1 /*
2 * SMP support for ppc.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
5 * deal of code from the sparc and intel versions.
6 *
7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
8 *
9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #undef DEBUG
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/topology.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/spinlock.h>
29 #include <linux/cache.h>
30 #include <linux/err.h>
31 #include <linux/device.h>
32 #include <linux/cpu.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/profile.h>
36 #include <linux/processor.h>
37
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62
63 #ifdef DEBUG
64 #include <asm/udbg.h>
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef CONFIG_HOTPLUG_CPU
71 /* State of each CPU during hotplug phases */
72 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73 #endif
74
75 struct thread_info *secondary_ti;
76
77 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
78 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
80
81 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
82 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
83 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
84
85 /* SMP operations for this machine */
86 struct smp_ops_t *smp_ops;
87
88 /* Can't be static due to PowerMac hackery */
89 volatile unsigned int cpu_callin_map[NR_CPUS];
90
91 int smt_enabled_at_boot = 1;
92
93 /*
94 * Returns 1 if the specified cpu should be brought up during boot.
95 * Used to inhibit booting threads if they've been disabled or
96 * limited on the command line
97 */
smp_generic_cpu_bootable(unsigned int nr)98 int smp_generic_cpu_bootable(unsigned int nr)
99 {
100 /* Special case - we inhibit secondary thread startup
101 * during boot if the user requests it.
102 */
103 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
104 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
105 return 0;
106 if (smt_enabled_at_boot
107 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
108 return 0;
109 }
110
111 return 1;
112 }
113
114
115 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)116 int smp_generic_kick_cpu(int nr)
117 {
118 if (nr < 0 || nr >= nr_cpu_ids)
119 return -EINVAL;
120
121 /*
122 * The processor is currently spinning, waiting for the
123 * cpu_start field to become non-zero After we set cpu_start,
124 * the processor will continue on to secondary_start
125 */
126 if (!paca[nr].cpu_start) {
127 paca[nr].cpu_start = 1;
128 smp_mb();
129 return 0;
130 }
131
132 #ifdef CONFIG_HOTPLUG_CPU
133 /*
134 * Ok it's not there, so it might be soft-unplugged, let's
135 * try to bring it back
136 */
137 generic_set_cpu_up(nr);
138 smp_wmb();
139 smp_send_reschedule(nr);
140 #endif /* CONFIG_HOTPLUG_CPU */
141
142 return 0;
143 }
144 #endif /* CONFIG_PPC64 */
145
call_function_action(int irq,void * data)146 static irqreturn_t call_function_action(int irq, void *data)
147 {
148 generic_smp_call_function_interrupt();
149 return IRQ_HANDLED;
150 }
151
reschedule_action(int irq,void * data)152 static irqreturn_t reschedule_action(int irq, void *data)
153 {
154 scheduler_ipi();
155 return IRQ_HANDLED;
156 }
157
tick_broadcast_ipi_action(int irq,void * data)158 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
159 {
160 tick_broadcast_ipi_handler();
161 return IRQ_HANDLED;
162 }
163
164 #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)165 static irqreturn_t nmi_ipi_action(int irq, void *data)
166 {
167 smp_handle_nmi_ipi(get_irq_regs());
168 return IRQ_HANDLED;
169 }
170 #endif
171
172 static irq_handler_t smp_ipi_action[] = {
173 [PPC_MSG_CALL_FUNCTION] = call_function_action,
174 [PPC_MSG_RESCHEDULE] = reschedule_action,
175 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
176 #ifdef CONFIG_NMI_IPI
177 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
178 #endif
179 };
180
181 /*
182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
183 * than going through the call function infrastructure, and strongly
184 * serialized, so it is more appropriate for debugging.
185 */
186 const char *smp_ipi_name[] = {
187 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
188 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
189 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
190 [PPC_MSG_NMI_IPI] = "nmi ipi",
191 };
192
193 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)194 int smp_request_message_ipi(int virq, int msg)
195 {
196 int err;
197
198 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
199 return -EINVAL;
200 #ifndef CONFIG_NMI_IPI
201 if (msg == PPC_MSG_NMI_IPI)
202 return 1;
203 #endif
204
205 err = request_irq(virq, smp_ipi_action[msg],
206 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
207 smp_ipi_name[msg], NULL);
208 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
209 virq, smp_ipi_name[msg], err);
210
211 return err;
212 }
213
214 #ifdef CONFIG_PPC_SMP_MUXED_IPI
215 struct cpu_messages {
216 long messages; /* current messages */
217 };
218 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
219
smp_muxed_ipi_set_message(int cpu,int msg)220 void smp_muxed_ipi_set_message(int cpu, int msg)
221 {
222 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
223 char *message = (char *)&info->messages;
224
225 /*
226 * Order previous accesses before accesses in the IPI handler.
227 */
228 smp_mb();
229 message[msg] = 1;
230 }
231
smp_muxed_ipi_message_pass(int cpu,int msg)232 void smp_muxed_ipi_message_pass(int cpu, int msg)
233 {
234 smp_muxed_ipi_set_message(cpu, msg);
235
236 /*
237 * cause_ipi functions are required to include a full barrier
238 * before doing whatever causes the IPI.
239 */
240 smp_ops->cause_ipi(cpu);
241 }
242
243 #ifdef __BIG_ENDIAN__
244 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
245 #else
246 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
247 #endif
248
smp_ipi_demux(void)249 irqreturn_t smp_ipi_demux(void)
250 {
251 mb(); /* order any irq clear */
252
253 return smp_ipi_demux_relaxed();
254 }
255
256 /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)257 irqreturn_t smp_ipi_demux_relaxed(void)
258 {
259 struct cpu_messages *info;
260 unsigned long all;
261
262 info = this_cpu_ptr(&ipi_message);
263 do {
264 all = xchg(&info->messages, 0);
265 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
266 /*
267 * Must check for PPC_MSG_RM_HOST_ACTION messages
268 * before PPC_MSG_CALL_FUNCTION messages because when
269 * a VM is destroyed, we call kick_all_cpus_sync()
270 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
271 * messages have completed before we free any VCPUs.
272 */
273 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
274 kvmppc_xics_ipi_action();
275 #endif
276 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
277 generic_smp_call_function_interrupt();
278 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
279 scheduler_ipi();
280 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
281 tick_broadcast_ipi_handler();
282 #ifdef CONFIG_NMI_IPI
283 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
284 nmi_ipi_action(0, NULL);
285 #endif
286 } while (info->messages);
287
288 return IRQ_HANDLED;
289 }
290 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
291
do_message_pass(int cpu,int msg)292 static inline void do_message_pass(int cpu, int msg)
293 {
294 if (smp_ops->message_pass)
295 smp_ops->message_pass(cpu, msg);
296 #ifdef CONFIG_PPC_SMP_MUXED_IPI
297 else
298 smp_muxed_ipi_message_pass(cpu, msg);
299 #endif
300 }
301
smp_send_reschedule(int cpu)302 void smp_send_reschedule(int cpu)
303 {
304 if (likely(smp_ops))
305 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
306 }
307 EXPORT_SYMBOL_GPL(smp_send_reschedule);
308
arch_send_call_function_single_ipi(int cpu)309 void arch_send_call_function_single_ipi(int cpu)
310 {
311 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
312 }
313
arch_send_call_function_ipi_mask(const struct cpumask * mask)314 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
315 {
316 unsigned int cpu;
317
318 for_each_cpu(cpu, mask)
319 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
320 }
321
322 #ifdef CONFIG_NMI_IPI
323
324 /*
325 * "NMI IPI" system.
326 *
327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
328 * a running system. They can be used for crash, debug, halt/reboot, etc.
329 *
330 * NMI IPIs are globally single threaded. No more than one in progress at
331 * any time.
332 *
333 * The IPI call waits with interrupts disabled until all targets enter the
334 * NMI handler, then the call returns.
335 *
336 * No new NMI can be initiated until targets exit the handler.
337 *
338 * The IPI call may time out without all targets entering the NMI handler.
339 * In that case, there is some logic to recover (and ignore subsequent
340 * NMI interrupts that may eventually be raised), but the platform interrupt
341 * handler may not be able to distinguish this from other exception causes,
342 * which may cause a crash.
343 */
344
345 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
346 static struct cpumask nmi_ipi_pending_mask;
347 static int nmi_ipi_busy_count = 0;
348 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
349
nmi_ipi_lock_start(unsigned long * flags)350 static void nmi_ipi_lock_start(unsigned long *flags)
351 {
352 raw_local_irq_save(*flags);
353 hard_irq_disable();
354 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
355 raw_local_irq_restore(*flags);
356 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
357 raw_local_irq_save(*flags);
358 hard_irq_disable();
359 }
360 }
361
nmi_ipi_lock(void)362 static void nmi_ipi_lock(void)
363 {
364 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
365 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
366 }
367
nmi_ipi_unlock(void)368 static void nmi_ipi_unlock(void)
369 {
370 smp_mb();
371 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
372 atomic_set(&__nmi_ipi_lock, 0);
373 }
374
nmi_ipi_unlock_end(unsigned long * flags)375 static void nmi_ipi_unlock_end(unsigned long *flags)
376 {
377 nmi_ipi_unlock();
378 raw_local_irq_restore(*flags);
379 }
380
381 /*
382 * Platform NMI handler calls this to ack
383 */
smp_handle_nmi_ipi(struct pt_regs * regs)384 int smp_handle_nmi_ipi(struct pt_regs *regs)
385 {
386 void (*fn)(struct pt_regs *);
387 unsigned long flags;
388 int me = raw_smp_processor_id();
389 int ret = 0;
390
391 /*
392 * Unexpected NMIs are possible here because the interrupt may not
393 * be able to distinguish NMI IPIs from other types of NMIs, or
394 * because the caller may have timed out.
395 */
396 nmi_ipi_lock_start(&flags);
397 if (!nmi_ipi_busy_count)
398 goto out;
399 if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
400 goto out;
401
402 fn = nmi_ipi_function;
403 if (!fn)
404 goto out;
405
406 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
407 nmi_ipi_busy_count++;
408 nmi_ipi_unlock();
409
410 ret = 1;
411
412 fn(regs);
413
414 nmi_ipi_lock();
415 nmi_ipi_busy_count--;
416 out:
417 nmi_ipi_unlock_end(&flags);
418
419 return ret;
420 }
421
do_smp_send_nmi_ipi(int cpu)422 static void do_smp_send_nmi_ipi(int cpu)
423 {
424 if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
425 return;
426
427 if (cpu >= 0) {
428 do_message_pass(cpu, PPC_MSG_NMI_IPI);
429 } else {
430 int c;
431
432 for_each_online_cpu(c) {
433 if (c == raw_smp_processor_id())
434 continue;
435 do_message_pass(c, PPC_MSG_NMI_IPI);
436 }
437 }
438 }
439
smp_flush_nmi_ipi(u64 delay_us)440 void smp_flush_nmi_ipi(u64 delay_us)
441 {
442 unsigned long flags;
443
444 nmi_ipi_lock_start(&flags);
445 while (nmi_ipi_busy_count) {
446 nmi_ipi_unlock_end(&flags);
447 udelay(1);
448 if (delay_us) {
449 delay_us--;
450 if (!delay_us)
451 return;
452 }
453 nmi_ipi_lock_start(&flags);
454 }
455 nmi_ipi_unlock_end(&flags);
456 }
457
458 /*
459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
460 * - fn is the target callback function.
461 * - delay_us > 0 is the delay before giving up waiting for targets to
462 * enter the handler, == 0 specifies indefinite delay.
463 */
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)464 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
465 {
466 unsigned long flags;
467 int me = raw_smp_processor_id();
468 int ret = 1;
469
470 BUG_ON(cpu == me);
471 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
472
473 if (unlikely(!smp_ops))
474 return 0;
475
476 /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
477 nmi_ipi_lock_start(&flags);
478 while (nmi_ipi_busy_count) {
479 nmi_ipi_unlock_end(&flags);
480 spin_until_cond(nmi_ipi_busy_count == 0);
481 nmi_ipi_lock_start(&flags);
482 }
483
484 nmi_ipi_function = fn;
485
486 if (cpu < 0) {
487 /* ALL_OTHERS */
488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 } else {
491 /* cpumask starts clear */
492 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
493 }
494 nmi_ipi_busy_count++;
495 nmi_ipi_unlock();
496
497 do_smp_send_nmi_ipi(cpu);
498
499 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
500 udelay(1);
501 if (delay_us) {
502 delay_us--;
503 if (!delay_us)
504 break;
505 }
506 }
507
508 nmi_ipi_lock();
509 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
510 /* Could not gather all CPUs */
511 ret = 0;
512 cpumask_clear(&nmi_ipi_pending_mask);
513 }
514 nmi_ipi_busy_count--;
515 nmi_ipi_unlock_end(&flags);
516
517 return ret;
518 }
519 #endif /* CONFIG_NMI_IPI */
520
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)522 void tick_broadcast(const struct cpumask *mask)
523 {
524 unsigned int cpu;
525
526 for_each_cpu(cpu, mask)
527 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
528 }
529 #endif
530
531 #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)532 void debugger_ipi_callback(struct pt_regs *regs)
533 {
534 debugger_ipi(regs);
535 }
536
smp_send_debugger_break(void)537 void smp_send_debugger_break(void)
538 {
539 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
540 }
541 #endif
542
543 #ifdef CONFIG_KEXEC_CORE
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))544 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
545 {
546 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
547 }
548 #endif
549
stop_this_cpu(void * dummy)550 static void stop_this_cpu(void *dummy)
551 {
552 /* Remove this CPU */
553 set_cpu_online(smp_processor_id(), false);
554
555 local_irq_disable();
556 while (1)
557 ;
558 }
559
smp_send_stop(void)560 void smp_send_stop(void)
561 {
562 smp_call_function(stop_this_cpu, NULL, 0);
563 }
564
565 struct thread_info *current_set[NR_CPUS];
566
smp_store_cpu_info(int id)567 static void smp_store_cpu_info(int id)
568 {
569 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
570 #ifdef CONFIG_PPC_FSL_BOOK3E
571 per_cpu(next_tlbcam_idx, id)
572 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
573 #endif
574 }
575
576 /*
577 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
578 * rather than just passing around the cpumask we pass around a function that
579 * returns the that cpumask for the given CPU.
580 */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))581 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
582 {
583 cpumask_set_cpu(i, get_cpumask(j));
584 cpumask_set_cpu(j, get_cpumask(i));
585 }
586
587 #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))588 static void set_cpus_unrelated(int i, int j,
589 struct cpumask *(*get_cpumask)(int))
590 {
591 cpumask_clear_cpu(i, get_cpumask(j));
592 cpumask_clear_cpu(j, get_cpumask(i));
593 }
594 #endif
595
smp_prepare_cpus(unsigned int max_cpus)596 void __init smp_prepare_cpus(unsigned int max_cpus)
597 {
598 unsigned int cpu;
599
600 DBG("smp_prepare_cpus\n");
601
602 /*
603 * setup_cpu may need to be called on the boot cpu. We havent
604 * spun any cpus up but lets be paranoid.
605 */
606 BUG_ON(boot_cpuid != smp_processor_id());
607
608 /* Fixup boot cpu */
609 smp_store_cpu_info(boot_cpuid);
610 cpu_callin_map[boot_cpuid] = 1;
611
612 for_each_possible_cpu(cpu) {
613 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
614 GFP_KERNEL, cpu_to_node(cpu));
615 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
616 GFP_KERNEL, cpu_to_node(cpu));
617 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
618 GFP_KERNEL, cpu_to_node(cpu));
619 /*
620 * numa_node_id() works after this.
621 */
622 if (cpu_present(cpu)) {
623 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
624 set_cpu_numa_mem(cpu,
625 local_memory_node(numa_cpu_lookup_table[cpu]));
626 }
627 }
628
629 /* Init the cpumasks so the boot CPU is related to itself */
630 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
631 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
632 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
633
634 if (smp_ops && smp_ops->probe)
635 smp_ops->probe();
636 }
637
smp_prepare_boot_cpu(void)638 void smp_prepare_boot_cpu(void)
639 {
640 BUG_ON(smp_processor_id() != boot_cpuid);
641 #ifdef CONFIG_PPC64
642 paca[boot_cpuid].__current = current;
643 #endif
644 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
645 current_set[boot_cpuid] = task_thread_info(current);
646 }
647
648 #ifdef CONFIG_HOTPLUG_CPU
649
generic_cpu_disable(void)650 int generic_cpu_disable(void)
651 {
652 unsigned int cpu = smp_processor_id();
653
654 if (cpu == boot_cpuid)
655 return -EBUSY;
656
657 set_cpu_online(cpu, false);
658 #ifdef CONFIG_PPC64
659 vdso_data->processorCount--;
660 #endif
661 /* Update affinity of all IRQs previously aimed at this CPU */
662 irq_migrate_all_off_this_cpu();
663
664 /*
665 * Depending on the details of the interrupt controller, it's possible
666 * that one of the interrupts we just migrated away from this CPU is
667 * actually already pending on this CPU. If we leave it in that state
668 * the interrupt will never be EOI'ed, and will never fire again. So
669 * temporarily enable interrupts here, to allow any pending interrupt to
670 * be received (and EOI'ed), before we take this CPU offline.
671 */
672 local_irq_enable();
673 mdelay(1);
674 local_irq_disable();
675
676 return 0;
677 }
678
generic_cpu_die(unsigned int cpu)679 void generic_cpu_die(unsigned int cpu)
680 {
681 int i;
682
683 for (i = 0; i < 100; i++) {
684 smp_rmb();
685 if (is_cpu_dead(cpu))
686 return;
687 msleep(100);
688 }
689 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
690 }
691
generic_set_cpu_dead(unsigned int cpu)692 void generic_set_cpu_dead(unsigned int cpu)
693 {
694 per_cpu(cpu_state, cpu) = CPU_DEAD;
695 }
696
697 /*
698 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
699 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
700 * which makes the delay in generic_cpu_die() not happen.
701 */
generic_set_cpu_up(unsigned int cpu)702 void generic_set_cpu_up(unsigned int cpu)
703 {
704 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
705 }
706
generic_check_cpu_restart(unsigned int cpu)707 int generic_check_cpu_restart(unsigned int cpu)
708 {
709 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
710 }
711
is_cpu_dead(unsigned int cpu)712 int is_cpu_dead(unsigned int cpu)
713 {
714 return per_cpu(cpu_state, cpu) == CPU_DEAD;
715 }
716
secondaries_inhibited(void)717 static bool secondaries_inhibited(void)
718 {
719 return kvm_hv_mode_active();
720 }
721
722 #else /* HOTPLUG_CPU */
723
724 #define secondaries_inhibited() 0
725
726 #endif
727
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)728 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
729 {
730 struct thread_info *ti = task_thread_info(idle);
731
732 #ifdef CONFIG_PPC64
733 paca[cpu].__current = idle;
734 paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
735 #endif
736 ti->cpu = cpu;
737 secondary_ti = current_set[cpu] = ti;
738 }
739
__cpu_up(unsigned int cpu,struct task_struct * tidle)740 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
741 {
742 int rc, c;
743
744 /*
745 * Don't allow secondary threads to come online if inhibited
746 */
747 if (threads_per_core > 1 && secondaries_inhibited() &&
748 cpu_thread_in_subcore(cpu))
749 return -EBUSY;
750
751 if (smp_ops == NULL ||
752 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
753 return -EINVAL;
754
755 cpu_idle_thread_init(cpu, tidle);
756
757 /*
758 * The platform might need to allocate resources prior to bringing
759 * up the CPU
760 */
761 if (smp_ops->prepare_cpu) {
762 rc = smp_ops->prepare_cpu(cpu);
763 if (rc)
764 return rc;
765 }
766
767 /* Make sure callin-map entry is 0 (can be leftover a CPU
768 * hotplug
769 */
770 cpu_callin_map[cpu] = 0;
771
772 /* The information for processor bringup must
773 * be written out to main store before we release
774 * the processor.
775 */
776 smp_mb();
777
778 /* wake up cpus */
779 DBG("smp: kicking cpu %d\n", cpu);
780 rc = smp_ops->kick_cpu(cpu);
781 if (rc) {
782 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
783 return rc;
784 }
785
786 /*
787 * wait to see if the cpu made a callin (is actually up).
788 * use this value that I found through experimentation.
789 * -- Cort
790 */
791 if (system_state < SYSTEM_RUNNING)
792 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
793 udelay(100);
794 #ifdef CONFIG_HOTPLUG_CPU
795 else
796 /*
797 * CPUs can take much longer to come up in the
798 * hotplug case. Wait five seconds.
799 */
800 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
801 msleep(1);
802 #endif
803
804 if (!cpu_callin_map[cpu]) {
805 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
806 return -ENOENT;
807 }
808
809 DBG("Processor %u found.\n", cpu);
810
811 if (smp_ops->give_timebase)
812 smp_ops->give_timebase();
813
814 /* Wait until cpu puts itself in the online & active maps */
815 spin_until_cond(cpu_online(cpu));
816
817 return 0;
818 }
819
820 /* Return the value of the reg property corresponding to the given
821 * logical cpu.
822 */
cpu_to_core_id(int cpu)823 int cpu_to_core_id(int cpu)
824 {
825 struct device_node *np;
826 const __be32 *reg;
827 int id = -1;
828
829 np = of_get_cpu_node(cpu, NULL);
830 if (!np)
831 goto out;
832
833 reg = of_get_property(np, "reg", NULL);
834 if (!reg)
835 goto out;
836
837 id = be32_to_cpup(reg);
838 out:
839 of_node_put(np);
840 return id;
841 }
842 EXPORT_SYMBOL_GPL(cpu_to_core_id);
843
844 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)845 int cpu_core_index_of_thread(int cpu)
846 {
847 return cpu >> threads_shift;
848 }
849 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
850
cpu_first_thread_of_core(int core)851 int cpu_first_thread_of_core(int core)
852 {
853 return core << threads_shift;
854 }
855 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
856
857 /* Must be called when no change can occur to cpu_present_mask,
858 * i.e. during cpu online or offline.
859 */
cpu_to_l2cache(int cpu)860 static struct device_node *cpu_to_l2cache(int cpu)
861 {
862 struct device_node *np;
863 struct device_node *cache;
864
865 if (!cpu_present(cpu))
866 return NULL;
867
868 np = of_get_cpu_node(cpu, NULL);
869 if (np == NULL)
870 return NULL;
871
872 cache = of_find_next_cache_node(np);
873
874 of_node_put(np);
875
876 return cache;
877 }
878
update_mask_by_l2(int cpu,struct cpumask * (* mask_fn)(int))879 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
880 {
881 struct device_node *l2_cache, *np;
882 int i;
883
884 l2_cache = cpu_to_l2cache(cpu);
885 if (!l2_cache)
886 return false;
887
888 for_each_cpu(i, cpu_online_mask) {
889 /*
890 * when updating the marks the current CPU has not been marked
891 * online, but we need to update the cache masks
892 */
893 np = cpu_to_l2cache(i);
894 if (!np)
895 continue;
896
897 if (np == l2_cache)
898 set_cpus_related(cpu, i, mask_fn);
899
900 of_node_put(np);
901 }
902 of_node_put(l2_cache);
903
904 return true;
905 }
906
907 #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)908 static void remove_cpu_from_masks(int cpu)
909 {
910 int i;
911
912 /* NB: cpu_core_mask is a superset of the others */
913 for_each_cpu(i, cpu_core_mask(cpu)) {
914 set_cpus_unrelated(cpu, i, cpu_core_mask);
915 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
916 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
917 }
918 }
919 #endif
920
add_cpu_to_masks(int cpu)921 static void add_cpu_to_masks(int cpu)
922 {
923 int first_thread = cpu_first_thread_sibling(cpu);
924 int chipid = cpu_to_chip_id(cpu);
925 int i;
926
927 /*
928 * This CPU will not be in the online mask yet so we need to manually
929 * add it to it's own thread sibling mask.
930 */
931 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
932
933 for (i = first_thread; i < first_thread + threads_per_core; i++)
934 if (cpu_online(i))
935 set_cpus_related(i, cpu, cpu_sibling_mask);
936
937 /*
938 * Copy the thread sibling mask into the cache sibling mask
939 * and mark any CPUs that share an L2 with this CPU.
940 */
941 for_each_cpu(i, cpu_sibling_mask(cpu))
942 set_cpus_related(cpu, i, cpu_l2_cache_mask);
943 update_mask_by_l2(cpu, cpu_l2_cache_mask);
944
945 /*
946 * Copy the cache sibling mask into core sibling mask and mark
947 * any CPUs on the same chip as this CPU.
948 */
949 for_each_cpu(i, cpu_l2_cache_mask(cpu))
950 set_cpus_related(cpu, i, cpu_core_mask);
951
952 if (chipid == -1)
953 return;
954
955 for_each_cpu(i, cpu_online_mask)
956 if (cpu_to_chip_id(i) == chipid)
957 set_cpus_related(cpu, i, cpu_core_mask);
958 }
959
960 static bool shared_caches;
961
962 /* Activate a secondary processor. */
start_secondary(void * unused)963 void start_secondary(void *unused)
964 {
965 unsigned int cpu = smp_processor_id();
966
967 mmgrab(&init_mm);
968 current->active_mm = &init_mm;
969
970 smp_store_cpu_info(cpu);
971 set_dec(tb_ticks_per_jiffy);
972 preempt_disable();
973 cpu_callin_map[cpu] = 1;
974
975 if (smp_ops->setup_cpu)
976 smp_ops->setup_cpu(cpu);
977 if (smp_ops->take_timebase)
978 smp_ops->take_timebase();
979
980 secondary_cpu_time_init();
981
982 #ifdef CONFIG_PPC64
983 if (system_state == SYSTEM_RUNNING)
984 vdso_data->processorCount++;
985
986 vdso_getcpu_init();
987 #endif
988 /* Update topology CPU masks */
989 add_cpu_to_masks(cpu);
990
991 /*
992 * Check for any shared caches. Note that this must be done on a
993 * per-core basis because one core in the pair might be disabled.
994 */
995 if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
996 shared_caches = true;
997
998 set_numa_node(numa_cpu_lookup_table[cpu]);
999 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1000
1001 smp_wmb();
1002 notify_cpu_starting(cpu);
1003 set_cpu_online(cpu, true);
1004
1005 local_irq_enable();
1006
1007 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1008
1009 BUG();
1010 }
1011
setup_profiling_timer(unsigned int multiplier)1012 int setup_profiling_timer(unsigned int multiplier)
1013 {
1014 return 0;
1015 }
1016
1017 #ifdef CONFIG_SCHED_SMT
1018 /* cpumask of CPUs with asymetric SMT dependancy */
powerpc_smt_flags(void)1019 static int powerpc_smt_flags(void)
1020 {
1021 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1022
1023 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1024 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1025 flags |= SD_ASYM_PACKING;
1026 }
1027 return flags;
1028 }
1029 #endif
1030
1031 static struct sched_domain_topology_level powerpc_topology[] = {
1032 #ifdef CONFIG_SCHED_SMT
1033 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1034 #endif
1035 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1036 { NULL, },
1037 };
1038
1039 /*
1040 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1041 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1042 * since the migrated task remains cache hot. We want to take advantage of this
1043 * at the scheduler level so an extra topology level is required.
1044 */
powerpc_shared_cache_flags(void)1045 static int powerpc_shared_cache_flags(void)
1046 {
1047 return SD_SHARE_PKG_RESOURCES;
1048 }
1049
1050 /*
1051 * We can't just pass cpu_l2_cache_mask() directly because
1052 * returns a non-const pointer and the compiler barfs on that.
1053 */
shared_cache_mask(int cpu)1054 static const struct cpumask *shared_cache_mask(int cpu)
1055 {
1056 return cpu_l2_cache_mask(cpu);
1057 }
1058
1059 static struct sched_domain_topology_level power9_topology[] = {
1060 #ifdef CONFIG_SCHED_SMT
1061 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1062 #endif
1063 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1064 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1065 { NULL, },
1066 };
1067
smp_cpus_done(unsigned int max_cpus)1068 void __init smp_cpus_done(unsigned int max_cpus)
1069 {
1070 /*
1071 * We are running pinned to the boot CPU, see rest_init().
1072 */
1073 if (smp_ops && smp_ops->setup_cpu)
1074 smp_ops->setup_cpu(boot_cpuid);
1075
1076 if (smp_ops && smp_ops->bringup_done)
1077 smp_ops->bringup_done();
1078
1079 dump_numa_cpu_topology();
1080
1081 /*
1082 * If any CPU detects that it's sharing a cache with another CPU then
1083 * use the deeper topology that is aware of this sharing.
1084 */
1085 if (shared_caches) {
1086 pr_info("Using shared cache scheduler topology\n");
1087 set_sched_topology(power9_topology);
1088 } else {
1089 pr_info("Using standard scheduler topology\n");
1090 set_sched_topology(powerpc_topology);
1091 }
1092 }
1093
1094 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1095 int __cpu_disable(void)
1096 {
1097 int cpu = smp_processor_id();
1098 int err;
1099
1100 if (!smp_ops->cpu_disable)
1101 return -ENOSYS;
1102
1103 err = smp_ops->cpu_disable();
1104 if (err)
1105 return err;
1106
1107 /* Update sibling maps */
1108 remove_cpu_from_masks(cpu);
1109
1110 return 0;
1111 }
1112
__cpu_die(unsigned int cpu)1113 void __cpu_die(unsigned int cpu)
1114 {
1115 if (smp_ops->cpu_die)
1116 smp_ops->cpu_die(cpu);
1117 }
1118
cpu_die(void)1119 void cpu_die(void)
1120 {
1121 if (ppc_md.cpu_die)
1122 ppc_md.cpu_die();
1123
1124 /* If we return, we re-enter start_secondary */
1125 start_secondary_resume();
1126 }
1127
1128 #endif
1129