent > 0) {
8223 struct btrfs_shared_data_ref *ref;
8224 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8225 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8226 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8227 } else {
8228 struct btrfs_extent_data_ref *ref;
8229 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8230 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8231 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8232 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8233 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8234 }
8235
8236 btrfs_mark_buffer_dirty(path->nodes[0]);
8237 btrfs_free_path(path);
8238
8239 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8240 ins->offset);
8241 if (ret)
8242 return ret;
8243
8244 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8245 if (ret) { /* -ENOENT, logic error */
8246 btrfs_err(fs_info, "update block group failed for %llu %llu",
8247 ins->objectid, ins->offset);
8248 BUG();
8249 }
8250 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8251 return ret;
8252 }
8253
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)8254 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8255 struct btrfs_fs_info *fs_info,
8256 u64 parent, u64 root_objectid,
8257 u64 flags, struct btrfs_disk_key *key,
8258 int level, struct btrfs_key *ins)
8259 {
8260 int ret;
8261 struct btrfs_extent_item *extent_item;
8262 struct btrfs_tree_block_info *block_info;
8263 struct btrfs_extent_inline_ref *iref;
8264 struct btrfs_path *path;
8265 struct extent_buffer *leaf;
8266 u32 size = sizeof(*extent_item) + sizeof(*iref);
8267 u64 num_bytes = ins->offset;
8268 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8269
8270 if (!skinny_metadata)
8271 size += sizeof(*block_info);
8272
8273 path = btrfs_alloc_path();
8274 if (!path) {
8275 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8276 fs_info->nodesize);
8277 return -ENOMEM;
8278 }
8279
8280 path->leave_spinning = 1;
8281 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8282 ins, size);
8283 if (ret) {
8284 btrfs_free_path(path);
8285 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8286 fs_info->nodesize);
8287 return ret;
8288 }
8289
8290 leaf = path->nodes[0];
8291 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8292 struct btrfs_extent_item);
8293 btrfs_set_extent_refs(leaf, extent_item, 1);
8294 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8295 btrfs_set_extent_flags(leaf, extent_item,
8296 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8297
8298 if (skinny_metadata) {
8299 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8300 num_bytes = fs_info->nodesize;
8301 } else {
8302 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8303 btrfs_set_tree_block_key(leaf, block_info, key);
8304 btrfs_set_tree_block_level(leaf, block_info, level);
8305 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8306 }
8307
8308 if (parent > 0) {
8309 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8310 btrfs_set_extent_inline_ref_type(leaf, iref,
8311 BTRFS_SHARED_BLOCK_REF_KEY);
8312 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8313 } else {
8314 btrfs_set_extent_inline_ref_type(leaf, iref,
8315 BTRFS_TREE_BLOCK_REF_KEY);
8316 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8317 }
8318
8319 btrfs_mark_buffer_dirty(leaf);
8320 btrfs_free_path(path);
8321
8322 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8323 num_bytes);
8324 if (ret)
8325 return ret;
8326
8327 ret = update_block_group(trans, fs_info, ins->objectid,
8328 fs_info->nodesize, 1);
8329 if (ret) { /* -ENOENT, logic error */
8330 btrfs_err(fs_info, "update block group failed for %llu %llu",
8331 ins->objectid, ins->offset);
8332 BUG();
8333 }
8334
8335 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8336 fs_info->nodesize);
8337 return ret;
8338 }
8339
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8340 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8341 u64 root_objectid, u64 owner,
8342 u64 offset, u64 ram_bytes,
8343 struct btrfs_key *ins)
8344 {
8345 struct btrfs_fs_info *fs_info = trans->fs_info;
8346 int ret;
8347
8348 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8349
8350 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8351 ins->offset, 0, root_objectid, owner,
8352 offset, ram_bytes,
8353 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8354 return ret;
8355 }
8356
8357 /*
8358 * this is used by the tree logging recovery code. It records that
8359 * an extent has been allocated and makes sure to clear the free
8360 * space cache bits as well
8361 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8362 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8363 struct btrfs_fs_info *fs_info,
8364 u64 root_objectid, u64 owner, u64 offset,
8365 struct btrfs_key *ins)
8366 {
8367 int ret;
8368 struct btrfs_block_group_cache *block_group;
8369 struct btrfs_space_info *space_info;
8370
8371 /*
8372 * Mixed block groups will exclude before processing the log so we only
8373 * need to do the exclude dance if this fs isn't mixed.
8374 */
8375 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8376 ret = __exclude_logged_extent(fs_info, ins->objectid,
8377 ins->offset);
8378 if (ret)
8379 return ret;
8380 }
8381
8382 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8383 if (!block_group)
8384 return -EINVAL;
8385
8386 space_info = block_group->space_info;
8387 spin_lock(&space_info->lock);
8388 spin_lock(&block_group->lock);
8389 space_info->bytes_reserved += ins->offset;
8390 block_group->reserved += ins->offset;
8391 spin_unlock(&block_group->lock);
8392 spin_unlock(&space_info->lock);
8393
8394 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8395 0, owner, offset, ins, 1);
8396 btrfs_put_block_group(block_group);
8397 return ret;
8398 }
8399
8400 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level)8401 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8402 u64 bytenr, int level)
8403 {
8404 struct btrfs_fs_info *fs_info = root->fs_info;
8405 struct extent_buffer *buf;
8406
8407 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8408 if (IS_ERR(buf))
8409 return buf;
8410
8411 /*
8412 * Extra safety check in case the extent tree is corrupted and extent
8413 * allocator chooses to use a tree block which is already used and
8414 * locked.
8415 */
8416 if (buf->lock_owner == current->pid) {
8417 btrfs_err_rl(fs_info,
8418 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8419 buf->start, btrfs_header_owner(buf), current->pid);
8420 free_extent_buffer(buf);
8421 return ERR_PTR(-EUCLEAN);
8422 }
8423
8424 btrfs_set_header_generation(buf, trans->transid);
8425 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8426 btrfs_tree_lock(buf);
8427 clean_tree_block(fs_info, buf);
8428 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8429
8430 btrfs_set_lock_blocking(buf);
8431 set_extent_buffer_uptodate(buf);
8432
8433 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8434 buf->log_index = root->log_transid % 2;
8435 /*
8436 * we allow two log transactions at a time, use different
8437 * EXENT bit to differentiate dirty pages.
8438 */
8439 if (buf->log_index == 0)
8440 set_extent_dirty(&root->dirty_log_pages, buf->start,
8441 buf->start + buf->len - 1, GFP_NOFS);
8442 else
8443 set_extent_new(&root->dirty_log_pages, buf->start,
8444 buf->start + buf->len - 1);
8445 } else {
8446 buf->log_index = -1;
8447 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8448 buf->start + buf->len - 1, GFP_NOFS);
8449 }
8450 trans->dirty = true;
8451 /* this returns a buffer locked for blocking */
8452 return buf;
8453 }
8454
8455 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8456 use_block_rsv(struct btrfs_trans_handle *trans,
8457 struct btrfs_root *root, u32 blocksize)
8458 {
8459 struct btrfs_fs_info *fs_info = root->fs_info;
8460 struct btrfs_block_rsv *block_rsv;
8461 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8462 int ret;
8463 bool global_updated = false;
8464
8465 block_rsv = get_block_rsv(trans, root);
8466
8467 if (unlikely(block_rsv->size == 0))
8468 goto try_reserve;
8469 again:
8470 ret = block_rsv_use_bytes(block_rsv, blocksize);
8471 if (!ret)
8472 return block_rsv;
8473
8474 if (block_rsv->failfast)
8475 return ERR_PTR(ret);
8476
8477 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8478 global_updated = true;
8479 update_global_block_rsv(fs_info);
8480 goto again;
8481 }
8482
8483 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8484 static DEFINE_RATELIMIT_STATE(_rs,
8485 DEFAULT_RATELIMIT_INTERVAL * 10,
8486 /*DEFAULT_RATELIMIT_BURST*/ 1);
8487 if (__ratelimit(&_rs))
8488 WARN(1, KERN_DEBUG
8489 "BTRFS: block rsv returned %d\n", ret);
8490 }
8491 try_reserve:
8492 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8493 BTRFS_RESERVE_NO_FLUSH);
8494 if (!ret)
8495 return block_rsv;
8496 /*
8497 * If we couldn't reserve metadata bytes try and use some from
8498 * the global reserve if its space type is the same as the global
8499 * reservation.
8500 */
8501 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8502 block_rsv->space_info == global_rsv->space_info) {
8503 ret = block_rsv_use_bytes(global_rsv, blocksize);
8504 if (!ret)
8505 return global_rsv;
8506 }
8507 return ERR_PTR(ret);
8508 }
8509
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8510 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8511 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8512 {
8513 block_rsv_add_bytes(block_rsv, blocksize, 0);
8514 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8515 }
8516
8517 /*
8518 * finds a free extent and does all the dirty work required for allocation
8519 * returns the tree buffer or an ERR_PTR on error.
8520 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8521 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8522 struct btrfs_root *root,
8523 u64 parent, u64 root_objectid,
8524 const struct btrfs_disk_key *key,
8525 int level, u64 hint,
8526 u64 empty_size)
8527 {
8528 struct btrfs_fs_info *fs_info = root->fs_info;
8529 struct btrfs_key ins;
8530 struct btrfs_block_rsv *block_rsv;
8531 struct extent_buffer *buf;
8532 struct btrfs_delayed_extent_op *extent_op;
8533 u64 flags = 0;
8534 int ret;
8535 u32 blocksize = fs_info->nodesize;
8536 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8537
8538 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8539 if (btrfs_is_testing(fs_info)) {
8540 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8541 level);
8542 if (!IS_ERR(buf))
8543 root->alloc_bytenr += blocksize;
8544 return buf;
8545 }
8546 #endif
8547
8548 block_rsv = use_block_rsv(trans, root, blocksize);
8549 if (IS_ERR(block_rsv))
8550 return ERR_CAST(block_rsv);
8551
8552 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8553 empty_size, hint, &ins, 0, 0);
8554 if (ret)
8555 goto out_unuse;
8556
8557 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8558 if (IS_ERR(buf)) {
8559 ret = PTR_ERR(buf);
8560 goto out_free_reserved;
8561 }
8562
8563 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8564 if (parent == 0)
8565 parent = ins.objectid;
8566 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8567 } else
8568 BUG_ON(parent > 0);
8569
8570 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8571 extent_op = btrfs_alloc_delayed_extent_op();
8572 if (!extent_op) {
8573 ret = -ENOMEM;
8574 goto out_free_buf;
8575 }
8576 if (key)
8577 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8578 else
8579 memset(&extent_op->key, 0, sizeof(extent_op->key));
8580 extent_op->flags_to_set = flags;
8581 extent_op->update_key = skinny_metadata ? false : true;
8582 extent_op->update_flags = true;
8583 extent_op->is_data = false;
8584 extent_op->level = level;
8585
8586 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8587 ins.offset, parent,
8588 root_objectid, level,
8589 BTRFS_ADD_DELAYED_EXTENT,
8590 extent_op, NULL, NULL);
8591 if (ret)
8592 goto out_free_delayed;
8593 }
8594 return buf;
8595
8596 out_free_delayed:
8597 btrfs_free_delayed_extent_op(extent_op);
8598 out_free_buf:
8599 free_extent_buffer(buf);
8600 out_free_reserved:
8601 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8602 out_unuse:
8603 unuse_block_rsv(fs_info, block_rsv, blocksize);
8604 return ERR_PTR(ret);
8605 }
8606
8607 struct walk_control {
8608 u64 refs[BTRFS_MAX_LEVEL];
8609 u64 flags[BTRFS_MAX_LEVEL];
8610 struct btrfs_key update_progress;
8611 int stage;
8612 int level;
8613 int shared_level;
8614 int update_ref;
8615 int keep_locks;
8616 int reada_slot;
8617 int reada_count;
8618 int for_reloc;
8619 };
8620
8621 #define DROP_REFERENCE 1
8622 #define UPDATE_BACKREF 2
8623
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8624 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8625 struct btrfs_root *root,
8626 struct walk_control *wc,
8627 struct btrfs_path *path)
8628 {
8629 struct btrfs_fs_info *fs_info = root->fs_info;
8630 u64 bytenr;
8631 u64 generation;
8632 u64 refs;
8633 u64 flags;
8634 u32 nritems;
8635 struct btrfs_key key;
8636 struct extent_buffer *eb;
8637 int ret;
8638 int slot;
8639 int nread = 0;
8640
8641 if (path->slots[wc->level] < wc->reada_slot) {
8642 wc->reada_count = wc->reada_count * 2 / 3;
8643 wc->reada_count = max(wc->reada_count, 2);
8644 } else {
8645 wc->reada_count = wc->reada_count * 3 / 2;
8646 wc->reada_count = min_t(int, wc->reada_count,
8647 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8648 }
8649
8650 eb = path->nodes[wc->level];
8651 nritems = btrfs_header_nritems(eb);
8652
8653 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8654 if (nread >= wc->reada_count)
8655 break;
8656
8657 cond_resched();
8658 bytenr = btrfs_node_blockptr(eb, slot);
8659 generation = btrfs_node_ptr_generation(eb, slot);
8660
8661 if (slot == path->slots[wc->level])
8662 goto reada;
8663
8664 if (wc->stage == UPDATE_BACKREF &&
8665 generation <= root->root_key.offset)
8666 continue;
8667
8668 /* We don't lock the tree block, it's OK to be racy here */
8669 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8670 wc->level - 1, 1, &refs,
8671 &flags);
8672 /* We don't care about errors in readahead. */
8673 if (ret < 0)
8674 continue;
8675 BUG_ON(refs == 0);
8676
8677 if (wc->stage == DROP_REFERENCE) {
8678 if (refs == 1)
8679 goto reada;
8680
8681 if (wc->level == 1 &&
8682 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8683 continue;
8684 if (!wc->update_ref ||
8685 generation <= root->root_key.offset)
8686 continue;
8687 btrfs_node_key_to_cpu(eb, &key, slot);
8688 ret = btrfs_comp_cpu_keys(&key,
8689 &wc->update_progress);
8690 if (ret < 0)
8691 continue;
8692 } else {
8693 if (wc->level == 1 &&
8694 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8695 continue;
8696 }
8697 reada:
8698 readahead_tree_block(fs_info, bytenr);
8699 nread++;
8700 }
8701 wc->reada_slot = slot;
8702 }
8703
8704 /*
8705 * helper to process tree block while walking down the tree.
8706 *
8707 * when wc->stage == UPDATE_BACKREF, this function updates
8708 * back refs for pointers in the block.
8709 *
8710 * NOTE: return value 1 means we should stop walking down.
8711 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8712 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8713 struct btrfs_root *root,
8714 struct btrfs_path *path,
8715 struct walk_control *wc, int lookup_info)
8716 {
8717 struct btrfs_fs_info *fs_info = root->fs_info;
8718 int level = wc->level;
8719 struct extent_buffer *eb = path->nodes[level];
8720 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8721 int ret;
8722
8723 if (wc->stage == UPDATE_BACKREF &&
8724 btrfs_header_owner(eb) != root->root_key.objectid)
8725 return 1;
8726
8727 /*
8728 * when reference count of tree block is 1, it won't increase
8729 * again. once full backref flag is set, we never clear it.
8730 */
8731 if (lookup_info &&
8732 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8733 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8734 BUG_ON(!path->locks[level]);
8735 ret = btrfs_lookup_extent_info(trans, fs_info,
8736 eb->start, level, 1,
8737 &wc->refs[level],
8738 &wc->flags[level]);
8739 BUG_ON(ret == -ENOMEM);
8740 if (ret)
8741 return ret;
8742 BUG_ON(wc->refs[level] == 0);
8743 }
8744
8745 if (wc->stage == DROP_REFERENCE) {
8746 if (wc->refs[level] > 1)
8747 return 1;
8748
8749 if (path->locks[level] && !wc->keep_locks) {
8750 btrfs_tree_unlock_rw(eb, path->locks[level]);
8751 path->locks[level] = 0;
8752 }
8753 return 0;
8754 }
8755
8756 /* wc->stage == UPDATE_BACKREF */
8757 if (!(wc->flags[level] & flag)) {
8758 BUG_ON(!path->locks[level]);
8759 ret = btrfs_inc_ref(trans, root, eb, 1);
8760 BUG_ON(ret); /* -ENOMEM */
8761 ret = btrfs_dec_ref(trans, root, eb, 0);
8762 BUG_ON(ret); /* -ENOMEM */
8763 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8764 eb->len, flag,
8765 btrfs_header_level(eb), 0);
8766 BUG_ON(ret); /* -ENOMEM */
8767 wc->flags[level] |= flag;
8768 }
8769
8770 /*
8771 * the block is shared by multiple trees, so it's not good to
8772 * keep the tree lock
8773 */
8774 if (path->locks[level] && level > 0) {
8775 btrfs_tree_unlock_rw(eb, path->locks[level]);
8776 path->locks[level] = 0;
8777 }
8778 return 0;
8779 }
8780
8781 /*
8782 * helper to process tree block pointer.
8783 *
8784 * when wc->stage == DROP_REFERENCE, this function checks
8785 * reference count of the block pointed to. if the block
8786 * is shared and we need update back refs for the subtree
8787 * rooted at the block, this function changes wc->stage to
8788 * UPDATE_BACKREF. if the block is shared and there is no
8789 * need to update back, this function drops the reference
8790 * to the block.
8791 *
8792 * NOTE: return value 1 means we should stop walking down.
8793 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8794 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8795 struct btrfs_root *root,
8796 struct btrfs_path *path,
8797 struct walk_control *wc, int *lookup_info)
8798 {
8799 struct btrfs_fs_info *fs_info = root->fs_info;
8800 u64 bytenr;
8801 u64 generation;
8802 u64 parent;
8803 u32 blocksize;
8804 struct btrfs_key key;
8805 struct extent_buffer *next;
8806 int level = wc->level;
8807 int reada = 0;
8808 int ret = 0;
8809 bool need_account = false;
8810
8811 generation = btrfs_node_ptr_generation(path->nodes[level],
8812 path->slots[level]);
8813 /*
8814 * if the lower level block was created before the snapshot
8815 * was created, we know there is no need to update back refs
8816 * for the subtree
8817 */
8818 if (wc->stage == UPDATE_BACKREF &&
8819 generation <= root->root_key.offset) {
8820 *lookup_info = 1;
8821 return 1;
8822 }
8823
8824 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8825 blocksize = fs_info->nodesize;
8826
8827 next = find_extent_buffer(fs_info, bytenr);
8828 if (!next) {
8829 next = btrfs_find_create_tree_block(fs_info, bytenr);
8830 if (IS_ERR(next))
8831 return PTR_ERR(next);
8832
8833 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8834 level - 1);
8835 reada = 1;
8836 }
8837 btrfs_tree_lock(next);
8838 btrfs_set_lock_blocking(next);
8839
8840 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8841 &wc->refs[level - 1],
8842 &wc->flags[level - 1]);
8843 if (ret < 0)
8844 goto out_unlock;
8845
8846 if (unlikely(wc->refs[level - 1] == 0)) {
8847 btrfs_err(fs_info, "Missing references.");
8848 ret = -EIO;
8849 goto out_unlock;
8850 }
8851 *lookup_info = 0;
8852
8853 if (wc->stage == DROP_REFERENCE) {
8854 if (wc->refs[level - 1] > 1) {
8855 need_account = true;
8856 if (level == 1 &&
8857 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8858 goto skip;
8859
8860 if (!wc->update_ref ||
8861 generation <= root->root_key.offset)
8862 goto skip;
8863
8864 btrfs_node_key_to_cpu(path->nodes[level], &key,
8865 path->slots[level]);
8866 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8867 if (ret < 0)
8868 goto skip;
8869
8870 wc->stage = UPDATE_BACKREF;
8871 wc->shared_level = level - 1;
8872 }
8873 } else {
8874 if (level == 1 &&
8875 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8876 goto skip;
8877 }
8878
8879 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8880 btrfs_tree_unlock(next);
8881 free_extent_buffer(next);
8882 next = NULL;
8883 *lookup_info = 1;
8884 }
8885
8886 if (!next) {
8887 if (reada && level == 1)
8888 reada_walk_down(trans, root, wc, path);
8889 next = read_tree_block(fs_info, bytenr, generation);
8890 if (IS_ERR(next)) {
8891 return PTR_ERR(next);
8892 } else if (!extent_buffer_uptodate(next)) {
8893 free_extent_buffer(next);
8894 return -EIO;
8895 }
8896 btrfs_tree_lock(next);
8897 btrfs_set_lock_blocking(next);
8898 }
8899
8900 level--;
8901 ASSERT(level == btrfs_header_level(next));
8902 if (level != btrfs_header_level(next)) {
8903 btrfs_err(root->fs_info, "mismatched level");
8904 ret = -EIO;
8905 goto out_unlock;
8906 }
8907 path->nodes[level] = next;
8908 path->slots[level] = 0;
8909 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8910 wc->level = level;
8911 if (wc->level == 1)
8912 wc->reada_slot = 0;
8913 return 0;
8914 skip:
8915 wc->refs[level - 1] = 0;
8916 wc->flags[level - 1] = 0;
8917 if (wc->stage == DROP_REFERENCE) {
8918 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8919 parent = path->nodes[level]->start;
8920 } else {
8921 ASSERT(root->root_key.objectid ==
8922 btrfs_header_owner(path->nodes[level]));
8923 if (root->root_key.objectid !=
8924 btrfs_header_owner(path->nodes[level])) {
8925 btrfs_err(root->fs_info,
8926 "mismatched block owner");
8927 ret = -EIO;
8928 goto out_unlock;
8929 }
8930 parent = 0;
8931 }
8932
8933 if (need_account) {
8934 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8935 generation, level - 1);
8936 if (ret) {
8937 btrfs_err_rl(fs_info,
8938 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8939 ret);
8940 }
8941 }
8942 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8943 parent, root->root_key.objectid,
8944 level - 1, 0);
8945 if (ret)
8946 goto out_unlock;
8947 }
8948
8949 *lookup_info = 1;
8950 ret = 1;
8951
8952 out_unlock:
8953 btrfs_tree_unlock(next);
8954 free_extent_buffer(next);
8955
8956 return ret;
8957 }
8958
8959 /*
8960 * helper to process tree block while walking up the tree.
8961 *
8962 * when wc->stage == DROP_REFERENCE, this function drops
8963 * reference count on the block.
8964 *
8965 * when wc->stage == UPDATE_BACKREF, this function changes
8966 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8967 * to UPDATE_BACKREF previously while processing the block.
8968 *
8969 * NOTE: return value 1 means we should stop walking up.
8970 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8971 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8972 struct btrfs_root *root,
8973 struct btrfs_path *path,
8974 struct walk_control *wc)
8975 {
8976 struct btrfs_fs_info *fs_info = root->fs_info;
8977 int ret;
8978 int level = wc->level;
8979 struct extent_buffer *eb = path->nodes[level];
8980 u64 parent = 0;
8981
8982 if (wc->stage == UPDATE_BACKREF) {
8983 BUG_ON(wc->shared_level < level);
8984 if (level < wc->shared_level)
8985 goto out;
8986
8987 ret = find_next_key(path, level + 1, &wc->update_progress);
8988 if (ret > 0)
8989 wc->update_ref = 0;
8990
8991 wc->stage = DROP_REFERENCE;
8992 wc->shared_level = -1;
8993 path->slots[level] = 0;
8994
8995 /*
8996 * check reference count again if the block isn't locked.
8997 * we should start walking down the tree again if reference
8998 * count is one.
8999 */
9000 if (!path->locks[level]) {
9001 BUG_ON(level == 0);
9002 btrfs_tree_lock(eb);
9003 btrfs_set_lock_blocking(eb);
9004 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9005
9006 ret = btrfs_lookup_extent_info(trans, fs_info,
9007 eb->start, level, 1,
9008 &wc->refs[level],
9009 &wc->flags[level]);
9010 if (ret < 0) {
9011 btrfs_tree_unlock_rw(eb, path->locks[level]);
9012 path->locks[level] = 0;
9013 return ret;
9014 }
9015 BUG_ON(wc->refs[level] == 0);
9016 if (wc->refs[level] == 1) {
9017 btrfs_tree_unlock_rw(eb, path->locks[level]);
9018 path->locks[level] = 0;
9019 return 1;
9020 }
9021 }
9022 }
9023
9024 /* wc->stage == DROP_REFERENCE */
9025 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9026
9027 if (wc->refs[level] == 1) {
9028 if (level == 0) {
9029 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9030 ret = btrfs_dec_ref(trans, root, eb, 1);
9031 else
9032 ret = btrfs_dec_ref(trans, root, eb, 0);
9033 BUG_ON(ret); /* -ENOMEM */
9034 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
9035 if (ret) {
9036 btrfs_err_rl(fs_info,
9037 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9038 ret);
9039 }
9040 }
9041 /* make block locked assertion in clean_tree_block happy */
9042 if (!path->locks[level] &&
9043 btrfs_header_generation(eb) == trans->transid) {
9044 btrfs_tree_lock(eb);
9045 btrfs_set_lock_blocking(eb);
9046 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9047 }
9048 clean_tree_block(fs_info, eb);
9049 }
9050
9051 if (eb == root->node) {
9052 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9053 parent = eb->start;
9054 else if (root->root_key.objectid != btrfs_header_owner(eb))
9055 goto owner_mismatch;
9056 } else {
9057 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9058 parent = path->nodes[level + 1]->start;
9059 else if (root->root_key.objectid !=
9060 btrfs_header_owner(path->nodes[level + 1]))
9061 goto owner_mismatch;
9062 }
9063
9064 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9065 out:
9066 wc->refs[level] = 0;
9067 wc->flags[level] = 0;
9068 return 0;
9069
9070 owner_mismatch:
9071 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9072 btrfs_header_owner(eb), root->root_key.objectid);
9073 return -EUCLEAN;
9074 }
9075
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)9076 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9077 struct btrfs_root *root,
9078 struct btrfs_path *path,
9079 struct walk_control *wc)
9080 {
9081 int level = wc->level;
9082 int lookup_info = 1;
9083 int ret;
9084
9085 while (level >= 0) {
9086 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9087 if (ret > 0)
9088 break;
9089
9090 if (level == 0)
9091 break;
9092
9093 if (path->slots[level] >=
9094 btrfs_header_nritems(path->nodes[level]))
9095 break;
9096
9097 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9098 if (ret > 0) {
9099 path->slots[level]++;
9100 continue;
9101 } else if (ret < 0)
9102 return ret;
9103 level = wc->level;
9104 }
9105 return 0;
9106 }
9107
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)9108 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9109 struct btrfs_root *root,
9110 struct btrfs_path *path,
9111 struct walk_control *wc, int max_level)
9112 {
9113 int level = wc->level;
9114 int ret;
9115
9116 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9117 while (level < max_level && path->nodes[level]) {
9118 wc->level = level;
9119 if (path->slots[level] + 1 <
9120 btrfs_header_nritems(path->nodes[level])) {
9121 path->slots[level]++;
9122 return 0;
9123 } else {
9124 ret = walk_up_proc(trans, root, path, wc);
9125 if (ret > 0)
9126 return 0;
9127 if (ret < 0)
9128 return ret;
9129
9130 if (path->locks[level]) {
9131 btrfs_tree_unlock_rw(path->nodes[level],
9132 path->locks[level]);
9133 path->locks[level] = 0;
9134 }
9135 free_extent_buffer(path->nodes[level]);
9136 path->nodes[level] = NULL;
9137 level++;
9138 }
9139 }
9140 return 1;
9141 }
9142
9143 /*
9144 * drop a subvolume tree.
9145 *
9146 * this function traverses the tree freeing any blocks that only
9147 * referenced by the tree.
9148 *
9149 * when a shared tree block is found. this function decreases its
9150 * reference count by one. if update_ref is true, this function
9151 * also make sure backrefs for the shared block and all lower level
9152 * blocks are properly updated.
9153 *
9154 * If called with for_reloc == 0, may exit early with -EAGAIN
9155 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)9156 int btrfs_drop_snapshot(struct btrfs_root *root,
9157 struct btrfs_block_rsv *block_rsv, int update_ref,
9158 int for_reloc)
9159 {
9160 struct btrfs_fs_info *fs_info = root->fs_info;
9161 struct btrfs_path *path;
9162 struct btrfs_trans_handle *trans;
9163 struct btrfs_root *tree_root = fs_info->tree_root;
9164 struct btrfs_root_item *root_item = &root->root_item;
9165 struct walk_control *wc;
9166 struct btrfs_key key;
9167 int err = 0;
9168 int ret;
9169 int level;
9170 bool root_dropped = false;
9171
9172 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9173
9174 path = btrfs_alloc_path();
9175 if (!path) {
9176 err = -ENOMEM;
9177 goto out;
9178 }
9179
9180 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9181 if (!wc) {
9182 btrfs_free_path(path);
9183 err = -ENOMEM;
9184 goto out;
9185 }
9186
9187 trans = btrfs_start_transaction(tree_root, 0);
9188 if (IS_ERR(trans)) {
9189 err = PTR_ERR(trans);
9190 goto out_free;
9191 }
9192
9193 if (block_rsv)
9194 trans->block_rsv = block_rsv;
9195
9196 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9197 level = btrfs_header_level(root->node);
9198 path->nodes[level] = btrfs_lock_root_node(root);
9199 btrfs_set_lock_blocking(path->nodes[level]);
9200 path->slots[level] = 0;
9201 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9202 memset(&wc->update_progress, 0,
9203 sizeof(wc->update_progress));
9204 } else {
9205 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9206 memcpy(&wc->update_progress, &key,
9207 sizeof(wc->update_progress));
9208
9209 level = root_item->drop_level;
9210 BUG_ON(level == 0);
9211 path->lowest_level = level;
9212 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9213 path->lowest_level = 0;
9214 if (ret < 0) {
9215 err = ret;
9216 goto out_end_trans;
9217 }
9218 WARN_ON(ret > 0);
9219
9220 /*
9221 * unlock our path, this is safe because only this
9222 * function is allowed to delete this snapshot
9223 */
9224 btrfs_unlock_up_safe(path, 0);
9225
9226 level = btrfs_header_level(root->node);
9227 while (1) {
9228 btrfs_tree_lock(path->nodes[level]);
9229 btrfs_set_lock_blocking(path->nodes[level]);
9230 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9231
9232 ret = btrfs_lookup_extent_info(trans, fs_info,
9233 path->nodes[level]->start,
9234 level, 1, &wc->refs[level],
9235 &wc->flags[level]);
9236 if (ret < 0) {
9237 err = ret;
9238 goto out_end_trans;
9239 }
9240 BUG_ON(wc->refs[level] == 0);
9241
9242 if (level == root_item->drop_level)
9243 break;
9244
9245 btrfs_tree_unlock(path->nodes[level]);
9246 path->locks[level] = 0;
9247 WARN_ON(wc->refs[level] != 1);
9248 level--;
9249 }
9250 }
9251
9252 wc->level = level;
9253 wc->shared_level = -1;
9254 wc->stage = DROP_REFERENCE;
9255 wc->update_ref = update_ref;
9256 wc->keep_locks = 0;
9257 wc->for_reloc = for_reloc;
9258 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9259
9260 while (1) {
9261
9262 ret = walk_down_tree(trans, root, path, wc);
9263 if (ret < 0) {
9264 err = ret;
9265 break;
9266 }
9267
9268 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9269 if (ret < 0) {
9270 err = ret;
9271 break;
9272 }
9273
9274 if (ret > 0) {
9275 BUG_ON(wc->stage != DROP_REFERENCE);
9276 break;
9277 }
9278
9279 if (wc->stage == DROP_REFERENCE) {
9280 level = wc->level;
9281 btrfs_node_key(path->nodes[level],
9282 &root_item->drop_progress,
9283 path->slots[level]);
9284 root_item->drop_level = level;
9285 }
9286
9287 BUG_ON(wc->level == 0);
9288 if (btrfs_should_end_transaction(trans) ||
9289 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9290 ret = btrfs_update_root(trans, tree_root,
9291 &root->root_key,
9292 root_item);
9293 if (ret) {
9294 btrfs_abort_transaction(trans, ret);
9295 err = ret;
9296 goto out_end_trans;
9297 }
9298
9299 btrfs_end_transaction_throttle(trans);
9300 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9301 btrfs_debug(fs_info,
9302 "drop snapshot early exit");
9303 err = -EAGAIN;
9304 goto out_free;
9305 }
9306
9307 trans = btrfs_start_transaction(tree_root, 0);
9308 if (IS_ERR(trans)) {
9309 err = PTR_ERR(trans);
9310 goto out_free;
9311 }
9312 if (block_rsv)
9313 trans->block_rsv = block_rsv;
9314 }
9315 }
9316 btrfs_release_path(path);
9317 if (err)
9318 goto out_end_trans;
9319
9320 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9321 if (ret) {
9322 btrfs_abort_transaction(trans, ret);
9323 err = ret;
9324 goto out_end_trans;
9325 }
9326
9327 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9328 ret = btrfs_find_root(tree_root, &root->root_key, path,
9329 NULL, NULL);
9330 if (ret < 0) {
9331 btrfs_abort_transaction(trans, ret);
9332 err = ret;
9333 goto out_end_trans;
9334 } else if (ret > 0) {
9335 /* if we fail to delete the orphan item this time
9336 * around, it'll get picked up the next time.
9337 *
9338 * The most common failure here is just -ENOENT.
9339 */
9340 btrfs_del_orphan_item(trans, tree_root,
9341 root->root_key.objectid);
9342 }
9343 }
9344
9345 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9346 btrfs_add_dropped_root(trans, root);
9347 } else {
9348 free_extent_buffer(root->node);
9349 free_extent_buffer(root->commit_root);
9350 btrfs_put_fs_root(root);
9351 }
9352 root_dropped = true;
9353 out_end_trans:
9354 btrfs_end_transaction_throttle(trans);
9355 out_free:
9356 kfree(wc);
9357 btrfs_free_path(path);
9358 out:
9359 /*
9360 * So if we need to stop dropping the snapshot for whatever reason we
9361 * need to make sure to add it back to the dead root list so that we
9362 * keep trying to do the work later. This also cleans up roots if we
9363 * don't have it in the radix (like when we recover after a power fail
9364 * or unmount) so we don't leak memory.
9365 */
9366 if (!for_reloc && root_dropped == false)
9367 btrfs_add_dead_root(root);
9368 if (err && err != -EAGAIN)
9369 btrfs_handle_fs_error(fs_info, err, NULL);
9370 return err;
9371 }
9372
9373 /*
9374 * drop subtree rooted at tree block 'node'.
9375 *
9376 * NOTE: this function will unlock and release tree block 'node'
9377 * only used by relocation code
9378 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9379 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9380 struct btrfs_root *root,
9381 struct extent_buffer *node,
9382 struct extent_buffer *parent)
9383 {
9384 struct btrfs_fs_info *fs_info = root->fs_info;
9385 struct btrfs_path *path;
9386 struct walk_control *wc;
9387 int level;
9388 int parent_level;
9389 int ret = 0;
9390 int wret;
9391
9392 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9393
9394 path = btrfs_alloc_path();
9395 if (!path)
9396 return -ENOMEM;
9397
9398 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9399 if (!wc) {
9400 btrfs_free_path(path);
9401 return -ENOMEM;
9402 }
9403
9404 btrfs_assert_tree_locked(parent);
9405 parent_level = btrfs_header_level(parent);
9406 extent_buffer_get(parent);
9407 path->nodes[parent_level] = parent;
9408 path->slots[parent_level] = btrfs_header_nritems(parent);
9409
9410 btrfs_assert_tree_locked(node);
9411 level = btrfs_header_level(node);
9412 path->nodes[level] = node;
9413 path->slots[level] = 0;
9414 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9415
9416 wc->refs[parent_level] = 1;
9417 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9418 wc->level = level;
9419 wc->shared_level = -1;
9420 wc->stage = DROP_REFERENCE;
9421 wc->update_ref = 0;
9422 wc->keep_locks = 1;
9423 wc->for_reloc = 1;
9424 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9425
9426 while (1) {
9427 wret = walk_down_tree(trans, root, path, wc);
9428 if (wret < 0) {
9429 ret = wret;
9430 break;
9431 }
9432
9433 wret = walk_up_tree(trans, root, path, wc, parent_level);
9434 if (wret < 0)
9435 ret = wret;
9436 if (wret != 0)
9437 break;
9438 }
9439
9440 kfree(wc);
9441 btrfs_free_path(path);
9442 return ret;
9443 }
9444
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)9445 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9446 {
9447 u64 num_devices;
9448 u64 stripped;
9449
9450 /*
9451 * if restripe for this chunk_type is on pick target profile and
9452 * return, otherwise do the usual balance
9453 */
9454 stripped = get_restripe_target(fs_info, flags);
9455 if (stripped)
9456 return extended_to_chunk(stripped);
9457
9458 num_devices = fs_info->fs_devices->rw_devices;
9459
9460 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9461 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9462 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9463
9464 if (num_devices == 1) {
9465 stripped |= BTRFS_BLOCK_GROUP_DUP;
9466 stripped = flags & ~stripped;
9467
9468 /* turn raid0 into single device chunks */
9469 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9470 return stripped;
9471
9472 /* turn mirroring into duplication */
9473 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9474 BTRFS_BLOCK_GROUP_RAID10))
9475 return stripped | BTRFS_BLOCK_GROUP_DUP;
9476 } else {
9477 /* they already had raid on here, just return */
9478 if (flags & stripped)
9479 return flags;
9480
9481 stripped |= BTRFS_BLOCK_GROUP_DUP;
9482 stripped = flags & ~stripped;
9483
9484 /* switch duplicated blocks with raid1 */
9485 if (flags & BTRFS_BLOCK_GROUP_DUP)
9486 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9487
9488 /* this is drive concat, leave it alone */
9489 }
9490
9491 return flags;
9492 }
9493
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9494 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9495 {
9496 struct btrfs_space_info *sinfo = cache->space_info;
9497 u64 num_bytes;
9498 u64 min_allocable_bytes;
9499 int ret = -ENOSPC;
9500
9501 /*
9502 * We need some metadata space and system metadata space for
9503 * allocating chunks in some corner cases until we force to set
9504 * it to be readonly.
9505 */
9506 if ((sinfo->flags &
9507 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9508 !force)
9509 min_allocable_bytes = SZ_1M;
9510 else
9511 min_allocable_bytes = 0;
9512
9513 spin_lock(&sinfo->lock);
9514 spin_lock(&cache->lock);
9515
9516 if (cache->ro) {
9517 cache->ro++;
9518 ret = 0;
9519 goto out;
9520 }
9521
9522 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9523 cache->bytes_super - btrfs_block_group_used(&cache->item);
9524
9525 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9526 min_allocable_bytes <= sinfo->total_bytes) {
9527 sinfo->bytes_readonly += num_bytes;
9528 cache->ro++;
9529 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9530 ret = 0;
9531 }
9532 out:
9533 spin_unlock(&cache->lock);
9534 spin_unlock(&sinfo->lock);
9535 return ret;
9536 }
9537
btrfs_inc_block_group_ro(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)9538 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9539 struct btrfs_block_group_cache *cache)
9540
9541 {
9542 struct btrfs_trans_handle *trans;
9543 u64 alloc_flags;
9544 int ret;
9545
9546 again:
9547 trans = btrfs_join_transaction(fs_info->extent_root);
9548 if (IS_ERR(trans))
9549 return PTR_ERR(trans);
9550
9551 /*
9552 * we're not allowed to set block groups readonly after the dirty
9553 * block groups cache has started writing. If it already started,
9554 * back off and let this transaction commit
9555 */
9556 mutex_lock(&fs_info->ro_block_group_mutex);
9557 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9558 u64 transid = trans->transid;
9559
9560 mutex_unlock(&fs_info->ro_block_group_mutex);
9561 btrfs_end_transaction(trans);
9562
9563 ret = btrfs_wait_for_commit(fs_info, transid);
9564 if (ret)
9565 return ret;
9566 goto again;
9567 }
9568
9569 /*
9570 * if we are changing raid levels, try to allocate a corresponding
9571 * block group with the new raid level.
9572 */
9573 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9574 if (alloc_flags != cache->flags) {
9575 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9576 CHUNK_ALLOC_FORCE);
9577 /*
9578 * ENOSPC is allowed here, we may have enough space
9579 * already allocated at the new raid level to
9580 * carry on
9581 */
9582 if (ret == -ENOSPC)
9583 ret = 0;
9584 if (ret < 0)
9585 goto out;
9586 }
9587
9588 ret = inc_block_group_ro(cache, 0);
9589 if (!ret)
9590 goto out;
9591 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9592 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9593 CHUNK_ALLOC_FORCE);
9594 if (ret < 0)
9595 goto out;
9596 ret = inc_block_group_ro(cache, 0);
9597 out:
9598 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9599 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9600 mutex_lock(&fs_info->chunk_mutex);
9601 check_system_chunk(trans, fs_info, alloc_flags);
9602 mutex_unlock(&fs_info->chunk_mutex);
9603 }
9604 mutex_unlock(&fs_info->ro_block_group_mutex);
9605
9606 btrfs_end_transaction(trans);
9607 return ret;
9608 }
9609
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 type)9610 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9611 struct btrfs_fs_info *fs_info, u64 type)
9612 {
9613 u64 alloc_flags = get_alloc_profile(fs_info, type);
9614
9615 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9616 }
9617
9618 /*
9619 * helper to account the unused space of all the readonly block group in the
9620 * space_info. takes mirrors into account.
9621 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9622 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9623 {
9624 struct btrfs_block_group_cache *block_group;
9625 u64 free_bytes = 0;
9626 int factor;
9627
9628 /* It's df, we don't care if it's racy */
9629 if (list_empty(&sinfo->ro_bgs))
9630 return 0;
9631
9632 spin_lock(&sinfo->lock);
9633 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9634 spin_lock(&block_group->lock);
9635
9636 if (!block_group->ro) {
9637 spin_unlock(&block_group->lock);
9638 continue;
9639 }
9640
9641 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9642 BTRFS_BLOCK_GROUP_RAID10 |
9643 BTRFS_BLOCK_GROUP_DUP))
9644 factor = 2;
9645 else
9646 factor = 1;
9647
9648 free_bytes += (block_group->key.offset -
9649 btrfs_block_group_used(&block_group->item)) *
9650 factor;
9651
9652 spin_unlock(&block_group->lock);
9653 }
9654 spin_unlock(&sinfo->lock);
9655
9656 return free_bytes;
9657 }
9658
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)9659 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9660 {
9661 struct btrfs_space_info *sinfo = cache->space_info;
9662 u64 num_bytes;
9663
9664 BUG_ON(!cache->ro);
9665
9666 spin_lock(&sinfo->lock);
9667 spin_lock(&cache->lock);
9668 if (!--cache->ro) {
9669 num_bytes = cache->key.offset - cache->reserved -
9670 cache->pinned - cache->bytes_super -
9671 btrfs_block_group_used(&cache->item);
9672 sinfo->bytes_readonly -= num_bytes;
9673 list_del_init(&cache->ro_list);
9674 }
9675 spin_unlock(&cache->lock);
9676 spin_unlock(&sinfo->lock);
9677 }
9678
9679 /*
9680 * checks to see if its even possible to relocate this block group.
9681 *
9682 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9683 * ok to go ahead and try.
9684 */
btrfs_can_relocate(struct btrfs_fs_info * fs_info,u64 bytenr)9685 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9686 {
9687 struct btrfs_root *root = fs_info->extent_root;
9688 struct btrfs_block_group_cache *block_group;
9689 struct btrfs_space_info *space_info;
9690 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9691 struct btrfs_device *device;
9692 struct btrfs_trans_handle *trans;
9693 u64 min_free;
9694 u64 dev_min = 1;
9695 u64 dev_nr = 0;
9696 u64 target;
9697 int debug;
9698 int index;
9699 int full = 0;
9700 int ret = 0;
9701
9702 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9703
9704 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9705
9706 /* odd, couldn't find the block group, leave it alone */
9707 if (!block_group) {
9708 if (debug)
9709 btrfs_warn(fs_info,
9710 "can't find block group for bytenr %llu",
9711 bytenr);
9712 return -1;
9713 }
9714
9715 min_free = btrfs_block_group_used(&block_group->item);
9716
9717 /* no bytes used, we're good */
9718 if (!min_free)
9719 goto out;
9720
9721 space_info = block_group->space_info;
9722 spin_lock(&space_info->lock);
9723
9724 full = space_info->full;
9725
9726 /*
9727 * if this is the last block group we have in this space, we can't
9728 * relocate it unless we're able to allocate a new chunk below.
9729 *
9730 * Otherwise, we need to make sure we have room in the space to handle
9731 * all of the extents from this block group. If we can, we're good
9732 */
9733 if ((space_info->total_bytes != block_group->key.offset) &&
9734 (btrfs_space_info_used(space_info, false) + min_free <
9735 space_info->total_bytes)) {
9736 spin_unlock(&space_info->lock);
9737 goto out;
9738 }
9739 spin_unlock(&space_info->lock);
9740
9741 /*
9742 * ok we don't have enough space, but maybe we have free space on our
9743 * devices to allocate new chunks for relocation, so loop through our
9744 * alloc devices and guess if we have enough space. if this block
9745 * group is going to be restriped, run checks against the target
9746 * profile instead of the current one.
9747 */
9748 ret = -1;
9749
9750 /*
9751 * index:
9752 * 0: raid10
9753 * 1: raid1
9754 * 2: dup
9755 * 3: raid0
9756 * 4: single
9757 */
9758 target = get_restripe_target(fs_info, block_group->flags);
9759 if (target) {
9760 index = __get_raid_index(extended_to_chunk(target));
9761 } else {
9762 /*
9763 * this is just a balance, so if we were marked as full
9764 * we know there is no space for a new chunk
9765 */
9766 if (full) {
9767 if (debug)
9768 btrfs_warn(fs_info,
9769 "no space to alloc new chunk for block group %llu",
9770 block_group->key.objectid);
9771 goto out;
9772 }
9773
9774 index = get_block_group_index(block_group);
9775 }
9776
9777 if (index == BTRFS_RAID_RAID10) {
9778 dev_min = 4;
9779 /* Divide by 2 */
9780 min_free >>= 1;
9781 } else if (index == BTRFS_RAID_RAID1) {
9782 dev_min = 2;
9783 } else if (index == BTRFS_RAID_DUP) {
9784 /* Multiply by 2 */
9785 min_free <<= 1;
9786 } else if (index == BTRFS_RAID_RAID0) {
9787 dev_min = fs_devices->rw_devices;
9788 min_free = div64_u64(min_free, dev_min);
9789 }
9790
9791 /* We need to do this so that we can look at pending chunks */
9792 trans = btrfs_join_transaction(root);
9793 if (IS_ERR(trans)) {
9794 ret = PTR_ERR(trans);
9795 goto out;
9796 }
9797
9798 mutex_lock(&fs_info->chunk_mutex);
9799 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9800 u64 dev_offset;
9801
9802 /*
9803 * check to make sure we can actually find a chunk with enough
9804 * space to fit our block group in.
9805 */
9806 if (device->total_bytes > device->bytes_used + min_free &&
9807 !device->is_tgtdev_for_dev_replace) {
9808 ret = find_free_dev_extent(trans, device, min_free,
9809 &dev_offset, NULL);
9810 if (!ret)
9811 dev_nr++;
9812
9813 if (dev_nr >= dev_min)
9814 break;
9815
9816 ret = -1;
9817 }
9818 }
9819 if (debug && ret == -1)
9820 btrfs_warn(fs_info,
9821 "no space to allocate a new chunk for block group %llu",
9822 block_group->key.objectid);
9823 mutex_unlock(&fs_info->chunk_mutex);
9824 btrfs_end_transaction(trans);
9825 out:
9826 btrfs_put_block_group(block_group);
9827 return ret;
9828 }
9829
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)9830 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9831 struct btrfs_path *path,
9832 struct btrfs_key *key)
9833 {
9834 struct btrfs_root *root = fs_info->extent_root;
9835 int ret = 0;
9836 struct btrfs_key found_key;
9837 struct extent_buffer *leaf;
9838 struct btrfs_block_group_item bg;
9839 u64 flags;
9840 int slot;
9841
9842 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9843 if (ret < 0)
9844 goto out;
9845
9846 while (1) {
9847 slot = path->slots[0];
9848 leaf = path->nodes[0];
9849 if (slot >= btrfs_header_nritems(leaf)) {
9850 ret = btrfs_next_leaf(root, path);
9851 if (ret == 0)
9852 continue;
9853 if (ret < 0)
9854 goto out;
9855 break;
9856 }
9857 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9858
9859 if (found_key.objectid >= key->objectid &&
9860 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9861 struct extent_map_tree *em_tree;
9862 struct extent_map *em;
9863
9864 em_tree = &root->fs_info->mapping_tree.map_tree;
9865 read_lock(&em_tree->lock);
9866 em = lookup_extent_mapping(em_tree, found_key.objectid,
9867 found_key.offset);
9868 read_unlock(&em_tree->lock);
9869 if (!em) {
9870 btrfs_err(fs_info,
9871 "logical %llu len %llu found bg but no related chunk",
9872 found_key.objectid, found_key.offset);
9873 ret = -ENOENT;
9874 } else if (em->start != found_key.objectid ||
9875 em->len != found_key.offset) {
9876 btrfs_err(fs_info,
9877 "block group %llu len %llu mismatch with chunk %llu len %llu",
9878 found_key.objectid, found_key.offset,
9879 em->start, em->len);
9880 ret = -EUCLEAN;
9881 } else {
9882 read_extent_buffer(leaf, &bg,
9883 btrfs_item_ptr_offset(leaf, slot),
9884 sizeof(bg));
9885 flags = btrfs_block_group_flags(&bg) &
9886 BTRFS_BLOCK_GROUP_TYPE_MASK;
9887
9888 if (flags != (em->map_lookup->type &
9889 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9890 btrfs_err(fs_info,
9891 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9892 found_key.objectid,
9893 found_key.offset, flags,
9894 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9895 em->map_lookup->type));
9896 ret = -EUCLEAN;
9897 } else {
9898 ret = 0;
9899 }
9900 }
9901 free_extent_map(em);
9902 goto out;
9903 }
9904 path->slots[0]++;
9905 }
9906 out:
9907 return ret;
9908 }
9909
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9910 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9911 {
9912 struct btrfs_block_group_cache *block_group;
9913 u64 last = 0;
9914
9915 while (1) {
9916 struct inode *inode;
9917
9918 block_group = btrfs_lookup_first_block_group(info, last);
9919 while (block_group) {
9920 wait_block_group_cache_done(block_group);
9921 spin_lock(&block_group->lock);
9922 if (block_group->iref)
9923 break;
9924 spin_unlock(&block_group->lock);
9925 block_group = next_block_group(info, block_group);
9926 }
9927 if (!block_group) {
9928 if (last == 0)
9929 break;
9930 last = 0;
9931 continue;
9932 }
9933
9934 inode = block_group->inode;
9935 block_group->iref = 0;
9936 block_group->inode = NULL;
9937 spin_unlock(&block_group->lock);
9938 ASSERT(block_group->io_ctl.inode == NULL);
9939 iput(inode);
9940 last = block_group->key.objectid + block_group->key.offset;
9941 btrfs_put_block_group(block_group);
9942 }
9943 }
9944
9945 /*
9946 * Must be called only after stopping all workers, since we could have block
9947 * group caching kthreads running, and therefore they could race with us if we
9948 * freed the block groups before stopping them.
9949 */
btrfs_free_block_groups(struct btrfs_fs_info * info)9950 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9951 {
9952 struct btrfs_block_group_cache *block_group;
9953 struct btrfs_space_info *space_info;
9954 struct btrfs_caching_control *caching_ctl;
9955 struct rb_node *n;
9956
9957 down_write(&info->commit_root_sem);
9958 while (!list_empty(&info->caching_block_groups)) {
9959 caching_ctl = list_entry(info->caching_block_groups.next,
9960 struct btrfs_caching_control, list);
9961 list_del(&caching_ctl->list);
9962 put_caching_control(caching_ctl);
9963 }
9964 up_write(&info->commit_root_sem);
9965
9966 spin_lock(&info->unused_bgs_lock);
9967 while (!list_empty(&info->unused_bgs)) {
9968 block_group = list_first_entry(&info->unused_bgs,
9969 struct btrfs_block_group_cache,
9970 bg_list);
9971 list_del_init(&block_group->bg_list);
9972 btrfs_put_block_group(block_group);
9973 }
9974 spin_unlock(&info->unused_bgs_lock);
9975
9976 spin_lock(&info->block_group_cache_lock);
9977 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9978 block_group = rb_entry(n, struct btrfs_block_group_cache,
9979 cache_node);
9980 rb_erase(&block_group->cache_node,
9981 &info->block_group_cache_tree);
9982 RB_CLEAR_NODE(&block_group->cache_node);
9983 spin_unlock(&info->block_group_cache_lock);
9984
9985 down_write(&block_group->space_info->groups_sem);
9986 list_del(&block_group->list);
9987 up_write(&block_group->space_info->groups_sem);
9988
9989 /*
9990 * We haven't cached this block group, which means we could
9991 * possibly have excluded extents on this block group.
9992 */
9993 if (block_group->cached == BTRFS_CACHE_NO ||
9994 block_group->cached == BTRFS_CACHE_ERROR)
9995 free_excluded_extents(info, block_group);
9996
9997 btrfs_remove_free_space_cache(block_group);
9998 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9999 ASSERT(list_empty(&block_group->dirty_list));
10000 ASSERT(list_empty(&block_group->io_list));
10001 ASSERT(list_empty(&block_group->bg_list));
10002 ASSERT(atomic_read(&block_group->count) == 1);
10003 btrfs_put_block_group(block_group);
10004
10005 spin_lock(&info->block_group_cache_lock);
10006 }
10007 spin_unlock(&info->block_group_cache_lock);
10008
10009 /* now that all the block groups are freed, go through and
10010 * free all the space_info structs. This is only called during
10011 * the final stages of unmount, and so we know nobody is
10012 * using them. We call synchronize_rcu() once before we start,
10013 * just to be on the safe side.
10014 */
10015 synchronize_rcu();
10016
10017 release_global_block_rsv(info);
10018
10019 while (!list_empty(&info->space_info)) {
10020 int i;
10021
10022 space_info = list_entry(info->space_info.next,
10023 struct btrfs_space_info,
10024 list);
10025
10026 /*
10027 * Do not hide this behind enospc_debug, this is actually
10028 * important and indicates a real bug if this happens.
10029 */
10030 if (WARN_ON(space_info->bytes_pinned > 0 ||
10031 space_info->bytes_reserved > 0 ||
10032 space_info->bytes_may_use > 0))
10033 dump_space_info(info, space_info, 0, 0);
10034 list_del(&space_info->list);
10035 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10036 struct kobject *kobj;
10037 kobj = space_info->block_group_kobjs[i];
10038 space_info->block_group_kobjs[i] = NULL;
10039 if (kobj) {
10040 kobject_del(kobj);
10041 kobject_put(kobj);
10042 }
10043 }
10044 kobject_del(&space_info->kobj);
10045 kobject_put(&space_info->kobj);
10046 }
10047 return 0;
10048 }
10049
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)10050 static void __link_block_group(struct btrfs_space_info *space_info,
10051 struct btrfs_block_group_cache *cache)
10052 {
10053 int index = get_block_group_index(cache);
10054 bool first = false;
10055
10056 down_write(&space_info->groups_sem);
10057 if (list_empty(&space_info->block_groups[index]))
10058 first = true;
10059 list_add_tail(&cache->list, &space_info->block_groups[index]);
10060 up_write(&space_info->groups_sem);
10061
10062 if (first) {
10063 struct raid_kobject *rkobj;
10064 int ret;
10065
10066 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10067 if (!rkobj)
10068 goto out_err;
10069 rkobj->raid_type = index;
10070 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10071 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10072 "%s", get_raid_name(index));
10073 if (ret) {
10074 kobject_put(&rkobj->kobj);
10075 goto out_err;
10076 }
10077 space_info->block_group_kobjs[index] = &rkobj->kobj;
10078 }
10079
10080 return;
10081 out_err:
10082 btrfs_warn(cache->fs_info,
10083 "failed to add kobject for block cache, ignoring");
10084 }
10085
10086 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)10087 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10088 u64 start, u64 size)
10089 {
10090 struct btrfs_block_group_cache *cache;
10091
10092 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10093 if (!cache)
10094 return NULL;
10095
10096 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10097 GFP_NOFS);
10098 if (!cache->free_space_ctl) {
10099 kfree(cache);
10100 return NULL;
10101 }
10102
10103 cache->key.objectid = start;
10104 cache->key.offset = size;
10105 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10106
10107 cache->fs_info = fs_info;
10108 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10109 set_free_space_tree_thresholds(cache);
10110
10111 atomic_set(&cache->count, 1);
10112 spin_lock_init(&cache->lock);
10113 init_rwsem(&cache->data_rwsem);
10114 INIT_LIST_HEAD(&cache->list);
10115 INIT_LIST_HEAD(&cache->cluster_list);
10116 INIT_LIST_HEAD(&cache->bg_list);
10117 INIT_LIST_HEAD(&cache->ro_list);
10118 INIT_LIST_HEAD(&cache->dirty_list);
10119 INIT_LIST_HEAD(&cache->io_list);
10120 btrfs_init_free_space_ctl(cache);
10121 atomic_set(&cache->trimming, 0);
10122 mutex_init(&cache->free_space_lock);
10123 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10124
10125 return cache;
10126 }
10127
10128
10129 /*
10130 * Iterate all chunks and verify that each of them has the corresponding block
10131 * group
10132 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)10133 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10134 {
10135 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10136 struct extent_map *em;
10137 struct btrfs_block_group_cache *bg;
10138 u64 start = 0;
10139 int ret = 0;
10140
10141 while (1) {
10142 read_lock(&map_tree->map_tree.lock);
10143 /*
10144 * lookup_extent_mapping will return the first extent map
10145 * intersecting the range, so setting @len to 1 is enough to
10146 * get the first chunk.
10147 */
10148 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10149 read_unlock(&map_tree->map_tree.lock);
10150 if (!em)
10151 break;
10152
10153 bg = btrfs_lookup_block_group(fs_info, em->start);
10154 if (!bg) {
10155 btrfs_err(fs_info,
10156 "chunk start=%llu len=%llu doesn't have corresponding block group",
10157 em->start, em->len);
10158 ret = -EUCLEAN;
10159 free_extent_map(em);
10160 break;
10161 }
10162 if (bg->key.objectid != em->start ||
10163 bg->key.offset != em->len ||
10164 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10165 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10166 btrfs_err(fs_info,
10167 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10168 em->start, em->len,
10169 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10170 bg->key.objectid, bg->key.offset,
10171 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10172 ret = -EUCLEAN;
10173 free_extent_map(em);
10174 btrfs_put_block_group(bg);
10175 break;
10176 }
10177 start = em->start + em->len;
10178 free_extent_map(em);
10179 btrfs_put_block_group(bg);
10180 }
10181 return ret;
10182 }
10183
btrfs_read_block_groups(struct btrfs_fs_info * info)10184 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10185 {
10186 struct btrfs_path *path;
10187 int ret;
10188 struct btrfs_block_group_cache *cache;
10189 struct btrfs_space_info *space_info;
10190 struct btrfs_key key;
10191 struct btrfs_key found_key;
10192 struct extent_buffer *leaf;
10193 int need_clear = 0;
10194 u64 cache_gen;
10195 u64 feature;
10196 int mixed;
10197
10198 feature = btrfs_super_incompat_flags(info->super_copy);
10199 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10200
10201 key.objectid = 0;
10202 key.offset = 0;
10203 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10204 path = btrfs_alloc_path();
10205 if (!path)
10206 return -ENOMEM;
10207 path->reada = READA_FORWARD;
10208
10209 cache_gen = btrfs_super_cache_generation(info->super_copy);
10210 if (btrfs_test_opt(info, SPACE_CACHE) &&
10211 btrfs_super_generation(info->super_copy) != cache_gen)
10212 need_clear = 1;
10213 if (btrfs_test_opt(info, CLEAR_CACHE))
10214 need_clear = 1;
10215
10216 while (1) {
10217 ret = find_first_block_group(info, path, &key);
10218 if (ret > 0)
10219 break;
10220 if (ret != 0)
10221 goto error;
10222
10223 leaf = path->nodes[0];
10224 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10225
10226 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10227 found_key.offset);
10228 if (!cache) {
10229 ret = -ENOMEM;
10230 goto error;
10231 }
10232
10233 if (need_clear) {
10234 /*
10235 * When we mount with old space cache, we need to
10236 * set BTRFS_DC_CLEAR and set dirty flag.
10237 *
10238 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10239 * truncate the old free space cache inode and
10240 * setup a new one.
10241 * b) Setting 'dirty flag' makes sure that we flush
10242 * the new space cache info onto disk.
10243 */
10244 if (btrfs_test_opt(info, SPACE_CACHE))
10245 cache->disk_cache_state = BTRFS_DC_CLEAR;
10246 }
10247
10248 read_extent_buffer(leaf, &cache->item,
10249 btrfs_item_ptr_offset(leaf, path->slots[0]),
10250 sizeof(cache->item));
10251 cache->flags = btrfs_block_group_flags(&cache->item);
10252 if (!mixed &&
10253 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10254 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10255 btrfs_err(info,
10256 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10257 cache->key.objectid);
10258 btrfs_put_block_group(cache);
10259 ret = -EINVAL;
10260 goto error;
10261 }
10262
10263 key.objectid = found_key.objectid + found_key.offset;
10264 btrfs_release_path(path);
10265
10266 /*
10267 * We need to exclude the super stripes now so that the space
10268 * info has super bytes accounted for, otherwise we'll think
10269 * we have more space than we actually do.
10270 */
10271 ret = exclude_super_stripes(info, cache);
10272 if (ret) {
10273 /*
10274 * We may have excluded something, so call this just in
10275 * case.
10276 */
10277 free_excluded_extents(info, cache);
10278 btrfs_put_block_group(cache);
10279 goto error;
10280 }
10281
10282 /*
10283 * check for two cases, either we are full, and therefore
10284 * don't need to bother with the caching work since we won't
10285 * find any space, or we are empty, and we can just add all
10286 * the space in and be done with it. This saves us _alot_ of
10287 * time, particularly in the full case.
10288 */
10289 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10290 cache->last_byte_to_unpin = (u64)-1;
10291 cache->cached = BTRFS_CACHE_FINISHED;
10292 free_excluded_extents(info, cache);
10293 } else if (btrfs_block_group_used(&cache->item) == 0) {
10294 cache->last_byte_to_unpin = (u64)-1;
10295 cache->cached = BTRFS_CACHE_FINISHED;
10296 add_new_free_space(cache, info,
10297 found_key.objectid,
10298 found_key.objectid +
10299 found_key.offset);
10300 free_excluded_extents(info, cache);
10301 }
10302
10303 ret = btrfs_add_block_group_cache(info, cache);
10304 if (ret) {
10305 btrfs_remove_free_space_cache(cache);
10306 btrfs_put_block_group(cache);
10307 goto error;
10308 }
10309
10310 trace_btrfs_add_block_group(info, cache, 0);
10311 update_space_info(info, cache->flags, found_key.offset,
10312 btrfs_block_group_used(&cache->item),
10313 cache->bytes_super, &space_info);
10314
10315 cache->space_info = space_info;
10316
10317 __link_block_group(space_info, cache);
10318
10319 set_avail_alloc_bits(info, cache->flags);
10320 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10321 inc_block_group_ro(cache, 1);
10322 } else if (btrfs_block_group_used(&cache->item) == 0) {
10323 spin_lock(&info->unused_bgs_lock);
10324 /* Should always be true but just in case. */
10325 if (list_empty(&cache->bg_list)) {
10326 btrfs_get_block_group(cache);
10327 list_add_tail(&cache->bg_list,
10328 &info->unused_bgs);
10329 }
10330 spin_unlock(&info->unused_bgs_lock);
10331 }
10332 }
10333
10334 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10335 if (!(get_alloc_profile(info, space_info->flags) &
10336 (BTRFS_BLOCK_GROUP_RAID10 |
10337 BTRFS_BLOCK_GROUP_RAID1 |
10338 BTRFS_BLOCK_GROUP_RAID5 |
10339 BTRFS_BLOCK_GROUP_RAID6 |
10340 BTRFS_BLOCK_GROUP_DUP)))
10341 continue;
10342 /*
10343 * avoid allocating from un-mirrored block group if there are
10344 * mirrored block groups.
10345 */
10346 list_for_each_entry(cache,
10347 &space_info->block_groups[BTRFS_RAID_RAID0],
10348 list)
10349 inc_block_group_ro(cache, 1);
10350 list_for_each_entry(cache,
10351 &space_info->block_groups[BTRFS_RAID_SINGLE],
10352 list)
10353 inc_block_group_ro(cache, 1);
10354 }
10355
10356 init_global_block_rsv(info);
10357 ret = check_chunk_block_group_mappings(info);
10358 error:
10359 btrfs_free_path(path);
10360 return ret;
10361 }
10362
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)10363 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10364 struct btrfs_fs_info *fs_info)
10365 {
10366 struct btrfs_block_group_cache *block_group;
10367 struct btrfs_root *extent_root = fs_info->extent_root;
10368 struct btrfs_block_group_item item;
10369 struct btrfs_key key;
10370 int ret = 0;
10371 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10372
10373 trans->can_flush_pending_bgs = false;
10374 while (!list_empty(&trans->new_bgs)) {
10375 block_group = list_first_entry(&trans->new_bgs,
10376 struct btrfs_block_group_cache,
10377 bg_list);
10378 if (ret)
10379 goto next;
10380
10381 spin_lock(&block_group->lock);
10382 memcpy(&item, &block_group->item, sizeof(item));
10383 memcpy(&key, &block_group->key, sizeof(key));
10384 spin_unlock(&block_group->lock);
10385
10386 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10387 sizeof(item));
10388 if (ret)
10389 btrfs_abort_transaction(trans, ret);
10390 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10391 key.offset);
10392 if (ret)
10393 btrfs_abort_transaction(trans, ret);
10394 add_block_group_free_space(trans, fs_info, block_group);
10395 /* already aborted the transaction if it failed. */
10396 next:
10397 list_del_init(&block_group->bg_list);
10398 }
10399 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10400 }
10401
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)10402 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10403 struct btrfs_fs_info *fs_info, u64 bytes_used,
10404 u64 type, u64 chunk_offset, u64 size)
10405 {
10406 struct btrfs_block_group_cache *cache;
10407 int ret;
10408
10409 btrfs_set_log_full_commit(fs_info, trans);
10410
10411 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10412 if (!cache)
10413 return -ENOMEM;
10414
10415 btrfs_set_block_group_used(&cache->item, bytes_used);
10416 btrfs_set_block_group_chunk_objectid(&cache->item,
10417 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10418 btrfs_set_block_group_flags(&cache->item, type);
10419
10420 cache->flags = type;
10421 cache->last_byte_to_unpin = (u64)-1;
10422 cache->cached = BTRFS_CACHE_FINISHED;
10423 cache->needs_free_space = 1;
10424 ret = exclude_super_stripes(fs_info, cache);
10425 if (ret) {
10426 /*
10427 * We may have excluded something, so call this just in
10428 * case.
10429 */
10430 free_excluded_extents(fs_info, cache);
10431 btrfs_put_block_group(cache);
10432 return ret;
10433 }
10434
10435 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10436
10437 free_excluded_extents(fs_info, cache);
10438
10439 #ifdef CONFIG_BTRFS_DEBUG
10440 if (btrfs_should_fragment_free_space(cache)) {
10441 u64 new_bytes_used = size - bytes_used;
10442
10443 bytes_used += new_bytes_used >> 1;
10444 fragment_free_space(cache);
10445 }
10446 #endif
10447 /*
10448 * Ensure the corresponding space_info object is created and
10449 * assigned to our block group. We want our bg to be added to the rbtree
10450 * with its ->space_info set.
10451 */
10452 cache->space_info = __find_space_info(fs_info, cache->flags);
10453 if (!cache->space_info) {
10454 ret = create_space_info(fs_info, cache->flags,
10455 &cache->space_info);
10456 if (ret) {
10457 btrfs_remove_free_space_cache(cache);
10458 btrfs_put_block_group(cache);
10459 return ret;
10460 }
10461 }
10462
10463 ret = btrfs_add_block_group_cache(fs_info, cache);
10464 if (ret) {
10465 btrfs_remove_free_space_cache(cache);
10466 btrfs_put_block_group(cache);
10467 return ret;
10468 }
10469
10470 /*
10471 * Now that our block group has its ->space_info set and is inserted in
10472 * the rbtree, update the space info's counters.
10473 */
10474 trace_btrfs_add_block_group(fs_info, cache, 1);
10475 update_space_info(fs_info, cache->flags, size, bytes_used,
10476 cache->bytes_super, &cache->space_info);
10477 update_global_block_rsv(fs_info);
10478
10479 __link_block_group(cache->space_info, cache);
10480
10481 list_add_tail(&cache->bg_list, &trans->new_bgs);
10482
10483 set_avail_alloc_bits(fs_info, type);
10484 return 0;
10485 }
10486
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10487 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10488 {
10489 u64 extra_flags = chunk_to_extended(flags) &
10490 BTRFS_EXTENDED_PROFILE_MASK;
10491
10492 write_seqlock(&fs_info->profiles_lock);
10493 if (flags & BTRFS_BLOCK_GROUP_DATA)
10494 fs_info->avail_data_alloc_bits &= ~extra_flags;
10495 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10496 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10497 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10498 fs_info->avail_system_alloc_bits &= ~extra_flags;
10499 write_sequnlock(&fs_info->profiles_lock);
10500 }
10501
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 group_start,struct extent_map * em)10502 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10503 struct btrfs_fs_info *fs_info, u64 group_start,
10504 struct extent_map *em)
10505 {
10506 struct btrfs_root *root = fs_info->extent_root;
10507 struct btrfs_path *path;
10508 struct btrfs_block_group_cache *block_group;
10509 struct btrfs_free_cluster *cluster;
10510 struct btrfs_root *tree_root = fs_info->tree_root;
10511 struct btrfs_key key;
10512 struct inode *inode;
10513 struct kobject *kobj = NULL;
10514 int ret;
10515 int index;
10516 int factor;
10517 struct btrfs_caching_control *caching_ctl = NULL;
10518 bool remove_em;
10519
10520 block_group = btrfs_lookup_block_group(fs_info, group_start);
10521 BUG_ON(!block_group);
10522 BUG_ON(!block_group->ro);
10523
10524 /*
10525 * Free the reserved super bytes from this block group before
10526 * remove it.
10527 */
10528 free_excluded_extents(fs_info, block_group);
10529
10530 memcpy(&key, &block_group->key, sizeof(key));
10531 index = get_block_group_index(block_group);
10532 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10533 BTRFS_BLOCK_GROUP_RAID1 |
10534 BTRFS_BLOCK_GROUP_RAID10))
10535 factor = 2;
10536 else
10537 factor = 1;
10538
10539 /* make sure this block group isn't part of an allocation cluster */
10540 cluster = &fs_info->data_alloc_cluster;
10541 spin_lock(&cluster->refill_lock);
10542 btrfs_return_cluster_to_free_space(block_group, cluster);
10543 spin_unlock(&cluster->refill_lock);
10544
10545 /*
10546 * make sure this block group isn't part of a metadata
10547 * allocation cluster
10548 */
10549 cluster = &fs_info->meta_alloc_cluster;
10550 spin_lock(&cluster->refill_lock);
10551 btrfs_return_cluster_to_free_space(block_group, cluster);
10552 spin_unlock(&cluster->refill_lock);
10553
10554 path = btrfs_alloc_path();
10555 if (!path) {
10556 ret = -ENOMEM;
10557 goto out;
10558 }
10559
10560 /*
10561 * get the inode first so any iput calls done for the io_list
10562 * aren't the final iput (no unlinks allowed now)
10563 */
10564 inode = lookup_free_space_inode(fs_info, block_group, path);
10565
10566 mutex_lock(&trans->transaction->cache_write_mutex);
10567 /*
10568 * make sure our free spache cache IO is done before remove the
10569 * free space inode
10570 */
10571 spin_lock(&trans->transaction->dirty_bgs_lock);
10572 if (!list_empty(&block_group->io_list)) {
10573 list_del_init(&block_group->io_list);
10574
10575 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10576
10577 spin_unlock(&trans->transaction->dirty_bgs_lock);
10578 btrfs_wait_cache_io(trans, block_group, path);
10579 btrfs_put_block_group(block_group);
10580 spin_lock(&trans->transaction->dirty_bgs_lock);
10581 }
10582
10583 if (!list_empty(&block_group->dirty_list)) {
10584 list_del_init(&block_group->dirty_list);
10585 btrfs_put_block_group(block_group);
10586 }
10587 spin_unlock(&trans->transaction->dirty_bgs_lock);
10588 mutex_unlock(&trans->transaction->cache_write_mutex);
10589
10590 if (!IS_ERR(inode)) {
10591 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10592 if (ret) {
10593 btrfs_add_delayed_iput(inode);
10594 goto out;
10595 }
10596 clear_nlink(inode);
10597 /* One for the block groups ref */
10598 spin_lock(&block_group->lock);
10599 if (block_group->iref) {
10600 block_group->iref = 0;
10601 block_group->inode = NULL;
10602 spin_unlock(&block_group->lock);
10603 iput(inode);
10604 } else {
10605 spin_unlock(&block_group->lock);
10606 }
10607 /* One for our lookup ref */
10608 btrfs_add_delayed_iput(inode);
10609 }
10610
10611 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10612 key.offset = block_group->key.objectid;
10613 key.type = 0;
10614
10615 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10616 if (ret < 0)
10617 goto out;
10618 if (ret > 0)
10619 btrfs_release_path(path);
10620 if (ret == 0) {
10621 ret = btrfs_del_item(trans, tree_root, path);
10622 if (ret)
10623 goto out;
10624 btrfs_release_path(path);
10625 }
10626
10627 spin_lock(&fs_info->block_group_cache_lock);
10628 rb_erase(&block_group->cache_node,
10629 &fs_info->block_group_cache_tree);
10630 RB_CLEAR_NODE(&block_group->cache_node);
10631
10632 if (fs_info->first_logical_byte == block_group->key.objectid)
10633 fs_info->first_logical_byte = (u64)-1;
10634 spin_unlock(&fs_info->block_group_cache_lock);
10635
10636 down_write(&block_group->space_info->groups_sem);
10637 /*
10638 * we must use list_del_init so people can check to see if they
10639 * are still on the list after taking the semaphore
10640 */
10641 list_del_init(&block_group->list);
10642 if (list_empty(&block_group->space_info->block_groups[index])) {
10643 kobj = block_group->space_info->block_group_kobjs[index];
10644 block_group->space_info->block_group_kobjs[index] = NULL;
10645 clear_avail_alloc_bits(fs_info, block_group->flags);
10646 }
10647 up_write(&block_group->space_info->groups_sem);
10648 if (kobj) {
10649 kobject_del(kobj);
10650 kobject_put(kobj);
10651 }
10652
10653 if (block_group->has_caching_ctl)
10654 caching_ctl = get_caching_control(block_group);
10655 if (block_group->cached == BTRFS_CACHE_STARTED)
10656 wait_block_group_cache_done(block_group);
10657 if (block_group->has_caching_ctl) {
10658 down_write(&fs_info->commit_root_sem);
10659 if (!caching_ctl) {
10660 struct btrfs_caching_control *ctl;
10661
10662 list_for_each_entry(ctl,
10663 &fs_info->caching_block_groups, list)
10664 if (ctl->block_group == block_group) {
10665 caching_ctl = ctl;
10666 refcount_inc(&caching_ctl->count);
10667 break;
10668 }
10669 }
10670 if (caching_ctl)
10671 list_del_init(&caching_ctl->list);
10672 up_write(&fs_info->commit_root_sem);
10673 if (caching_ctl) {
10674 /* Once for the caching bgs list and once for us. */
10675 put_caching_control(caching_ctl);
10676 put_caching_control(caching_ctl);
10677 }
10678 }
10679
10680 spin_lock(&trans->transaction->dirty_bgs_lock);
10681 if (!list_empty(&block_group->dirty_list)) {
10682 WARN_ON(1);
10683 }
10684 if (!list_empty(&block_group->io_list)) {
10685 WARN_ON(1);
10686 }
10687 spin_unlock(&trans->transaction->dirty_bgs_lock);
10688 btrfs_remove_free_space_cache(block_group);
10689
10690 spin_lock(&block_group->space_info->lock);
10691 list_del_init(&block_group->ro_list);
10692
10693 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10694 WARN_ON(block_group->space_info->total_bytes
10695 < block_group->key.offset);
10696 WARN_ON(block_group->space_info->bytes_readonly
10697 < block_group->key.offset);
10698 WARN_ON(block_group->space_info->disk_total
10699 < block_group->key.offset * factor);
10700 }
10701 block_group->space_info->total_bytes -= block_group->key.offset;
10702 block_group->space_info->bytes_readonly -= block_group->key.offset;
10703 block_group->space_info->disk_total -= block_group->key.offset * factor;
10704
10705 spin_unlock(&block_group->space_info->lock);
10706
10707 memcpy(&key, &block_group->key, sizeof(key));
10708
10709 mutex_lock(&fs_info->chunk_mutex);
10710 if (!list_empty(&em->list)) {
10711 /* We're in the transaction->pending_chunks list. */
10712 free_extent_map(em);
10713 }
10714 spin_lock(&block_group->lock);
10715 block_group->removed = 1;
10716 /*
10717 * At this point trimming can't start on this block group, because we
10718 * removed the block group from the tree fs_info->block_group_cache_tree
10719 * so no one can't find it anymore and even if someone already got this
10720 * block group before we removed it from the rbtree, they have already
10721 * incremented block_group->trimming - if they didn't, they won't find
10722 * any free space entries because we already removed them all when we
10723 * called btrfs_remove_free_space_cache().
10724 *
10725 * And we must not remove the extent map from the fs_info->mapping_tree
10726 * to prevent the same logical address range and physical device space
10727 * ranges from being reused for a new block group. This is because our
10728 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10729 * completely transactionless, so while it is trimming a range the
10730 * currently running transaction might finish and a new one start,
10731 * allowing for new block groups to be created that can reuse the same
10732 * physical device locations unless we take this special care.
10733 *
10734 * There may also be an implicit trim operation if the file system
10735 * is mounted with -odiscard. The same protections must remain
10736 * in place until the extents have been discarded completely when
10737 * the transaction commit has completed.
10738 */
10739 remove_em = (atomic_read(&block_group->trimming) == 0);
10740 /*
10741 * Make sure a trimmer task always sees the em in the pinned_chunks list
10742 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10743 * before checking block_group->removed).
10744 */
10745 if (!remove_em) {
10746 /*
10747 * Our em might be in trans->transaction->pending_chunks which
10748 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10749 * and so is the fs_info->pinned_chunks list.
10750 *
10751 * So at this point we must be holding the chunk_mutex to avoid
10752 * any races with chunk allocation (more specifically at
10753 * volumes.c:contains_pending_extent()), to ensure it always
10754 * sees the em, either in the pending_chunks list or in the
10755 * pinned_chunks list.
10756 */
10757 list_move_tail(&em->list, &fs_info->pinned_chunks);
10758 }
10759 spin_unlock(&block_group->lock);
10760
10761 if (remove_em) {
10762 struct extent_map_tree *em_tree;
10763
10764 em_tree = &fs_info->mapping_tree.map_tree;
10765 write_lock(&em_tree->lock);
10766 /*
10767 * The em might be in the pending_chunks list, so make sure the
10768 * chunk mutex is locked, since remove_extent_mapping() will
10769 * delete us from that list.
10770 */
10771 remove_extent_mapping(em_tree, em);
10772 write_unlock(&em_tree->lock);
10773 /* once for the tree */
10774 free_extent_map(em);
10775 }
10776
10777 mutex_unlock(&fs_info->chunk_mutex);
10778
10779 ret = remove_block_group_free_space(trans, fs_info, block_group);
10780 if (ret)
10781 goto out;
10782
10783 btrfs_put_block_group(block_group);
10784 btrfs_put_block_group(block_group);
10785
10786 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10787 if (ret > 0)
10788 ret = -EIO;
10789 if (ret < 0)
10790 goto out;
10791
10792 ret = btrfs_del_item(trans, root, path);
10793 out:
10794 btrfs_free_path(path);
10795 return ret;
10796 }
10797
10798 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10799 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10800 const u64 chunk_offset)
10801 {
10802 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10803 struct extent_map *em;
10804 struct map_lookup *map;
10805 unsigned int num_items;
10806
10807 read_lock(&em_tree->lock);
10808 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10809 read_unlock(&em_tree->lock);
10810 ASSERT(em && em->start == chunk_offset);
10811
10812 /*
10813 * We need to reserve 3 + N units from the metadata space info in order
10814 * to remove a block group (done at btrfs_remove_chunk() and at
10815 * btrfs_remove_block_group()), which are used for:
10816 *
10817 * 1 unit for adding the free space inode's orphan (located in the tree
10818 * of tree roots).
10819 * 1 unit for deleting the block group item (located in the extent
10820 * tree).
10821 * 1 unit for deleting the free space item (located in tree of tree
10822 * roots).
10823 * N units for deleting N device extent items corresponding to each
10824 * stripe (located in the device tree).
10825 *
10826 * In order to remove a block group we also need to reserve units in the
10827 * system space info in order to update the chunk tree (update one or
10828 * more device items and remove one chunk item), but this is done at
10829 * btrfs_remove_chunk() through a call to check_system_chunk().
10830 */
10831 map = em->map_lookup;
10832 num_items = 3 + map->num_stripes;
10833 free_extent_map(em);
10834
10835 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10836 num_items, 1);
10837 }
10838
10839 /*
10840 * Process the unused_bgs list and remove any that don't have any allocated
10841 * space inside of them.
10842 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10843 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10844 {
10845 struct btrfs_block_group_cache *block_group;
10846 struct btrfs_space_info *space_info;
10847 struct btrfs_trans_handle *trans;
10848 int ret = 0;
10849
10850 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10851 return;
10852
10853 spin_lock(&fs_info->unused_bgs_lock);
10854 while (!list_empty(&fs_info->unused_bgs)) {
10855 u64 start, end;
10856 int trimming;
10857
10858 block_group = list_first_entry(&fs_info->unused_bgs,
10859 struct btrfs_block_group_cache,
10860 bg_list);
10861 list_del_init(&block_group->bg_list);
10862
10863 space_info = block_group->space_info;
10864
10865 if (ret || btrfs_mixed_space_info(space_info)) {
10866 btrfs_put_block_group(block_group);
10867 continue;
10868 }
10869 spin_unlock(&fs_info->unused_bgs_lock);
10870
10871 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10872
10873 /* Don't want to race with allocators so take the groups_sem */
10874 down_write(&space_info->groups_sem);
10875 spin_lock(&block_group->lock);
10876 if (block_group->reserved || block_group->pinned ||
10877 btrfs_block_group_used(&block_group->item) ||
10878 block_group->ro ||
10879 list_is_singular(&block_group->list)) {
10880 /*
10881 * We want to bail if we made new allocations or have
10882 * outstanding allocations in this block group. We do
10883 * the ro check in case balance is currently acting on
10884 * this block group.
10885 */
10886 spin_unlock(&block_group->lock);
10887 up_write(&space_info->groups_sem);
10888 goto next;
10889 }
10890 spin_unlock(&block_group->lock);
10891
10892 /* We don't want to force the issue, only flip if it's ok. */
10893 ret = inc_block_group_ro(block_group, 0);
10894 up_write(&space_info->groups_sem);
10895 if (ret < 0) {
10896 ret = 0;
10897 goto next;
10898 }
10899
10900 /*
10901 * Want to do this before we do anything else so we can recover
10902 * properly if we fail to join the transaction.
10903 */
10904 trans = btrfs_start_trans_remove_block_group(fs_info,
10905 block_group->key.objectid);
10906 if (IS_ERR(trans)) {
10907 btrfs_dec_block_group_ro(block_group);
10908 ret = PTR_ERR(trans);
10909 goto next;
10910 }
10911
10912 /*
10913 * We could have pending pinned extents for this block group,
10914 * just delete them, we don't care about them anymore.
10915 */
10916 start = block_group->key.objectid;
10917 end = start + block_group->key.offset - 1;
10918 /*
10919 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10920 * btrfs_finish_extent_commit(). If we are at transaction N,
10921 * another task might be running finish_extent_commit() for the
10922 * previous transaction N - 1, and have seen a range belonging
10923 * to the block group in freed_extents[] before we were able to
10924 * clear the whole block group range from freed_extents[]. This
10925 * means that task can lookup for the block group after we
10926 * unpinned it from freed_extents[] and removed it, leading to
10927 * a BUG_ON() at btrfs_unpin_extent_range().
10928 */
10929 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10930 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10931 EXTENT_DIRTY);
10932 if (ret) {
10933 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10934 btrfs_dec_block_group_ro(block_group);
10935 goto end_trans;
10936 }
10937 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10938 EXTENT_DIRTY);
10939 if (ret) {
10940 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10941 btrfs_dec_block_group_ro(block_group);
10942 goto end_trans;
10943 }
10944 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10945
10946 /* Reset pinned so btrfs_put_block_group doesn't complain */
10947 spin_lock(&space_info->lock);
10948 spin_lock(&block_group->lock);
10949
10950 space_info->bytes_pinned -= block_group->pinned;
10951 space_info->bytes_readonly += block_group->pinned;
10952 percpu_counter_add(&space_info->total_bytes_pinned,
10953 -block_group->pinned);
10954 block_group->pinned = 0;
10955
10956 spin_unlock(&block_group->lock);
10957 spin_unlock(&space_info->lock);
10958
10959 /* DISCARD can flip during remount */
10960 trimming = btrfs_test_opt(fs_info, DISCARD);
10961
10962 /* Implicit trim during transaction commit. */
10963 if (trimming)
10964 btrfs_get_block_group_trimming(block_group);
10965
10966 /*
10967 * Btrfs_remove_chunk will abort the transaction if things go
10968 * horribly wrong.
10969 */
10970 ret = btrfs_remove_chunk(trans, fs_info,
10971 block_group->key.objectid);
10972
10973 if (ret) {
10974 if (trimming)
10975 btrfs_put_block_group_trimming(block_group);
10976 goto end_trans;
10977 }
10978
10979 /*
10980 * If we're not mounted with -odiscard, we can just forget
10981 * about this block group. Otherwise we'll need to wait
10982 * until transaction commit to do the actual discard.
10983 */
10984 if (trimming) {
10985 spin_lock(&fs_info->unused_bgs_lock);
10986 /*
10987 * A concurrent scrub might have added us to the list
10988 * fs_info->unused_bgs, so use a list_move operation
10989 * to add the block group to the deleted_bgs list.
10990 */
10991 list_move(&block_group->bg_list,
10992 &trans->transaction->deleted_bgs);
10993 spin_unlock(&fs_info->unused_bgs_lock);
10994 btrfs_get_block_group(block_group);
10995 }
10996 end_trans:
10997 btrfs_end_transaction(trans);
10998 next:
10999 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11000 btrfs_put_block_group(block_group);
11001 spin_lock(&fs_info->unused_bgs_lock);
11002 }
11003 spin_unlock(&fs_info->unused_bgs_lock);
11004 }
11005
btrfs_init_space_info(struct btrfs_fs_info * fs_info)11006 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11007 {
11008 struct btrfs_space_info *space_info;
11009 struct btrfs_super_block *disk_super;
11010 u64 features;
11011 u64 flags;
11012 int mixed = 0;
11013 int ret;
11014
11015 disk_super = fs_info->super_copy;
11016 if (!btrfs_super_root(disk_super))
11017 return -EINVAL;
11018
11019 features = btrfs_super_incompat_flags(disk_super);
11020 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11021 mixed = 1;
11022
11023 flags = BTRFS_BLOCK_GROUP_SYSTEM;
11024 ret = create_space_info(fs_info, flags, &space_info);
11025 if (ret)
11026 goto out;
11027
11028 if (mixed) {
11029 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11030 ret = create_space_info(fs_info, flags, &space_info);
11031 } else {
11032 flags = BTRFS_BLOCK_GROUP_METADATA;
11033 ret = create_space_info(fs_info, flags, &space_info);
11034 if (ret)
11035 goto out;
11036
11037 flags = BTRFS_BLOCK_GROUP_DATA;
11038 ret = create_space_info(fs_info, flags, &space_info);
11039 }
11040 out:
11041 return ret;
11042 }
11043
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)11044 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11045 u64 start, u64 end)
11046 {
11047 return unpin_extent_range(fs_info, start, end, false);
11048 }
11049
11050 /*
11051 * It used to be that old block groups would be left around forever.
11052 * Iterating over them would be enough to trim unused space. Since we
11053 * now automatically remove them, we also need to iterate over unallocated
11054 * space.
11055 *
11056 * We don't want a transaction for this since the discard may take a
11057 * substantial amount of time. We don't require that a transaction be
11058 * running, but we do need to take a running transaction into account
11059 * to ensure that we're not discarding chunks that were released in
11060 * the current transaction.
11061 *
11062 * Holding the chunks lock will prevent other threads from allocating
11063 * or releasing chunks, but it won't prevent a running transaction
11064 * from committing and releasing the memory that the pending chunks
11065 * list head uses. For that, we need to take a reference to the
11066 * transaction.
11067 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)11068 static int btrfs_trim_free_extents(struct btrfs_device *device,
11069 u64 minlen, u64 *trimmed)
11070 {
11071 u64 start = 0, len = 0;
11072 int ret;
11073
11074 *trimmed = 0;
11075
11076 /* Discard not supported = nothing to do. */
11077 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11078 return 0;
11079
11080 /* Not writeable = nothing to do. */
11081 if (!device->writeable)
11082 return 0;
11083
11084 /* No free space = nothing to do. */
11085 if (device->total_bytes <= device->bytes_used)
11086 return 0;
11087
11088 ret = 0;
11089
11090 while (1) {
11091 struct btrfs_fs_info *fs_info = device->fs_info;
11092 struct btrfs_transaction *trans;
11093 u64 bytes;
11094
11095 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11096 if (ret)
11097 return ret;
11098
11099 down_read(&fs_info->commit_root_sem);
11100
11101 spin_lock(&fs_info->trans_lock);
11102 trans = fs_info->running_transaction;
11103 if (trans)
11104 refcount_inc(&trans->use_count);
11105 spin_unlock(&fs_info->trans_lock);
11106
11107 ret = find_free_dev_extent_start(trans, device, minlen, start,
11108 &start, &len);
11109 if (trans)
11110 btrfs_put_transaction(trans);
11111
11112 if (ret) {
11113 up_read(&fs_info->commit_root_sem);
11114 mutex_unlock(&fs_info->chunk_mutex);
11115 if (ret == -ENOSPC)
11116 ret = 0;
11117 break;
11118 }
11119
11120 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11121 up_read(&fs_info->commit_root_sem);
11122 mutex_unlock(&fs_info->chunk_mutex);
11123
11124 if (ret)
11125 break;
11126
11127 start += len;
11128 *trimmed += bytes;
11129
11130 if (fatal_signal_pending(current)) {
11131 ret = -ERESTARTSYS;
11132 break;
11133 }
11134
11135 cond_resched();
11136 }
11137
11138 return ret;
11139 }
11140
11141 /*
11142 * Trim the whole filesystem by:
11143 * 1) trimming the free space in each block group
11144 * 2) trimming the unallocated space on each device
11145 *
11146 * This will also continue trimming even if a block group or device encounters
11147 * an error. The return value will be the last error, or 0 if nothing bad
11148 * happens.
11149 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)11150 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11151 {
11152 struct btrfs_block_group_cache *cache = NULL;
11153 struct btrfs_device *device;
11154 struct list_head *devices;
11155 u64 group_trimmed;
11156 u64 start;
11157 u64 end;
11158 u64 trimmed = 0;
11159 u64 bg_failed = 0;
11160 u64 dev_failed = 0;
11161 int bg_ret = 0;
11162 int dev_ret = 0;
11163 int ret = 0;
11164
11165 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11166 for (; cache; cache = next_block_group(fs_info, cache)) {
11167 if (cache->key.objectid >= (range->start + range->len)) {
11168 btrfs_put_block_group(cache);
11169 break;
11170 }
11171
11172 start = max(range->start, cache->key.objectid);
11173 end = min(range->start + range->len,
11174 cache->key.objectid + cache->key.offset);
11175
11176 if (end - start >= range->minlen) {
11177 if (!block_group_cache_done(cache)) {
11178 ret = cache_block_group(cache, 0);
11179 if (ret) {
11180 bg_failed++;
11181 bg_ret = ret;
11182 continue;
11183 }
11184 ret = wait_block_group_cache_done(cache);
11185 if (ret) {
11186 bg_failed++;
11187 bg_ret = ret;
11188 continue;
11189 }
11190 }
11191 ret = btrfs_trim_block_group(cache,
11192 &group_trimmed,
11193 start,
11194 end,
11195 range->minlen);
11196
11197 trimmed += group_trimmed;
11198 if (ret) {
11199 bg_failed++;
11200 bg_ret = ret;
11201 continue;
11202 }
11203 }
11204 }
11205
11206 if (bg_failed)
11207 btrfs_warn(fs_info,
11208 "failed to trim %llu block group(s), last error %d",
11209 bg_failed, bg_ret);
11210 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11211 devices = &fs_info->fs_devices->devices;
11212 list_for_each_entry(device, devices, dev_list) {
11213 ret = btrfs_trim_free_extents(device, range->minlen,
11214 &group_trimmed);
11215 if (ret) {
11216 dev_failed++;
11217 dev_ret = ret;
11218 break;
11219 }
11220
11221 trimmed += group_trimmed;
11222 }
11223 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11224
11225 if (dev_failed)
11226 btrfs_warn(fs_info,
11227 "failed to trim %llu device(s), last error %d",
11228 dev_failed, dev_ret);
11229 range->len = trimmed;
11230 if (bg_ret)
11231 return bg_ret;
11232 return dev_ret;
11233 }
11234
11235 /*
11236 * btrfs_{start,end}_write_no_snapshotting() are similar to
11237 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11238 * data into the page cache through nocow before the subvolume is snapshoted,
11239 * but flush the data into disk after the snapshot creation, or to prevent
11240 * operations while snapshotting is ongoing and that cause the snapshot to be
11241 * inconsistent (writes followed by expanding truncates for example).
11242 */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)11243 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11244 {
11245 percpu_counter_dec(&root->subv_writers->counter);
11246 /*
11247 * Make sure counter is updated before we wake up waiters.
11248 */
11249 smp_mb();
11250 if (waitqueue_active(&root->subv_writers->wait))
11251 wake_up(&root->subv_writers->wait);
11252 }
11253
btrfs_start_write_no_snapshotting(struct btrfs_root * root)11254 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11255 {
11256 if (atomic_read(&root->will_be_snapshotted))
11257 return 0;
11258
11259 percpu_counter_inc(&root->subv_writers->counter);
11260 /*
11261 * Make sure counter is updated before we check for snapshot creation.
11262 */
11263 smp_mb();
11264 if (atomic_read(&root->will_be_snapshotted)) {
11265 btrfs_end_write_no_snapshotting(root);
11266 return 0;
11267 }
11268 return 1;
11269 }
11270
wait_snapshotting_atomic_t(atomic_t * a)11271 static int wait_snapshotting_atomic_t(atomic_t *a)
11272 {
11273 schedule();
11274 return 0;
11275 }
11276
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)11277 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11278 {
11279 while (true) {
11280 int ret;
11281
11282 ret = btrfs_start_write_no_snapshotting(root);
11283 if (ret)
11284 break;
11285 wait_on_atomic_t(&root->will_be_snapshotted,
11286 wait_snapshotting_atomic_t,
11287 TASK_UNINTERRUPTIBLE);
11288 }
11289 }
11290