• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TLBFLUSH_H
3 #define _ASM_X86_TLBFLUSH_H
4 
5 #include <linux/mm.h>
6 #include <linux/sched.h>
7 
8 #include <asm/processor.h>
9 #include <asm/cpufeature.h>
10 #include <asm/special_insns.h>
11 #include <asm/smp.h>
12 #include <asm/invpcid.h>
13 #include <asm/pti.h>
14 #include <asm/processor-flags.h>
15 
16 /*
17  * The x86 feature is called PCID (Process Context IDentifier). It is similar
18  * to what is traditionally called ASID on the RISC processors.
19  *
20  * We don't use the traditional ASID implementation, where each process/mm gets
21  * its own ASID and flush/restart when we run out of ASID space.
22  *
23  * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24  * that came by on this CPU, allowing cheaper switch_mm between processes on
25  * this CPU.
26  *
27  * We end up with different spaces for different things. To avoid confusion we
28  * use different names for each of them:
29  *
30  * ASID  - [0, TLB_NR_DYN_ASIDS-1]
31  *         the canonical identifier for an mm
32  *
33  * kPCID - [1, TLB_NR_DYN_ASIDS]
34  *         the value we write into the PCID part of CR3; corresponds to the
35  *         ASID+1, because PCID 0 is special.
36  *
37  * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38  *         for KPTI each mm has two address spaces and thus needs two
39  *         PCID values, but we can still do with a single ASID denomination
40  *         for each mm. Corresponds to kPCID + 2048.
41  *
42  */
43 
44 /* There are 12 bits of space for ASIDS in CR3 */
45 #define CR3_HW_ASID_BITS		12
46 
47 /*
48  * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49  * user/kernel switches
50  */
51 #ifdef CONFIG_PAGE_TABLE_ISOLATION
52 # define PTI_CONSUMED_PCID_BITS	1
53 #else
54 # define PTI_CONSUMED_PCID_BITS	0
55 #endif
56 
57 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
58 
59 /*
60  * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
61  * for them being zero-based.  Another -1 is because PCID 0 is reserved for
62  * use by non-PCID-aware users.
63  */
64 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65 
66 /*
67  * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68  * lines.
69  */
70 #define TLB_NR_DYN_ASIDS	6
71 
72 /*
73  * Given @asid, compute kPCID
74  */
kern_pcid(u16 asid)75 static inline u16 kern_pcid(u16 asid)
76 {
77 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
78 
79 #ifdef CONFIG_PAGE_TABLE_ISOLATION
80 	/*
81 	 * Make sure that the dynamic ASID space does not confict with the
82 	 * bit we are using to switch between user and kernel ASIDs.
83 	 */
84 	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
85 
86 	/*
87 	 * The ASID being passed in here should have respected the
88 	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 	 */
90 	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
91 #endif
92 	/*
93 	 * The dynamically-assigned ASIDs that get passed in are small
94 	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
95 	 * so do not bother to clear it.
96 	 *
97 	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 	 * PCID bits.  This serves two purposes.  It prevents a nasty
99 	 * situation in which PCID-unaware code saves CR3, loads some other
100 	 * value (with PCID == 0), and then restores CR3, thus corrupting
101 	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
102 	 * that any bugs involving loading a PCID-enabled CR3 with
103 	 * CR4.PCIDE off will trigger deterministically.
104 	 */
105 	return asid + 1;
106 }
107 
108 /*
109  * Given @asid, compute uPCID
110  */
user_pcid(u16 asid)111 static inline u16 user_pcid(u16 asid)
112 {
113 	u16 ret = kern_pcid(asid);
114 #ifdef CONFIG_PAGE_TABLE_ISOLATION
115 	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
116 #endif
117 	return ret;
118 }
119 
120 struct pgd_t;
build_cr3(pgd_t * pgd,u16 asid)121 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122 {
123 	if (static_cpu_has(X86_FEATURE_PCID)) {
124 		return __sme_pa(pgd) | kern_pcid(asid);
125 	} else {
126 		VM_WARN_ON_ONCE(asid != 0);
127 		return __sme_pa(pgd);
128 	}
129 }
130 
build_cr3_noflush(pgd_t * pgd,u16 asid)131 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132 {
133 	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
134 	/*
135 	 * Use boot_cpu_has() instead of this_cpu_has() as this function
136 	 * might be called during early boot. This should work even after
137 	 * boot because all CPU's the have same capabilities:
138 	 */
139 	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
140 	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
141 }
142 
143 #ifdef CONFIG_PARAVIRT
144 #include <asm/paravirt.h>
145 #else
146 #define __flush_tlb() __native_flush_tlb()
147 #define __flush_tlb_global() __native_flush_tlb_global()
148 #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
149 #endif
150 
tlb_defer_switch_to_init_mm(void)151 static inline bool tlb_defer_switch_to_init_mm(void)
152 {
153 	/*
154 	 * If we have PCID, then switching to init_mm is reasonably
155 	 * fast.  If we don't have PCID, then switching to init_mm is
156 	 * quite slow, so we try to defer it in the hopes that we can
157 	 * avoid it entirely.  The latter approach runs the risk of
158 	 * receiving otherwise unnecessary IPIs.
159 	 *
160 	 * This choice is just a heuristic.  The tlb code can handle this
161 	 * function returning true or false regardless of whether we have
162 	 * PCID.
163 	 */
164 	return !static_cpu_has(X86_FEATURE_PCID);
165 }
166 
167 struct tlb_context {
168 	u64 ctx_id;
169 	u64 tlb_gen;
170 };
171 
172 struct tlb_state {
173 	/*
174 	 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
175 	 * are on.  This means that it may not match current->active_mm,
176 	 * which will contain the previous user mm when we're in lazy TLB
177 	 * mode even if we've already switched back to swapper_pg_dir.
178 	 *
179 	 * During switch_mm_irqs_off(), loaded_mm will be set to
180 	 * LOADED_MM_SWITCHING during the brief interrupts-off window
181 	 * when CR3 and loaded_mm would otherwise be inconsistent.  This
182 	 * is for nmi_uaccess_okay()'s benefit.
183 	 */
184 	struct mm_struct *loaded_mm;
185 
186 #define LOADED_MM_SWITCHING ((struct mm_struct *)1)
187 
188 	/* Last user mm for optimizing IBPB */
189 	union {
190 		struct mm_struct	*last_user_mm;
191 		unsigned long		last_user_mm_ibpb;
192 	};
193 
194 	u16 loaded_mm_asid;
195 	u16 next_asid;
196 
197 	/*
198 	 * We can be in one of several states:
199 	 *
200 	 *  - Actively using an mm.  Our CPU's bit will be set in
201 	 *    mm_cpumask(loaded_mm) and is_lazy == false;
202 	 *
203 	 *  - Not using a real mm.  loaded_mm == &init_mm.  Our CPU's bit
204 	 *    will not be set in mm_cpumask(&init_mm) and is_lazy == false.
205 	 *
206 	 *  - Lazily using a real mm.  loaded_mm != &init_mm, our bit
207 	 *    is set in mm_cpumask(loaded_mm), but is_lazy == true.
208 	 *    We're heuristically guessing that the CR3 load we
209 	 *    skipped more than makes up for the overhead added by
210 	 *    lazy mode.
211 	 */
212 	bool is_lazy;
213 
214 	/*
215 	 * If set we changed the page tables in such a way that we
216 	 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
217 	 * This tells us to go invalidate all the non-loaded ctxs[]
218 	 * on the next context switch.
219 	 *
220 	 * The current ctx was kept up-to-date as it ran and does not
221 	 * need to be invalidated.
222 	 */
223 	bool invalidate_other;
224 
225 	/*
226 	 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
227 	 * the corresponding user PCID needs a flush next time we
228 	 * switch to it; see SWITCH_TO_USER_CR3.
229 	 */
230 	unsigned short user_pcid_flush_mask;
231 
232 	/*
233 	 * Access to this CR4 shadow and to H/W CR4 is protected by
234 	 * disabling interrupts when modifying either one.
235 	 */
236 	unsigned long cr4;
237 
238 	/*
239 	 * This is a list of all contexts that might exist in the TLB.
240 	 * There is one per ASID that we use, and the ASID (what the
241 	 * CPU calls PCID) is the index into ctxts.
242 	 *
243 	 * For each context, ctx_id indicates which mm the TLB's user
244 	 * entries came from.  As an invariant, the TLB will never
245 	 * contain entries that are out-of-date as when that mm reached
246 	 * the tlb_gen in the list.
247 	 *
248 	 * To be clear, this means that it's legal for the TLB code to
249 	 * flush the TLB without updating tlb_gen.  This can happen
250 	 * (for now, at least) due to paravirt remote flushes.
251 	 *
252 	 * NB: context 0 is a bit special, since it's also used by
253 	 * various bits of init code.  This is fine -- code that
254 	 * isn't aware of PCID will end up harmlessly flushing
255 	 * context 0.
256 	 */
257 	struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
258 };
259 DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
260 
261 /*
262  * Blindly accessing user memory from NMI context can be dangerous
263  * if we're in the middle of switching the current user task or
264  * switching the loaded mm.  It can also be dangerous if we
265  * interrupted some kernel code that was temporarily using a
266  * different mm.
267  */
nmi_uaccess_okay(void)268 static inline bool nmi_uaccess_okay(void)
269 {
270 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
271 	struct mm_struct *current_mm = current->mm;
272 
273 	VM_WARN_ON_ONCE(!loaded_mm);
274 
275 	/*
276 	 * The condition we want to check is
277 	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
278 	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
279 	 * is supposed to be reasonably fast.
280 	 *
281 	 * Instead, we check the almost equivalent but somewhat conservative
282 	 * condition below, and we rely on the fact that switch_mm_irqs_off()
283 	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
284 	 */
285 	if (loaded_mm != current_mm)
286 		return false;
287 
288 	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
289 
290 	return true;
291 }
292 
293 /* Initialize cr4 shadow for this CPU. */
cr4_init_shadow(void)294 static inline void cr4_init_shadow(void)
295 {
296 	this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
297 }
298 
299 /* Set in this cpu's CR4. */
cr4_set_bits(unsigned long mask)300 static inline void cr4_set_bits(unsigned long mask)
301 {
302 	unsigned long cr4;
303 
304 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
305 	if ((cr4 | mask) != cr4) {
306 		cr4 |= mask;
307 		this_cpu_write(cpu_tlbstate.cr4, cr4);
308 		__write_cr4(cr4);
309 	}
310 }
311 
312 /* Clear in this cpu's CR4. */
cr4_clear_bits(unsigned long mask)313 static inline void cr4_clear_bits(unsigned long mask)
314 {
315 	unsigned long cr4;
316 
317 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
318 	if ((cr4 & ~mask) != cr4) {
319 		cr4 &= ~mask;
320 		this_cpu_write(cpu_tlbstate.cr4, cr4);
321 		__write_cr4(cr4);
322 	}
323 }
324 
cr4_toggle_bits(unsigned long mask)325 static inline void cr4_toggle_bits(unsigned long mask)
326 {
327 	unsigned long cr4;
328 
329 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
330 	cr4 ^= mask;
331 	this_cpu_write(cpu_tlbstate.cr4, cr4);
332 	__write_cr4(cr4);
333 }
334 
335 /* Read the CR4 shadow. */
cr4_read_shadow(void)336 static inline unsigned long cr4_read_shadow(void)
337 {
338 	return this_cpu_read(cpu_tlbstate.cr4);
339 }
340 
341 /*
342  * Mark all other ASIDs as invalid, preserves the current.
343  */
invalidate_other_asid(void)344 static inline void invalidate_other_asid(void)
345 {
346 	this_cpu_write(cpu_tlbstate.invalidate_other, true);
347 }
348 
349 /*
350  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
351  * enable and PPro Global page enable), so that any CPU's that boot
352  * up after us can get the correct flags.  This should only be used
353  * during boot on the boot cpu.
354  */
355 extern unsigned long mmu_cr4_features;
356 extern u32 *trampoline_cr4_features;
357 
cr4_set_bits_and_update_boot(unsigned long mask)358 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
359 {
360 	mmu_cr4_features |= mask;
361 	if (trampoline_cr4_features)
362 		*trampoline_cr4_features = mmu_cr4_features;
363 	cr4_set_bits(mask);
364 }
365 
366 extern void initialize_tlbstate_and_flush(void);
367 
368 /*
369  * Given an ASID, flush the corresponding user ASID.  We can delay this
370  * until the next time we switch to it.
371  *
372  * See SWITCH_TO_USER_CR3.
373  */
invalidate_user_asid(u16 asid)374 static inline void invalidate_user_asid(u16 asid)
375 {
376 	/* There is no user ASID if address space separation is off */
377 	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
378 		return;
379 
380 	/*
381 	 * We only have a single ASID if PCID is off and the CR3
382 	 * write will have flushed it.
383 	 */
384 	if (!cpu_feature_enabled(X86_FEATURE_PCID))
385 		return;
386 
387 	if (!static_cpu_has(X86_FEATURE_PTI))
388 		return;
389 
390 	__set_bit(kern_pcid(asid),
391 		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
392 }
393 
394 /*
395  * flush the entire current user mapping
396  */
__native_flush_tlb(void)397 static inline void __native_flush_tlb(void)
398 {
399 	/*
400 	 * Preemption or interrupts must be disabled to protect the access
401 	 * to the per CPU variable and to prevent being preempted between
402 	 * read_cr3() and write_cr3().
403 	 */
404 	WARN_ON_ONCE(preemptible());
405 
406 	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
407 
408 	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
409 	native_write_cr3(__native_read_cr3());
410 }
411 
412 /*
413  * flush everything
414  */
__native_flush_tlb_global(void)415 static inline void __native_flush_tlb_global(void)
416 {
417 	unsigned long cr4, flags;
418 
419 	if (static_cpu_has(X86_FEATURE_INVPCID)) {
420 		/*
421 		 * Using INVPCID is considerably faster than a pair of writes
422 		 * to CR4 sandwiched inside an IRQ flag save/restore.
423 		 *
424 		 * Note, this works with CR4.PCIDE=0 or 1.
425 		 */
426 		invpcid_flush_all();
427 		return;
428 	}
429 
430 	/*
431 	 * Read-modify-write to CR4 - protect it from preemption and
432 	 * from interrupts. (Use the raw variant because this code can
433 	 * be called from deep inside debugging code.)
434 	 */
435 	raw_local_irq_save(flags);
436 
437 	cr4 = this_cpu_read(cpu_tlbstate.cr4);
438 	/* toggle PGE */
439 	native_write_cr4(cr4 ^ X86_CR4_PGE);
440 	/* write old PGE again and flush TLBs */
441 	native_write_cr4(cr4);
442 
443 	raw_local_irq_restore(flags);
444 }
445 
446 /*
447  * flush one page in the user mapping
448  */
__native_flush_tlb_one_user(unsigned long addr)449 static inline void __native_flush_tlb_one_user(unsigned long addr)
450 {
451 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
452 
453 	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
454 
455 	if (!static_cpu_has(X86_FEATURE_PTI))
456 		return;
457 
458 	/*
459 	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
460 	 * Just use invalidate_user_asid() in case we are called early.
461 	 */
462 	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
463 		invalidate_user_asid(loaded_mm_asid);
464 	else
465 		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
466 }
467 
468 /*
469  * flush everything
470  */
__flush_tlb_all(void)471 static inline void __flush_tlb_all(void)
472 {
473 	/*
474 	 * This is to catch users with enabled preemption and the PGE feature
475 	 * and don't trigger the warning in __native_flush_tlb().
476 	 */
477 	VM_WARN_ON_ONCE(preemptible());
478 
479 	if (boot_cpu_has(X86_FEATURE_PGE)) {
480 		__flush_tlb_global();
481 	} else {
482 		/*
483 		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
484 		 */
485 		__flush_tlb();
486 	}
487 }
488 
489 /*
490  * flush one page in the kernel mapping
491  */
__flush_tlb_one_kernel(unsigned long addr)492 static inline void __flush_tlb_one_kernel(unsigned long addr)
493 {
494 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
495 
496 	/*
497 	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
498 	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
499 	 * use PCID if we also use global PTEs for the kernel mapping, and
500 	 * INVLPG flushes global translations across all address spaces.
501 	 *
502 	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
503 	 * __flush_tlb_one_user() will flush the given address for the current
504 	 * kernel address space and for its usermode counterpart, but it does
505 	 * not flush it for other address spaces.
506 	 */
507 	__flush_tlb_one_user(addr);
508 
509 	if (!static_cpu_has(X86_FEATURE_PTI))
510 		return;
511 
512 	/*
513 	 * See above.  We need to propagate the flush to all other address
514 	 * spaces.  In principle, we only need to propagate it to kernelmode
515 	 * address spaces, but the extra bookkeeping we would need is not
516 	 * worth it.
517 	 */
518 	invalidate_other_asid();
519 }
520 
521 #define TLB_FLUSH_ALL	-1UL
522 
523 /*
524  * TLB flushing:
525  *
526  *  - flush_tlb_all() flushes all processes TLBs
527  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
528  *  - flush_tlb_page(vma, vmaddr) flushes one page
529  *  - flush_tlb_range(vma, start, end) flushes a range of pages
530  *  - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
531  *  - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
532  *
533  * ..but the i386 has somewhat limited tlb flushing capabilities,
534  * and page-granular flushes are available only on i486 and up.
535  */
536 struct flush_tlb_info {
537 	/*
538 	 * We support several kinds of flushes.
539 	 *
540 	 * - Fully flush a single mm.  .mm will be set, .end will be
541 	 *   TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
542 	 *   which the IPI sender is trying to catch us up.
543 	 *
544 	 * - Partially flush a single mm.  .mm will be set, .start and
545 	 *   .end will indicate the range, and .new_tlb_gen will be set
546 	 *   such that the changes between generation .new_tlb_gen-1 and
547 	 *   .new_tlb_gen are entirely contained in the indicated range.
548 	 *
549 	 * - Fully flush all mms whose tlb_gens have been updated.  .mm
550 	 *   will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
551 	 *   will be zero.
552 	 */
553 	struct mm_struct	*mm;
554 	unsigned long		start;
555 	unsigned long		end;
556 	u64			new_tlb_gen;
557 };
558 
559 #define local_flush_tlb() __flush_tlb()
560 
561 #define flush_tlb_mm(mm)	flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
562 
563 #define flush_tlb_range(vma, start, end)	\
564 		flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
565 
566 extern void flush_tlb_all(void);
567 extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
568 				unsigned long end, unsigned long vmflag);
569 extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
570 
flush_tlb_page(struct vm_area_struct * vma,unsigned long a)571 static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
572 {
573 	flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
574 }
575 
576 void native_flush_tlb_others(const struct cpumask *cpumask,
577 			     const struct flush_tlb_info *info);
578 
inc_mm_tlb_gen(struct mm_struct * mm)579 static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
580 {
581 	/*
582 	 * Bump the generation count.  This also serves as a full barrier
583 	 * that synchronizes with switch_mm(): callers are required to order
584 	 * their read of mm_cpumask after their writes to the paging
585 	 * structures.
586 	 */
587 	return atomic64_inc_return(&mm->context.tlb_gen);
588 }
589 
arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch * batch,struct mm_struct * mm)590 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
591 					struct mm_struct *mm)
592 {
593 	inc_mm_tlb_gen(mm);
594 	cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
595 }
596 
597 extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
598 
599 #ifndef CONFIG_PARAVIRT
600 #define flush_tlb_others(mask, info)	\
601 	native_flush_tlb_others(mask, info)
602 #endif
603 
604 #endif /* _ASM_X86_TLBFLUSH_H */
605