• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kernel/sched/loadavg.c
4  *
5  * This file contains the magic bits required to compute the global loadavg
6  * figure. Its a silly number but people think its important. We go through
7  * great pains to make it work on big machines and tickless kernels.
8  */
9 
10 #include <linux/export.h>
11 #include <linux/sched/loadavg.h>
12 
13 #include "sched.h"
14 
15 /*
16  * Global load-average calculations
17  *
18  * We take a distributed and async approach to calculating the global load-avg
19  * in order to minimize overhead.
20  *
21  * The global load average is an exponentially decaying average of nr_running +
22  * nr_uninterruptible.
23  *
24  * Once every LOAD_FREQ:
25  *
26  *   nr_active = 0;
27  *   for_each_possible_cpu(cpu)
28  *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
29  *
30  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
31  *
32  * Due to a number of reasons the above turns in the mess below:
33  *
34  *  - for_each_possible_cpu() is prohibitively expensive on machines with
35  *    serious number of cpus, therefore we need to take a distributed approach
36  *    to calculating nr_active.
37  *
38  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
39  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
40  *
41  *    So assuming nr_active := 0 when we start out -- true per definition, we
42  *    can simply take per-cpu deltas and fold those into a global accumulate
43  *    to obtain the same result. See calc_load_fold_active().
44  *
45  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
46  *    across the machine, we assume 10 ticks is sufficient time for every
47  *    cpu to have completed this task.
48  *
49  *    This places an upper-bound on the IRQ-off latency of the machine. Then
50  *    again, being late doesn't loose the delta, just wrecks the sample.
51  *
52  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
53  *    this would add another cross-cpu cacheline miss and atomic operation
54  *    to the wakeup path. Instead we increment on whatever cpu the task ran
55  *    when it went into uninterruptible state and decrement on whatever cpu
56  *    did the wakeup. This means that only the sum of nr_uninterruptible over
57  *    all cpus yields the correct result.
58  *
59  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
60  */
61 
62 /* Variables and functions for calc_load */
63 atomic_long_t calc_load_tasks;
64 unsigned long calc_load_update;
65 unsigned long avenrun[3];
66 EXPORT_SYMBOL(avenrun); /* should be removed */
67 
68 /**
69  * get_avenrun - get the load average array
70  * @loads:	pointer to dest load array
71  * @offset:	offset to add
72  * @shift:	shift count to shift the result left
73  *
74  * These values are estimates at best, so no need for locking.
75  */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)76 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
77 {
78 	loads[0] = (avenrun[0] + offset) << shift;
79 	loads[1] = (avenrun[1] + offset) << shift;
80 	loads[2] = (avenrun[2] + offset) << shift;
81 }
82 
calc_load_fold_active(struct rq * this_rq,long adjust)83 long calc_load_fold_active(struct rq *this_rq, long adjust)
84 {
85 	long nr_active, delta = 0;
86 
87 	nr_active = this_rq->nr_running - adjust;
88 	nr_active += (long)this_rq->nr_uninterruptible;
89 
90 	if (nr_active != this_rq->calc_load_active) {
91 		delta = nr_active - this_rq->calc_load_active;
92 		this_rq->calc_load_active = nr_active;
93 	}
94 
95 	return delta;
96 }
97 
98 /**
99  * fixed_power_int - compute: x^n, in O(log n) time
100  *
101  * @x:         base of the power
102  * @frac_bits: fractional bits of @x
103  * @n:         power to raise @x to.
104  *
105  * By exploiting the relation between the definition of the natural power
106  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
107  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
108  * (where: n_i \elem {0, 1}, the binary vector representing n),
109  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
110  * of course trivially computable in O(log_2 n), the length of our binary
111  * vector.
112  */
113 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)114 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
115 {
116 	unsigned long result = 1UL << frac_bits;
117 
118 	if (n) {
119 		for (;;) {
120 			if (n & 1) {
121 				result *= x;
122 				result += 1UL << (frac_bits - 1);
123 				result >>= frac_bits;
124 			}
125 			n >>= 1;
126 			if (!n)
127 				break;
128 			x *= x;
129 			x += 1UL << (frac_bits - 1);
130 			x >>= frac_bits;
131 		}
132 	}
133 
134 	return result;
135 }
136 
137 /*
138  * a1 = a0 * e + a * (1 - e)
139  *
140  * a2 = a1 * e + a * (1 - e)
141  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
142  *    = a0 * e^2 + a * (1 - e) * (1 + e)
143  *
144  * a3 = a2 * e + a * (1 - e)
145  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
146  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
147  *
148  *  ...
149  *
150  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
151  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
152  *    = a0 * e^n + a * (1 - e^n)
153  *
154  * [1] application of the geometric series:
155  *
156  *              n         1 - x^(n+1)
157  *     S_n := \Sum x^i = -------------
158  *             i=0          1 - x
159  */
160 unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)161 calc_load_n(unsigned long load, unsigned long exp,
162 	    unsigned long active, unsigned int n)
163 {
164 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
165 }
166 
167 #ifdef CONFIG_NO_HZ_COMMON
168 /*
169  * Handle NO_HZ for the global load-average.
170  *
171  * Since the above described distributed algorithm to compute the global
172  * load-average relies on per-cpu sampling from the tick, it is affected by
173  * NO_HZ.
174  *
175  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
176  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
177  * when we read the global state.
178  *
179  * Obviously reality has to ruin such a delightfully simple scheme:
180  *
181  *  - When we go NO_HZ idle during the window, we can negate our sample
182  *    contribution, causing under-accounting.
183  *
184  *    We avoid this by keeping two NO_HZ-delta counters and flipping them
185  *    when the window starts, thus separating old and new NO_HZ load.
186  *
187  *    The only trick is the slight shift in index flip for read vs write.
188  *
189  *        0s            5s            10s           15s
190  *          +10           +10           +10           +10
191  *        |-|-----------|-|-----------|-|-----------|-|
192  *    r:0 0 1           1 0           0 1           1 0
193  *    w:0 1 1           0 0           1 1           0 0
194  *
195  *    This ensures we'll fold the old NO_HZ contribution in this window while
196  *    accumlating the new one.
197  *
198  *  - When we wake up from NO_HZ during the window, we push up our
199  *    contribution, since we effectively move our sample point to a known
200  *    busy state.
201  *
202  *    This is solved by pushing the window forward, and thus skipping the
203  *    sample, for this cpu (effectively using the NO_HZ-delta for this cpu which
204  *    was in effect at the time the window opened). This also solves the issue
205  *    of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ
206  *    intervals.
207  *
208  * When making the ILB scale, we should try to pull this in as well.
209  */
210 static atomic_long_t calc_load_nohz[2];
211 static int calc_load_idx;
212 
calc_load_write_idx(void)213 static inline int calc_load_write_idx(void)
214 {
215 	int idx = calc_load_idx;
216 
217 	/*
218 	 * See calc_global_nohz(), if we observe the new index, we also
219 	 * need to observe the new update time.
220 	 */
221 	smp_rmb();
222 
223 	/*
224 	 * If the folding window started, make sure we start writing in the
225 	 * next NO_HZ-delta.
226 	 */
227 	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
228 		idx++;
229 
230 	return idx & 1;
231 }
232 
calc_load_read_idx(void)233 static inline int calc_load_read_idx(void)
234 {
235 	return calc_load_idx & 1;
236 }
237 
calc_load_nohz_start(void)238 void calc_load_nohz_start(void)
239 {
240 	struct rq *this_rq = this_rq();
241 	long delta;
242 
243 	/*
244 	 * We're going into NO_HZ mode, if there's any pending delta, fold it
245 	 * into the pending NO_HZ delta.
246 	 */
247 	delta = calc_load_fold_active(this_rq, 0);
248 	if (delta) {
249 		int idx = calc_load_write_idx();
250 
251 		atomic_long_add(delta, &calc_load_nohz[idx]);
252 	}
253 }
254 
calc_load_nohz_stop(void)255 void calc_load_nohz_stop(void)
256 {
257 	struct rq *this_rq = this_rq();
258 
259 	/*
260 	 * If we're still before the pending sample window, we're done.
261 	 */
262 	this_rq->calc_load_update = READ_ONCE(calc_load_update);
263 	if (time_before(jiffies, this_rq->calc_load_update))
264 		return;
265 
266 	/*
267 	 * We woke inside or after the sample window, this means we're already
268 	 * accounted through the nohz accounting, so skip the entire deal and
269 	 * sync up for the next window.
270 	 */
271 	if (time_before(jiffies, this_rq->calc_load_update + 10))
272 		this_rq->calc_load_update += LOAD_FREQ;
273 }
274 
calc_load_nohz_fold(void)275 static long calc_load_nohz_fold(void)
276 {
277 	int idx = calc_load_read_idx();
278 	long delta = 0;
279 
280 	if (atomic_long_read(&calc_load_nohz[idx]))
281 		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
282 
283 	return delta;
284 }
285 
286 /*
287  * NO_HZ can leave us missing all per-cpu ticks calling
288  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
289  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
290  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
291  *
292  * Once we've updated the global active value, we need to apply the exponential
293  * weights adjusted to the number of cycles missed.
294  */
calc_global_nohz(void)295 static void calc_global_nohz(void)
296 {
297 	unsigned long sample_window;
298 	long delta, active, n;
299 
300 	sample_window = READ_ONCE(calc_load_update);
301 	if (!time_before(jiffies, sample_window + 10)) {
302 		/*
303 		 * Catch-up, fold however many we are behind still
304 		 */
305 		delta = jiffies - sample_window - 10;
306 		n = 1 + (delta / LOAD_FREQ);
307 
308 		active = atomic_long_read(&calc_load_tasks);
309 		active = active > 0 ? active * FIXED_1 : 0;
310 
311 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
312 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
313 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
314 
315 		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
316 	}
317 
318 	/*
319 	 * Flip the NO_HZ index...
320 	 *
321 	 * Make sure we first write the new time then flip the index, so that
322 	 * calc_load_write_idx() will see the new time when it reads the new
323 	 * index, this avoids a double flip messing things up.
324 	 */
325 	smp_wmb();
326 	calc_load_idx++;
327 }
328 #else /* !CONFIG_NO_HZ_COMMON */
329 
calc_load_nohz_fold(void)330 static inline long calc_load_nohz_fold(void) { return 0; }
calc_global_nohz(void)331 static inline void calc_global_nohz(void) { }
332 
333 #endif /* CONFIG_NO_HZ_COMMON */
334 
335 /*
336  * calc_load - update the avenrun load estimates 10 ticks after the
337  * CPUs have updated calc_load_tasks.
338  *
339  * Called from the global timer code.
340  */
calc_global_load(unsigned long ticks)341 void calc_global_load(unsigned long ticks)
342 {
343 	unsigned long sample_window;
344 	long active, delta;
345 
346 	sample_window = READ_ONCE(calc_load_update);
347 	if (time_before(jiffies, sample_window + 10))
348 		return;
349 
350 	/*
351 	 * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus.
352 	 */
353 	delta = calc_load_nohz_fold();
354 	if (delta)
355 		atomic_long_add(delta, &calc_load_tasks);
356 
357 	active = atomic_long_read(&calc_load_tasks);
358 	active = active > 0 ? active * FIXED_1 : 0;
359 
360 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
361 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
362 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
363 
364 	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
365 
366 	/*
367 	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
368 	 * catch up in bulk.
369 	 */
370 	calc_global_nohz();
371 }
372 
373 /*
374  * Called from scheduler_tick() to periodically update this CPU's
375  * active count.
376  */
calc_global_load_tick(struct rq * this_rq)377 void calc_global_load_tick(struct rq *this_rq)
378 {
379 	long delta;
380 
381 	if (time_before(jiffies, this_rq->calc_load_update))
382 		return;
383 
384 	delta  = calc_load_fold_active(this_rq, 0);
385 	if (delta)
386 		atomic_long_add(delta, &calc_load_tasks);
387 
388 	this_rq->calc_load_update += LOAD_FREQ;
389 }
390