• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
fscrypt_enqueue_decrypt_work(struct work_struct * work)54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 	queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59 
60 /**
61  * fscrypt_release_ctx() - Releases an encryption context
62  * @ctx: The encryption context to release.
63  *
64  * If the encryption context was allocated from the pre-allocated pool, returns
65  * it to that pool. Else, frees it.
66  *
67  * If there's a bounce page in the context, this frees that.
68  */
fscrypt_release_ctx(struct fscrypt_ctx * ctx)69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 	unsigned long flags;
72 
73 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 		ctx->w.bounce_page = NULL;
76 	}
77 	ctx->w.control_page = NULL;
78 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 	} else {
81 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 	}
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87 
88 /**
89  * fscrypt_get_ctx() - Gets an encryption context
90  * @inode:       The inode for which we are doing the crypto
91  * @gfp_flags:   The gfp flag for memory allocation
92  *
93  * Allocates and initializes an encryption context.
94  *
95  * Return: An allocated and initialized encryption context on success; error
96  * value or NULL otherwise.
97  */
fscrypt_get_ctx(const struct inode * inode,gfp_t gfp_flags)98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
99 {
100 	struct fscrypt_ctx *ctx = NULL;
101 	struct fscrypt_info *ci = inode->i_crypt_info;
102 	unsigned long flags;
103 
104 	if (ci == NULL)
105 		return ERR_PTR(-ENOKEY);
106 
107 	/*
108 	 * We first try getting the ctx from a free list because in
109 	 * the common case the ctx will have an allocated and
110 	 * initialized crypto tfm, so it's probably a worthwhile
111 	 * optimization. For the bounce page, we first try getting it
112 	 * from the kernel allocator because that's just about as fast
113 	 * as getting it from a list and because a cache of free pages
114 	 * should generally be a "last resort" option for a filesystem
115 	 * to be able to do its job.
116 	 */
117 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 					struct fscrypt_ctx, free_list);
120 	if (ctx)
121 		list_del(&ctx->free_list);
122 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 	if (!ctx) {
124 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 		if (!ctx)
126 			return ERR_PTR(-ENOMEM);
127 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 	} else {
129 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 	}
131 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 	return ctx;
133 }
134 EXPORT_SYMBOL(fscrypt_get_ctx);
135 
fscrypt_generate_iv(union fscrypt_iv * iv,u64 lblk_num,const struct fscrypt_info * ci)136 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
137 			 const struct fscrypt_info *ci)
138 {
139 	memset(iv, 0, ci->ci_mode->ivsize);
140 	iv->lblk_num = cpu_to_le64(lblk_num);
141 
142 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY)
143 		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
144 
145 	if (ci->ci_essiv_tfm != NULL)
146 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
147 }
148 
fscrypt_do_page_crypto(const struct inode * inode,fscrypt_direction_t rw,u64 lblk_num,struct page * src_page,struct page * dest_page,unsigned int len,unsigned int offs,gfp_t gfp_flags)149 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
150 			   u64 lblk_num, struct page *src_page,
151 			   struct page *dest_page, unsigned int len,
152 			   unsigned int offs, gfp_t gfp_flags)
153 {
154 	union fscrypt_iv iv;
155 	struct skcipher_request *req = NULL;
156 	DECLARE_CRYPTO_WAIT(wait);
157 	struct scatterlist dst, src;
158 	struct fscrypt_info *ci = inode->i_crypt_info;
159 	struct crypto_skcipher *tfm = ci->ci_ctfm;
160 	int res = 0;
161 
162 	if (WARN_ON_ONCE(len <= 0))
163 		return -EINVAL;
164 	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
165 		return -EINVAL;
166 
167 	fscrypt_generate_iv(&iv, lblk_num, ci);
168 
169 	req = skcipher_request_alloc(tfm, gfp_flags);
170 	if (!req)
171 		return -ENOMEM;
172 
173 	skcipher_request_set_callback(
174 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
175 		crypto_req_done, &wait);
176 
177 	sg_init_table(&dst, 1);
178 	sg_set_page(&dst, dest_page, len, offs);
179 	sg_init_table(&src, 1);
180 	sg_set_page(&src, src_page, len, offs);
181 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
182 	if (rw == FS_DECRYPT)
183 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
184 	else
185 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
186 	skcipher_request_free(req);
187 	if (res) {
188 		fscrypt_err(inode->i_sb,
189 			    "%scryption failed for inode %lu, block %llu: %d",
190 			    (rw == FS_DECRYPT ? "de" : "en"),
191 			    inode->i_ino, lblk_num, res);
192 		return res;
193 	}
194 	return 0;
195 }
196 
fscrypt_alloc_bounce_page(struct fscrypt_ctx * ctx,gfp_t gfp_flags)197 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
198 				       gfp_t gfp_flags)
199 {
200 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
201 	if (ctx->w.bounce_page == NULL)
202 		return ERR_PTR(-ENOMEM);
203 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
204 	return ctx->w.bounce_page;
205 }
206 
207 /**
208  * fscypt_encrypt_page() - Encrypts a page
209  * @inode:     The inode for which the encryption should take place
210  * @page:      The page to encrypt. Must be locked for bounce-page
211  *             encryption.
212  * @len:       Length of data to encrypt in @page and encrypted
213  *             data in returned page.
214  * @offs:      Offset of data within @page and returned
215  *             page holding encrypted data.
216  * @lblk_num:  Logical block number. This must be unique for multiple
217  *             calls with same inode, except when overwriting
218  *             previously written data.
219  * @gfp_flags: The gfp flag for memory allocation
220  *
221  * Encrypts @page using the ctx encryption context. Performs encryption
222  * either in-place or into a newly allocated bounce page.
223  * Called on the page write path.
224  *
225  * Bounce page allocation is the default.
226  * In this case, the contents of @page are encrypted and stored in an
227  * allocated bounce page. @page has to be locked and the caller must call
228  * fscrypt_restore_control_page() on the returned ciphertext page to
229  * release the bounce buffer and the encryption context.
230  *
231  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
232  * fscrypt_operations. Here, the input-page is returned with its content
233  * encrypted.
234  *
235  * Return: A page with the encrypted content on success. Else, an
236  * error value or NULL.
237  */
fscrypt_encrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)238 struct page *fscrypt_encrypt_page(const struct inode *inode,
239 				struct page *page,
240 				unsigned int len,
241 				unsigned int offs,
242 				u64 lblk_num, gfp_t gfp_flags)
243 
244 {
245 	struct fscrypt_ctx *ctx;
246 	struct page *ciphertext_page = page;
247 	int err;
248 
249 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
250 		/* with inplace-encryption we just encrypt the page */
251 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
252 					     ciphertext_page, len, offs,
253 					     gfp_flags);
254 		if (err)
255 			return ERR_PTR(err);
256 
257 		return ciphertext_page;
258 	}
259 
260 	if (WARN_ON_ONCE(!PageLocked(page)))
261 		return ERR_PTR(-EINVAL);
262 
263 	ctx = fscrypt_get_ctx(inode, gfp_flags);
264 	if (IS_ERR(ctx))
265 		return (struct page *)ctx;
266 
267 	/* The encryption operation will require a bounce page. */
268 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
269 	if (IS_ERR(ciphertext_page))
270 		goto errout;
271 
272 	ctx->w.control_page = page;
273 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
274 				     page, ciphertext_page, len, offs,
275 				     gfp_flags);
276 	if (err) {
277 		ciphertext_page = ERR_PTR(err);
278 		goto errout;
279 	}
280 	SetPagePrivate(ciphertext_page);
281 	set_page_private(ciphertext_page, (unsigned long)ctx);
282 	lock_page(ciphertext_page);
283 	return ciphertext_page;
284 
285 errout:
286 	fscrypt_release_ctx(ctx);
287 	return ciphertext_page;
288 }
289 EXPORT_SYMBOL(fscrypt_encrypt_page);
290 
291 /**
292  * fscrypt_decrypt_page() - Decrypts a page in-place
293  * @inode:     The corresponding inode for the page to decrypt.
294  * @page:      The page to decrypt. Must be locked in case
295  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
296  * @len:       Number of bytes in @page to be decrypted.
297  * @offs:      Start of data in @page.
298  * @lblk_num:  Logical block number.
299  *
300  * Decrypts page in-place using the ctx encryption context.
301  *
302  * Called from the read completion callback.
303  *
304  * Return: Zero on success, non-zero otherwise.
305  */
fscrypt_decrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)306 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
307 			unsigned int len, unsigned int offs, u64 lblk_num)
308 {
309 	if (WARN_ON_ONCE(!PageLocked(page) &&
310 			 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
311 		return -EINVAL;
312 
313 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
314 				      len, offs, GFP_NOFS);
315 }
316 EXPORT_SYMBOL(fscrypt_decrypt_page);
317 
318 /*
319  * Validate dentries for encrypted directories to make sure we aren't
320  * potentially caching stale data after a key has been added or
321  * removed.
322  */
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)323 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
324 {
325 	struct dentry *dir;
326 	int dir_has_key, cached_with_key;
327 
328 	if (flags & LOOKUP_RCU)
329 		return -ECHILD;
330 
331 	dir = dget_parent(dentry);
332 	if (!IS_ENCRYPTED(d_inode(dir))) {
333 		dput(dir);
334 		return 0;
335 	}
336 
337 	spin_lock(&dentry->d_lock);
338 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
339 	spin_unlock(&dentry->d_lock);
340 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
341 	dput(dir);
342 
343 	/*
344 	 * If the dentry was cached without the key, and it is a
345 	 * negative dentry, it might be a valid name.  We can't check
346 	 * if the key has since been made available due to locking
347 	 * reasons, so we fail the validation so ext4_lookup() can do
348 	 * this check.
349 	 *
350 	 * We also fail the validation if the dentry was created with
351 	 * the key present, but we no longer have the key, or vice versa.
352 	 */
353 	if ((!cached_with_key && d_is_negative(dentry)) ||
354 			(!cached_with_key && dir_has_key) ||
355 			(cached_with_key && !dir_has_key))
356 		return 0;
357 	return 1;
358 }
359 
360 const struct dentry_operations fscrypt_d_ops = {
361 	.d_revalidate = fscrypt_d_revalidate,
362 };
363 
fscrypt_restore_control_page(struct page * page)364 void fscrypt_restore_control_page(struct page *page)
365 {
366 	struct fscrypt_ctx *ctx;
367 
368 	ctx = (struct fscrypt_ctx *)page_private(page);
369 	set_page_private(page, (unsigned long)NULL);
370 	ClearPagePrivate(page);
371 	unlock_page(page);
372 	fscrypt_release_ctx(ctx);
373 }
374 EXPORT_SYMBOL(fscrypt_restore_control_page);
375 
fscrypt_destroy(void)376 static void fscrypt_destroy(void)
377 {
378 	struct fscrypt_ctx *pos, *n;
379 
380 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
381 		kmem_cache_free(fscrypt_ctx_cachep, pos);
382 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
383 	mempool_destroy(fscrypt_bounce_page_pool);
384 	fscrypt_bounce_page_pool = NULL;
385 }
386 
387 /**
388  * fscrypt_initialize() - allocate major buffers for fs encryption.
389  * @cop_flags:  fscrypt operations flags
390  *
391  * We only call this when we start accessing encrypted files, since it
392  * results in memory getting allocated that wouldn't otherwise be used.
393  *
394  * Return: Zero on success, non-zero otherwise.
395  */
fscrypt_initialize(unsigned int cop_flags)396 int fscrypt_initialize(unsigned int cop_flags)
397 {
398 	int i, res = -ENOMEM;
399 
400 	/* No need to allocate a bounce page pool if this FS won't use it. */
401 	if (cop_flags & FS_CFLG_OWN_PAGES)
402 		return 0;
403 
404 	mutex_lock(&fscrypt_init_mutex);
405 	if (fscrypt_bounce_page_pool)
406 		goto already_initialized;
407 
408 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
409 		struct fscrypt_ctx *ctx;
410 
411 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
412 		if (!ctx)
413 			goto fail;
414 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
415 	}
416 
417 	fscrypt_bounce_page_pool =
418 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
419 	if (!fscrypt_bounce_page_pool)
420 		goto fail;
421 
422 already_initialized:
423 	mutex_unlock(&fscrypt_init_mutex);
424 	return 0;
425 fail:
426 	fscrypt_destroy();
427 	mutex_unlock(&fscrypt_init_mutex);
428 	return res;
429 }
430 
fscrypt_msg(struct super_block * sb,const char * level,const char * fmt,...)431 void fscrypt_msg(struct super_block *sb, const char *level,
432 		 const char *fmt, ...)
433 {
434 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
435 				      DEFAULT_RATELIMIT_BURST);
436 	struct va_format vaf;
437 	va_list args;
438 
439 	if (!__ratelimit(&rs))
440 		return;
441 
442 	va_start(args, fmt);
443 	vaf.fmt = fmt;
444 	vaf.va = &args;
445 	if (sb)
446 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
447 	else
448 		printk("%sfscrypt: %pV\n", level, &vaf);
449 	va_end(args);
450 }
451 
452 /**
453  * fscrypt_init() - Set up for fs encryption.
454  */
fscrypt_init(void)455 static int __init fscrypt_init(void)
456 {
457 	/*
458 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
459 	 * even when they happen to complete on the same CPU.  This sacrifices
460 	 * locality, but it's worthwhile since decryption is CPU-intensive.
461 	 *
462 	 * Also use a high-priority workqueue to prioritize decryption work,
463 	 * which blocks reads from completing, over regular application tasks.
464 	 */
465 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
466 						 WQ_UNBOUND | WQ_HIGHPRI,
467 						 num_online_cpus());
468 	if (!fscrypt_read_workqueue)
469 		goto fail;
470 
471 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
472 	if (!fscrypt_ctx_cachep)
473 		goto fail_free_queue;
474 
475 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
476 	if (!fscrypt_info_cachep)
477 		goto fail_free_ctx;
478 
479 	return 0;
480 
481 fail_free_ctx:
482 	kmem_cache_destroy(fscrypt_ctx_cachep);
483 fail_free_queue:
484 	destroy_workqueue(fscrypt_read_workqueue);
485 fail:
486 	return -ENOMEM;
487 }
module_init(fscrypt_init)488 module_init(fscrypt_init)
489 
490 /**
491  * fscrypt_exit() - Shutdown the fs encryption system
492  */
493 static void __exit fscrypt_exit(void)
494 {
495 	fscrypt_destroy();
496 
497 	if (fscrypt_read_workqueue)
498 		destroy_workqueue(fscrypt_read_workqueue);
499 	kmem_cache_destroy(fscrypt_ctx_cachep);
500 	kmem_cache_destroy(fscrypt_info_cachep);
501 
502 	fscrypt_essiv_cleanup();
503 }
504 module_exit(fscrypt_exit);
505 
506 MODULE_LICENSE("GPL");
507