• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49 
50 DEFINE_MUTEX(kexec_mutex);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
kexec_should_crash(struct task_struct * p)75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in do_exit() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
kexec_crash_loaded(void)93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * the new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
sanity_check_segment_list(struct kimage * image)150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > totalram_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
do_kimage_alloc_init(void)255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	if (fatal_signal_pending(current))
305 		return NULL;
306 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 	if (pages) {
308 		unsigned int count, i;
309 
310 		pages->mapping = NULL;
311 		set_page_private(pages, order);
312 		count = 1 << order;
313 		for (i = 0; i < count; i++)
314 			SetPageReserved(pages + i);
315 
316 		arch_kexec_post_alloc_pages(page_address(pages), count,
317 					    gfp_mask);
318 
319 		if (gfp_mask & __GFP_ZERO)
320 			for (i = 0; i < count; i++)
321 				clear_highpage(pages + i);
322 	}
323 
324 	return pages;
325 }
326 
kimage_free_pages(struct page * page)327 static void kimage_free_pages(struct page *page)
328 {
329 	unsigned int order, count, i;
330 
331 	order = page_private(page);
332 	count = 1 << order;
333 
334 	arch_kexec_pre_free_pages(page_address(page), count);
335 
336 	for (i = 0; i < count; i++)
337 		ClearPageReserved(page + i);
338 	__free_pages(page, order);
339 }
340 
kimage_free_page_list(struct list_head * list)341 void kimage_free_page_list(struct list_head *list)
342 {
343 	struct page *page, *next;
344 
345 	list_for_each_entry_safe(page, next, list, lru) {
346 		list_del(&page->lru);
347 		kimage_free_pages(page);
348 	}
349 }
350 
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 							unsigned int order)
353 {
354 	/* Control pages are special, they are the intermediaries
355 	 * that are needed while we copy the rest of the pages
356 	 * to their final resting place.  As such they must
357 	 * not conflict with either the destination addresses
358 	 * or memory the kernel is already using.
359 	 *
360 	 * The only case where we really need more than one of
361 	 * these are for architectures where we cannot disable
362 	 * the MMU and must instead generate an identity mapped
363 	 * page table for all of the memory.
364 	 *
365 	 * At worst this runs in O(N) of the image size.
366 	 */
367 	struct list_head extra_pages;
368 	struct page *pages;
369 	unsigned int count;
370 
371 	count = 1 << order;
372 	INIT_LIST_HEAD(&extra_pages);
373 
374 	/* Loop while I can allocate a page and the page allocated
375 	 * is a destination page.
376 	 */
377 	do {
378 		unsigned long pfn, epfn, addr, eaddr;
379 
380 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 		if (!pages)
382 			break;
383 		pfn   = page_to_boot_pfn(pages);
384 		epfn  = pfn + count;
385 		addr  = pfn << PAGE_SHIFT;
386 		eaddr = epfn << PAGE_SHIFT;
387 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 			      kimage_is_destination_range(image, addr, eaddr)) {
389 			list_add(&pages->lru, &extra_pages);
390 			pages = NULL;
391 		}
392 	} while (!pages);
393 
394 	if (pages) {
395 		/* Remember the allocated page... */
396 		list_add(&pages->lru, &image->control_pages);
397 
398 		/* Because the page is already in it's destination
399 		 * location we will never allocate another page at
400 		 * that address.  Therefore kimage_alloc_pages
401 		 * will not return it (again) and we don't need
402 		 * to give it an entry in image->segment[].
403 		 */
404 	}
405 	/* Deal with the destination pages I have inadvertently allocated.
406 	 *
407 	 * Ideally I would convert multi-page allocations into single
408 	 * page allocations, and add everything to image->dest_pages.
409 	 *
410 	 * For now it is simpler to just free the pages.
411 	 */
412 	kimage_free_page_list(&extra_pages);
413 
414 	return pages;
415 }
416 
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 						      unsigned int order)
419 {
420 	/* Control pages are special, they are the intermediaries
421 	 * that are needed while we copy the rest of the pages
422 	 * to their final resting place.  As such they must
423 	 * not conflict with either the destination addresses
424 	 * or memory the kernel is already using.
425 	 *
426 	 * Control pages are also the only pags we must allocate
427 	 * when loading a crash kernel.  All of the other pages
428 	 * are specified by the segments and we just memcpy
429 	 * into them directly.
430 	 *
431 	 * The only case where we really need more than one of
432 	 * these are for architectures where we cannot disable
433 	 * the MMU and must instead generate an identity mapped
434 	 * page table for all of the memory.
435 	 *
436 	 * Given the low demand this implements a very simple
437 	 * allocator that finds the first hole of the appropriate
438 	 * size in the reserved memory region, and allocates all
439 	 * of the memory up to and including the hole.
440 	 */
441 	unsigned long hole_start, hole_end, size;
442 	struct page *pages;
443 
444 	pages = NULL;
445 	size = (1 << order) << PAGE_SHIFT;
446 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 	hole_end   = hole_start + size - 1;
448 	while (hole_end <= crashk_res.end) {
449 		unsigned long i;
450 
451 		cond_resched();
452 
453 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 			break;
455 		/* See if I overlap any of the segments */
456 		for (i = 0; i < image->nr_segments; i++) {
457 			unsigned long mstart, mend;
458 
459 			mstart = image->segment[i].mem;
460 			mend   = mstart + image->segment[i].memsz - 1;
461 			if ((hole_end >= mstart) && (hole_start <= mend)) {
462 				/* Advance the hole to the end of the segment */
463 				hole_start = (mend + (size - 1)) & ~(size - 1);
464 				hole_end   = hole_start + size - 1;
465 				break;
466 			}
467 		}
468 		/* If I don't overlap any segments I have found my hole! */
469 		if (i == image->nr_segments) {
470 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 			image->control_page = hole_end;
472 			break;
473 		}
474 	}
475 
476 	/* Ensure that these pages are decrypted if SME is enabled. */
477 	if (pages)
478 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
479 
480 	return pages;
481 }
482 
483 
kimage_alloc_control_pages(struct kimage * image,unsigned int order)484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 					 unsigned int order)
486 {
487 	struct page *pages = NULL;
488 
489 	switch (image->type) {
490 	case KEXEC_TYPE_DEFAULT:
491 		pages = kimage_alloc_normal_control_pages(image, order);
492 		break;
493 	case KEXEC_TYPE_CRASH:
494 		pages = kimage_alloc_crash_control_pages(image, order);
495 		break;
496 	}
497 
498 	return pages;
499 }
500 
kimage_crash_copy_vmcoreinfo(struct kimage * image)501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
502 {
503 	struct page *vmcoreinfo_page;
504 	void *safecopy;
505 
506 	if (image->type != KEXEC_TYPE_CRASH)
507 		return 0;
508 
509 	/*
510 	 * For kdump, allocate one vmcoreinfo safe copy from the
511 	 * crash memory. as we have arch_kexec_protect_crashkres()
512 	 * after kexec syscall, we naturally protect it from write
513 	 * (even read) access under kernel direct mapping. But on
514 	 * the other hand, we still need to operate it when crash
515 	 * happens to generate vmcoreinfo note, hereby we rely on
516 	 * vmap for this purpose.
517 	 */
518 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 	if (!vmcoreinfo_page) {
520 		pr_warn("Could not allocate vmcoreinfo buffer\n");
521 		return -ENOMEM;
522 	}
523 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 	if (!safecopy) {
525 		pr_warn("Could not vmap vmcoreinfo buffer\n");
526 		return -ENOMEM;
527 	}
528 
529 	image->vmcoreinfo_data_copy = safecopy;
530 	crash_update_vmcoreinfo_safecopy(safecopy);
531 
532 	return 0;
533 }
534 
kimage_add_entry(struct kimage * image,kimage_entry_t entry)535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
536 {
537 	if (*image->entry != 0)
538 		image->entry++;
539 
540 	if (image->entry == image->last_entry) {
541 		kimage_entry_t *ind_page;
542 		struct page *page;
543 
544 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 		if (!page)
546 			return -ENOMEM;
547 
548 		ind_page = page_address(page);
549 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 		image->entry = ind_page;
551 		image->last_entry = ind_page +
552 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
553 	}
554 	*image->entry = entry;
555 	image->entry++;
556 	*image->entry = 0;
557 
558 	return 0;
559 }
560 
kimage_set_destination(struct kimage * image,unsigned long destination)561 static int kimage_set_destination(struct kimage *image,
562 				   unsigned long destination)
563 {
564 	int result;
565 
566 	destination &= PAGE_MASK;
567 	result = kimage_add_entry(image, destination | IND_DESTINATION);
568 
569 	return result;
570 }
571 
572 
kimage_add_page(struct kimage * image,unsigned long page)573 static int kimage_add_page(struct kimage *image, unsigned long page)
574 {
575 	int result;
576 
577 	page &= PAGE_MASK;
578 	result = kimage_add_entry(image, page | IND_SOURCE);
579 
580 	return result;
581 }
582 
583 
kimage_free_extra_pages(struct kimage * image)584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 	/* Walk through and free any extra destination pages I may have */
587 	kimage_free_page_list(&image->dest_pages);
588 
589 	/* Walk through and free any unusable pages I have cached */
590 	kimage_free_page_list(&image->unusable_pages);
591 
592 }
kimage_terminate(struct kimage * image)593 void kimage_terminate(struct kimage *image)
594 {
595 	if (*image->entry != 0)
596 		image->entry++;
597 
598 	*image->entry = IND_DONE;
599 }
600 
601 #define for_each_kimage_entry(image, ptr, entry) \
602 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
603 		ptr = (entry & IND_INDIRECTION) ? \
604 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
605 
kimage_free_entry(kimage_entry_t entry)606 static void kimage_free_entry(kimage_entry_t entry)
607 {
608 	struct page *page;
609 
610 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
611 	kimage_free_pages(page);
612 }
613 
kimage_free(struct kimage * image)614 void kimage_free(struct kimage *image)
615 {
616 	kimage_entry_t *ptr, entry;
617 	kimage_entry_t ind = 0;
618 
619 	if (!image)
620 		return;
621 
622 	if (image->vmcoreinfo_data_copy) {
623 		crash_update_vmcoreinfo_safecopy(NULL);
624 		vunmap(image->vmcoreinfo_data_copy);
625 	}
626 
627 	kimage_free_extra_pages(image);
628 	for_each_kimage_entry(image, ptr, entry) {
629 		if (entry & IND_INDIRECTION) {
630 			/* Free the previous indirection page */
631 			if (ind & IND_INDIRECTION)
632 				kimage_free_entry(ind);
633 			/* Save this indirection page until we are
634 			 * done with it.
635 			 */
636 			ind = entry;
637 		} else if (entry & IND_SOURCE)
638 			kimage_free_entry(entry);
639 	}
640 	/* Free the final indirection page */
641 	if (ind & IND_INDIRECTION)
642 		kimage_free_entry(ind);
643 
644 	/* Handle any machine specific cleanup */
645 	machine_kexec_cleanup(image);
646 
647 	/* Free the kexec control pages... */
648 	kimage_free_page_list(&image->control_pages);
649 
650 	/*
651 	 * Free up any temporary buffers allocated. This might hit if
652 	 * error occurred much later after buffer allocation.
653 	 */
654 	if (image->file_mode)
655 		kimage_file_post_load_cleanup(image);
656 
657 	kfree(image);
658 }
659 
kimage_dst_used(struct kimage * image,unsigned long page)660 static kimage_entry_t *kimage_dst_used(struct kimage *image,
661 					unsigned long page)
662 {
663 	kimage_entry_t *ptr, entry;
664 	unsigned long destination = 0;
665 
666 	for_each_kimage_entry(image, ptr, entry) {
667 		if (entry & IND_DESTINATION)
668 			destination = entry & PAGE_MASK;
669 		else if (entry & IND_SOURCE) {
670 			if (page == destination)
671 				return ptr;
672 			destination += PAGE_SIZE;
673 		}
674 	}
675 
676 	return NULL;
677 }
678 
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)679 static struct page *kimage_alloc_page(struct kimage *image,
680 					gfp_t gfp_mask,
681 					unsigned long destination)
682 {
683 	/*
684 	 * Here we implement safeguards to ensure that a source page
685 	 * is not copied to its destination page before the data on
686 	 * the destination page is no longer useful.
687 	 *
688 	 * To do this we maintain the invariant that a source page is
689 	 * either its own destination page, or it is not a
690 	 * destination page at all.
691 	 *
692 	 * That is slightly stronger than required, but the proof
693 	 * that no problems will not occur is trivial, and the
694 	 * implementation is simply to verify.
695 	 *
696 	 * When allocating all pages normally this algorithm will run
697 	 * in O(N) time, but in the worst case it will run in O(N^2)
698 	 * time.   If the runtime is a problem the data structures can
699 	 * be fixed.
700 	 */
701 	struct page *page;
702 	unsigned long addr;
703 
704 	/*
705 	 * Walk through the list of destination pages, and see if I
706 	 * have a match.
707 	 */
708 	list_for_each_entry(page, &image->dest_pages, lru) {
709 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
710 		if (addr == destination) {
711 			list_del(&page->lru);
712 			return page;
713 		}
714 	}
715 	page = NULL;
716 	while (1) {
717 		kimage_entry_t *old;
718 
719 		/* Allocate a page, if we run out of memory give up */
720 		page = kimage_alloc_pages(gfp_mask, 0);
721 		if (!page)
722 			return NULL;
723 		/* If the page cannot be used file it away */
724 		if (page_to_boot_pfn(page) >
725 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
726 			list_add(&page->lru, &image->unusable_pages);
727 			continue;
728 		}
729 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
730 
731 		/* If it is the destination page we want use it */
732 		if (addr == destination)
733 			break;
734 
735 		/* If the page is not a destination page use it */
736 		if (!kimage_is_destination_range(image, addr,
737 						  addr + PAGE_SIZE))
738 			break;
739 
740 		/*
741 		 * I know that the page is someones destination page.
742 		 * See if there is already a source page for this
743 		 * destination page.  And if so swap the source pages.
744 		 */
745 		old = kimage_dst_used(image, addr);
746 		if (old) {
747 			/* If so move it */
748 			unsigned long old_addr;
749 			struct page *old_page;
750 
751 			old_addr = *old & PAGE_MASK;
752 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
753 			copy_highpage(page, old_page);
754 			*old = addr | (*old & ~PAGE_MASK);
755 
756 			/* The old page I have found cannot be a
757 			 * destination page, so return it if it's
758 			 * gfp_flags honor the ones passed in.
759 			 */
760 			if (!(gfp_mask & __GFP_HIGHMEM) &&
761 			    PageHighMem(old_page)) {
762 				kimage_free_pages(old_page);
763 				continue;
764 			}
765 			addr = old_addr;
766 			page = old_page;
767 			break;
768 		}
769 		/* Place the page on the destination list, to be used later */
770 		list_add(&page->lru, &image->dest_pages);
771 	}
772 
773 	return page;
774 }
775 
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)776 static int kimage_load_normal_segment(struct kimage *image,
777 					 struct kexec_segment *segment)
778 {
779 	unsigned long maddr;
780 	size_t ubytes, mbytes;
781 	int result;
782 	unsigned char __user *buf = NULL;
783 	unsigned char *kbuf = NULL;
784 
785 	result = 0;
786 	if (image->file_mode)
787 		kbuf = segment->kbuf;
788 	else
789 		buf = segment->buf;
790 	ubytes = segment->bufsz;
791 	mbytes = segment->memsz;
792 	maddr = segment->mem;
793 
794 	result = kimage_set_destination(image, maddr);
795 	if (result < 0)
796 		goto out;
797 
798 	while (mbytes) {
799 		struct page *page;
800 		char *ptr;
801 		size_t uchunk, mchunk;
802 
803 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
804 		if (!page) {
805 			result  = -ENOMEM;
806 			goto out;
807 		}
808 		result = kimage_add_page(image, page_to_boot_pfn(page)
809 								<< PAGE_SHIFT);
810 		if (result < 0)
811 			goto out;
812 
813 		ptr = kmap(page);
814 		/* Start with a clear page */
815 		clear_page(ptr);
816 		ptr += maddr & ~PAGE_MASK;
817 		mchunk = min_t(size_t, mbytes,
818 				PAGE_SIZE - (maddr & ~PAGE_MASK));
819 		uchunk = min(ubytes, mchunk);
820 
821 		/* For file based kexec, source pages are in kernel memory */
822 		if (image->file_mode)
823 			memcpy(ptr, kbuf, uchunk);
824 		else
825 			result = copy_from_user(ptr, buf, uchunk);
826 		kunmap(page);
827 		if (result) {
828 			result = -EFAULT;
829 			goto out;
830 		}
831 		ubytes -= uchunk;
832 		maddr  += mchunk;
833 		if (image->file_mode)
834 			kbuf += mchunk;
835 		else
836 			buf += mchunk;
837 		mbytes -= mchunk;
838 	}
839 out:
840 	return result;
841 }
842 
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)843 static int kimage_load_crash_segment(struct kimage *image,
844 					struct kexec_segment *segment)
845 {
846 	/* For crash dumps kernels we simply copy the data from
847 	 * user space to it's destination.
848 	 * We do things a page at a time for the sake of kmap.
849 	 */
850 	unsigned long maddr;
851 	size_t ubytes, mbytes;
852 	int result;
853 	unsigned char __user *buf = NULL;
854 	unsigned char *kbuf = NULL;
855 
856 	result = 0;
857 	if (image->file_mode)
858 		kbuf = segment->kbuf;
859 	else
860 		buf = segment->buf;
861 	ubytes = segment->bufsz;
862 	mbytes = segment->memsz;
863 	maddr = segment->mem;
864 	while (mbytes) {
865 		struct page *page;
866 		char *ptr;
867 		size_t uchunk, mchunk;
868 
869 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
870 		if (!page) {
871 			result  = -ENOMEM;
872 			goto out;
873 		}
874 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
875 		ptr = kmap(page);
876 		ptr += maddr & ~PAGE_MASK;
877 		mchunk = min_t(size_t, mbytes,
878 				PAGE_SIZE - (maddr & ~PAGE_MASK));
879 		uchunk = min(ubytes, mchunk);
880 		if (mchunk > uchunk) {
881 			/* Zero the trailing part of the page */
882 			memset(ptr + uchunk, 0, mchunk - uchunk);
883 		}
884 
885 		/* For file based kexec, source pages are in kernel memory */
886 		if (image->file_mode)
887 			memcpy(ptr, kbuf, uchunk);
888 		else
889 			result = copy_from_user(ptr, buf, uchunk);
890 		kexec_flush_icache_page(page);
891 		kunmap(page);
892 		arch_kexec_pre_free_pages(page_address(page), 1);
893 		if (result) {
894 			result = -EFAULT;
895 			goto out;
896 		}
897 		ubytes -= uchunk;
898 		maddr  += mchunk;
899 		if (image->file_mode)
900 			kbuf += mchunk;
901 		else
902 			buf += mchunk;
903 		mbytes -= mchunk;
904 	}
905 out:
906 	return result;
907 }
908 
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)909 int kimage_load_segment(struct kimage *image,
910 				struct kexec_segment *segment)
911 {
912 	int result = -ENOMEM;
913 
914 	switch (image->type) {
915 	case KEXEC_TYPE_DEFAULT:
916 		result = kimage_load_normal_segment(image, segment);
917 		break;
918 	case KEXEC_TYPE_CRASH:
919 		result = kimage_load_crash_segment(image, segment);
920 		break;
921 	}
922 
923 	return result;
924 }
925 
926 struct kimage *kexec_image;
927 struct kimage *kexec_crash_image;
928 int kexec_load_disabled;
929 
930 /*
931  * No panic_cpu check version of crash_kexec().  This function is called
932  * only when panic_cpu holds the current CPU number; this is the only CPU
933  * which processes crash_kexec routines.
934  */
__crash_kexec(struct pt_regs * regs)935 void __noclone __crash_kexec(struct pt_regs *regs)
936 {
937 	/* Take the kexec_mutex here to prevent sys_kexec_load
938 	 * running on one cpu from replacing the crash kernel
939 	 * we are using after a panic on a different cpu.
940 	 *
941 	 * If the crash kernel was not located in a fixed area
942 	 * of memory the xchg(&kexec_crash_image) would be
943 	 * sufficient.  But since I reuse the memory...
944 	 */
945 	if (mutex_trylock(&kexec_mutex)) {
946 		if (kexec_crash_image) {
947 			struct pt_regs fixed_regs;
948 
949 			crash_setup_regs(&fixed_regs, regs);
950 			crash_save_vmcoreinfo();
951 			machine_crash_shutdown(&fixed_regs);
952 			machine_kexec(kexec_crash_image);
953 		}
954 		mutex_unlock(&kexec_mutex);
955 	}
956 }
957 STACK_FRAME_NON_STANDARD(__crash_kexec);
958 
crash_kexec(struct pt_regs * regs)959 void crash_kexec(struct pt_regs *regs)
960 {
961 	int old_cpu, this_cpu;
962 
963 	/*
964 	 * Only one CPU is allowed to execute the crash_kexec() code as with
965 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
966 	 * may stop each other.  To exclude them, we use panic_cpu here too.
967 	 */
968 	this_cpu = raw_smp_processor_id();
969 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
970 	if (old_cpu == PANIC_CPU_INVALID) {
971 		/* This is the 1st CPU which comes here, so go ahead. */
972 		printk_safe_flush_on_panic();
973 		__crash_kexec(regs);
974 
975 		/*
976 		 * Reset panic_cpu to allow another panic()/crash_kexec()
977 		 * call.
978 		 */
979 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
980 	}
981 }
982 
crash_get_memory_size(void)983 size_t crash_get_memory_size(void)
984 {
985 	size_t size = 0;
986 
987 	mutex_lock(&kexec_mutex);
988 	if (crashk_res.end != crashk_res.start)
989 		size = resource_size(&crashk_res);
990 	mutex_unlock(&kexec_mutex);
991 	return size;
992 }
993 
crash_free_reserved_phys_range(unsigned long begin,unsigned long end)994 void __weak crash_free_reserved_phys_range(unsigned long begin,
995 					   unsigned long end)
996 {
997 	unsigned long addr;
998 
999 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1000 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1001 }
1002 
crash_shrink_memory(unsigned long new_size)1003 int crash_shrink_memory(unsigned long new_size)
1004 {
1005 	int ret = 0;
1006 	unsigned long start, end;
1007 	unsigned long old_size;
1008 	struct resource *ram_res;
1009 
1010 	mutex_lock(&kexec_mutex);
1011 
1012 	if (kexec_crash_image) {
1013 		ret = -ENOENT;
1014 		goto unlock;
1015 	}
1016 	start = crashk_res.start;
1017 	end = crashk_res.end;
1018 	old_size = (end == 0) ? 0 : end - start + 1;
1019 	if (new_size >= old_size) {
1020 		ret = (new_size == old_size) ? 0 : -EINVAL;
1021 		goto unlock;
1022 	}
1023 
1024 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1025 	if (!ram_res) {
1026 		ret = -ENOMEM;
1027 		goto unlock;
1028 	}
1029 
1030 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1031 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1032 
1033 	crash_free_reserved_phys_range(end, crashk_res.end);
1034 
1035 	if ((start == end) && (crashk_res.parent != NULL))
1036 		release_resource(&crashk_res);
1037 
1038 	ram_res->start = end;
1039 	ram_res->end = crashk_res.end;
1040 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1041 	ram_res->name = "System RAM";
1042 
1043 	crashk_res.end = end - 1;
1044 
1045 	insert_resource(&iomem_resource, ram_res);
1046 
1047 unlock:
1048 	mutex_unlock(&kexec_mutex);
1049 	return ret;
1050 }
1051 
crash_save_cpu(struct pt_regs * regs,int cpu)1052 void crash_save_cpu(struct pt_regs *regs, int cpu)
1053 {
1054 	struct elf_prstatus prstatus;
1055 	u32 *buf;
1056 
1057 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1058 		return;
1059 
1060 	/* Using ELF notes here is opportunistic.
1061 	 * I need a well defined structure format
1062 	 * for the data I pass, and I need tags
1063 	 * on the data to indicate what information I have
1064 	 * squirrelled away.  ELF notes happen to provide
1065 	 * all of that, so there is no need to invent something new.
1066 	 */
1067 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1068 	if (!buf)
1069 		return;
1070 	memset(&prstatus, 0, sizeof(prstatus));
1071 	prstatus.pr_pid = current->pid;
1072 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1073 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1074 			      &prstatus, sizeof(prstatus));
1075 	final_note(buf);
1076 }
1077 
crash_notes_memory_init(void)1078 static int __init crash_notes_memory_init(void)
1079 {
1080 	/* Allocate memory for saving cpu registers. */
1081 	size_t size, align;
1082 
1083 	/*
1084 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1085 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1086 	 * pages are also on 2 continuous physical pages. In this case the
1087 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1088 	 * starting address and size of crash_notes are exported through sysfs.
1089 	 * Here round up the size of crash_notes to the nearest power of two
1090 	 * and pass it to __alloc_percpu as align value. This can make sure
1091 	 * crash_notes is allocated inside one physical page.
1092 	 */
1093 	size = sizeof(note_buf_t);
1094 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1095 
1096 	/*
1097 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1098 	 * definitely will be in 2 pages with that.
1099 	 */
1100 	BUILD_BUG_ON(size > PAGE_SIZE);
1101 
1102 	crash_notes = __alloc_percpu(size, align);
1103 	if (!crash_notes) {
1104 		pr_warn("Memory allocation for saving cpu register states failed\n");
1105 		return -ENOMEM;
1106 	}
1107 	return 0;
1108 }
1109 subsys_initcall(crash_notes_memory_init);
1110 
1111 
1112 /*
1113  * Move into place and start executing a preloaded standalone
1114  * executable.  If nothing was preloaded return an error.
1115  */
kernel_kexec(void)1116 int kernel_kexec(void)
1117 {
1118 	int error = 0;
1119 
1120 	if (!mutex_trylock(&kexec_mutex))
1121 		return -EBUSY;
1122 	if (!kexec_image) {
1123 		error = -EINVAL;
1124 		goto Unlock;
1125 	}
1126 
1127 #ifdef CONFIG_KEXEC_JUMP
1128 	if (kexec_image->preserve_context) {
1129 		lock_system_sleep();
1130 		pm_prepare_console();
1131 		error = freeze_processes();
1132 		if (error) {
1133 			error = -EBUSY;
1134 			goto Restore_console;
1135 		}
1136 		suspend_console();
1137 		error = dpm_suspend_start(PMSG_FREEZE);
1138 		if (error)
1139 			goto Resume_console;
1140 		/* At this point, dpm_suspend_start() has been called,
1141 		 * but *not* dpm_suspend_end(). We *must* call
1142 		 * dpm_suspend_end() now.  Otherwise, drivers for
1143 		 * some devices (e.g. interrupt controllers) become
1144 		 * desynchronized with the actual state of the
1145 		 * hardware at resume time, and evil weirdness ensues.
1146 		 */
1147 		error = dpm_suspend_end(PMSG_FREEZE);
1148 		if (error)
1149 			goto Resume_devices;
1150 		error = disable_nonboot_cpus();
1151 		if (error)
1152 			goto Enable_cpus;
1153 		local_irq_disable();
1154 		error = syscore_suspend();
1155 		if (error)
1156 			goto Enable_irqs;
1157 	} else
1158 #endif
1159 	{
1160 		kexec_in_progress = true;
1161 		kernel_restart_prepare(NULL);
1162 		migrate_to_reboot_cpu();
1163 
1164 		/*
1165 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1166 		 * no further code needs to use CPU hotplug (which is true in
1167 		 * the reboot case). However, the kexec path depends on using
1168 		 * CPU hotplug again; so re-enable it here.
1169 		 */
1170 		cpu_hotplug_enable();
1171 		pr_emerg("Starting new kernel\n");
1172 		machine_shutdown();
1173 	}
1174 
1175 	machine_kexec(kexec_image);
1176 
1177 #ifdef CONFIG_KEXEC_JUMP
1178 	if (kexec_image->preserve_context) {
1179 		syscore_resume();
1180  Enable_irqs:
1181 		local_irq_enable();
1182  Enable_cpus:
1183 		enable_nonboot_cpus();
1184 		dpm_resume_start(PMSG_RESTORE);
1185  Resume_devices:
1186 		dpm_resume_end(PMSG_RESTORE);
1187  Resume_console:
1188 		resume_console();
1189 		thaw_processes();
1190  Restore_console:
1191 		pm_restore_console();
1192 		unlock_system_sleep();
1193 	}
1194 #endif
1195 
1196  Unlock:
1197 	mutex_unlock(&kexec_mutex);
1198 	return error;
1199 }
1200 
1201 /*
1202  * Protection mechanism for crashkernel reserved memory after
1203  * the kdump kernel is loaded.
1204  *
1205  * Provide an empty default implementation here -- architecture
1206  * code may override this
1207  */
arch_kexec_protect_crashkres(void)1208 void __weak arch_kexec_protect_crashkres(void)
1209 {}
1210 
arch_kexec_unprotect_crashkres(void)1211 void __weak arch_kexec_unprotect_crashkres(void)
1212 {}
1213