• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpufreq_times.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
policy_is_inactive(struct cpufreq_policy * policy)37 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
38 {
39 	return cpumask_empty(policy->cpus);
40 }
41 
42 /* Macros to iterate over CPU policies */
43 #define for_each_suitable_policy(__policy, __active)			 \
44 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
45 		if ((__active) == !policy_is_inactive(__policy))
46 
47 #define for_each_active_policy(__policy)		\
48 	for_each_suitable_policy(__policy, true)
49 #define for_each_inactive_policy(__policy)		\
50 	for_each_suitable_policy(__policy, false)
51 
52 #define for_each_policy(__policy)			\
53 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
54 
55 /* Iterate over governors */
56 static LIST_HEAD(cpufreq_governor_list);
57 #define for_each_governor(__governor)				\
58 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
59 
60 /**
61  * The "cpufreq driver" - the arch- or hardware-dependent low
62  * level driver of CPUFreq support, and its spinlock. This lock
63  * also protects the cpufreq_cpu_data array.
64  */
65 static struct cpufreq_driver *cpufreq_driver;
66 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
67 static DEFINE_RWLOCK(cpufreq_driver_lock);
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
has_target(void)72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
77 /* internal prototypes */
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_init_governor(struct cpufreq_policy *policy);
80 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
81 static int cpufreq_start_governor(struct cpufreq_policy *policy);
82 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
83 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
84 
85 /**
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 static struct srcu_notifier_head cpufreq_transition_notifier_list;
94 
95 static bool init_cpufreq_transition_notifier_list_called;
init_cpufreq_transition_notifier_list(void)96 static int __init init_cpufreq_transition_notifier_list(void)
97 {
98 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
99 	init_cpufreq_transition_notifier_list_called = true;
100 	return 0;
101 }
102 pure_initcall(init_cpufreq_transition_notifier_list);
103 
104 static int off __read_mostly;
cpufreq_disabled(void)105 static int cpufreq_disabled(void)
106 {
107 	return off;
108 }
disable_cpufreq(void)109 void disable_cpufreq(void)
110 {
111 	off = 1;
112 }
113 static DEFINE_MUTEX(cpufreq_governor_mutex);
114 
have_governor_per_policy(void)115 bool have_governor_per_policy(void)
116 {
117 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
118 }
119 EXPORT_SYMBOL_GPL(have_governor_per_policy);
120 
get_governor_parent_kobj(struct cpufreq_policy * policy)121 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
122 {
123 	if (have_governor_per_policy())
124 		return &policy->kobj;
125 	else
126 		return cpufreq_global_kobject;
127 }
128 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
129 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)130 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
131 {
132 	u64 idle_time;
133 	u64 cur_wall_time;
134 	u64 busy_time;
135 
136 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137 
138 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
139 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
140 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
141 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
142 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
143 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
144 
145 	idle_time = cur_wall_time - busy_time;
146 	if (wall)
147 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
148 
149 	return div_u64(idle_time, NSEC_PER_USEC);
150 }
151 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)152 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
153 {
154 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
155 
156 	if (idle_time == -1ULL)
157 		return get_cpu_idle_time_jiffy(cpu, wall);
158 	else if (!io_busy)
159 		idle_time += get_cpu_iowait_time_us(cpu, wall);
160 
161 	return idle_time;
162 }
163 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
164 
165 /*
166  * This is a generic cpufreq init() routine which can be used by cpufreq
167  * drivers of SMP systems. It will do following:
168  * - validate & show freq table passed
169  * - set policies transition latency
170  * - policy->cpus with all possible CPUs
171  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)172 int cpufreq_generic_init(struct cpufreq_policy *policy,
173 		struct cpufreq_frequency_table *table,
174 		unsigned int transition_latency)
175 {
176 	int ret;
177 
178 	ret = cpufreq_table_validate_and_show(policy, table);
179 	if (ret) {
180 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
181 		return ret;
182 	}
183 
184 	policy->cpuinfo.transition_latency = transition_latency;
185 
186 	/*
187 	 * The driver only supports the SMP configuration where all processors
188 	 * share the clock and voltage and clock.
189 	 */
190 	cpumask_setall(policy->cpus);
191 
192 	return 0;
193 }
194 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
195 
cpufreq_cpu_get_raw(unsigned int cpu)196 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
197 {
198 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
199 
200 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
203 
cpufreq_generic_get(unsigned int cpu)204 unsigned int cpufreq_generic_get(unsigned int cpu)
205 {
206 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
207 
208 	if (!policy || IS_ERR(policy->clk)) {
209 		pr_err("%s: No %s associated to cpu: %d\n",
210 		       __func__, policy ? "clk" : "policy", cpu);
211 		return 0;
212 	}
213 
214 	return clk_get_rate(policy->clk) / 1000;
215 }
216 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
217 
218 /**
219  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
220  *
221  * @cpu: cpu to find policy for.
222  *
223  * This returns policy for 'cpu', returns NULL if it doesn't exist.
224  * It also increments the kobject reference count to mark it busy and so would
225  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
226  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
227  * freed as that depends on the kobj count.
228  *
229  * Return: A valid policy on success, otherwise NULL on failure.
230  */
cpufreq_cpu_get(unsigned int cpu)231 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
232 {
233 	struct cpufreq_policy *policy = NULL;
234 	unsigned long flags;
235 
236 	if (WARN_ON(cpu >= nr_cpu_ids))
237 		return NULL;
238 
239 	/* get the cpufreq driver */
240 	read_lock_irqsave(&cpufreq_driver_lock, flags);
241 
242 	if (cpufreq_driver) {
243 		/* get the CPU */
244 		policy = cpufreq_cpu_get_raw(cpu);
245 		if (policy)
246 			kobject_get(&policy->kobj);
247 	}
248 
249 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
250 
251 	return policy;
252 }
253 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
254 
255 /**
256  * cpufreq_cpu_put: Decrements the usage count of a policy
257  *
258  * @policy: policy earlier returned by cpufreq_cpu_get().
259  *
260  * This decrements the kobject reference count incremented earlier by calling
261  * cpufreq_cpu_get().
262  */
cpufreq_cpu_put(struct cpufreq_policy * policy)263 void cpufreq_cpu_put(struct cpufreq_policy *policy)
264 {
265 	kobject_put(&policy->kobj);
266 }
267 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
268 
269 /*********************************************************************
270  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
271  *********************************************************************/
272 
273 /**
274  * adjust_jiffies - adjust the system "loops_per_jiffy"
275  *
276  * This function alters the system "loops_per_jiffy" for the clock
277  * speed change. Note that loops_per_jiffy cannot be updated on SMP
278  * systems as each CPU might be scaled differently. So, use the arch
279  * per-CPU loops_per_jiffy value wherever possible.
280  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)281 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
282 {
283 #ifndef CONFIG_SMP
284 	static unsigned long l_p_j_ref;
285 	static unsigned int l_p_j_ref_freq;
286 
287 	if (ci->flags & CPUFREQ_CONST_LOOPS)
288 		return;
289 
290 	if (!l_p_j_ref_freq) {
291 		l_p_j_ref = loops_per_jiffy;
292 		l_p_j_ref_freq = ci->old;
293 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
294 			 l_p_j_ref, l_p_j_ref_freq);
295 	}
296 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
297 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
298 								ci->new);
299 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
300 			 loops_per_jiffy, ci->new);
301 	}
302 #endif
303 }
304 
__cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)305 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
306 		struct cpufreq_freqs *freqs, unsigned int state)
307 {
308 	BUG_ON(irqs_disabled());
309 
310 	if (cpufreq_disabled())
311 		return;
312 
313 	freqs->flags = cpufreq_driver->flags;
314 	pr_debug("notification %u of frequency transition to %u kHz\n",
315 		 state, freqs->new);
316 
317 	switch (state) {
318 
319 	case CPUFREQ_PRECHANGE:
320 		/* detect if the driver reported a value as "old frequency"
321 		 * which is not equal to what the cpufreq core thinks is
322 		 * "old frequency".
323 		 */
324 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 			if ((policy) && (policy->cpu == freqs->cpu) &&
326 			    (policy->cur) && (policy->cur != freqs->old)) {
327 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
328 					 freqs->old, policy->cur);
329 				freqs->old = policy->cur;
330 			}
331 		}
332 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
333 				CPUFREQ_PRECHANGE, freqs);
334 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
335 		break;
336 
337 	case CPUFREQ_POSTCHANGE:
338 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
339 		pr_debug("FREQ: %lu - CPU: %lu\n",
340 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
341 		trace_cpu_frequency(freqs->new, freqs->cpu);
342 		cpufreq_stats_record_transition(policy, freqs->new);
343 		cpufreq_times_record_transition(policy, freqs->new);
344 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
345 				CPUFREQ_POSTCHANGE, freqs);
346 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
347 			policy->cur = freqs->new;
348 		break;
349 	}
350 }
351 
352 /**
353  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
354  * on frequency transition.
355  *
356  * This function calls the transition notifiers and the "adjust_jiffies"
357  * function. It is called twice on all CPU frequency changes that have
358  * external effects.
359  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)360 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
361 		struct cpufreq_freqs *freqs, unsigned int state)
362 {
363 	for_each_cpu(freqs->cpu, policy->cpus)
364 		__cpufreq_notify_transition(policy, freqs, state);
365 }
366 
367 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)368 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
369 		struct cpufreq_freqs *freqs, int transition_failed)
370 {
371 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
372 	if (!transition_failed)
373 		return;
374 
375 	swap(freqs->old, freqs->new);
376 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
377 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
378 }
379 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)380 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
381 		struct cpufreq_freqs *freqs)
382 {
383 
384 	/*
385 	 * Catch double invocations of _begin() which lead to self-deadlock.
386 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
387 	 * doesn't invoke _begin() on their behalf, and hence the chances of
388 	 * double invocations are very low. Moreover, there are scenarios
389 	 * where these checks can emit false-positive warnings in these
390 	 * drivers; so we avoid that by skipping them altogether.
391 	 */
392 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
393 				&& current == policy->transition_task);
394 
395 wait:
396 	wait_event(policy->transition_wait, !policy->transition_ongoing);
397 
398 	spin_lock(&policy->transition_lock);
399 
400 	if (unlikely(policy->transition_ongoing)) {
401 		spin_unlock(&policy->transition_lock);
402 		goto wait;
403 	}
404 
405 	policy->transition_ongoing = true;
406 	policy->transition_task = current;
407 
408 	spin_unlock(&policy->transition_lock);
409 
410 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
411 }
412 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
413 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)414 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
415 		struct cpufreq_freqs *freqs, int transition_failed)
416 {
417 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
418 		return;
419 
420 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
421 
422 	policy->transition_ongoing = false;
423 	policy->transition_task = NULL;
424 
425 	wake_up(&policy->transition_wait);
426 }
427 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
428 
429 /*
430  * Fast frequency switching status count.  Positive means "enabled", negative
431  * means "disabled" and 0 means "not decided yet".
432  */
433 static int cpufreq_fast_switch_count;
434 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
435 
cpufreq_list_transition_notifiers(void)436 static void cpufreq_list_transition_notifiers(void)
437 {
438 	struct notifier_block *nb;
439 
440 	pr_info("Registered transition notifiers:\n");
441 
442 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
443 
444 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
445 		pr_info("%pF\n", nb->notifier_call);
446 
447 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
448 }
449 
450 /**
451  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
452  * @policy: cpufreq policy to enable fast frequency switching for.
453  *
454  * Try to enable fast frequency switching for @policy.
455  *
456  * The attempt will fail if there is at least one transition notifier registered
457  * at this point, as fast frequency switching is quite fundamentally at odds
458  * with transition notifiers.  Thus if successful, it will make registration of
459  * transition notifiers fail going forward.
460  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)461 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
462 {
463 	lockdep_assert_held(&policy->rwsem);
464 
465 	if (!policy->fast_switch_possible)
466 		return;
467 
468 	mutex_lock(&cpufreq_fast_switch_lock);
469 	if (cpufreq_fast_switch_count >= 0) {
470 		cpufreq_fast_switch_count++;
471 		policy->fast_switch_enabled = true;
472 	} else {
473 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
474 			policy->cpu);
475 		cpufreq_list_transition_notifiers();
476 	}
477 	mutex_unlock(&cpufreq_fast_switch_lock);
478 }
479 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
480 
481 /**
482  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
483  * @policy: cpufreq policy to disable fast frequency switching for.
484  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)485 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
486 {
487 	mutex_lock(&cpufreq_fast_switch_lock);
488 	if (policy->fast_switch_enabled) {
489 		policy->fast_switch_enabled = false;
490 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
491 			cpufreq_fast_switch_count--;
492 	}
493 	mutex_unlock(&cpufreq_fast_switch_lock);
494 }
495 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
496 
497 /**
498  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
499  * one.
500  * @target_freq: target frequency to resolve.
501  *
502  * The target to driver frequency mapping is cached in the policy.
503  *
504  * Return: Lowest driver-supported frequency greater than or equal to the
505  * given target_freq, subject to policy (min/max) and driver limitations.
506  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)507 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
508 					 unsigned int target_freq)
509 {
510 	target_freq = clamp_val(target_freq, policy->min, policy->max);
511 	policy->cached_target_freq = target_freq;
512 
513 	if (cpufreq_driver->target_index) {
514 		int idx;
515 
516 		idx = cpufreq_frequency_table_target(policy, target_freq,
517 						     CPUFREQ_RELATION_L);
518 		policy->cached_resolved_idx = idx;
519 		return policy->freq_table[idx].frequency;
520 	}
521 
522 	if (cpufreq_driver->resolve_freq)
523 		return cpufreq_driver->resolve_freq(policy, target_freq);
524 
525 	return target_freq;
526 }
527 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
528 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)529 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
530 {
531 	unsigned int latency;
532 
533 	if (policy->transition_delay_us)
534 		return policy->transition_delay_us;
535 
536 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
537 	if (latency) {
538 		/*
539 		 * For platforms that can change the frequency very fast (< 10
540 		 * us), the above formula gives a decent transition delay. But
541 		 * for platforms where transition_latency is in milliseconds, it
542 		 * ends up giving unrealistic values.
543 		 *
544 		 * Cap the default transition delay to 10 ms, which seems to be
545 		 * a reasonable amount of time after which we should reevaluate
546 		 * the frequency.
547 		 */
548 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
549 	}
550 
551 	return LATENCY_MULTIPLIER;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
554 
555 /*********************************************************************
556  *                          SYSFS INTERFACE                          *
557  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)558 static ssize_t show_boost(struct kobject *kobj,
559 			  struct kobj_attribute *attr, char *buf)
560 {
561 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
562 }
563 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)564 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
565 			   const char *buf, size_t count)
566 {
567 	int ret, enable;
568 
569 	ret = sscanf(buf, "%d", &enable);
570 	if (ret != 1 || enable < 0 || enable > 1)
571 		return -EINVAL;
572 
573 	if (cpufreq_boost_trigger_state(enable)) {
574 		pr_err("%s: Cannot %s BOOST!\n",
575 		       __func__, enable ? "enable" : "disable");
576 		return -EINVAL;
577 	}
578 
579 	pr_debug("%s: cpufreq BOOST %s\n",
580 		 __func__, enable ? "enabled" : "disabled");
581 
582 	return count;
583 }
584 define_one_global_rw(boost);
585 
find_governor(const char * str_governor)586 static struct cpufreq_governor *find_governor(const char *str_governor)
587 {
588 	struct cpufreq_governor *t;
589 
590 	for_each_governor(t)
591 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
592 			return t;
593 
594 	return NULL;
595 }
596 
597 /**
598  * cpufreq_parse_governor - parse a governor string
599  */
cpufreq_parse_governor(char * str_governor,unsigned int * policy,struct cpufreq_governor ** governor)600 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
601 				struct cpufreq_governor **governor)
602 {
603 	int err = -EINVAL;
604 
605 	if (cpufreq_driver->setpolicy) {
606 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
607 			*policy = CPUFREQ_POLICY_PERFORMANCE;
608 			err = 0;
609 		} else if (!strncasecmp(str_governor, "powersave",
610 						CPUFREQ_NAME_LEN)) {
611 			*policy = CPUFREQ_POLICY_POWERSAVE;
612 			err = 0;
613 		}
614 	} else {
615 		struct cpufreq_governor *t;
616 
617 		mutex_lock(&cpufreq_governor_mutex);
618 
619 		t = find_governor(str_governor);
620 
621 		if (t == NULL) {
622 			int ret;
623 
624 			mutex_unlock(&cpufreq_governor_mutex);
625 			ret = request_module("cpufreq_%s", str_governor);
626 			mutex_lock(&cpufreq_governor_mutex);
627 
628 			if (ret == 0)
629 				t = find_governor(str_governor);
630 		}
631 
632 		if (t != NULL) {
633 			*governor = t;
634 			err = 0;
635 		}
636 
637 		mutex_unlock(&cpufreq_governor_mutex);
638 	}
639 	return err;
640 }
641 
642 /**
643  * cpufreq_per_cpu_attr_read() / show_##file_name() -
644  * print out cpufreq information
645  *
646  * Write out information from cpufreq_driver->policy[cpu]; object must be
647  * "unsigned int".
648  */
649 
650 #define show_one(file_name, object)			\
651 static ssize_t show_##file_name				\
652 (struct cpufreq_policy *policy, char *buf)		\
653 {							\
654 	return sprintf(buf, "%u\n", policy->object);	\
655 }
656 
657 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
658 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
659 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
660 show_one(scaling_min_freq, min);
661 show_one(scaling_max_freq, max);
662 
arch_freq_get_on_cpu(int cpu)663 __weak unsigned int arch_freq_get_on_cpu(int cpu)
664 {
665 	return 0;
666 }
667 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)668 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
669 {
670 	ssize_t ret;
671 	unsigned int freq;
672 
673 	freq = arch_freq_get_on_cpu(policy->cpu);
674 	if (freq)
675 		ret = sprintf(buf, "%u\n", freq);
676 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
677 			cpufreq_driver->get)
678 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
679 	else
680 		ret = sprintf(buf, "%u\n", policy->cur);
681 	return ret;
682 }
683 
684 static int cpufreq_set_policy(struct cpufreq_policy *policy,
685 				struct cpufreq_policy *new_policy);
686 
687 /**
688  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
689  */
690 #define store_one(file_name, object)			\
691 static ssize_t store_##file_name					\
692 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
693 {									\
694 	int ret, temp;							\
695 	struct cpufreq_policy new_policy;				\
696 									\
697 	memcpy(&new_policy, policy, sizeof(*policy));			\
698 	new_policy.min = policy->user_policy.min;			\
699 	new_policy.max = policy->user_policy.max;			\
700 									\
701 	ret = sscanf(buf, "%u", &new_policy.object);			\
702 	if (ret != 1)							\
703 		return -EINVAL;						\
704 									\
705 	temp = new_policy.object;					\
706 	ret = cpufreq_set_policy(policy, &new_policy);		\
707 	if (!ret)							\
708 		policy->user_policy.object = temp;			\
709 									\
710 	return ret ? ret : count;					\
711 }
712 
713 store_one(scaling_min_freq, min);
714 store_one(scaling_max_freq, max);
715 
716 /**
717  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
718  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)719 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
720 					char *buf)
721 {
722 	unsigned int cur_freq = __cpufreq_get(policy);
723 
724 	if (cur_freq)
725 		return sprintf(buf, "%u\n", cur_freq);
726 
727 	return sprintf(buf, "<unknown>\n");
728 }
729 
730 /**
731  * show_scaling_governor - show the current policy for the specified CPU
732  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)733 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
734 {
735 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
736 		return sprintf(buf, "powersave\n");
737 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
738 		return sprintf(buf, "performance\n");
739 	else if (policy->governor)
740 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
741 				policy->governor->name);
742 	return -EINVAL;
743 }
744 
745 /**
746  * store_scaling_governor - store policy for the specified CPU
747  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)748 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
749 					const char *buf, size_t count)
750 {
751 	int ret;
752 	char	str_governor[16];
753 	struct cpufreq_policy new_policy;
754 
755 	memcpy(&new_policy, policy, sizeof(*policy));
756 
757 	ret = sscanf(buf, "%15s", str_governor);
758 	if (ret != 1)
759 		return -EINVAL;
760 
761 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
762 						&new_policy.governor))
763 		return -EINVAL;
764 
765 	ret = cpufreq_set_policy(policy, &new_policy);
766 	return ret ? ret : count;
767 }
768 
769 /**
770  * show_scaling_driver - show the cpufreq driver currently loaded
771  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)772 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
773 {
774 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
775 }
776 
777 /**
778  * show_scaling_available_governors - show the available CPUfreq governors
779  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)780 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
781 						char *buf)
782 {
783 	ssize_t i = 0;
784 	struct cpufreq_governor *t;
785 
786 	if (!has_target()) {
787 		i += sprintf(buf, "performance powersave");
788 		goto out;
789 	}
790 
791 	for_each_governor(t) {
792 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
793 		    - (CPUFREQ_NAME_LEN + 2)))
794 			goto out;
795 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
796 	}
797 out:
798 	i += sprintf(&buf[i], "\n");
799 	return i;
800 }
801 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)802 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
803 {
804 	ssize_t i = 0;
805 	unsigned int cpu;
806 
807 	for_each_cpu(cpu, mask) {
808 		if (i)
809 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
810 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
811 		if (i >= (PAGE_SIZE - 5))
812 			break;
813 	}
814 	i += sprintf(&buf[i], "\n");
815 	return i;
816 }
817 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
818 
819 /**
820  * show_related_cpus - show the CPUs affected by each transition even if
821  * hw coordination is in use
822  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)823 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
824 {
825 	return cpufreq_show_cpus(policy->related_cpus, buf);
826 }
827 
828 /**
829  * show_affected_cpus - show the CPUs affected by each transition
830  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)831 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
832 {
833 	return cpufreq_show_cpus(policy->cpus, buf);
834 }
835 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)836 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
837 					const char *buf, size_t count)
838 {
839 	unsigned int freq = 0;
840 	unsigned int ret;
841 
842 	if (!policy->governor || !policy->governor->store_setspeed)
843 		return -EINVAL;
844 
845 	ret = sscanf(buf, "%u", &freq);
846 	if (ret != 1)
847 		return -EINVAL;
848 
849 	policy->governor->store_setspeed(policy, freq);
850 
851 	return count;
852 }
853 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)854 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
855 {
856 	if (!policy->governor || !policy->governor->show_setspeed)
857 		return sprintf(buf, "<unsupported>\n");
858 
859 	return policy->governor->show_setspeed(policy, buf);
860 }
861 
862 /**
863  * show_bios_limit - show the current cpufreq HW/BIOS limitation
864  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)865 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
866 {
867 	unsigned int limit;
868 	int ret;
869 	if (cpufreq_driver->bios_limit) {
870 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
871 		if (!ret)
872 			return sprintf(buf, "%u\n", limit);
873 	}
874 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
875 }
876 
877 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
878 cpufreq_freq_attr_ro(cpuinfo_min_freq);
879 cpufreq_freq_attr_ro(cpuinfo_max_freq);
880 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
881 cpufreq_freq_attr_ro(scaling_available_governors);
882 cpufreq_freq_attr_ro(scaling_driver);
883 cpufreq_freq_attr_ro(scaling_cur_freq);
884 cpufreq_freq_attr_ro(bios_limit);
885 cpufreq_freq_attr_ro(related_cpus);
886 cpufreq_freq_attr_ro(affected_cpus);
887 cpufreq_freq_attr_rw(scaling_min_freq);
888 cpufreq_freq_attr_rw(scaling_max_freq);
889 cpufreq_freq_attr_rw(scaling_governor);
890 cpufreq_freq_attr_rw(scaling_setspeed);
891 
892 static struct attribute *default_attrs[] = {
893 	&cpuinfo_min_freq.attr,
894 	&cpuinfo_max_freq.attr,
895 	&cpuinfo_transition_latency.attr,
896 	&scaling_min_freq.attr,
897 	&scaling_max_freq.attr,
898 	&affected_cpus.attr,
899 	&related_cpus.attr,
900 	&scaling_governor.attr,
901 	&scaling_driver.attr,
902 	&scaling_available_governors.attr,
903 	&scaling_setspeed.attr,
904 	NULL
905 };
906 
907 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
908 #define to_attr(a) container_of(a, struct freq_attr, attr)
909 
show(struct kobject * kobj,struct attribute * attr,char * buf)910 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
911 {
912 	struct cpufreq_policy *policy = to_policy(kobj);
913 	struct freq_attr *fattr = to_attr(attr);
914 	ssize_t ret;
915 
916 	if (!fattr->show)
917 		return -EIO;
918 
919 	down_read(&policy->rwsem);
920 	ret = fattr->show(policy, buf);
921 	up_read(&policy->rwsem);
922 
923 	return ret;
924 }
925 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)926 static ssize_t store(struct kobject *kobj, struct attribute *attr,
927 		     const char *buf, size_t count)
928 {
929 	struct cpufreq_policy *policy = to_policy(kobj);
930 	struct freq_attr *fattr = to_attr(attr);
931 	ssize_t ret = -EINVAL;
932 
933 	if (!fattr->store)
934 		return -EIO;
935 
936 	cpus_read_lock();
937 
938 	if (cpu_online(policy->cpu)) {
939 		down_write(&policy->rwsem);
940 		ret = fattr->store(policy, buf, count);
941 		up_write(&policy->rwsem);
942 	}
943 
944 	cpus_read_unlock();
945 
946 	return ret;
947 }
948 
cpufreq_sysfs_release(struct kobject * kobj)949 static void cpufreq_sysfs_release(struct kobject *kobj)
950 {
951 	struct cpufreq_policy *policy = to_policy(kobj);
952 	pr_debug("last reference is dropped\n");
953 	complete(&policy->kobj_unregister);
954 }
955 
956 static const struct sysfs_ops sysfs_ops = {
957 	.show	= show,
958 	.store	= store,
959 };
960 
961 static struct kobj_type ktype_cpufreq = {
962 	.sysfs_ops	= &sysfs_ops,
963 	.default_attrs	= default_attrs,
964 	.release	= cpufreq_sysfs_release,
965 };
966 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu)967 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
968 {
969 	struct device *dev = get_cpu_device(cpu);
970 
971 	if (!dev)
972 		return;
973 
974 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
975 		return;
976 
977 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
978 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
979 		dev_err(dev, "cpufreq symlink creation failed\n");
980 }
981 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)982 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
983 				   struct device *dev)
984 {
985 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
986 	sysfs_remove_link(&dev->kobj, "cpufreq");
987 }
988 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)989 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
990 {
991 	struct freq_attr **drv_attr;
992 	int ret = 0;
993 
994 	/* set up files for this cpu device */
995 	drv_attr = cpufreq_driver->attr;
996 	while (drv_attr && *drv_attr) {
997 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
998 		if (ret)
999 			return ret;
1000 		drv_attr++;
1001 	}
1002 	if (cpufreq_driver->get) {
1003 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 
1008 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1009 	if (ret)
1010 		return ret;
1011 
1012 	if (cpufreq_driver->bios_limit) {
1013 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1014 		if (ret)
1015 			return ret;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
cpufreq_default_governor(void)1021 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1022 {
1023 	return NULL;
1024 }
1025 
cpufreq_init_policy(struct cpufreq_policy * policy)1026 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1027 {
1028 	struct cpufreq_governor *gov = NULL;
1029 	struct cpufreq_policy new_policy;
1030 
1031 	memcpy(&new_policy, policy, sizeof(*policy));
1032 
1033 	/* Update governor of new_policy to the governor used before hotplug */
1034 	gov = find_governor(policy->last_governor);
1035 	if (gov) {
1036 		pr_debug("Restoring governor %s for cpu %d\n",
1037 				policy->governor->name, policy->cpu);
1038 	} else {
1039 		gov = cpufreq_default_governor();
1040 		if (!gov)
1041 			return -ENODATA;
1042 	}
1043 
1044 	new_policy.governor = gov;
1045 
1046 	/* Use the default policy if there is no last_policy. */
1047 	if (cpufreq_driver->setpolicy) {
1048 		if (policy->last_policy)
1049 			new_policy.policy = policy->last_policy;
1050 		else
1051 			cpufreq_parse_governor(gov->name, &new_policy.policy,
1052 					       NULL);
1053 	}
1054 	/* set default policy */
1055 	return cpufreq_set_policy(policy, &new_policy);
1056 }
1057 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1058 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1059 {
1060 	int ret = 0;
1061 
1062 	/* Has this CPU been taken care of already? */
1063 	if (cpumask_test_cpu(cpu, policy->cpus))
1064 		return 0;
1065 
1066 	down_write(&policy->rwsem);
1067 	if (has_target())
1068 		cpufreq_stop_governor(policy);
1069 
1070 	cpumask_set_cpu(cpu, policy->cpus);
1071 
1072 	if (has_target()) {
1073 		ret = cpufreq_start_governor(policy);
1074 		if (ret)
1075 			pr_err("%s: Failed to start governor\n", __func__);
1076 	}
1077 	up_write(&policy->rwsem);
1078 	return ret;
1079 }
1080 
handle_update(struct work_struct * work)1081 static void handle_update(struct work_struct *work)
1082 {
1083 	struct cpufreq_policy *policy =
1084 		container_of(work, struct cpufreq_policy, update);
1085 	unsigned int cpu = policy->cpu;
1086 	pr_debug("handle_update for cpu %u called\n", cpu);
1087 	cpufreq_update_policy(cpu);
1088 }
1089 
cpufreq_policy_alloc(unsigned int cpu)1090 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1091 {
1092 	struct cpufreq_policy *policy;
1093 	int ret;
1094 
1095 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1096 	if (!policy)
1097 		return NULL;
1098 
1099 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1100 		goto err_free_policy;
1101 
1102 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1103 		goto err_free_cpumask;
1104 
1105 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1106 		goto err_free_rcpumask;
1107 
1108 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1109 				   cpufreq_global_kobject, "policy%u", cpu);
1110 	if (ret) {
1111 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1112 		kobject_put(&policy->kobj);
1113 		goto err_free_real_cpus;
1114 	}
1115 
1116 	INIT_LIST_HEAD(&policy->policy_list);
1117 	init_rwsem(&policy->rwsem);
1118 	spin_lock_init(&policy->transition_lock);
1119 	init_waitqueue_head(&policy->transition_wait);
1120 	init_completion(&policy->kobj_unregister);
1121 	INIT_WORK(&policy->update, handle_update);
1122 
1123 	policy->cpu = cpu;
1124 	return policy;
1125 
1126 err_free_real_cpus:
1127 	free_cpumask_var(policy->real_cpus);
1128 err_free_rcpumask:
1129 	free_cpumask_var(policy->related_cpus);
1130 err_free_cpumask:
1131 	free_cpumask_var(policy->cpus);
1132 err_free_policy:
1133 	kfree(policy);
1134 
1135 	return NULL;
1136 }
1137 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1138 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1139 {
1140 	struct kobject *kobj;
1141 	struct completion *cmp;
1142 
1143 	down_write(&policy->rwsem);
1144 	cpufreq_stats_free_table(policy);
1145 	kobj = &policy->kobj;
1146 	cmp = &policy->kobj_unregister;
1147 	up_write(&policy->rwsem);
1148 	kobject_put(kobj);
1149 
1150 	/*
1151 	 * We need to make sure that the underlying kobj is
1152 	 * actually not referenced anymore by anybody before we
1153 	 * proceed with unloading.
1154 	 */
1155 	pr_debug("waiting for dropping of refcount\n");
1156 	wait_for_completion(cmp);
1157 	pr_debug("wait complete\n");
1158 }
1159 
cpufreq_policy_free(struct cpufreq_policy * policy)1160 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1161 {
1162 	unsigned long flags;
1163 	int cpu;
1164 
1165 	/* Remove policy from list */
1166 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1167 	list_del(&policy->policy_list);
1168 
1169 	for_each_cpu(cpu, policy->related_cpus)
1170 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172 
1173 	cpufreq_policy_put_kobj(policy);
1174 	free_cpumask_var(policy->real_cpus);
1175 	free_cpumask_var(policy->related_cpus);
1176 	free_cpumask_var(policy->cpus);
1177 	kfree(policy);
1178 }
1179 
cpufreq_online(unsigned int cpu)1180 static int cpufreq_online(unsigned int cpu)
1181 {
1182 	struct cpufreq_policy *policy;
1183 	bool new_policy;
1184 	unsigned long flags;
1185 	unsigned int j;
1186 	int ret;
1187 
1188 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1189 
1190 	/* Check if this CPU already has a policy to manage it */
1191 	policy = per_cpu(cpufreq_cpu_data, cpu);
1192 	if (policy) {
1193 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1194 		if (!policy_is_inactive(policy))
1195 			return cpufreq_add_policy_cpu(policy, cpu);
1196 
1197 		/* This is the only online CPU for the policy.  Start over. */
1198 		new_policy = false;
1199 		down_write(&policy->rwsem);
1200 		policy->cpu = cpu;
1201 		policy->governor = NULL;
1202 		up_write(&policy->rwsem);
1203 	} else {
1204 		new_policy = true;
1205 		policy = cpufreq_policy_alloc(cpu);
1206 		if (!policy)
1207 			return -ENOMEM;
1208 	}
1209 
1210 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1211 
1212 	/* call driver. From then on the cpufreq must be able
1213 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1214 	 */
1215 	ret = cpufreq_driver->init(policy);
1216 	if (ret) {
1217 		pr_debug("initialization failed\n");
1218 		goto out_free_policy;
1219 	}
1220 
1221 	down_write(&policy->rwsem);
1222 
1223 	if (new_policy) {
1224 		/* related_cpus should at least include policy->cpus. */
1225 		cpumask_copy(policy->related_cpus, policy->cpus);
1226 	}
1227 
1228 	/*
1229 	 * affected cpus must always be the one, which are online. We aren't
1230 	 * managing offline cpus here.
1231 	 */
1232 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1233 
1234 	if (new_policy) {
1235 		policy->user_policy.min = policy->min;
1236 		policy->user_policy.max = policy->max;
1237 
1238 		for_each_cpu(j, policy->related_cpus) {
1239 			per_cpu(cpufreq_cpu_data, j) = policy;
1240 			add_cpu_dev_symlink(policy, j);
1241 		}
1242 	} else {
1243 		policy->min = policy->user_policy.min;
1244 		policy->max = policy->user_policy.max;
1245 	}
1246 
1247 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1248 		policy->cur = cpufreq_driver->get(policy->cpu);
1249 		if (!policy->cur) {
1250 			pr_err("%s: ->get() failed\n", __func__);
1251 			goto out_exit_policy;
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * Sometimes boot loaders set CPU frequency to a value outside of
1257 	 * frequency table present with cpufreq core. In such cases CPU might be
1258 	 * unstable if it has to run on that frequency for long duration of time
1259 	 * and so its better to set it to a frequency which is specified in
1260 	 * freq-table. This also makes cpufreq stats inconsistent as
1261 	 * cpufreq-stats would fail to register because current frequency of CPU
1262 	 * isn't found in freq-table.
1263 	 *
1264 	 * Because we don't want this change to effect boot process badly, we go
1265 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1266 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1267 	 * is initialized to zero).
1268 	 *
1269 	 * We are passing target-freq as "policy->cur - 1" otherwise
1270 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1271 	 * equal to target-freq.
1272 	 */
1273 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1274 	    && has_target()) {
1275 		/* Are we running at unknown frequency ? */
1276 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1277 		if (ret == -EINVAL) {
1278 			/* Warn user and fix it */
1279 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1280 				__func__, policy->cpu, policy->cur);
1281 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1282 				CPUFREQ_RELATION_L);
1283 
1284 			/*
1285 			 * Reaching here after boot in a few seconds may not
1286 			 * mean that system will remain stable at "unknown"
1287 			 * frequency for longer duration. Hence, a BUG_ON().
1288 			 */
1289 			BUG_ON(ret);
1290 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1291 				__func__, policy->cpu, policy->cur);
1292 		}
1293 	}
1294 
1295 	if (new_policy) {
1296 		ret = cpufreq_add_dev_interface(policy);
1297 		if (ret)
1298 			goto out_exit_policy;
1299 
1300 		cpufreq_stats_create_table(policy);
1301 		cpufreq_times_create_policy(policy);
1302 
1303 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1304 		list_add(&policy->policy_list, &cpufreq_policy_list);
1305 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1306 	}
1307 
1308 	ret = cpufreq_init_policy(policy);
1309 	if (ret) {
1310 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1311 		       __func__, cpu, ret);
1312 		/* cpufreq_policy_free() will notify based on this */
1313 		new_policy = false;
1314 		goto out_exit_policy;
1315 	}
1316 
1317 	up_write(&policy->rwsem);
1318 
1319 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1320 
1321 	/* Callback for handling stuff after policy is ready */
1322 	if (cpufreq_driver->ready)
1323 		cpufreq_driver->ready(policy);
1324 
1325 	pr_debug("initialization complete\n");
1326 
1327 	return 0;
1328 
1329 out_exit_policy:
1330 	for_each_cpu(j, policy->real_cpus)
1331 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1332 
1333 	up_write(&policy->rwsem);
1334 
1335 	if (cpufreq_driver->exit)
1336 		cpufreq_driver->exit(policy);
1337 
1338 out_free_policy:
1339 	cpufreq_policy_free(policy);
1340 	return ret;
1341 }
1342 
1343 /**
1344  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1345  * @dev: CPU device.
1346  * @sif: Subsystem interface structure pointer (not used)
1347  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1348 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1349 {
1350 	struct cpufreq_policy *policy;
1351 	unsigned cpu = dev->id;
1352 	int ret;
1353 
1354 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1355 
1356 	if (cpu_online(cpu)) {
1357 		ret = cpufreq_online(cpu);
1358 		if (ret)
1359 			return ret;
1360 	}
1361 
1362 	/* Create sysfs link on CPU registration */
1363 	policy = per_cpu(cpufreq_cpu_data, cpu);
1364 	if (policy)
1365 		add_cpu_dev_symlink(policy, cpu);
1366 
1367 	return 0;
1368 }
1369 
cpufreq_offline(unsigned int cpu)1370 static int cpufreq_offline(unsigned int cpu)
1371 {
1372 	struct cpufreq_policy *policy;
1373 	int ret;
1374 
1375 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1376 
1377 	policy = cpufreq_cpu_get_raw(cpu);
1378 	if (!policy) {
1379 		pr_debug("%s: No cpu_data found\n", __func__);
1380 		return 0;
1381 	}
1382 
1383 	down_write(&policy->rwsem);
1384 	if (has_target())
1385 		cpufreq_stop_governor(policy);
1386 
1387 	cpumask_clear_cpu(cpu, policy->cpus);
1388 
1389 	if (policy_is_inactive(policy)) {
1390 		if (has_target())
1391 			strncpy(policy->last_governor, policy->governor->name,
1392 				CPUFREQ_NAME_LEN);
1393 		else
1394 			policy->last_policy = policy->policy;
1395 	} else if (cpu == policy->cpu) {
1396 		/* Nominate new CPU */
1397 		policy->cpu = cpumask_any(policy->cpus);
1398 	}
1399 
1400 	/* Start governor again for active policy */
1401 	if (!policy_is_inactive(policy)) {
1402 		if (has_target()) {
1403 			ret = cpufreq_start_governor(policy);
1404 			if (ret)
1405 				pr_err("%s: Failed to start governor\n", __func__);
1406 		}
1407 
1408 		goto unlock;
1409 	}
1410 
1411 	if (cpufreq_driver->stop_cpu)
1412 		cpufreq_driver->stop_cpu(policy);
1413 
1414 	if (has_target())
1415 		cpufreq_exit_governor(policy);
1416 
1417 	/*
1418 	 * Perform the ->exit() even during light-weight tear-down,
1419 	 * since this is a core component, and is essential for the
1420 	 * subsequent light-weight ->init() to succeed.
1421 	 */
1422 	if (cpufreq_driver->exit) {
1423 		cpufreq_driver->exit(policy);
1424 		policy->freq_table = NULL;
1425 	}
1426 
1427 unlock:
1428 	up_write(&policy->rwsem);
1429 	return 0;
1430 }
1431 
1432 /**
1433  * cpufreq_remove_dev - remove a CPU device
1434  *
1435  * Removes the cpufreq interface for a CPU device.
1436  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1437 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1438 {
1439 	unsigned int cpu = dev->id;
1440 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1441 
1442 	if (!policy)
1443 		return;
1444 
1445 	if (cpu_online(cpu))
1446 		cpufreq_offline(cpu);
1447 
1448 	cpumask_clear_cpu(cpu, policy->real_cpus);
1449 	remove_cpu_dev_symlink(policy, dev);
1450 
1451 	if (cpumask_empty(policy->real_cpus))
1452 		cpufreq_policy_free(policy);
1453 }
1454 
1455 /**
1456  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1457  *	in deep trouble.
1458  *	@policy: policy managing CPUs
1459  *	@new_freq: CPU frequency the CPU actually runs at
1460  *
1461  *	We adjust to current frequency first, and need to clean up later.
1462  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1463  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1464 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1465 				unsigned int new_freq)
1466 {
1467 	struct cpufreq_freqs freqs;
1468 
1469 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1470 		 policy->cur, new_freq);
1471 
1472 	freqs.old = policy->cur;
1473 	freqs.new = new_freq;
1474 
1475 	cpufreq_freq_transition_begin(policy, &freqs);
1476 	cpufreq_freq_transition_end(policy, &freqs, 0);
1477 }
1478 
1479 /**
1480  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1481  * @cpu: CPU number
1482  *
1483  * This is the last known freq, without actually getting it from the driver.
1484  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1485  */
cpufreq_quick_get(unsigned int cpu)1486 unsigned int cpufreq_quick_get(unsigned int cpu)
1487 {
1488 	struct cpufreq_policy *policy;
1489 	unsigned int ret_freq = 0;
1490 	unsigned long flags;
1491 
1492 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1493 
1494 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1495 		ret_freq = cpufreq_driver->get(cpu);
1496 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1497 		return ret_freq;
1498 	}
1499 
1500 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501 
1502 	policy = cpufreq_cpu_get(cpu);
1503 	if (policy) {
1504 		ret_freq = policy->cur;
1505 		cpufreq_cpu_put(policy);
1506 	}
1507 
1508 	return ret_freq;
1509 }
1510 EXPORT_SYMBOL(cpufreq_quick_get);
1511 
1512 /**
1513  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1514  * @cpu: CPU number
1515  *
1516  * Just return the max possible frequency for a given CPU.
1517  */
cpufreq_quick_get_max(unsigned int cpu)1518 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1519 {
1520 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1521 	unsigned int ret_freq = 0;
1522 
1523 	if (policy) {
1524 		ret_freq = policy->max;
1525 		cpufreq_cpu_put(policy);
1526 	}
1527 
1528 	return ret_freq;
1529 }
1530 EXPORT_SYMBOL(cpufreq_quick_get_max);
1531 
__cpufreq_get(struct cpufreq_policy * policy)1532 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1533 {
1534 	unsigned int ret_freq = 0;
1535 
1536 	if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1537 		return ret_freq;
1538 
1539 	ret_freq = cpufreq_driver->get(policy->cpu);
1540 
1541 	/*
1542 	 * If fast frequency switching is used with the given policy, the check
1543 	 * against policy->cur is pointless, so skip it in that case too.
1544 	 */
1545 	if (policy->fast_switch_enabled)
1546 		return ret_freq;
1547 
1548 	if (ret_freq && policy->cur &&
1549 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1550 		/* verify no discrepancy between actual and
1551 					saved value exists */
1552 		if (unlikely(ret_freq != policy->cur)) {
1553 			cpufreq_out_of_sync(policy, ret_freq);
1554 			schedule_work(&policy->update);
1555 		}
1556 	}
1557 
1558 	return ret_freq;
1559 }
1560 
1561 /**
1562  * cpufreq_get - get the current CPU frequency (in kHz)
1563  * @cpu: CPU number
1564  *
1565  * Get the CPU current (static) CPU frequency
1566  */
cpufreq_get(unsigned int cpu)1567 unsigned int cpufreq_get(unsigned int cpu)
1568 {
1569 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1570 	unsigned int ret_freq = 0;
1571 
1572 	if (policy) {
1573 		down_read(&policy->rwsem);
1574 		ret_freq = __cpufreq_get(policy);
1575 		up_read(&policy->rwsem);
1576 
1577 		cpufreq_cpu_put(policy);
1578 	}
1579 
1580 	return ret_freq;
1581 }
1582 EXPORT_SYMBOL(cpufreq_get);
1583 
cpufreq_update_current_freq(struct cpufreq_policy * policy)1584 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1585 {
1586 	unsigned int new_freq;
1587 
1588 	new_freq = cpufreq_driver->get(policy->cpu);
1589 	if (!new_freq)
1590 		return 0;
1591 
1592 	if (!policy->cur) {
1593 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1594 		policy->cur = new_freq;
1595 	} else if (policy->cur != new_freq && has_target()) {
1596 		cpufreq_out_of_sync(policy, new_freq);
1597 	}
1598 
1599 	return new_freq;
1600 }
1601 
1602 static struct subsys_interface cpufreq_interface = {
1603 	.name		= "cpufreq",
1604 	.subsys		= &cpu_subsys,
1605 	.add_dev	= cpufreq_add_dev,
1606 	.remove_dev	= cpufreq_remove_dev,
1607 };
1608 
1609 /*
1610  * In case platform wants some specific frequency to be configured
1611  * during suspend..
1612  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1613 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1614 {
1615 	int ret;
1616 
1617 	if (!policy->suspend_freq) {
1618 		pr_debug("%s: suspend_freq not defined\n", __func__);
1619 		return 0;
1620 	}
1621 
1622 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1623 			policy->suspend_freq);
1624 
1625 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1626 			CPUFREQ_RELATION_H);
1627 	if (ret)
1628 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1629 				__func__, policy->suspend_freq, ret);
1630 
1631 	return ret;
1632 }
1633 EXPORT_SYMBOL(cpufreq_generic_suspend);
1634 
1635 /**
1636  * cpufreq_suspend() - Suspend CPUFreq governors
1637  *
1638  * Called during system wide Suspend/Hibernate cycles for suspending governors
1639  * as some platforms can't change frequency after this point in suspend cycle.
1640  * Because some of the devices (like: i2c, regulators, etc) they use for
1641  * changing frequency are suspended quickly after this point.
1642  */
cpufreq_suspend(void)1643 void cpufreq_suspend(void)
1644 {
1645 	struct cpufreq_policy *policy;
1646 
1647 	if (!cpufreq_driver)
1648 		return;
1649 
1650 	if (!has_target() && !cpufreq_driver->suspend)
1651 		goto suspend;
1652 
1653 	pr_debug("%s: Suspending Governors\n", __func__);
1654 
1655 	for_each_active_policy(policy) {
1656 		if (has_target()) {
1657 			down_write(&policy->rwsem);
1658 			cpufreq_stop_governor(policy);
1659 			up_write(&policy->rwsem);
1660 		}
1661 
1662 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1663 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1664 				policy);
1665 	}
1666 
1667 suspend:
1668 	cpufreq_suspended = true;
1669 }
1670 
1671 /**
1672  * cpufreq_resume() - Resume CPUFreq governors
1673  *
1674  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1675  * are suspended with cpufreq_suspend().
1676  */
cpufreq_resume(void)1677 void cpufreq_resume(void)
1678 {
1679 	struct cpufreq_policy *policy;
1680 	int ret;
1681 
1682 	if (!cpufreq_driver)
1683 		return;
1684 
1685 	if (unlikely(!cpufreq_suspended))
1686 		return;
1687 
1688 	cpufreq_suspended = false;
1689 
1690 	if (!has_target() && !cpufreq_driver->resume)
1691 		return;
1692 
1693 	pr_debug("%s: Resuming Governors\n", __func__);
1694 
1695 	for_each_active_policy(policy) {
1696 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1697 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1698 				policy);
1699 		} else if (has_target()) {
1700 			down_write(&policy->rwsem);
1701 			ret = cpufreq_start_governor(policy);
1702 			up_write(&policy->rwsem);
1703 
1704 			if (ret)
1705 				pr_err("%s: Failed to start governor for policy: %p\n",
1706 				       __func__, policy);
1707 		}
1708 	}
1709 }
1710 
1711 /**
1712  *	cpufreq_get_current_driver - return current driver's name
1713  *
1714  *	Return the name string of the currently loaded cpufreq driver
1715  *	or NULL, if none.
1716  */
cpufreq_get_current_driver(void)1717 const char *cpufreq_get_current_driver(void)
1718 {
1719 	if (cpufreq_driver)
1720 		return cpufreq_driver->name;
1721 
1722 	return NULL;
1723 }
1724 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1725 
1726 /**
1727  *	cpufreq_get_driver_data - return current driver data
1728  *
1729  *	Return the private data of the currently loaded cpufreq
1730  *	driver, or NULL if no cpufreq driver is loaded.
1731  */
cpufreq_get_driver_data(void)1732 void *cpufreq_get_driver_data(void)
1733 {
1734 	if (cpufreq_driver)
1735 		return cpufreq_driver->driver_data;
1736 
1737 	return NULL;
1738 }
1739 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1740 
1741 /*********************************************************************
1742  *                     NOTIFIER LISTS INTERFACE                      *
1743  *********************************************************************/
1744 
1745 /**
1746  *	cpufreq_register_notifier - register a driver with cpufreq
1747  *	@nb: notifier function to register
1748  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1749  *
1750  *	Add a driver to one of two lists: either a list of drivers that
1751  *      are notified about clock rate changes (once before and once after
1752  *      the transition), or a list of drivers that are notified about
1753  *      changes in cpufreq policy.
1754  *
1755  *	This function may sleep, and has the same return conditions as
1756  *	blocking_notifier_chain_register.
1757  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1758 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1759 {
1760 	int ret;
1761 
1762 	if (cpufreq_disabled())
1763 		return -EINVAL;
1764 
1765 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1766 
1767 	switch (list) {
1768 	case CPUFREQ_TRANSITION_NOTIFIER:
1769 		mutex_lock(&cpufreq_fast_switch_lock);
1770 
1771 		if (cpufreq_fast_switch_count > 0) {
1772 			mutex_unlock(&cpufreq_fast_switch_lock);
1773 			return -EBUSY;
1774 		}
1775 		ret = srcu_notifier_chain_register(
1776 				&cpufreq_transition_notifier_list, nb);
1777 		if (!ret)
1778 			cpufreq_fast_switch_count--;
1779 
1780 		mutex_unlock(&cpufreq_fast_switch_lock);
1781 		break;
1782 	case CPUFREQ_POLICY_NOTIFIER:
1783 		ret = blocking_notifier_chain_register(
1784 				&cpufreq_policy_notifier_list, nb);
1785 		break;
1786 	default:
1787 		ret = -EINVAL;
1788 	}
1789 
1790 	return ret;
1791 }
1792 EXPORT_SYMBOL(cpufreq_register_notifier);
1793 
1794 /**
1795  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1796  *	@nb: notifier block to be unregistered
1797  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1798  *
1799  *	Remove a driver from the CPU frequency notifier list.
1800  *
1801  *	This function may sleep, and has the same return conditions as
1802  *	blocking_notifier_chain_unregister.
1803  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)1804 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1805 {
1806 	int ret;
1807 
1808 	if (cpufreq_disabled())
1809 		return -EINVAL;
1810 
1811 	switch (list) {
1812 	case CPUFREQ_TRANSITION_NOTIFIER:
1813 		mutex_lock(&cpufreq_fast_switch_lock);
1814 
1815 		ret = srcu_notifier_chain_unregister(
1816 				&cpufreq_transition_notifier_list, nb);
1817 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1818 			cpufreq_fast_switch_count++;
1819 
1820 		mutex_unlock(&cpufreq_fast_switch_lock);
1821 		break;
1822 	case CPUFREQ_POLICY_NOTIFIER:
1823 		ret = blocking_notifier_chain_unregister(
1824 				&cpufreq_policy_notifier_list, nb);
1825 		break;
1826 	default:
1827 		ret = -EINVAL;
1828 	}
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1833 
1834 
1835 /*********************************************************************
1836  *                              GOVERNORS                            *
1837  *********************************************************************/
1838 
1839 /**
1840  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1841  * @policy: cpufreq policy to switch the frequency for.
1842  * @target_freq: New frequency to set (may be approximate).
1843  *
1844  * Carry out a fast frequency switch without sleeping.
1845  *
1846  * The driver's ->fast_switch() callback invoked by this function must be
1847  * suitable for being called from within RCU-sched read-side critical sections
1848  * and it is expected to select the minimum available frequency greater than or
1849  * equal to @target_freq (CPUFREQ_RELATION_L).
1850  *
1851  * This function must not be called if policy->fast_switch_enabled is unset.
1852  *
1853  * Governors calling this function must guarantee that it will never be invoked
1854  * twice in parallel for the same policy and that it will never be called in
1855  * parallel with either ->target() or ->target_index() for the same policy.
1856  *
1857  * Returns the actual frequency set for the CPU.
1858  *
1859  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1860  * error condition, the hardware configuration must be preserved.
1861  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1862 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1863 					unsigned int target_freq)
1864 {
1865 	int ret;
1866 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1867 
1868         ret = cpufreq_driver->fast_switch(policy, target_freq);
1869 	if (ret)
1870 		cpufreq_times_record_transition(policy, ret);
1871 
1872 	return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1875 
1876 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)1877 static int __target_intermediate(struct cpufreq_policy *policy,
1878 				 struct cpufreq_freqs *freqs, int index)
1879 {
1880 	int ret;
1881 
1882 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1883 
1884 	/* We don't need to switch to intermediate freq */
1885 	if (!freqs->new)
1886 		return 0;
1887 
1888 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1889 		 __func__, policy->cpu, freqs->old, freqs->new);
1890 
1891 	cpufreq_freq_transition_begin(policy, freqs);
1892 	ret = cpufreq_driver->target_intermediate(policy, index);
1893 	cpufreq_freq_transition_end(policy, freqs, ret);
1894 
1895 	if (ret)
1896 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1897 		       __func__, ret);
1898 
1899 	return ret;
1900 }
1901 
__target_index(struct cpufreq_policy * policy,int index)1902 static int __target_index(struct cpufreq_policy *policy, int index)
1903 {
1904 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1905 	unsigned int intermediate_freq = 0;
1906 	unsigned int newfreq = policy->freq_table[index].frequency;
1907 	int retval = -EINVAL;
1908 	bool notify;
1909 
1910 	if (newfreq == policy->cur)
1911 		return 0;
1912 
1913 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1914 	if (notify) {
1915 		/* Handle switching to intermediate frequency */
1916 		if (cpufreq_driver->get_intermediate) {
1917 			retval = __target_intermediate(policy, &freqs, index);
1918 			if (retval)
1919 				return retval;
1920 
1921 			intermediate_freq = freqs.new;
1922 			/* Set old freq to intermediate */
1923 			if (intermediate_freq)
1924 				freqs.old = freqs.new;
1925 		}
1926 
1927 		freqs.new = newfreq;
1928 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1929 			 __func__, policy->cpu, freqs.old, freqs.new);
1930 
1931 		cpufreq_freq_transition_begin(policy, &freqs);
1932 	}
1933 
1934 	retval = cpufreq_driver->target_index(policy, index);
1935 	if (retval)
1936 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1937 		       retval);
1938 
1939 	if (notify) {
1940 		cpufreq_freq_transition_end(policy, &freqs, retval);
1941 
1942 		/*
1943 		 * Failed after setting to intermediate freq? Driver should have
1944 		 * reverted back to initial frequency and so should we. Check
1945 		 * here for intermediate_freq instead of get_intermediate, in
1946 		 * case we haven't switched to intermediate freq at all.
1947 		 */
1948 		if (unlikely(retval && intermediate_freq)) {
1949 			freqs.old = intermediate_freq;
1950 			freqs.new = policy->restore_freq;
1951 			cpufreq_freq_transition_begin(policy, &freqs);
1952 			cpufreq_freq_transition_end(policy, &freqs, 0);
1953 		}
1954 	}
1955 
1956 	return retval;
1957 }
1958 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1959 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1960 			    unsigned int target_freq,
1961 			    unsigned int relation)
1962 {
1963 	unsigned int old_target_freq = target_freq;
1964 	int index;
1965 
1966 	if (cpufreq_disabled())
1967 		return -ENODEV;
1968 
1969 	/* Make sure that target_freq is within supported range */
1970 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1971 
1972 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1973 		 policy->cpu, target_freq, relation, old_target_freq);
1974 
1975 	/*
1976 	 * This might look like a redundant call as we are checking it again
1977 	 * after finding index. But it is left intentionally for cases where
1978 	 * exactly same freq is called again and so we can save on few function
1979 	 * calls.
1980 	 */
1981 	if (target_freq == policy->cur)
1982 		return 0;
1983 
1984 	/* Save last value to restore later on errors */
1985 	policy->restore_freq = policy->cur;
1986 
1987 	if (cpufreq_driver->target)
1988 		return cpufreq_driver->target(policy, target_freq, relation);
1989 
1990 	if (!cpufreq_driver->target_index)
1991 		return -EINVAL;
1992 
1993 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
1994 
1995 	return __target_index(policy, index);
1996 }
1997 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1998 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1999 int cpufreq_driver_target(struct cpufreq_policy *policy,
2000 			  unsigned int target_freq,
2001 			  unsigned int relation)
2002 {
2003 	int ret = -EINVAL;
2004 
2005 	down_write(&policy->rwsem);
2006 
2007 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2008 
2009 	up_write(&policy->rwsem);
2010 
2011 	return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2014 
cpufreq_fallback_governor(void)2015 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2016 {
2017 	return NULL;
2018 }
2019 
cpufreq_init_governor(struct cpufreq_policy * policy)2020 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2021 {
2022 	int ret;
2023 
2024 	/* Don't start any governor operations if we are entering suspend */
2025 	if (cpufreq_suspended)
2026 		return 0;
2027 	/*
2028 	 * Governor might not be initiated here if ACPI _PPC changed
2029 	 * notification happened, so check it.
2030 	 */
2031 	if (!policy->governor)
2032 		return -EINVAL;
2033 
2034 	/* Platform doesn't want dynamic frequency switching ? */
2035 	if (policy->governor->dynamic_switching &&
2036 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2037 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2038 
2039 		if (gov) {
2040 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2041 				policy->governor->name, gov->name);
2042 			policy->governor = gov;
2043 		} else {
2044 			return -EINVAL;
2045 		}
2046 	}
2047 
2048 	if (!try_module_get(policy->governor->owner))
2049 		return -EINVAL;
2050 
2051 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2052 
2053 	if (policy->governor->init) {
2054 		ret = policy->governor->init(policy);
2055 		if (ret) {
2056 			module_put(policy->governor->owner);
2057 			return ret;
2058 		}
2059 	}
2060 
2061 	return 0;
2062 }
2063 
cpufreq_exit_governor(struct cpufreq_policy * policy)2064 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2065 {
2066 	if (cpufreq_suspended || !policy->governor)
2067 		return;
2068 
2069 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2070 
2071 	if (policy->governor->exit)
2072 		policy->governor->exit(policy);
2073 
2074 	module_put(policy->governor->owner);
2075 }
2076 
cpufreq_start_governor(struct cpufreq_policy * policy)2077 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2078 {
2079 	int ret;
2080 
2081 	if (cpufreq_suspended)
2082 		return 0;
2083 
2084 	if (!policy->governor)
2085 		return -EINVAL;
2086 
2087 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2088 
2089 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2090 		cpufreq_update_current_freq(policy);
2091 
2092 	if (policy->governor->start) {
2093 		ret = policy->governor->start(policy);
2094 		if (ret)
2095 			return ret;
2096 	}
2097 
2098 	if (policy->governor->limits)
2099 		policy->governor->limits(policy);
2100 
2101 	return 0;
2102 }
2103 
cpufreq_stop_governor(struct cpufreq_policy * policy)2104 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2105 {
2106 	if (cpufreq_suspended || !policy->governor)
2107 		return;
2108 
2109 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2110 
2111 	if (policy->governor->stop)
2112 		policy->governor->stop(policy);
2113 }
2114 
cpufreq_governor_limits(struct cpufreq_policy * policy)2115 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2116 {
2117 	if (cpufreq_suspended || !policy->governor)
2118 		return;
2119 
2120 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2121 
2122 	if (policy->governor->limits)
2123 		policy->governor->limits(policy);
2124 }
2125 
cpufreq_register_governor(struct cpufreq_governor * governor)2126 int cpufreq_register_governor(struct cpufreq_governor *governor)
2127 {
2128 	int err;
2129 
2130 	if (!governor)
2131 		return -EINVAL;
2132 
2133 	if (cpufreq_disabled())
2134 		return -ENODEV;
2135 
2136 	mutex_lock(&cpufreq_governor_mutex);
2137 
2138 	err = -EBUSY;
2139 	if (!find_governor(governor->name)) {
2140 		err = 0;
2141 		list_add(&governor->governor_list, &cpufreq_governor_list);
2142 	}
2143 
2144 	mutex_unlock(&cpufreq_governor_mutex);
2145 	return err;
2146 }
2147 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2148 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2149 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2150 {
2151 	struct cpufreq_policy *policy;
2152 	unsigned long flags;
2153 
2154 	if (!governor)
2155 		return;
2156 
2157 	if (cpufreq_disabled())
2158 		return;
2159 
2160 	/* clear last_governor for all inactive policies */
2161 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2162 	for_each_inactive_policy(policy) {
2163 		if (!strcmp(policy->last_governor, governor->name)) {
2164 			policy->governor = NULL;
2165 			strcpy(policy->last_governor, "\0");
2166 		}
2167 	}
2168 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2169 
2170 	mutex_lock(&cpufreq_governor_mutex);
2171 	list_del(&governor->governor_list);
2172 	mutex_unlock(&cpufreq_governor_mutex);
2173 	return;
2174 }
2175 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2176 
2177 
2178 /*********************************************************************
2179  *                          POLICY INTERFACE                         *
2180  *********************************************************************/
2181 
2182 /**
2183  * cpufreq_get_policy - get the current cpufreq_policy
2184  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2185  *	is written
2186  *
2187  * Reads the current cpufreq policy.
2188  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2189 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2190 {
2191 	struct cpufreq_policy *cpu_policy;
2192 	if (!policy)
2193 		return -EINVAL;
2194 
2195 	cpu_policy = cpufreq_cpu_get(cpu);
2196 	if (!cpu_policy)
2197 		return -EINVAL;
2198 
2199 	memcpy(policy, cpu_policy, sizeof(*policy));
2200 
2201 	cpufreq_cpu_put(cpu_policy);
2202 	return 0;
2203 }
2204 EXPORT_SYMBOL(cpufreq_get_policy);
2205 
2206 /*
2207  * policy : current policy.
2208  * new_policy: policy to be set.
2209  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_policy * new_policy)2210 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2211 				struct cpufreq_policy *new_policy)
2212 {
2213 	struct cpufreq_governor *old_gov;
2214 	int ret;
2215 
2216 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2217 		 new_policy->cpu, new_policy->min, new_policy->max);
2218 
2219 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2220 
2221 	/*
2222 	* This check works well when we store new min/max freq attributes,
2223 	* because new_policy is a copy of policy with one field updated.
2224 	*/
2225 	if (new_policy->min > new_policy->max)
2226 		return -EINVAL;
2227 
2228 	/* verify the cpu speed can be set within this limit */
2229 	ret = cpufreq_driver->verify(new_policy);
2230 	if (ret)
2231 		return ret;
2232 
2233 	/* adjust if necessary - all reasons */
2234 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2235 			CPUFREQ_ADJUST, new_policy);
2236 
2237 	/*
2238 	 * verify the cpu speed can be set within this limit, which might be
2239 	 * different to the first one
2240 	 */
2241 	ret = cpufreq_driver->verify(new_policy);
2242 	if (ret)
2243 		return ret;
2244 
2245 	/* notification of the new policy */
2246 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2247 			CPUFREQ_NOTIFY, new_policy);
2248 
2249 	policy->min = new_policy->min;
2250 	policy->max = new_policy->max;
2251 
2252 	arch_set_max_freq_scale(policy->cpus, policy->max);
2253 
2254 	trace_cpu_frequency_limits(policy->max, policy->min, policy->cpu);
2255 
2256 	policy->cached_target_freq = UINT_MAX;
2257 
2258 	pr_debug("new min and max freqs are %u - %u kHz\n",
2259 		 policy->min, policy->max);
2260 
2261 	if (cpufreq_driver->setpolicy) {
2262 		policy->policy = new_policy->policy;
2263 		pr_debug("setting range\n");
2264 		return cpufreq_driver->setpolicy(new_policy);
2265 	}
2266 
2267 	if (new_policy->governor == policy->governor) {
2268 		pr_debug("cpufreq: governor limits update\n");
2269 		cpufreq_governor_limits(policy);
2270 		return 0;
2271 	}
2272 
2273 	pr_debug("governor switch\n");
2274 
2275 	/* save old, working values */
2276 	old_gov = policy->governor;
2277 	/* end old governor */
2278 	if (old_gov) {
2279 		cpufreq_stop_governor(policy);
2280 		cpufreq_exit_governor(policy);
2281 	}
2282 
2283 	/* start new governor */
2284 	policy->governor = new_policy->governor;
2285 	ret = cpufreq_init_governor(policy);
2286 	if (!ret) {
2287 		ret = cpufreq_start_governor(policy);
2288 		if (!ret) {
2289 			pr_debug("cpufreq: governor change\n");
2290 			return 0;
2291 		}
2292 		cpufreq_exit_governor(policy);
2293 	}
2294 
2295 	/* new governor failed, so re-start old one */
2296 	pr_debug("starting governor %s failed\n", policy->governor->name);
2297 	if (old_gov) {
2298 		policy->governor = old_gov;
2299 		if (cpufreq_init_governor(policy))
2300 			policy->governor = NULL;
2301 		else
2302 			cpufreq_start_governor(policy);
2303 	}
2304 
2305 	return ret;
2306 }
2307 
2308 /**
2309  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2310  *	@cpu: CPU which shall be re-evaluated
2311  *
2312  *	Useful for policy notifiers which have different necessities
2313  *	at different times.
2314  */
cpufreq_update_policy(unsigned int cpu)2315 void cpufreq_update_policy(unsigned int cpu)
2316 {
2317 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2318 	struct cpufreq_policy new_policy;
2319 
2320 	if (!policy)
2321 		return;
2322 
2323 	down_write(&policy->rwsem);
2324 
2325 	if (policy_is_inactive(policy))
2326 		goto unlock;
2327 
2328 	pr_debug("updating policy for CPU %u\n", cpu);
2329 	memcpy(&new_policy, policy, sizeof(*policy));
2330 	new_policy.min = policy->user_policy.min;
2331 	new_policy.max = policy->user_policy.max;
2332 
2333 	/*
2334 	 * BIOS might change freq behind our back
2335 	 * -> ask driver for current freq and notify governors about a change
2336 	 */
2337 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2338 		if (cpufreq_suspended)
2339 			goto unlock;
2340 
2341 		new_policy.cur = cpufreq_update_current_freq(policy);
2342 		if (WARN_ON(!new_policy.cur))
2343 			goto unlock;
2344 	}
2345 
2346 	cpufreq_set_policy(policy, &new_policy);
2347 
2348 unlock:
2349 	up_write(&policy->rwsem);
2350 
2351 	cpufreq_cpu_put(policy);
2352 }
2353 EXPORT_SYMBOL(cpufreq_update_policy);
2354 
2355 /*********************************************************************
2356  *               BOOST						     *
2357  *********************************************************************/
cpufreq_boost_set_sw(int state)2358 static int cpufreq_boost_set_sw(int state)
2359 {
2360 	struct cpufreq_policy *policy;
2361 	int ret = -EINVAL;
2362 
2363 	for_each_active_policy(policy) {
2364 		if (!policy->freq_table)
2365 			continue;
2366 
2367 		ret = cpufreq_frequency_table_cpuinfo(policy,
2368 						      policy->freq_table);
2369 		if (ret) {
2370 			pr_err("%s: Policy frequency update failed\n",
2371 			       __func__);
2372 			break;
2373 		}
2374 
2375 		down_write(&policy->rwsem);
2376 		policy->user_policy.max = policy->max;
2377 		cpufreq_governor_limits(policy);
2378 		up_write(&policy->rwsem);
2379 	}
2380 
2381 	return ret;
2382 }
2383 
cpufreq_boost_trigger_state(int state)2384 int cpufreq_boost_trigger_state(int state)
2385 {
2386 	unsigned long flags;
2387 	int ret = 0;
2388 
2389 	if (cpufreq_driver->boost_enabled == state)
2390 		return 0;
2391 
2392 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2393 	cpufreq_driver->boost_enabled = state;
2394 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2395 
2396 	ret = cpufreq_driver->set_boost(state);
2397 	if (ret) {
2398 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2399 		cpufreq_driver->boost_enabled = !state;
2400 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2401 
2402 		pr_err("%s: Cannot %s BOOST\n",
2403 		       __func__, state ? "enable" : "disable");
2404 	}
2405 
2406 	return ret;
2407 }
2408 
cpufreq_boost_supported(void)2409 static bool cpufreq_boost_supported(void)
2410 {
2411 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2412 }
2413 
create_boost_sysfs_file(void)2414 static int create_boost_sysfs_file(void)
2415 {
2416 	int ret;
2417 
2418 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2419 	if (ret)
2420 		pr_err("%s: cannot register global BOOST sysfs file\n",
2421 		       __func__);
2422 
2423 	return ret;
2424 }
2425 
remove_boost_sysfs_file(void)2426 static void remove_boost_sysfs_file(void)
2427 {
2428 	if (cpufreq_boost_supported())
2429 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2430 }
2431 
cpufreq_enable_boost_support(void)2432 int cpufreq_enable_boost_support(void)
2433 {
2434 	if (!cpufreq_driver)
2435 		return -EINVAL;
2436 
2437 	if (cpufreq_boost_supported())
2438 		return 0;
2439 
2440 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2441 
2442 	/* This will get removed on driver unregister */
2443 	return create_boost_sysfs_file();
2444 }
2445 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2446 
cpufreq_boost_enabled(void)2447 int cpufreq_boost_enabled(void)
2448 {
2449 	return cpufreq_driver->boost_enabled;
2450 }
2451 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2452 
2453 /*********************************************************************
2454  *               FREQUENCY INVARIANT ACCOUNTING SUPPORT              *
2455  *********************************************************************/
2456 
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)2457 __weak void arch_set_freq_scale(struct cpumask *cpus,
2458 				unsigned long cur_freq,
2459 				unsigned long max_freq)
2460 {
2461 }
2462 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
2463 
arch_set_max_freq_scale(struct cpumask * cpus,unsigned long policy_max_freq)2464 __weak void arch_set_max_freq_scale(struct cpumask *cpus,
2465 				    unsigned long policy_max_freq)
2466 {
2467 }
2468 EXPORT_SYMBOL_GPL(arch_set_max_freq_scale);
2469 
2470 /*********************************************************************
2471  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2472  *********************************************************************/
2473 static enum cpuhp_state hp_online;
2474 
cpuhp_cpufreq_online(unsigned int cpu)2475 static int cpuhp_cpufreq_online(unsigned int cpu)
2476 {
2477 	cpufreq_online(cpu);
2478 
2479 	return 0;
2480 }
2481 
cpuhp_cpufreq_offline(unsigned int cpu)2482 static int cpuhp_cpufreq_offline(unsigned int cpu)
2483 {
2484 	cpufreq_offline(cpu);
2485 
2486 	return 0;
2487 }
2488 
2489 /**
2490  * cpufreq_register_driver - register a CPU Frequency driver
2491  * @driver_data: A struct cpufreq_driver containing the values#
2492  * submitted by the CPU Frequency driver.
2493  *
2494  * Registers a CPU Frequency driver to this core code. This code
2495  * returns zero on success, -EEXIST when another driver got here first
2496  * (and isn't unregistered in the meantime).
2497  *
2498  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2499 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2500 {
2501 	unsigned long flags;
2502 	int ret;
2503 
2504 	if (cpufreq_disabled())
2505 		return -ENODEV;
2506 
2507 	/*
2508 	 * The cpufreq core depends heavily on the availability of device
2509 	 * structure, make sure they are available before proceeding further.
2510 	 */
2511 	if (!get_cpu_device(0))
2512 		return -EPROBE_DEFER;
2513 
2514 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2515 	    !(driver_data->setpolicy || driver_data->target_index ||
2516 		    driver_data->target) ||
2517 	     (driver_data->setpolicy && (driver_data->target_index ||
2518 		    driver_data->target)) ||
2519 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2520 		return -EINVAL;
2521 
2522 	pr_debug("trying to register driver %s\n", driver_data->name);
2523 
2524 	/* Protect against concurrent CPU online/offline. */
2525 	cpus_read_lock();
2526 
2527 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2528 	if (cpufreq_driver) {
2529 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2530 		ret = -EEXIST;
2531 		goto out;
2532 	}
2533 	cpufreq_driver = driver_data;
2534 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2535 
2536 	if (driver_data->setpolicy)
2537 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2538 
2539 	if (cpufreq_boost_supported()) {
2540 		ret = create_boost_sysfs_file();
2541 		if (ret)
2542 			goto err_null_driver;
2543 	}
2544 
2545 	ret = subsys_interface_register(&cpufreq_interface);
2546 	if (ret)
2547 		goto err_boost_unreg;
2548 
2549 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2550 	    list_empty(&cpufreq_policy_list)) {
2551 		/* if all ->init() calls failed, unregister */
2552 		ret = -ENODEV;
2553 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2554 			 driver_data->name);
2555 		goto err_if_unreg;
2556 	}
2557 
2558 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2559 						   "cpufreq:online",
2560 						   cpuhp_cpufreq_online,
2561 						   cpuhp_cpufreq_offline);
2562 	if (ret < 0)
2563 		goto err_if_unreg;
2564 	hp_online = ret;
2565 	ret = 0;
2566 
2567 	pr_debug("driver %s up and running\n", driver_data->name);
2568 	goto out;
2569 
2570 err_if_unreg:
2571 	subsys_interface_unregister(&cpufreq_interface);
2572 err_boost_unreg:
2573 	remove_boost_sysfs_file();
2574 err_null_driver:
2575 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2576 	cpufreq_driver = NULL;
2577 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578 out:
2579 	cpus_read_unlock();
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2583 
2584 /**
2585  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2586  *
2587  * Unregister the current CPUFreq driver. Only call this if you have
2588  * the right to do so, i.e. if you have succeeded in initialising before!
2589  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2590  * currently not initialised.
2591  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2592 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2593 {
2594 	unsigned long flags;
2595 
2596 	if (!cpufreq_driver || (driver != cpufreq_driver))
2597 		return -EINVAL;
2598 
2599 	pr_debug("unregistering driver %s\n", driver->name);
2600 
2601 	/* Protect against concurrent cpu hotplug */
2602 	cpus_read_lock();
2603 	subsys_interface_unregister(&cpufreq_interface);
2604 	remove_boost_sysfs_file();
2605 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2606 
2607 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2608 
2609 	cpufreq_driver = NULL;
2610 
2611 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2612 	cpus_read_unlock();
2613 
2614 	return 0;
2615 }
2616 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2617 
2618 struct kobject *cpufreq_global_kobject;
2619 EXPORT_SYMBOL(cpufreq_global_kobject);
2620 
cpufreq_core_init(void)2621 static int __init cpufreq_core_init(void)
2622 {
2623 	if (cpufreq_disabled())
2624 		return -ENODEV;
2625 
2626 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2627 	BUG_ON(!cpufreq_global_kobject);
2628 
2629 	return 0;
2630 }
2631 module_param(off, int, 0444);
2632 core_initcall(cpufreq_core_init);
2633