• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/swiotlb.h>
27 #include <linux/initrd.h>
28 #include <linux/io.h>
29 #include <linux/highmem.h>
30 #include <linux/smp.h>
31 #include <linux/timex.h>
32 #include <linux/hugetlb.h>
33 #include <linux/start_kernel.h>
34 #include <linux/screen_info.h>
35 #include <linux/tick.h>
36 #include <asm/setup.h>
37 #include <asm/sections.h>
38 #include <asm/cacheflush.h>
39 #include <asm/pgalloc.h>
40 #include <asm/mmu_context.h>
41 #include <hv/hypervisor.h>
42 #include <arch/interrupts.h>
43 
44 /* <linux/smp.h> doesn't provide this definition. */
45 #ifndef CONFIG_SMP
46 #define setup_max_cpus 1
47 #endif
48 
ABS(int x)49 static inline int ABS(int x) { return x >= 0 ? x : -x; }
50 
51 /* Chip information */
52 char chip_model[64] __ro_after_init;
53 
54 #ifdef CONFIG_VT
55 struct screen_info screen_info;
56 #endif
57 
58 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
59 EXPORT_SYMBOL(node_data);
60 
61 /* Information on the NUMA nodes that we compute early */
62 unsigned long node_start_pfn[MAX_NUMNODES];
63 unsigned long node_end_pfn[MAX_NUMNODES];
64 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
65 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
66 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
67 
68 static unsigned long __initdata node_percpu[MAX_NUMNODES];
69 
70 /*
71  * per-CPU stack and boot info.
72  */
73 DEFINE_PER_CPU(unsigned long, boot_sp) =
74 	(unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA;
75 
76 #ifdef CONFIG_SMP
77 DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
78 #else
79 /*
80  * The variable must be __initdata since it references __init code.
81  * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
82  */
83 unsigned long __initdata boot_pc = (unsigned long)start_kernel;
84 #endif
85 
86 #ifdef CONFIG_HIGHMEM
87 /* Page frame index of end of lowmem on each controller. */
88 unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
89 
90 /* Number of pages that can be mapped into lowmem. */
91 static unsigned long __initdata mappable_physpages;
92 #endif
93 
94 /* Data on which physical memory controller corresponds to which NUMA node */
95 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
96 
97 #ifdef CONFIG_HIGHMEM
98 /* Map information from VAs to PAs */
99 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
100   __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
101 EXPORT_SYMBOL(pbase_map);
102 
103 /* Map information from PAs to VAs */
104 void *vbase_map[NR_PA_HIGHBIT_VALUES]
105   __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
106 EXPORT_SYMBOL(vbase_map);
107 #endif
108 
109 /* Node number as a function of the high PA bits */
110 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __ro_after_init;
111 EXPORT_SYMBOL(highbits_to_node);
112 
113 static unsigned int __initdata maxmem_pfn = -1U;
114 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
115 	[0 ... MAX_NUMNODES-1] = -1U
116 };
117 static nodemask_t __initdata isolnodes;
118 
119 #if defined(CONFIG_PCI) && !defined(__tilegx__)
120 enum { DEFAULT_PCI_RESERVE_MB = 64 };
121 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
122 unsigned long __initdata pci_reserve_start_pfn = -1U;
123 unsigned long __initdata pci_reserve_end_pfn = -1U;
124 #endif
125 
setup_maxmem(char * str)126 static int __init setup_maxmem(char *str)
127 {
128 	unsigned long long maxmem;
129 	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
130 		return -EINVAL;
131 
132 	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
133 	pr_info("Forcing RAM used to no more than %dMB\n",
134 		maxmem_pfn >> (20 - PAGE_SHIFT));
135 	return 0;
136 }
137 early_param("maxmem", setup_maxmem);
138 
setup_maxnodemem(char * str)139 static int __init setup_maxnodemem(char *str)
140 {
141 	char *endp;
142 	unsigned long long maxnodemem;
143 	unsigned long node;
144 
145 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
146 	if (node >= MAX_NUMNODES || *endp != ':')
147 		return -EINVAL;
148 
149 	maxnodemem = memparse(endp+1, NULL);
150 	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
151 		(HPAGE_SHIFT - PAGE_SHIFT);
152 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
153 		node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
154 	return 0;
155 }
156 early_param("maxnodemem", setup_maxnodemem);
157 
158 struct memmap_entry {
159 	u64 addr;	/* start of memory segment */
160 	u64 size;	/* size of memory segment */
161 };
162 static struct memmap_entry memmap_map[64];
163 static int memmap_nr;
164 
add_memmap_region(u64 addr,u64 size)165 static void add_memmap_region(u64 addr, u64 size)
166 {
167 	if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
168 		pr_err("Ooops! Too many entries in the memory map!\n");
169 		return;
170 	}
171 	memmap_map[memmap_nr].addr = addr;
172 	memmap_map[memmap_nr].size = size;
173 	memmap_nr++;
174 }
175 
setup_memmap(char * p)176 static int __init setup_memmap(char *p)
177 {
178 	char *oldp;
179 	u64 start_at, mem_size;
180 
181 	if (!p)
182 		return -EINVAL;
183 
184 	if (!strncmp(p, "exactmap", 8)) {
185 		pr_err("\"memmap=exactmap\" not valid on tile\n");
186 		return 0;
187 	}
188 
189 	oldp = p;
190 	mem_size = memparse(p, &p);
191 	if (p == oldp)
192 		return -EINVAL;
193 
194 	if (*p == '@') {
195 		pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
196 	} else if (*p == '#') {
197 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
198 	} else if (*p == '$') {
199 		start_at = memparse(p+1, &p);
200 		add_memmap_region(start_at, mem_size);
201 	} else {
202 		if (mem_size == 0)
203 			return -EINVAL;
204 		maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
205 			(HPAGE_SHIFT - PAGE_SHIFT);
206 	}
207 	return *p == '\0' ? 0 : -EINVAL;
208 }
209 early_param("memmap", setup_memmap);
210 
setup_mem(char * str)211 static int __init setup_mem(char *str)
212 {
213 	return setup_maxmem(str);
214 }
215 early_param("mem", setup_mem);  /* compatibility with x86 */
216 
setup_isolnodes(char * str)217 static int __init setup_isolnodes(char *str)
218 {
219 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
220 		return -EINVAL;
221 
222 	pr_info("Set isolnodes value to '%*pbl'\n",
223 		nodemask_pr_args(&isolnodes));
224 	return 0;
225 }
226 early_param("isolnodes", setup_isolnodes);
227 
228 #if defined(CONFIG_PCI) && !defined(__tilegx__)
setup_pci_reserve(char * str)229 static int __init setup_pci_reserve(char* str)
230 {
231 	if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
232 	    pci_reserve_mb > 3 * 1024)
233 		return -EINVAL;
234 
235 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
236 		pci_reserve_mb);
237 	return 0;
238 }
239 early_param("pci_reserve", setup_pci_reserve);
240 #endif
241 
242 #ifndef __tilegx__
243 /*
244  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
245  * This can be used to increase (or decrease) the vmalloc area.
246  */
parse_vmalloc(char * arg)247 static int __init parse_vmalloc(char *arg)
248 {
249 	if (!arg)
250 		return -EINVAL;
251 
252 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
253 
254 	/* See validate_va() for more on this test. */
255 	if ((long)_VMALLOC_START >= 0)
256 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
257 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
258 
259 	return 0;
260 }
261 early_param("vmalloc", parse_vmalloc);
262 #endif
263 
264 #ifdef CONFIG_HIGHMEM
265 /*
266  * Determine for each controller where its lowmem is mapped and how much of
267  * it is mapped there.  On controller zero, the first few megabytes are
268  * already mapped in as code at MEM_SV_START, so in principle we could
269  * start our data mappings higher up, but for now we don't bother, to avoid
270  * additional confusion.
271  *
272  * One question is whether, on systems with more than 768 Mb and
273  * controllers of different sizes, to map in a proportionate amount of
274  * each one, or to try to map the same amount from each controller.
275  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
276  * respectively, do we map 256MB from each, or do we map 128 MB, 512
277  * MB, and 128 MB respectively?)  For now we use a proportionate
278  * solution like the latter.
279  *
280  * The VA/PA mapping demands that we align our decisions at 16 MB
281  * boundaries so that we can rapidly convert VA to PA.
282  */
setup_pa_va_mapping(void)283 static void *__init setup_pa_va_mapping(void)
284 {
285 	unsigned long curr_pages = 0;
286 	unsigned long vaddr = PAGE_OFFSET;
287 	nodemask_t highonlynodes = isolnodes;
288 	int i, j;
289 
290 	memset(pbase_map, -1, sizeof(pbase_map));
291 	memset(vbase_map, -1, sizeof(vbase_map));
292 
293 	/* Node zero cannot be isolated for LOWMEM purposes. */
294 	node_clear(0, highonlynodes);
295 
296 	/* Count up the number of pages on non-highonlynodes controllers. */
297 	mappable_physpages = 0;
298 	for_each_online_node(i) {
299 		if (!node_isset(i, highonlynodes))
300 			mappable_physpages +=
301 				node_end_pfn[i] - node_start_pfn[i];
302 	}
303 
304 	for_each_online_node(i) {
305 		unsigned long start = node_start_pfn[i];
306 		unsigned long end = node_end_pfn[i];
307 		unsigned long size = end - start;
308 		unsigned long vaddr_end;
309 
310 		if (node_isset(i, highonlynodes)) {
311 			/* Mark this controller as having no lowmem. */
312 			node_lowmem_end_pfn[i] = start;
313 			continue;
314 		}
315 
316 		curr_pages += size;
317 		if (mappable_physpages > MAXMEM_PFN) {
318 			vaddr_end = PAGE_OFFSET +
319 				(((u64)curr_pages * MAXMEM_PFN /
320 				  mappable_physpages)
321 				 << PAGE_SHIFT);
322 		} else {
323 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
324 		}
325 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
326 			unsigned long this_pfn =
327 				start + (j << HUGETLB_PAGE_ORDER);
328 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
329 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
330 			    (void *)-1)
331 				vbase_map[__pfn_to_highbits(this_pfn)] =
332 					(void *)(vaddr & HPAGE_MASK);
333 		}
334 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
335 		BUG_ON(node_lowmem_end_pfn[i] > end);
336 	}
337 
338 	/* Return highest address of any mapped memory. */
339 	return (void *)vaddr;
340 }
341 #endif /* CONFIG_HIGHMEM */
342 
343 /*
344  * Register our most important memory mappings with the debug stub.
345  *
346  * This is up to 4 mappings for lowmem, one mapping per memory
347  * controller, plus one for our text segment.
348  */
store_permanent_mappings(void)349 static void store_permanent_mappings(void)
350 {
351 	int i;
352 
353 	for_each_online_node(i) {
354 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
355 #ifdef CONFIG_HIGHMEM
356 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
357 #else
358 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
359 #endif
360 
361 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
362 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
363 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
364 	}
365 
366 	hv_store_mapping((HV_VirtAddr)_text,
367 			 (uint32_t)(_einittext - _text), 0);
368 }
369 
370 /*
371  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
372  * and node_online_map, doing suitable sanity-checking.
373  * Also set min_low_pfn, max_low_pfn, and max_pfn.
374  */
setup_memory(void)375 static void __init setup_memory(void)
376 {
377 	int i, j;
378 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
379 #ifdef CONFIG_HIGHMEM
380 	long highmem_pages;
381 #endif
382 #ifndef __tilegx__
383 	int cap;
384 #endif
385 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
386 	long lowmem_pages;
387 #endif
388 	unsigned long physpages = 0;
389 
390 	/* We are using a char to hold the cpu_2_node[] mapping */
391 	BUILD_BUG_ON(MAX_NUMNODES > 127);
392 
393 	/* Discover the ranges of memory available to us */
394 	for (i = 0; ; ++i) {
395 		unsigned long start, size, end, highbits;
396 		HV_PhysAddrRange range = hv_inquire_physical(i);
397 		if (range.size == 0)
398 			break;
399 #ifdef CONFIG_FLATMEM
400 		if (i > 0) {
401 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
402 			       range.size, range.start + range.size);
403 			continue;
404 		}
405 #endif
406 #ifndef __tilegx__
407 		if ((unsigned long)range.start) {
408 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
409 			       range.start, range.start + range.size);
410 			continue;
411 		}
412 #endif
413 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
414 		    (range.size & (HPAGE_SIZE-1)) != 0) {
415 			unsigned long long start_pa = range.start;
416 			unsigned long long orig_size = range.size;
417 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
418 			range.size -= (range.start - start_pa);
419 			range.size &= HPAGE_MASK;
420 			pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
421 			       start_pa, start_pa + orig_size,
422 			       range.start, range.start + range.size);
423 		}
424 		highbits = __pa_to_highbits(range.start);
425 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
426 			pr_err("PA high bits too high: %#llx..%#llx\n",
427 			       range.start, range.start + range.size);
428 			continue;
429 		}
430 		if (highbits_seen[highbits]) {
431 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
432 			       range.start, range.start + range.size);
433 			continue;
434 		}
435 		highbits_seen[highbits] = 1;
436 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
437 			int max_size = maxnodemem_pfn[i];
438 			if (max_size > 0) {
439 				pr_err("Maxnodemem reduced node %d to %d pages\n",
440 				       i, max_size);
441 				range.size = PFN_PHYS(max_size);
442 			} else {
443 				pr_err("Maxnodemem disabled node %d\n", i);
444 				continue;
445 			}
446 		}
447 		if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
448 			int max_size = maxmem_pfn - physpages;
449 			if (max_size > 0) {
450 				pr_err("Maxmem reduced node %d to %d pages\n",
451 				       i, max_size);
452 				range.size = PFN_PHYS(max_size);
453 			} else {
454 				pr_err("Maxmem disabled node %d\n", i);
455 				continue;
456 			}
457 		}
458 		if (i >= MAX_NUMNODES) {
459 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
460 			       i, range.size, range.size + range.start);
461 			continue;
462 		}
463 
464 		start = range.start >> PAGE_SHIFT;
465 		size = range.size >> PAGE_SHIFT;
466 		end = start + size;
467 
468 #ifndef __tilegx__
469 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
470 		    (range.start + range.size)) {
471 			pr_err("PAs too high to represent: %#llx..%#llx\n",
472 			       range.start, range.start + range.size);
473 			continue;
474 		}
475 #endif
476 #if defined(CONFIG_PCI) && !defined(__tilegx__)
477 		/*
478 		 * Blocks that overlap the pci reserved region must
479 		 * have enough space to hold the maximum percpu data
480 		 * region at the top of the range.  If there isn't
481 		 * enough space above the reserved region, just
482 		 * truncate the node.
483 		 */
484 		if (start <= pci_reserve_start_pfn &&
485 		    end > pci_reserve_start_pfn) {
486 			unsigned int per_cpu_size =
487 				__per_cpu_end - __per_cpu_start;
488 			unsigned int percpu_pages =
489 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
490 			if (end < pci_reserve_end_pfn + percpu_pages) {
491 				end = pci_reserve_start_pfn;
492 				pr_err("PCI mapping region reduced node %d to %ld pages\n",
493 				       i, end - start);
494 			}
495 		}
496 #endif
497 
498 		for (j = __pfn_to_highbits(start);
499 		     j <= __pfn_to_highbits(end - 1); j++)
500 			highbits_to_node[j] = i;
501 
502 		node_start_pfn[i] = start;
503 		node_end_pfn[i] = end;
504 		node_controller[i] = range.controller;
505 		physpages += size;
506 		max_pfn = end;
507 
508 		/* Mark node as online */
509 		node_set(i, node_online_map);
510 		node_set(i, node_possible_map);
511 	}
512 
513 #ifndef __tilegx__
514 	/*
515 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
516 	 * of the physical memory, so can be quite big (640 MB for
517 	 * four 16G zones).  These structures must be mapped in
518 	 * lowmem, and since we currently cap out at about 768 MB,
519 	 * it's impractical to try to use this much address space.
520 	 * For now, arbitrarily cap the amount of physical memory
521 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
522 	 */
523 	cap = 8 * 1024 * 1024;  /* 8 million pages */
524 	if (physpages > cap) {
525 		int num_nodes = num_online_nodes();
526 		int cap_each = cap / num_nodes;
527 		unsigned long dropped_pages = 0;
528 		for (i = 0; i < num_nodes; ++i) {
529 			int size = node_end_pfn[i] - node_start_pfn[i];
530 			if (size > cap_each) {
531 				dropped_pages += (size - cap_each);
532 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
533 			}
534 		}
535 		physpages -= dropped_pages;
536 		pr_warn("Only using %ldMB memory - ignoring %ldMB\n",
537 			physpages >> (20 - PAGE_SHIFT),
538 			dropped_pages >> (20 - PAGE_SHIFT));
539 		pr_warn("Consider using a larger page size\n");
540 	}
541 #endif
542 
543 	/* Heap starts just above the last loaded address. */
544 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
545 
546 #ifdef CONFIG_HIGHMEM
547 	/* Find where we map lowmem from each controller. */
548 	high_memory = setup_pa_va_mapping();
549 
550 	/* Set max_low_pfn based on what node 0 can directly address. */
551 	max_low_pfn = node_lowmem_end_pfn[0];
552 
553 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
554 		MAXMEM_PFN : mappable_physpages;
555 	highmem_pages = (long) (physpages - lowmem_pages);
556 
557 	pr_notice("%ldMB HIGHMEM available\n",
558 		  pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
559 	pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
560 #else
561 	/* Set max_low_pfn based on what node 0 can directly address. */
562 	max_low_pfn = node_end_pfn[0];
563 
564 #ifndef __tilegx__
565 	if (node_end_pfn[0] > MAXMEM_PFN) {
566 		pr_warn("Only using %ldMB LOWMEM\n", MAXMEM >> 20);
567 		pr_warn("Use a HIGHMEM enabled kernel\n");
568 		max_low_pfn = MAXMEM_PFN;
569 		max_pfn = MAXMEM_PFN;
570 		node_end_pfn[0] = MAXMEM_PFN;
571 	} else {
572 		pr_notice("%ldMB memory available\n",
573 			  pages_to_mb(node_end_pfn[0]));
574 	}
575 	for (i = 1; i < MAX_NUMNODES; ++i) {
576 		node_start_pfn[i] = 0;
577 		node_end_pfn[i] = 0;
578 	}
579 	high_memory = __va(node_end_pfn[0]);
580 #else
581 	lowmem_pages = 0;
582 	for (i = 0; i < MAX_NUMNODES; ++i) {
583 		int pages = node_end_pfn[i] - node_start_pfn[i];
584 		lowmem_pages += pages;
585 		if (pages)
586 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
587 	}
588 	pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
589 #endif
590 #endif
591 }
592 
593 /*
594  * On 32-bit machines, we only put bootmem on the low controller,
595  * since PAs > 4GB can't be used in bootmem.  In principle one could
596  * imagine, e.g., multiple 1 GB controllers all of which could support
597  * bootmem, but in practice using controllers this small isn't a
598  * particularly interesting scenario, so we just keep it simple and
599  * use only the first controller for bootmem on 32-bit machines.
600  */
node_has_bootmem(int nid)601 static inline int node_has_bootmem(int nid)
602 {
603 #ifdef CONFIG_64BIT
604 	return 1;
605 #else
606 	return nid == 0;
607 #endif
608 }
609 
alloc_bootmem_pfn(int nid,unsigned long size,unsigned long goal)610 static inline unsigned long alloc_bootmem_pfn(int nid,
611 					      unsigned long size,
612 					      unsigned long goal)
613 {
614 	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
615 					 PAGE_SIZE, goal);
616 	unsigned long pfn = kaddr_to_pfn(kva);
617 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
618 	return pfn;
619 }
620 
setup_bootmem_allocator_node(int i)621 static void __init setup_bootmem_allocator_node(int i)
622 {
623 	unsigned long start, end, mapsize, mapstart;
624 
625 	if (node_has_bootmem(i)) {
626 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
627 	} else {
628 		/* Share controller zero's bdata for now. */
629 		NODE_DATA(i)->bdata = &bootmem_node_data[0];
630 		return;
631 	}
632 
633 	/* Skip up to after the bss in node 0. */
634 	start = (i == 0) ? min_low_pfn : node_start_pfn[i];
635 
636 	/* Only lowmem, if we're a HIGHMEM build. */
637 #ifdef CONFIG_HIGHMEM
638 	end = node_lowmem_end_pfn[i];
639 #else
640 	end = node_end_pfn[i];
641 #endif
642 
643 	/* No memory here. */
644 	if (end == start)
645 		return;
646 
647 	/* Figure out where the bootmem bitmap is located. */
648 	mapsize = bootmem_bootmap_pages(end - start);
649 	if (i == 0) {
650 		/* Use some space right before the heap on node 0. */
651 		mapstart = start;
652 		start += mapsize;
653 	} else {
654 		/* Allocate bitmap on node 0 to avoid page table issues. */
655 		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
656 	}
657 
658 	/* Initialize a node. */
659 	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
660 
661 	/* Free all the space back into the allocator. */
662 	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
663 
664 #if defined(CONFIG_PCI) && !defined(__tilegx__)
665 	/*
666 	 * Throw away any memory aliased by the PCI region.
667 	 */
668 	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
669 		start = max(pci_reserve_start_pfn, start);
670 		end = min(pci_reserve_end_pfn, end);
671 		reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
672 				BOOTMEM_EXCLUSIVE);
673 	}
674 #endif
675 }
676 
setup_bootmem_allocator(void)677 static void __init setup_bootmem_allocator(void)
678 {
679 	int i;
680 	for (i = 0; i < MAX_NUMNODES; ++i)
681 		setup_bootmem_allocator_node(i);
682 
683 	/* Reserve any memory excluded by "memmap" arguments. */
684 	for (i = 0; i < memmap_nr; ++i) {
685 		struct memmap_entry *m = &memmap_map[i];
686 		reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
687 	}
688 
689 #ifdef CONFIG_BLK_DEV_INITRD
690 	if (initrd_start) {
691 		/* Make sure the initrd memory region is not modified. */
692 		if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
693 				    BOOTMEM_EXCLUSIVE)) {
694 			pr_crit("The initrd memory region has been polluted. Disabling it.\n");
695 			initrd_start = 0;
696 			initrd_end = 0;
697 		} else {
698 			/*
699 			 * Translate initrd_start & initrd_end from PA to VA for
700 			 * future access.
701 			 */
702 			initrd_start += PAGE_OFFSET;
703 			initrd_end += PAGE_OFFSET;
704 		}
705 	}
706 #endif
707 
708 #ifdef CONFIG_KEXEC
709 	if (crashk_res.start != crashk_res.end)
710 		reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
711 				BOOTMEM_DEFAULT);
712 #endif
713 }
714 
alloc_remap(int nid,unsigned long size)715 void *__init alloc_remap(int nid, unsigned long size)
716 {
717 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
718 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
719 	BUG_ON(size != pages * sizeof(struct page));
720 	memset(map, 0, size);
721 	return map;
722 }
723 
percpu_size(void)724 static int __init percpu_size(void)
725 {
726 	int size = __per_cpu_end - __per_cpu_start;
727 	size += PERCPU_MODULE_RESERVE;
728 	size += PERCPU_DYNAMIC_EARLY_SIZE;
729 	if (size < PCPU_MIN_UNIT_SIZE)
730 		size = PCPU_MIN_UNIT_SIZE;
731 	size = roundup(size, PAGE_SIZE);
732 
733 	/* In several places we assume the per-cpu data fits on a huge page. */
734 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
735 	return size;
736 }
737 
zone_sizes_init(void)738 static void __init zone_sizes_init(void)
739 {
740 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
741 	int size = percpu_size();
742 	int num_cpus = smp_height * smp_width;
743 	const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
744 
745 	int i;
746 
747 	for (i = 0; i < num_cpus; ++i)
748 		node_percpu[cpu_to_node(i)] += size;
749 
750 	for_each_online_node(i) {
751 		unsigned long start = node_start_pfn[i];
752 		unsigned long end = node_end_pfn[i];
753 #ifdef CONFIG_HIGHMEM
754 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
755 #else
756 		unsigned long lowmem_end = end;
757 #endif
758 		int memmap_size = (end - start) * sizeof(struct page);
759 		node_free_pfn[i] = start;
760 
761 		/*
762 		 * Set aside pages for per-cpu data and the mem_map array.
763 		 *
764 		 * Since the per-cpu data requires special homecaching,
765 		 * if we are in kdata_huge mode, we put it at the end of
766 		 * the lowmem region.  If we're not in kdata_huge mode,
767 		 * we take the per-cpu pages from the bottom of the
768 		 * controller, since that avoids fragmenting a huge page
769 		 * that users might want.  We always take the memmap
770 		 * from the bottom of the controller, since with
771 		 * kdata_huge that lets it be under a huge TLB entry.
772 		 *
773 		 * If the user has requested isolnodes for a controller,
774 		 * though, there'll be no lowmem, so we just alloc_bootmem
775 		 * the memmap.  There will be no percpu memory either.
776 		 */
777 		if (i != 0 && node_isset(i, isolnodes)) {
778 			node_memmap_pfn[i] =
779 				alloc_bootmem_pfn(0, memmap_size, 0);
780 			BUG_ON(node_percpu[i] != 0);
781 		} else if (node_has_bootmem(start)) {
782 			unsigned long goal = 0;
783 			node_memmap_pfn[i] =
784 				alloc_bootmem_pfn(i, memmap_size, 0);
785 			if (kdata_huge)
786 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
787 			if (node_percpu[i])
788 				node_percpu_pfn[i] =
789 					alloc_bootmem_pfn(i, node_percpu[i],
790 							  goal);
791 		} else {
792 			/* In non-bootmem zones, just reserve some pages. */
793 			node_memmap_pfn[i] = node_free_pfn[i];
794 			node_free_pfn[i] += PFN_UP(memmap_size);
795 			if (!kdata_huge) {
796 				node_percpu_pfn[i] = node_free_pfn[i];
797 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
798 			} else {
799 				node_percpu_pfn[i] =
800 					lowmem_end - PFN_UP(node_percpu[i]);
801 			}
802 		}
803 
804 #ifdef CONFIG_HIGHMEM
805 		if (start > lowmem_end) {
806 			zones_size[ZONE_NORMAL] = 0;
807 			zones_size[ZONE_HIGHMEM] = end - start;
808 		} else {
809 			zones_size[ZONE_NORMAL] = lowmem_end - start;
810 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
811 		}
812 #else
813 		zones_size[ZONE_NORMAL] = end - start;
814 #endif
815 
816 		if (start < dma_end) {
817 			zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
818 						   dma_end - start);
819 			zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
820 		} else {
821 			zones_size[ZONE_DMA] = 0;
822 		}
823 
824 		/* Take zone metadata from controller 0 if we're isolnode. */
825 		if (node_isset(i, isolnodes))
826 			NODE_DATA(i)->bdata = &bootmem_node_data[0];
827 
828 		free_area_init_node(i, zones_size, start, NULL);
829 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
830 		       PFN_UP(node_percpu[i]));
831 
832 		/* Track the type of memory on each node */
833 		if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
834 			node_set_state(i, N_NORMAL_MEMORY);
835 #ifdef CONFIG_HIGHMEM
836 		if (end != start)
837 			node_set_state(i, N_HIGH_MEMORY);
838 #endif
839 
840 		node_set_online(i);
841 	}
842 }
843 
844 #ifdef CONFIG_NUMA
845 
846 /* which logical CPUs are on which nodes */
847 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __ro_after_init;
848 EXPORT_SYMBOL(node_2_cpu_mask);
849 
850 /* which node each logical CPU is on */
851 char cpu_2_node[NR_CPUS] __ro_after_init __attribute__((aligned(L2_CACHE_BYTES)));
852 EXPORT_SYMBOL(cpu_2_node);
853 
854 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
cpu_to_bound_node(int cpu,struct cpumask * unbound_cpus)855 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
856 {
857 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
858 		return -1;
859 	else
860 		return cpu_to_node(cpu);
861 }
862 
863 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
node_neighbors(int node,int cpu,struct cpumask * unbound_cpus)864 static int __init node_neighbors(int node, int cpu,
865 				 struct cpumask *unbound_cpus)
866 {
867 	int neighbors = 0;
868 	int w = smp_width;
869 	int h = smp_height;
870 	int x = cpu % w;
871 	int y = cpu / w;
872 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
873 		++neighbors;
874 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
875 		++neighbors;
876 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
877 		++neighbors;
878 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
879 		++neighbors;
880 	return neighbors;
881 }
882 
setup_numa_mapping(void)883 static void __init setup_numa_mapping(void)
884 {
885 	u8 distance[MAX_NUMNODES][NR_CPUS];
886 	HV_Coord coord;
887 	int cpu, node, cpus, i, x, y;
888 	int num_nodes = num_online_nodes();
889 	struct cpumask unbound_cpus;
890 	nodemask_t default_nodes;
891 
892 	cpumask_clear(&unbound_cpus);
893 
894 	/* Get set of nodes we will use for defaults */
895 	nodes_andnot(default_nodes, node_online_map, isolnodes);
896 	if (nodes_empty(default_nodes)) {
897 		BUG_ON(!node_isset(0, node_online_map));
898 		pr_err("Forcing NUMA node zero available as a default node\n");
899 		node_set(0, default_nodes);
900 	}
901 
902 	/* Populate the distance[] array */
903 	memset(distance, -1, sizeof(distance));
904 	cpu = 0;
905 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
906 		for (coord.x = 0; coord.x < smp_width;
907 		     ++coord.x, ++cpu) {
908 			BUG_ON(cpu >= nr_cpu_ids);
909 			if (!cpu_possible(cpu)) {
910 				cpu_2_node[cpu] = -1;
911 				continue;
912 			}
913 			for_each_node_mask(node, default_nodes) {
914 				HV_MemoryControllerInfo info =
915 					hv_inquire_memory_controller(
916 						coord, node_controller[node]);
917 				distance[node][cpu] =
918 					ABS(info.coord.x) + ABS(info.coord.y);
919 			}
920 			cpumask_set_cpu(cpu, &unbound_cpus);
921 		}
922 	}
923 	cpus = cpu;
924 
925 	/*
926 	 * Round-robin through the NUMA nodes until all the cpus are
927 	 * assigned.  We could be more clever here (e.g. create four
928 	 * sorted linked lists on the same set of cpu nodes, and pull
929 	 * off them in round-robin sequence, removing from all four
930 	 * lists each time) but given the relatively small numbers
931 	 * involved, O(n^2) seem OK for a one-time cost.
932 	 */
933 	node = first_node(default_nodes);
934 	while (!cpumask_empty(&unbound_cpus)) {
935 		int best_cpu = -1;
936 		int best_distance = INT_MAX;
937 		for (cpu = 0; cpu < cpus; ++cpu) {
938 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
939 				/*
940 				 * Compute metric, which is how much
941 				 * closer the cpu is to this memory
942 				 * controller than the others, shifted
943 				 * up, and then the number of
944 				 * neighbors already in the node as an
945 				 * epsilon adjustment to try to keep
946 				 * the nodes compact.
947 				 */
948 				int d = distance[node][cpu] * num_nodes;
949 				for_each_node_mask(i, default_nodes) {
950 					if (i != node)
951 						d -= distance[i][cpu];
952 				}
953 				d *= 8;  /* allow space for epsilon */
954 				d -= node_neighbors(node, cpu, &unbound_cpus);
955 				if (d < best_distance) {
956 					best_cpu = cpu;
957 					best_distance = d;
958 				}
959 			}
960 		}
961 		BUG_ON(best_cpu < 0);
962 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
963 		cpu_2_node[best_cpu] = node;
964 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
965 		node = next_node_in(node, default_nodes);
966 	}
967 
968 	/* Print out node assignments and set defaults for disabled cpus */
969 	cpu = 0;
970 	for (y = 0; y < smp_height; ++y) {
971 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
972 		for (x = 0; x < smp_width; ++x, ++cpu) {
973 			if (cpu_to_node(cpu) < 0) {
974 				pr_cont(" -");
975 				cpu_2_node[cpu] = first_node(default_nodes);
976 			} else {
977 				pr_cont(" %d", cpu_to_node(cpu));
978 			}
979 		}
980 		pr_cont("\n");
981 	}
982 }
983 
984 static struct cpu cpu_devices[NR_CPUS];
985 
topology_init(void)986 static int __init topology_init(void)
987 {
988 	int i;
989 
990 	for_each_online_node(i)
991 		register_one_node(i);
992 
993 	for (i = 0; i < smp_height * smp_width; ++i)
994 		register_cpu(&cpu_devices[i], i);
995 
996 	return 0;
997 }
998 
999 subsys_initcall(topology_init);
1000 
1001 #else /* !CONFIG_NUMA */
1002 
1003 #define setup_numa_mapping() do { } while (0)
1004 
1005 #endif /* CONFIG_NUMA */
1006 
1007 /*
1008  * Initialize hugepage support on this cpu.  We do this on all cores
1009  * early in boot: before argument parsing for the boot cpu, and after
1010  * argument parsing but before the init functions run on the secondaries.
1011  * So the values we set up here in the hypervisor may be overridden on
1012  * the boot cpu as arguments are parsed.
1013  */
init_super_pages(void)1014 static void init_super_pages(void)
1015 {
1016 #ifdef CONFIG_HUGETLB_SUPER_PAGES
1017 	int i;
1018 	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1019 		hv_set_pte_super_shift(i, huge_shift[i]);
1020 #endif
1021 }
1022 
1023 /**
1024  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1025  * @boot: Is this the boot cpu?
1026  *
1027  * Called from setup_arch() on the boot cpu, or online_secondary().
1028  */
setup_cpu(int boot)1029 void setup_cpu(int boot)
1030 {
1031 	/* The boot cpu sets up its permanent mappings much earlier. */
1032 	if (!boot)
1033 		store_permanent_mappings();
1034 
1035 	/* Allow asynchronous TLB interrupts. */
1036 #if CHIP_HAS_TILE_DMA()
1037 	arch_local_irq_unmask(INT_DMATLB_MISS);
1038 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
1039 #endif
1040 #ifdef __tilegx__
1041 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
1042 #endif
1043 
1044 	/*
1045 	 * Allow user access to many generic SPRs, like the cycle
1046 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1047 	 */
1048 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1049 
1050 #if CHIP_HAS_SN()
1051 	/* Static network is not restricted. */
1052 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1053 #endif
1054 
1055 	/*
1056 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
1057 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
1058 	 * SPRs, as well as the interrupt mask.
1059 	 */
1060 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1061 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1062 
1063 	/* Initialize IRQ support for this cpu. */
1064 	setup_irq_regs();
1065 
1066 #ifdef CONFIG_HARDWALL
1067 	/* Reset the network state on this cpu. */
1068 	reset_network_state();
1069 #endif
1070 
1071 	init_super_pages();
1072 }
1073 
1074 #ifdef CONFIG_BLK_DEV_INITRD
1075 
1076 static int __initdata set_initramfs_file;
1077 static char __initdata initramfs_file[128] = "initramfs";
1078 
setup_initramfs_file(char * str)1079 static int __init setup_initramfs_file(char *str)
1080 {
1081 	if (str == NULL)
1082 		return -EINVAL;
1083 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1084 	set_initramfs_file = 1;
1085 
1086 	return 0;
1087 }
1088 early_param("initramfs_file", setup_initramfs_file);
1089 
1090 /*
1091  * We look for a file called "initramfs" in the hvfs.  If there is one, we
1092  * allocate some memory for it and it will be unpacked to the initramfs.
1093  * If it's compressed, the initd code will uncompress it first.
1094  */
load_hv_initrd(void)1095 static void __init load_hv_initrd(void)
1096 {
1097 	HV_FS_StatInfo stat;
1098 	int fd, rc;
1099 	void *initrd;
1100 
1101 	/* If initrd has already been set, skip initramfs file in hvfs. */
1102 	if (initrd_start)
1103 		return;
1104 
1105 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1106 	if (fd == HV_ENOENT) {
1107 		if (set_initramfs_file) {
1108 			pr_warn("No such hvfs initramfs file '%s'\n",
1109 				initramfs_file);
1110 			return;
1111 		} else {
1112 			/* Try old backwards-compatible name. */
1113 			fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1114 			if (fd == HV_ENOENT)
1115 				return;
1116 		}
1117 	}
1118 	BUG_ON(fd < 0);
1119 	stat = hv_fs_fstat(fd);
1120 	BUG_ON(stat.size < 0);
1121 	if (stat.flags & HV_FS_ISDIR) {
1122 		pr_warn("Ignoring hvfs file '%s': it's a directory\n",
1123 			initramfs_file);
1124 		return;
1125 	}
1126 	initrd = alloc_bootmem_pages(stat.size);
1127 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1128 	if (rc != stat.size) {
1129 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1130 		       stat.size, initramfs_file, rc);
1131 		free_initrd_mem((unsigned long) initrd, stat.size);
1132 		return;
1133 	}
1134 	initrd_start = (unsigned long) initrd;
1135 	initrd_end = initrd_start + stat.size;
1136 }
1137 
free_initrd_mem(unsigned long begin,unsigned long end)1138 void __init free_initrd_mem(unsigned long begin, unsigned long end)
1139 {
1140 	free_bootmem_late(__pa(begin), end - begin);
1141 }
1142 
setup_initrd(char * str)1143 static int __init setup_initrd(char *str)
1144 {
1145 	char *endp;
1146 	unsigned long initrd_size;
1147 
1148 	initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1149 	if (initrd_size == 0 || *endp != '@')
1150 		return -EINVAL;
1151 
1152 	initrd_start = simple_strtoul(endp+1, &endp, 0);
1153 	if (initrd_start == 0)
1154 		return -EINVAL;
1155 
1156 	initrd_end = initrd_start + initrd_size;
1157 
1158 	return 0;
1159 }
1160 early_param("initrd", setup_initrd);
1161 
1162 #else
load_hv_initrd(void)1163 static inline void load_hv_initrd(void) {}
1164 #endif /* CONFIG_BLK_DEV_INITRD */
1165 
validate_hv(void)1166 static void __init validate_hv(void)
1167 {
1168 	/*
1169 	 * It may already be too late, but let's check our built-in
1170 	 * configuration against what the hypervisor is providing.
1171 	 */
1172 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1173 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1174 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1175 	HV_ASIDRange asid_range;
1176 
1177 #ifndef CONFIG_SMP
1178 	HV_Topology topology = hv_inquire_topology();
1179 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1180 	if (topology.width != 1 || topology.height != 1) {
1181 		pr_warn("Warning: booting UP kernel on %dx%d grid; will ignore all but first tile\n",
1182 			topology.width, topology.height);
1183 	}
1184 #endif
1185 
1186 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1187 		early_panic("Hypervisor glue size %ld is too big!\n",
1188 			    glue_size);
1189 	if (hv_page_size != PAGE_SIZE)
1190 		early_panic("Hypervisor page size %#x != our %#lx\n",
1191 			    hv_page_size, PAGE_SIZE);
1192 	if (hv_hpage_size != HPAGE_SIZE)
1193 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1194 			    hv_hpage_size, HPAGE_SIZE);
1195 
1196 #ifdef CONFIG_SMP
1197 	/*
1198 	 * Some hypervisor APIs take a pointer to a bitmap array
1199 	 * whose size is at least the number of cpus on the chip.
1200 	 * We use a struct cpumask for this, so it must be big enough.
1201 	 */
1202 	if ((smp_height * smp_width) > nr_cpu_ids)
1203 		early_panic("Hypervisor %d x %d grid too big for Linux NR_CPUS %u\n",
1204 			    smp_height, smp_width, nr_cpu_ids);
1205 #endif
1206 
1207 	/*
1208 	 * Check that we're using allowed ASIDs, and initialize the
1209 	 * various asid variables to their appropriate initial states.
1210 	 */
1211 	asid_range = hv_inquire_asid(0);
1212 	min_asid = asid_range.start;
1213 	__this_cpu_write(current_asid, min_asid);
1214 	max_asid = asid_range.start + asid_range.size - 1;
1215 
1216 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1217 		       sizeof(chip_model)) < 0) {
1218 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1219 		strlcpy(chip_model, "unknown", sizeof(chip_model));
1220 	}
1221 }
1222 
validate_va(void)1223 static void __init validate_va(void)
1224 {
1225 #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1226 	/*
1227 	 * Similarly, make sure we're only using allowed VAs.
1228 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1229 	 * and 0 .. KERNEL_HIGH_VADDR.
1230 	 * In addition, make sure we CAN'T use the end of memory, since
1231 	 * we use the last chunk of each pgd for the pgd_list.
1232 	 */
1233 	int i, user_kernel_ok = 0;
1234 	unsigned long max_va = 0;
1235 	unsigned long list_va =
1236 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1237 
1238 	for (i = 0; ; ++i) {
1239 		HV_VirtAddrRange range = hv_inquire_virtual(i);
1240 		if (range.size == 0)
1241 			break;
1242 		if (range.start <= MEM_USER_INTRPT &&
1243 		    range.start + range.size >= MEM_HV_START)
1244 			user_kernel_ok = 1;
1245 		if (range.start == 0)
1246 			max_va = range.size;
1247 		BUG_ON(range.start + range.size > list_va);
1248 	}
1249 	if (!user_kernel_ok)
1250 		early_panic("Hypervisor not configured for user/kernel VAs\n");
1251 	if (max_va == 0)
1252 		early_panic("Hypervisor not configured for low VAs\n");
1253 	if (max_va < KERNEL_HIGH_VADDR)
1254 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1255 			    max_va, KERNEL_HIGH_VADDR);
1256 
1257 	/* Kernel PCs must have their high bit set; see intvec.S. */
1258 	if ((long)VMALLOC_START >= 0)
1259 		early_panic("Linux VMALLOC region below the 2GB line (%#lx)!\n"
1260 			    "Reconfigure the kernel with smaller VMALLOC_RESERVE\n",
1261 			    VMALLOC_START);
1262 #endif
1263 }
1264 
1265 /*
1266  * cpu_lotar_map lists all the cpus that are valid for the supervisor
1267  * to cache data on at a page level, i.e. what cpus can be placed in
1268  * the LOTAR field of a PTE.  It is equivalent to the set of possible
1269  * cpus plus any other cpus that are willing to share their cache.
1270  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1271  */
1272 struct cpumask __ro_after_init cpu_lotar_map;
1273 EXPORT_SYMBOL(cpu_lotar_map);
1274 
1275 /*
1276  * hash_for_home_map lists all the tiles that hash-for-home data
1277  * will be cached on.  Note that this may includes tiles that are not
1278  * valid for this supervisor to use otherwise (e.g. if a hypervisor
1279  * device is being shared between multiple supervisors).
1280  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1281  */
1282 struct cpumask hash_for_home_map;
1283 EXPORT_SYMBOL(hash_for_home_map);
1284 
1285 /*
1286  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1287  * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1288  * hash_for_home_map, and it is what should be passed to
1289  * hv_flush_remote() to flush all caches.  Note that if there are
1290  * dedicated hypervisor driver tiles that have authorized use of their
1291  * cache, those tiles will only appear in cpu_lotar_map, NOT in
1292  * cpu_cacheable_map, as they are a special case.
1293  */
1294 struct cpumask __ro_after_init cpu_cacheable_map;
1295 EXPORT_SYMBOL(cpu_cacheable_map);
1296 
1297 static __initdata struct cpumask disabled_map;
1298 
disabled_cpus(char * str)1299 static int __init disabled_cpus(char *str)
1300 {
1301 	int boot_cpu = smp_processor_id();
1302 
1303 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1304 		return -EINVAL;
1305 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1306 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1307 		cpumask_clear_cpu(boot_cpu, &disabled_map);
1308 	}
1309 	return 0;
1310 }
1311 
1312 early_param("disabled_cpus", disabled_cpus);
1313 
print_disabled_cpus(void)1314 void __init print_disabled_cpus(void)
1315 {
1316 	if (!cpumask_empty(&disabled_map))
1317 		pr_info("CPUs not available for Linux: %*pbl\n",
1318 			cpumask_pr_args(&disabled_map));
1319 }
1320 
setup_cpu_maps(void)1321 static void __init setup_cpu_maps(void)
1322 {
1323 	struct cpumask hv_disabled_map, cpu_possible_init;
1324 	int boot_cpu = smp_processor_id();
1325 	int cpus, i, rc;
1326 
1327 	/* Learn which cpus are allowed by the hypervisor. */
1328 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1329 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1330 			      sizeof(cpu_cacheable_map));
1331 	if (rc < 0)
1332 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1333 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1334 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1335 
1336 	/* Compute the cpus disabled by the hvconfig file. */
1337 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1338 
1339 	/* Include them with the cpus disabled by "disabled_cpus". */
1340 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1341 
1342 	/*
1343 	 * Disable every cpu after "setup_max_cpus".  But don't mark
1344 	 * as disabled the cpus that are outside of our initial rectangle,
1345 	 * since that turns out to be confusing.
1346 	 */
1347 	cpus = 1;                          /* this cpu */
1348 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1349 	for (i = 0; cpus < setup_max_cpus; ++i)
1350 		if (!cpumask_test_cpu(i, &disabled_map))
1351 			++cpus;
1352 	for (; i < smp_height * smp_width; ++i)
1353 		cpumask_set_cpu(i, &disabled_map);
1354 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1355 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1356 		cpumask_clear_cpu(i, &disabled_map);
1357 
1358 	/*
1359 	 * Setup cpu_possible map as every cpu allocated to us, minus
1360 	 * the results of any "disabled_cpus" settings.
1361 	 */
1362 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1363 	init_cpu_possible(&cpu_possible_init);
1364 
1365 	/* Learn which cpus are valid for LOTAR caching. */
1366 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1367 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1368 			      sizeof(cpu_lotar_map));
1369 	if (rc < 0) {
1370 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1371 		cpu_lotar_map = *cpu_possible_mask;
1372 	}
1373 
1374 	/* Retrieve set of CPUs used for hash-for-home caching */
1375 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1376 			      (HV_VirtAddr) hash_for_home_map.bits,
1377 			      sizeof(hash_for_home_map));
1378 	if (rc < 0)
1379 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1380 	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1381 }
1382 
1383 
dataplane(char * str)1384 static int __init dataplane(char *str)
1385 {
1386 	pr_warn("WARNING: dataplane support disabled in this kernel\n");
1387 	return 0;
1388 }
1389 
1390 early_param("dataplane", dataplane);
1391 
1392 #ifdef CONFIG_NO_HZ_FULL
1393 /* Warn if hypervisor shared cpus are marked as nohz_full. */
check_nohz_full_cpus(void)1394 static int __init check_nohz_full_cpus(void)
1395 {
1396 	struct cpumask shared;
1397 	int cpu;
1398 
1399 	if (hv_inquire_tiles(HV_INQ_TILES_SHARED,
1400 			     (HV_VirtAddr) shared.bits, sizeof(shared)) < 0) {
1401 		pr_warn("WARNING: No support for inquiring hv shared tiles\n");
1402 		return 0;
1403 	}
1404 	for_each_cpu(cpu, &shared) {
1405 		if (tick_nohz_full_cpu(cpu))
1406 			pr_warn("WARNING: nohz_full cpu %d receives hypervisor interrupts!\n",
1407 			       cpu);
1408 	}
1409 	return 0;
1410 }
1411 arch_initcall(check_nohz_full_cpus);
1412 #endif
1413 
1414 #ifdef CONFIG_CMDLINE_BOOL
1415 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1416 #endif
1417 
setup_arch(char ** cmdline_p)1418 void __init setup_arch(char **cmdline_p)
1419 {
1420 	int len;
1421 
1422 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1423 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1424 				  COMMAND_LINE_SIZE);
1425 	if (boot_command_line[0])
1426 		pr_warn("WARNING: ignoring dynamic command line \"%s\"\n",
1427 			boot_command_line);
1428 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1429 #else
1430 	char *hv_cmdline;
1431 #if defined(CONFIG_CMDLINE_BOOL)
1432 	if (builtin_cmdline[0]) {
1433 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1434 					  COMMAND_LINE_SIZE);
1435 		if (builtin_len < COMMAND_LINE_SIZE-1)
1436 			boot_command_line[builtin_len++] = ' ';
1437 		hv_cmdline = &boot_command_line[builtin_len];
1438 		len = COMMAND_LINE_SIZE - builtin_len;
1439 	} else
1440 #endif
1441 	{
1442 		hv_cmdline = boot_command_line;
1443 		len = COMMAND_LINE_SIZE;
1444 	}
1445 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1446 	if (len < 0 || len > COMMAND_LINE_SIZE)
1447 		early_panic("hv_get_command_line failed: %d\n", len);
1448 #endif
1449 
1450 	*cmdline_p = boot_command_line;
1451 
1452 	/* Set disabled_map and setup_max_cpus very early */
1453 	parse_early_param();
1454 
1455 	/* Make sure the kernel is compatible with the hypervisor. */
1456 	validate_hv();
1457 	validate_va();
1458 
1459 	setup_cpu_maps();
1460 
1461 
1462 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1463 	/*
1464 	 * Initialize the PCI structures.  This is done before memory
1465 	 * setup so that we know whether or not a pci_reserve region
1466 	 * is necessary.
1467 	 */
1468 	if (tile_pci_init() == 0)
1469 		pci_reserve_mb = 0;
1470 
1471 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1472 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1473 	pci_reserve_start_pfn = pci_reserve_end_pfn -
1474 		(pci_reserve_mb << (20 - PAGE_SHIFT));
1475 #endif
1476 
1477 	init_mm.start_code = (unsigned long) _text;
1478 	init_mm.end_code = (unsigned long) _etext;
1479 	init_mm.end_data = (unsigned long) _edata;
1480 	init_mm.brk = (unsigned long) _end;
1481 
1482 	setup_memory();
1483 	store_permanent_mappings();
1484 	setup_bootmem_allocator();
1485 
1486 	/*
1487 	 * NOTE: before this point _nobody_ is allowed to allocate
1488 	 * any memory using the bootmem allocator.
1489 	 */
1490 
1491 #ifdef CONFIG_SWIOTLB
1492 	swiotlb_init(0);
1493 #endif
1494 
1495 	paging_init();
1496 	setup_numa_mapping();
1497 	zone_sizes_init();
1498 	set_page_homes();
1499 	setup_cpu(1);
1500 	setup_clock();
1501 	load_hv_initrd();
1502 }
1503 
1504 
1505 /*
1506  * Set up per-cpu memory.
1507  */
1508 
1509 unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init;
1510 EXPORT_SYMBOL(__per_cpu_offset);
1511 
1512 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1513 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1514 
1515 /*
1516  * As the percpu code allocates pages, we return the pages from the
1517  * end of the node for the specified cpu.
1518  */
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)1519 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1520 {
1521 	int nid = cpu_to_node(cpu);
1522 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1523 
1524 	BUG_ON(size % PAGE_SIZE != 0);
1525 	pfn_offset[nid] += size / PAGE_SIZE;
1526 	BUG_ON(node_percpu[nid] < size);
1527 	node_percpu[nid] -= size;
1528 	if (percpu_pfn[cpu] == 0)
1529 		percpu_pfn[cpu] = pfn;
1530 	return pfn_to_kaddr(pfn);
1531 }
1532 
1533 /*
1534  * Pages reserved for percpu memory are not freeable, and in any case we are
1535  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1536  */
pcpu_fc_free(void * ptr,size_t size)1537 static void __init pcpu_fc_free(void *ptr, size_t size)
1538 {
1539 }
1540 
1541 /*
1542  * Set up vmalloc page tables using bootmem for the percpu code.
1543  */
pcpu_fc_populate_pte(unsigned long addr)1544 static void __init pcpu_fc_populate_pte(unsigned long addr)
1545 {
1546 	pgd_t *pgd;
1547 	pud_t *pud;
1548 	pmd_t *pmd;
1549 	pte_t *pte;
1550 
1551 	BUG_ON(pgd_addr_invalid(addr));
1552 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1553 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
1554 		      addr, VMALLOC_START, VMALLOC_END);
1555 
1556 	pgd = swapper_pg_dir + pgd_index(addr);
1557 	pud = pud_offset(pgd, addr);
1558 	BUG_ON(!pud_present(*pud));
1559 	pmd = pmd_offset(pud, addr);
1560 	if (pmd_present(*pmd)) {
1561 		BUG_ON(pmd_huge_page(*pmd));
1562 	} else {
1563 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1564 				      HV_PAGE_TABLE_ALIGN, 0);
1565 		pmd_populate_kernel(&init_mm, pmd, pte);
1566 	}
1567 }
1568 
setup_per_cpu_areas(void)1569 void __init setup_per_cpu_areas(void)
1570 {
1571 	struct page *pg;
1572 	unsigned long delta, pfn, lowmem_va;
1573 	unsigned long size = percpu_size();
1574 	char *ptr;
1575 	int rc, cpu, i;
1576 
1577 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1578 				   pcpu_fc_free, pcpu_fc_populate_pte);
1579 	if (rc < 0)
1580 		panic("Cannot initialize percpu area (err=%d)", rc);
1581 
1582 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1583 	for_each_possible_cpu(cpu) {
1584 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1585 
1586 		/* finv the copy out of cache so we can change homecache */
1587 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1588 		__finv_buffer(ptr, size);
1589 		pfn = percpu_pfn[cpu];
1590 
1591 		/* Rewrite the page tables to cache on that cpu */
1592 		pg = pfn_to_page(pfn);
1593 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1594 
1595 			/* Update the vmalloc mapping and page home. */
1596 			unsigned long addr = (unsigned long)ptr + i;
1597 			pte_t *ptep = virt_to_kpte(addr);
1598 			pte_t pte = *ptep;
1599 			BUG_ON(pfn != pte_pfn(pte));
1600 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1601 			pte = set_remote_cache_cpu(pte, cpu);
1602 			set_pte_at(&init_mm, addr, ptep, pte);
1603 
1604 			/* Update the lowmem mapping for consistency. */
1605 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1606 			ptep = virt_to_kpte(lowmem_va);
1607 			if (pte_huge(*ptep)) {
1608 				printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
1609 				       lowmem_va);
1610 				shatter_pmd((pmd_t *)ptep);
1611 				ptep = virt_to_kpte(lowmem_va);
1612 				BUG_ON(pte_huge(*ptep));
1613 			}
1614 			BUG_ON(pfn != pte_pfn(*ptep));
1615 			set_pte_at(&init_mm, lowmem_va, ptep, pte);
1616 		}
1617 	}
1618 
1619 	/* Set our thread pointer appropriately. */
1620 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1621 
1622 	/* Make sure the finv's have completed. */
1623 	mb_incoherent();
1624 
1625 	/* Flush the TLB so we reference it properly from here on out. */
1626 	local_flush_tlb_all();
1627 }
1628 
1629 static struct resource data_resource = {
1630 	.name	= "Kernel data",
1631 	.start	= 0,
1632 	.end	= 0,
1633 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1634 };
1635 
1636 static struct resource code_resource = {
1637 	.name	= "Kernel code",
1638 	.start	= 0,
1639 	.end	= 0,
1640 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1641 };
1642 
1643 /*
1644  * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1645  * mappings above 4GB.
1646  */
1647 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1648 static struct resource* __init
insert_non_bus_resource(void)1649 insert_non_bus_resource(void)
1650 {
1651 	struct resource *res =
1652 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1653 	if (!res)
1654 		return NULL;
1655 	res->name = "Non-Bus Physical Address Space";
1656 	res->start = (1ULL << 32);
1657 	res->end = -1LL;
1658 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1659 	if (insert_resource(&iomem_resource, res)) {
1660 		kfree(res);
1661 		return NULL;
1662 	}
1663 	return res;
1664 }
1665 #endif
1666 
1667 static struct resource* __init
insert_ram_resource(u64 start_pfn,u64 end_pfn,bool reserved)1668 insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1669 {
1670 	struct resource *res =
1671 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1672 	if (!res)
1673 		return NULL;
1674 	res->start = start_pfn << PAGE_SHIFT;
1675 	res->end = (end_pfn << PAGE_SHIFT) - 1;
1676 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1677 	if (reserved) {
1678 		res->name = "Reserved";
1679 	} else {
1680 		res->name = "System RAM";
1681 		res->flags |= IORESOURCE_SYSRAM;
1682 	}
1683 	if (insert_resource(&iomem_resource, res)) {
1684 		kfree(res);
1685 		return NULL;
1686 	}
1687 	return res;
1688 }
1689 
1690 /*
1691  * Request address space for all standard resources
1692  *
1693  * If the system includes PCI root complex drivers, we need to create
1694  * a window just below 4GB where PCI BARs can be mapped.
1695  */
request_standard_resources(void)1696 static int __init request_standard_resources(void)
1697 {
1698 	int i;
1699 	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1700 
1701 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1702 	insert_non_bus_resource();
1703 #endif
1704 
1705 	for_each_online_node(i) {
1706 		u64 start_pfn = node_start_pfn[i];
1707 		u64 end_pfn = node_end_pfn[i];
1708 
1709 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1710 		if (start_pfn <= pci_reserve_start_pfn &&
1711 		    end_pfn > pci_reserve_start_pfn) {
1712 			if (end_pfn > pci_reserve_end_pfn)
1713 				insert_ram_resource(pci_reserve_end_pfn,
1714 						    end_pfn, 0);
1715 			end_pfn = pci_reserve_start_pfn;
1716 		}
1717 #endif
1718 		insert_ram_resource(start_pfn, end_pfn, 0);
1719 	}
1720 
1721 	code_resource.start = __pa(_text - CODE_DELTA);
1722 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1723 	data_resource.start = __pa(_sdata);
1724 	data_resource.end = __pa(_end)-1;
1725 
1726 	insert_resource(&iomem_resource, &code_resource);
1727 	insert_resource(&iomem_resource, &data_resource);
1728 
1729 	/* Mark any "memmap" regions busy for the resource manager. */
1730 	for (i = 0; i < memmap_nr; ++i) {
1731 		struct memmap_entry *m = &memmap_map[i];
1732 		insert_ram_resource(PFN_DOWN(m->addr),
1733 				    PFN_UP(m->addr + m->size - 1), 1);
1734 	}
1735 
1736 #ifdef CONFIG_KEXEC
1737 	insert_resource(&iomem_resource, &crashk_res);
1738 #endif
1739 
1740 	return 0;
1741 }
1742 
1743 subsys_initcall(request_standard_resources);
1744