1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/psi.h>
58 #include <net/sock.h>
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
64 MAX_CFTYPE_NAME + 2)
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * css_set_lock protects task->cgroups pointer, the list of css_set
71 * objects, and the chain of tasks off each css_set.
72 *
73 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
74 * cgroup.h can use them for lockdep annotations.
75 */
76 DEFINE_MUTEX(cgroup_mutex);
77 DEFINE_SPINLOCK(css_set_lock);
78
79 #ifdef CONFIG_PROVE_RCU
80 EXPORT_SYMBOL_GPL(cgroup_mutex);
81 EXPORT_SYMBOL_GPL(css_set_lock);
82 #endif
83
84 /*
85 * Protects cgroup_idr and css_idr so that IDs can be released without
86 * grabbing cgroup_mutex.
87 */
88 static DEFINE_SPINLOCK(cgroup_idr_lock);
89
90 /*
91 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
92 * against file removal/re-creation across css hiding.
93 */
94 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
95
96 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
97
98 #define cgroup_assert_mutex_or_rcu_locked() \
99 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
100 !lockdep_is_held(&cgroup_mutex), \
101 "cgroup_mutex or RCU read lock required");
102
103 /*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109 static struct workqueue_struct *cgroup_destroy_wq;
110
111 /* generate an array of cgroup subsystem pointers */
112 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
113 struct cgroup_subsys *cgroup_subsys[] = {
114 #include <linux/cgroup_subsys.h>
115 };
116 #undef SUBSYS
117
118 /* array of cgroup subsystem names */
119 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
120 static const char *cgroup_subsys_name[] = {
121 #include <linux/cgroup_subsys.h>
122 };
123 #undef SUBSYS
124
125 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
126 #define SUBSYS(_x) \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
128 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
130 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
131 #include <linux/cgroup_subsys.h>
132 #undef SUBSYS
133
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
135 static struct static_key_true *cgroup_subsys_enabled_key[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
141 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145
146 /*
147 * The default hierarchy, reserved for the subsystems that are otherwise
148 * unattached - it never has more than a single cgroup, and all tasks are
149 * part of that cgroup.
150 */
151 struct cgroup_root cgrp_dfl_root;
152 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
153
154 /*
155 * The default hierarchy always exists but is hidden until mounted for the
156 * first time. This is for backward compatibility.
157 */
158 static bool cgrp_dfl_visible;
159
160 /* some controllers are not supported in the default hierarchy */
161 static u16 cgrp_dfl_inhibit_ss_mask;
162
163 /* some controllers are implicitly enabled on the default hierarchy */
164 static u16 cgrp_dfl_implicit_ss_mask;
165
166 /* some controllers can be threaded on the default hierarchy */
167 static u16 cgrp_dfl_threaded_ss_mask;
168
169 /* The list of hierarchy roots */
170 LIST_HEAD(cgroup_roots);
171 static int cgroup_root_count;
172
173 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
174 static DEFINE_IDR(cgroup_hierarchy_idr);
175
176 /*
177 * Assign a monotonically increasing serial number to csses. It guarantees
178 * cgroups with bigger numbers are newer than those with smaller numbers.
179 * Also, as csses are always appended to the parent's ->children list, it
180 * guarantees that sibling csses are always sorted in the ascending serial
181 * number order on the list. Protected by cgroup_mutex.
182 */
183 static u64 css_serial_nr_next = 1;
184
185 /*
186 * These bitmasks identify subsystems with specific features to avoid
187 * having to do iterative checks repeatedly.
188 */
189 static u16 have_fork_callback __read_mostly;
190 static u16 have_exit_callback __read_mostly;
191 static u16 have_release_callback __read_mostly;
192 static u16 have_canfork_callback __read_mostly;
193
194 /* cgroup namespace for init task */
195 struct cgroup_namespace init_cgroup_ns = {
196 .count = REFCOUNT_INIT(2),
197 .user_ns = &init_user_ns,
198 .ns.ops = &cgroupns_operations,
199 .ns.inum = PROC_CGROUP_INIT_INO,
200 .root_cset = &init_css_set,
201 };
202
203 static struct file_system_type cgroup2_fs_type;
204 static struct cftype cgroup_base_files[];
205
206 static int cgroup_apply_control(struct cgroup *cgrp);
207 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
208 static void css_task_iter_skip(struct css_task_iter *it,
209 struct task_struct *task);
210 static int cgroup_destroy_locked(struct cgroup *cgrp);
211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
212 struct cgroup_subsys *ss);
213 static void css_release(struct percpu_ref *ref);
214 static void kill_css(struct cgroup_subsys_state *css);
215 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
216 struct cgroup *cgrp, struct cftype cfts[],
217 bool is_add);
218
219 /**
220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221 * @ssid: subsys ID of interest
222 *
223 * cgroup_subsys_enabled() can only be used with literal subsys names which
224 * is fine for individual subsystems but unsuitable for cgroup core. This
225 * is slower static_key_enabled() based test indexed by @ssid.
226 */
cgroup_ssid_enabled(int ssid)227 bool cgroup_ssid_enabled(int ssid)
228 {
229 if (CGROUP_SUBSYS_COUNT == 0)
230 return false;
231
232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
233 }
234
235 /**
236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237 * @cgrp: the cgroup of interest
238 *
239 * The default hierarchy is the v2 interface of cgroup and this function
240 * can be used to test whether a cgroup is on the default hierarchy for
241 * cases where a subsystem should behave differnetly depending on the
242 * interface version.
243 *
244 * The set of behaviors which change on the default hierarchy are still
245 * being determined and the mount option is prefixed with __DEVEL__.
246 *
247 * List of changed behaviors:
248 *
249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250 * and "name" are disallowed.
251 *
252 * - When mounting an existing superblock, mount options should match.
253 *
254 * - Remount is disallowed.
255 *
256 * - rename(2) is disallowed.
257 *
258 * - "tasks" is removed. Everything should be at process granularity. Use
259 * "cgroup.procs" instead.
260 *
261 * - "cgroup.procs" is not sorted. pids will be unique unless they got
262 * recycled inbetween reads.
263 *
264 * - "release_agent" and "notify_on_release" are removed. Replacement
265 * notification mechanism will be implemented.
266 *
267 * - "cgroup.clone_children" is removed.
268 *
269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
270 * and its descendants contain no task; otherwise, 1. The file also
271 * generates kernfs notification which can be monitored through poll and
272 * [di]notify when the value of the file changes.
273 *
274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275 * take masks of ancestors with non-empty cpus/mems, instead of being
276 * moved to an ancestor.
277 *
278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
279 * masks of ancestors.
280 *
281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
282 * is not created.
283 *
284 * - blkcg: blk-throttle becomes properly hierarchical.
285 *
286 * - debug: disallowed on the default hierarchy.
287 */
cgroup_on_dfl(const struct cgroup * cgrp)288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 return cgrp->root == &cgrp_dfl_root;
291 }
292
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 gfp_t gfp_mask)
296 {
297 int ret;
298
299 idr_preload(gfp_mask);
300 spin_lock_bh(&cgroup_idr_lock);
301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 spin_unlock_bh(&cgroup_idr_lock);
303 idr_preload_end();
304 return ret;
305 }
306
cgroup_idr_replace(struct idr * idr,void * ptr,int id)307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 void *ret;
310
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_replace(idr, ptr, id);
313 spin_unlock_bh(&cgroup_idr_lock);
314 return ret;
315 }
316
cgroup_idr_remove(struct idr * idr,int id)317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 spin_lock_bh(&cgroup_idr_lock);
320 idr_remove(idr, id);
321 spin_unlock_bh(&cgroup_idr_lock);
322 }
323
cgroup_has_tasks(struct cgroup * cgrp)324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 return cgrp->nr_populated_csets;
327 }
328
cgroup_is_threaded(struct cgroup * cgrp)329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 return cgrp->dom_cgrp != cgrp;
332 }
333
334 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 /*
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
341 */
342 return !cgroup_parent(cgrp);
343 }
344
345 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp))
350 return true;
351
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp))
354 return false;
355
356 /* can only have either domain or threaded children */
357 if (cgrp->nr_populated_domain_children)
358 return false;
359
360 /* and no domain controllers can be enabled */
361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 return false;
363
364 return true;
365 }
366
367 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp))
372 return false;
373
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp->nr_threaded_children)
376 return true;
377
378 /*
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
381 */
382 if (cgroup_has_tasks(cgrp) &&
383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 return true;
385
386 return false;
387 }
388
389 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp))
394 return false;
395
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp = cgroup_parent(cgrp))) {
398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 return false;
400 if (cgroup_is_threaded(cgrp))
401 return false;
402 }
403
404 return true;
405 }
406
407 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 struct cgroup *parent = cgroup_parent(cgrp);
411 u16 root_ss_mask = cgrp->root->subsys_mask;
412
413 if (parent) {
414 u16 ss_mask = parent->subtree_control;
415
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp))
418 ss_mask &= cgrp_dfl_threaded_ss_mask;
419 return ss_mask;
420 }
421
422 if (cgroup_on_dfl(cgrp))
423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 cgrp_dfl_implicit_ss_mask);
425 return root_ss_mask;
426 }
427
428 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 struct cgroup *parent = cgroup_parent(cgrp);
432
433 if (parent) {
434 u16 ss_mask = parent->subtree_ss_mask;
435
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp))
438 ss_mask &= cgrp_dfl_threaded_ss_mask;
439 return ss_mask;
440 }
441
442 return cgrp->root->subsys_mask;
443 }
444
445 /**
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449 *
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
455 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 struct cgroup_subsys *ss)
458 {
459 if (ss)
460 return rcu_dereference_check(cgrp->subsys[ss->id],
461 lockdep_is_held(&cgroup_mutex));
462 else
463 return &cgrp->self;
464 }
465
466 /**
467 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
470 *
471 * Similar to cgroup_css() but returns the effective css, which is defined
472 * as the matching css of the nearest ancestor including self which has @ss
473 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
474 * function is guaranteed to return non-NULL css.
475 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)476 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
477 struct cgroup_subsys *ss)
478 {
479 lockdep_assert_held(&cgroup_mutex);
480
481 if (!ss)
482 return &cgrp->self;
483
484 /*
485 * This function is used while updating css associations and thus
486 * can't test the csses directly. Test ss_mask.
487 */
488 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
489 cgrp = cgroup_parent(cgrp);
490 if (!cgrp)
491 return NULL;
492 }
493
494 return cgroup_css(cgrp, ss);
495 }
496
497 /**
498 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest
501 *
502 * Find and get the effective css of @cgrp for @ss. The effective css is
503 * defined as the matching css of the nearest ancestor including self which
504 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
505 * the root css is returned, so this function always returns a valid css.
506 * The returned css must be put using css_put().
507 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)508 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
509 struct cgroup_subsys *ss)
510 {
511 struct cgroup_subsys_state *css;
512
513 rcu_read_lock();
514
515 do {
516 css = cgroup_css(cgrp, ss);
517
518 if (css && css_tryget_online(css))
519 goto out_unlock;
520 cgrp = cgroup_parent(cgrp);
521 } while (cgrp);
522
523 css = init_css_set.subsys[ss->id];
524 css_get(css);
525 out_unlock:
526 rcu_read_unlock();
527 return css;
528 }
529
cgroup_get_live(struct cgroup * cgrp)530 static void cgroup_get_live(struct cgroup *cgrp)
531 {
532 WARN_ON_ONCE(cgroup_is_dead(cgrp));
533 css_get(&cgrp->self);
534 }
535
of_css(struct kernfs_open_file * of)536 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
537 {
538 struct cgroup *cgrp = of->kn->parent->priv;
539 struct cftype *cft = of_cft(of);
540
541 /*
542 * This is open and unprotected implementation of cgroup_css().
543 * seq_css() is only called from a kernfs file operation which has
544 * an active reference on the file. Because all the subsystem
545 * files are drained before a css is disassociated with a cgroup,
546 * the matching css from the cgroup's subsys table is guaranteed to
547 * be and stay valid until the enclosing operation is complete.
548 */
549 if (cft->ss)
550 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
551 else
552 return &cgrp->self;
553 }
554 EXPORT_SYMBOL_GPL(of_css);
555
556 /**
557 * for_each_css - iterate all css's of a cgroup
558 * @css: the iteration cursor
559 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
560 * @cgrp: the target cgroup to iterate css's of
561 *
562 * Should be called under cgroup_[tree_]mutex.
563 */
564 #define for_each_css(css, ssid, cgrp) \
565 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
566 if (!((css) = rcu_dereference_check( \
567 (cgrp)->subsys[(ssid)], \
568 lockdep_is_held(&cgroup_mutex)))) { } \
569 else
570
571 /**
572 * for_each_e_css - iterate all effective css's of a cgroup
573 * @css: the iteration cursor
574 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
575 * @cgrp: the target cgroup to iterate css's of
576 *
577 * Should be called under cgroup_[tree_]mutex.
578 */
579 #define for_each_e_css(css, ssid, cgrp) \
580 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
581 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
582 ; \
583 else
584
585 /**
586 * do_each_subsys_mask - filter for_each_subsys with a bitmask
587 * @ss: the iteration cursor
588 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
589 * @ss_mask: the bitmask
590 *
591 * The block will only run for cases where the ssid-th bit (1 << ssid) of
592 * @ss_mask is set.
593 */
594 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
595 unsigned long __ss_mask = (ss_mask); \
596 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
597 (ssid) = 0; \
598 break; \
599 } \
600 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
601 (ss) = cgroup_subsys[ssid]; \
602 {
603
604 #define while_each_subsys_mask() \
605 } \
606 } \
607 } while (false)
608
609 /* iterate over child cgrps, lock should be held throughout iteration */
610 #define cgroup_for_each_live_child(child, cgrp) \
611 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 cgroup_is_dead(child); })) \
614 ; \
615 else
616
617 /* walk live descendants in preorder */
618 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
619 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
620 if (({ lockdep_assert_held(&cgroup_mutex); \
621 (dsct) = (d_css)->cgroup; \
622 cgroup_is_dead(dsct); })) \
623 ; \
624 else
625
626 /* walk live descendants in postorder */
627 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
628 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
629 if (({ lockdep_assert_held(&cgroup_mutex); \
630 (dsct) = (d_css)->cgroup; \
631 cgroup_is_dead(dsct); })) \
632 ; \
633 else
634
635 /*
636 * The default css_set - used by init and its children prior to any
637 * hierarchies being mounted. It contains a pointer to the root state
638 * for each subsystem. Also used to anchor the list of css_sets. Not
639 * reference-counted, to improve performance when child cgroups
640 * haven't been created.
641 */
642 struct css_set init_css_set = {
643 .refcount = REFCOUNT_INIT(1),
644 .dom_cset = &init_css_set,
645 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
646 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
647 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
648 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
649 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
650 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
651 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
652 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
653 };
654
655 static int css_set_count = 1; /* 1 for init_css_set */
656
css_set_threaded(struct css_set * cset)657 static bool css_set_threaded(struct css_set *cset)
658 {
659 return cset->dom_cset != cset;
660 }
661
662 /**
663 * css_set_populated - does a css_set contain any tasks?
664 * @cset: target css_set
665 *
666 * css_set_populated() should be the same as !!cset->nr_tasks at steady
667 * state. However, css_set_populated() can be called while a task is being
668 * added to or removed from the linked list before the nr_tasks is
669 * properly updated. Hence, we can't just look at ->nr_tasks here.
670 */
css_set_populated(struct css_set * cset)671 static bool css_set_populated(struct css_set *cset)
672 {
673 lockdep_assert_held(&css_set_lock);
674
675 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
676 }
677
678 /**
679 * cgroup_update_populated - update the populated count of a cgroup
680 * @cgrp: the target cgroup
681 * @populated: inc or dec populated count
682 *
683 * One of the css_sets associated with @cgrp is either getting its first
684 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
685 * count is propagated towards root so that a given cgroup's
686 * nr_populated_children is zero iff none of its descendants contain any
687 * tasks.
688 *
689 * @cgrp's interface file "cgroup.populated" is zero if both
690 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
691 * 1 otherwise. When the sum changes from or to zero, userland is notified
692 * that the content of the interface file has changed. This can be used to
693 * detect when @cgrp and its descendants become populated or empty.
694 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)695 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
696 {
697 struct cgroup *child = NULL;
698 int adj = populated ? 1 : -1;
699
700 lockdep_assert_held(&css_set_lock);
701
702 do {
703 bool was_populated = cgroup_is_populated(cgrp);
704
705 if (!child) {
706 cgrp->nr_populated_csets += adj;
707 } else {
708 if (cgroup_is_threaded(child))
709 cgrp->nr_populated_threaded_children += adj;
710 else
711 cgrp->nr_populated_domain_children += adj;
712 }
713
714 if (was_populated == cgroup_is_populated(cgrp))
715 break;
716
717 cgroup1_check_for_release(cgrp);
718 cgroup_file_notify(&cgrp->events_file);
719
720 child = cgrp;
721 cgrp = cgroup_parent(cgrp);
722 } while (cgrp);
723 }
724
725 /**
726 * css_set_update_populated - update populated state of a css_set
727 * @cset: target css_set
728 * @populated: whether @cset is populated or depopulated
729 *
730 * @cset is either getting the first task or losing the last. Update the
731 * populated counters of all associated cgroups accordingly.
732 */
css_set_update_populated(struct css_set * cset,bool populated)733 static void css_set_update_populated(struct css_set *cset, bool populated)
734 {
735 struct cgrp_cset_link *link;
736
737 lockdep_assert_held(&css_set_lock);
738
739 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
740 cgroup_update_populated(link->cgrp, populated);
741 }
742
743 /*
744 * @task is leaving, advance task iterators which are pointing to it so
745 * that they can resume at the next position. Advancing an iterator might
746 * remove it from the list, use safe walk. See css_task_iter_skip() for
747 * details.
748 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)749 static void css_set_skip_task_iters(struct css_set *cset,
750 struct task_struct *task)
751 {
752 struct css_task_iter *it, *pos;
753
754 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
755 css_task_iter_skip(it, task);
756 }
757
758 /**
759 * css_set_move_task - move a task from one css_set to another
760 * @task: task being moved
761 * @from_cset: css_set @task currently belongs to (may be NULL)
762 * @to_cset: new css_set @task is being moved to (may be NULL)
763 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
764 *
765 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
766 * css_set, @from_cset can be NULL. If @task is being disassociated
767 * instead of moved, @to_cset can be NULL.
768 *
769 * This function automatically handles populated counter updates and
770 * css_task_iter adjustments but the caller is responsible for managing
771 * @from_cset and @to_cset's reference counts.
772 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)773 static void css_set_move_task(struct task_struct *task,
774 struct css_set *from_cset, struct css_set *to_cset,
775 bool use_mg_tasks)
776 {
777 lockdep_assert_held(&css_set_lock);
778
779 if (to_cset && !css_set_populated(to_cset))
780 css_set_update_populated(to_cset, true);
781
782 if (from_cset) {
783 WARN_ON_ONCE(list_empty(&task->cg_list));
784
785 css_set_skip_task_iters(from_cset, task);
786 list_del_init(&task->cg_list);
787 if (!css_set_populated(from_cset))
788 css_set_update_populated(from_cset, false);
789 } else {
790 WARN_ON_ONCE(!list_empty(&task->cg_list));
791 }
792
793 if (to_cset) {
794 /*
795 * We are synchronized through cgroup_threadgroup_rwsem
796 * against PF_EXITING setting such that we can't race
797 * against cgroup_exit() changing the css_set to
798 * init_css_set and dropping the old one.
799 */
800 WARN_ON_ONCE(task->flags & PF_EXITING);
801
802 cgroup_move_task(task, to_cset);
803 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
804 &to_cset->tasks);
805 }
806 }
807
808 /*
809 * hash table for cgroup groups. This improves the performance to find
810 * an existing css_set. This hash doesn't (currently) take into
811 * account cgroups in empty hierarchies.
812 */
813 #define CSS_SET_HASH_BITS 7
814 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
815
css_set_hash(struct cgroup_subsys_state * css[])816 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
817 {
818 unsigned long key = 0UL;
819 struct cgroup_subsys *ss;
820 int i;
821
822 for_each_subsys(ss, i)
823 key += (unsigned long)css[i];
824 key = (key >> 16) ^ key;
825
826 return key;
827 }
828
put_css_set_locked(struct css_set * cset)829 void put_css_set_locked(struct css_set *cset)
830 {
831 struct cgrp_cset_link *link, *tmp_link;
832 struct cgroup_subsys *ss;
833 int ssid;
834
835 lockdep_assert_held(&css_set_lock);
836
837 if (!refcount_dec_and_test(&cset->refcount))
838 return;
839
840 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
841
842 /* This css_set is dead. unlink it and release cgroup and css refs */
843 for_each_subsys(ss, ssid) {
844 list_del(&cset->e_cset_node[ssid]);
845 css_put(cset->subsys[ssid]);
846 }
847 hash_del(&cset->hlist);
848 css_set_count--;
849
850 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
851 list_del(&link->cset_link);
852 list_del(&link->cgrp_link);
853 if (cgroup_parent(link->cgrp))
854 cgroup_put(link->cgrp);
855 kfree(link);
856 }
857
858 if (css_set_threaded(cset)) {
859 list_del(&cset->threaded_csets_node);
860 put_css_set_locked(cset->dom_cset);
861 }
862
863 kfree_rcu(cset, rcu_head);
864 }
865
866 /**
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
872 *
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
875 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])876 static bool compare_css_sets(struct css_set *cset,
877 struct css_set *old_cset,
878 struct cgroup *new_cgrp,
879 struct cgroup_subsys_state *template[])
880 {
881 struct cgroup *new_dfl_cgrp;
882 struct list_head *l1, *l2;
883
884 /*
885 * On the default hierarchy, there can be csets which are
886 * associated with the same set of cgroups but different csses.
887 * Let's first ensure that csses match.
888 */
889 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
890 return false;
891
892
893 /* @cset's domain should match the default cgroup's */
894 if (cgroup_on_dfl(new_cgrp))
895 new_dfl_cgrp = new_cgrp;
896 else
897 new_dfl_cgrp = old_cset->dfl_cgrp;
898
899 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
900 return false;
901
902 /*
903 * Compare cgroup pointers in order to distinguish between
904 * different cgroups in hierarchies. As different cgroups may
905 * share the same effective css, this comparison is always
906 * necessary.
907 */
908 l1 = &cset->cgrp_links;
909 l2 = &old_cset->cgrp_links;
910 while (1) {
911 struct cgrp_cset_link *link1, *link2;
912 struct cgroup *cgrp1, *cgrp2;
913
914 l1 = l1->next;
915 l2 = l2->next;
916 /* See if we reached the end - both lists are equal length. */
917 if (l1 == &cset->cgrp_links) {
918 BUG_ON(l2 != &old_cset->cgrp_links);
919 break;
920 } else {
921 BUG_ON(l2 == &old_cset->cgrp_links);
922 }
923 /* Locate the cgroups associated with these links. */
924 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
925 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
926 cgrp1 = link1->cgrp;
927 cgrp2 = link2->cgrp;
928 /* Hierarchies should be linked in the same order. */
929 BUG_ON(cgrp1->root != cgrp2->root);
930
931 /*
932 * If this hierarchy is the hierarchy of the cgroup
933 * that's changing, then we need to check that this
934 * css_set points to the new cgroup; if it's any other
935 * hierarchy, then this css_set should point to the
936 * same cgroup as the old css_set.
937 */
938 if (cgrp1->root == new_cgrp->root) {
939 if (cgrp1 != new_cgrp)
940 return false;
941 } else {
942 if (cgrp1 != cgrp2)
943 return false;
944 }
945 }
946 return true;
947 }
948
949 /**
950 * find_existing_css_set - init css array and find the matching css_set
951 * @old_cset: the css_set that we're using before the cgroup transition
952 * @cgrp: the cgroup that we're moving into
953 * @template: out param for the new set of csses, should be clear on entry
954 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])955 static struct css_set *find_existing_css_set(struct css_set *old_cset,
956 struct cgroup *cgrp,
957 struct cgroup_subsys_state *template[])
958 {
959 struct cgroup_root *root = cgrp->root;
960 struct cgroup_subsys *ss;
961 struct css_set *cset;
962 unsigned long key;
963 int i;
964
965 /*
966 * Build the set of subsystem state objects that we want to see in the
967 * new css_set. while subsystems can change globally, the entries here
968 * won't change, so no need for locking.
969 */
970 for_each_subsys(ss, i) {
971 if (root->subsys_mask & (1UL << i)) {
972 /*
973 * @ss is in this hierarchy, so we want the
974 * effective css from @cgrp.
975 */
976 template[i] = cgroup_e_css(cgrp, ss);
977 } else {
978 /*
979 * @ss is not in this hierarchy, so we don't want
980 * to change the css.
981 */
982 template[i] = old_cset->subsys[i];
983 }
984 }
985
986 key = css_set_hash(template);
987 hash_for_each_possible(css_set_table, cset, hlist, key) {
988 if (!compare_css_sets(cset, old_cset, cgrp, template))
989 continue;
990
991 /* This css_set matches what we need */
992 return cset;
993 }
994
995 /* No existing cgroup group matched */
996 return NULL;
997 }
998
free_cgrp_cset_links(struct list_head * links_to_free)999 static void free_cgrp_cset_links(struct list_head *links_to_free)
1000 {
1001 struct cgrp_cset_link *link, *tmp_link;
1002
1003 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1004 list_del(&link->cset_link);
1005 kfree(link);
1006 }
1007 }
1008
1009 /**
1010 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1011 * @count: the number of links to allocate
1012 * @tmp_links: list_head the allocated links are put on
1013 *
1014 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1015 * through ->cset_link. Returns 0 on success or -errno.
1016 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1017 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1018 {
1019 struct cgrp_cset_link *link;
1020 int i;
1021
1022 INIT_LIST_HEAD(tmp_links);
1023
1024 for (i = 0; i < count; i++) {
1025 link = kzalloc(sizeof(*link), GFP_KERNEL);
1026 if (!link) {
1027 free_cgrp_cset_links(tmp_links);
1028 return -ENOMEM;
1029 }
1030 list_add(&link->cset_link, tmp_links);
1031 }
1032 return 0;
1033 }
1034
1035 /**
1036 * link_css_set - a helper function to link a css_set to a cgroup
1037 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1038 * @cset: the css_set to be linked
1039 * @cgrp: the destination cgroup
1040 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1041 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1042 struct cgroup *cgrp)
1043 {
1044 struct cgrp_cset_link *link;
1045
1046 BUG_ON(list_empty(tmp_links));
1047
1048 if (cgroup_on_dfl(cgrp))
1049 cset->dfl_cgrp = cgrp;
1050
1051 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1052 link->cset = cset;
1053 link->cgrp = cgrp;
1054
1055 /*
1056 * Always add links to the tail of the lists so that the lists are
1057 * in choronological order.
1058 */
1059 list_move_tail(&link->cset_link, &cgrp->cset_links);
1060 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1061
1062 if (cgroup_parent(cgrp))
1063 cgroup_get_live(cgrp);
1064 }
1065
1066 /**
1067 * find_css_set - return a new css_set with one cgroup updated
1068 * @old_cset: the baseline css_set
1069 * @cgrp: the cgroup to be updated
1070 *
1071 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1072 * substituted into the appropriate hierarchy.
1073 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1074 static struct css_set *find_css_set(struct css_set *old_cset,
1075 struct cgroup *cgrp)
1076 {
1077 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1078 struct css_set *cset;
1079 struct list_head tmp_links;
1080 struct cgrp_cset_link *link;
1081 struct cgroup_subsys *ss;
1082 unsigned long key;
1083 int ssid;
1084
1085 lockdep_assert_held(&cgroup_mutex);
1086
1087 /* First see if we already have a cgroup group that matches
1088 * the desired set */
1089 spin_lock_irq(&css_set_lock);
1090 cset = find_existing_css_set(old_cset, cgrp, template);
1091 if (cset)
1092 get_css_set(cset);
1093 spin_unlock_irq(&css_set_lock);
1094
1095 if (cset)
1096 return cset;
1097
1098 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1099 if (!cset)
1100 return NULL;
1101
1102 /* Allocate all the cgrp_cset_link objects that we'll need */
1103 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1104 kfree(cset);
1105 return NULL;
1106 }
1107
1108 refcount_set(&cset->refcount, 1);
1109 cset->dom_cset = cset;
1110 INIT_LIST_HEAD(&cset->tasks);
1111 INIT_LIST_HEAD(&cset->mg_tasks);
1112 INIT_LIST_HEAD(&cset->dying_tasks);
1113 INIT_LIST_HEAD(&cset->task_iters);
1114 INIT_LIST_HEAD(&cset->threaded_csets);
1115 INIT_HLIST_NODE(&cset->hlist);
1116 INIT_LIST_HEAD(&cset->cgrp_links);
1117 INIT_LIST_HEAD(&cset->mg_preload_node);
1118 INIT_LIST_HEAD(&cset->mg_node);
1119
1120 /* Copy the set of subsystem state objects generated in
1121 * find_existing_css_set() */
1122 memcpy(cset->subsys, template, sizeof(cset->subsys));
1123
1124 spin_lock_irq(&css_set_lock);
1125 /* Add reference counts and links from the new css_set. */
1126 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1127 struct cgroup *c = link->cgrp;
1128
1129 if (c->root == cgrp->root)
1130 c = cgrp;
1131 link_css_set(&tmp_links, cset, c);
1132 }
1133
1134 BUG_ON(!list_empty(&tmp_links));
1135
1136 css_set_count++;
1137
1138 /* Add @cset to the hash table */
1139 key = css_set_hash(cset->subsys);
1140 hash_add(css_set_table, &cset->hlist, key);
1141
1142 for_each_subsys(ss, ssid) {
1143 struct cgroup_subsys_state *css = cset->subsys[ssid];
1144
1145 list_add_tail(&cset->e_cset_node[ssid],
1146 &css->cgroup->e_csets[ssid]);
1147 css_get(css);
1148 }
1149
1150 spin_unlock_irq(&css_set_lock);
1151
1152 /*
1153 * If @cset should be threaded, look up the matching dom_cset and
1154 * link them up. We first fully initialize @cset then look for the
1155 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1156 * to stay empty until we return.
1157 */
1158 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1159 struct css_set *dcset;
1160
1161 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1162 if (!dcset) {
1163 put_css_set(cset);
1164 return NULL;
1165 }
1166
1167 spin_lock_irq(&css_set_lock);
1168 cset->dom_cset = dcset;
1169 list_add_tail(&cset->threaded_csets_node,
1170 &dcset->threaded_csets);
1171 spin_unlock_irq(&css_set_lock);
1172 }
1173
1174 return cset;
1175 }
1176
cgroup_root_from_kf(struct kernfs_root * kf_root)1177 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1178 {
1179 struct cgroup *root_cgrp = kf_root->kn->priv;
1180
1181 return root_cgrp->root;
1182 }
1183
cgroup_init_root_id(struct cgroup_root * root)1184 static int cgroup_init_root_id(struct cgroup_root *root)
1185 {
1186 int id;
1187
1188 lockdep_assert_held(&cgroup_mutex);
1189
1190 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1191 if (id < 0)
1192 return id;
1193
1194 root->hierarchy_id = id;
1195 return 0;
1196 }
1197
cgroup_exit_root_id(struct cgroup_root * root)1198 static void cgroup_exit_root_id(struct cgroup_root *root)
1199 {
1200 lockdep_assert_held(&cgroup_mutex);
1201
1202 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1203 }
1204
cgroup_free_root(struct cgroup_root * root)1205 void cgroup_free_root(struct cgroup_root *root)
1206 {
1207 if (root) {
1208 idr_destroy(&root->cgroup_idr);
1209 kfree(root);
1210 }
1211 }
1212
cgroup_destroy_root(struct cgroup_root * root)1213 static void cgroup_destroy_root(struct cgroup_root *root)
1214 {
1215 struct cgroup *cgrp = &root->cgrp;
1216 struct cgrp_cset_link *link, *tmp_link;
1217
1218 trace_cgroup_destroy_root(root);
1219
1220 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1221
1222 BUG_ON(atomic_read(&root->nr_cgrps));
1223 BUG_ON(!list_empty(&cgrp->self.children));
1224
1225 /* Rebind all subsystems back to the default hierarchy */
1226 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1227
1228 /*
1229 * Release all the links from cset_links to this hierarchy's
1230 * root cgroup
1231 */
1232 spin_lock_irq(&css_set_lock);
1233
1234 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1235 list_del(&link->cset_link);
1236 list_del(&link->cgrp_link);
1237 kfree(link);
1238 }
1239
1240 spin_unlock_irq(&css_set_lock);
1241
1242 if (!list_empty(&root->root_list)) {
1243 list_del(&root->root_list);
1244 cgroup_root_count--;
1245 }
1246
1247 cgroup_exit_root_id(root);
1248
1249 mutex_unlock(&cgroup_mutex);
1250
1251 kernfs_destroy_root(root->kf_root);
1252 cgroup_free_root(root);
1253 }
1254
1255 /*
1256 * look up cgroup associated with current task's cgroup namespace on the
1257 * specified hierarchy
1258 */
1259 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1260 current_cgns_cgroup_from_root(struct cgroup_root *root)
1261 {
1262 struct cgroup *res = NULL;
1263 struct css_set *cset;
1264
1265 lockdep_assert_held(&css_set_lock);
1266
1267 rcu_read_lock();
1268
1269 cset = current->nsproxy->cgroup_ns->root_cset;
1270 if (cset == &init_css_set) {
1271 res = &root->cgrp;
1272 } else {
1273 struct cgrp_cset_link *link;
1274
1275 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1276 struct cgroup *c = link->cgrp;
1277
1278 if (c->root == root) {
1279 res = c;
1280 break;
1281 }
1282 }
1283 }
1284 rcu_read_unlock();
1285
1286 BUG_ON(!res);
1287 return res;
1288 }
1289
1290 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1291 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1292 struct cgroup_root *root)
1293 {
1294 struct cgroup *res = NULL;
1295
1296 lockdep_assert_held(&cgroup_mutex);
1297 lockdep_assert_held(&css_set_lock);
1298
1299 if (cset == &init_css_set) {
1300 res = &root->cgrp;
1301 } else if (root == &cgrp_dfl_root) {
1302 res = cset->dfl_cgrp;
1303 } else {
1304 struct cgrp_cset_link *link;
1305
1306 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1307 struct cgroup *c = link->cgrp;
1308
1309 if (c->root == root) {
1310 res = c;
1311 break;
1312 }
1313 }
1314 }
1315
1316 BUG_ON(!res);
1317 return res;
1318 }
1319
1320 /*
1321 * Return the cgroup for "task" from the given hierarchy. Must be
1322 * called with cgroup_mutex and css_set_lock held.
1323 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1324 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1325 struct cgroup_root *root)
1326 {
1327 /*
1328 * No need to lock the task - since we hold cgroup_mutex the
1329 * task can't change groups, so the only thing that can happen
1330 * is that it exits and its css is set back to init_css_set.
1331 */
1332 return cset_cgroup_from_root(task_css_set(task), root);
1333 }
1334
1335 /*
1336 * A task must hold cgroup_mutex to modify cgroups.
1337 *
1338 * Any task can increment and decrement the count field without lock.
1339 * So in general, code holding cgroup_mutex can't rely on the count
1340 * field not changing. However, if the count goes to zero, then only
1341 * cgroup_attach_task() can increment it again. Because a count of zero
1342 * means that no tasks are currently attached, therefore there is no
1343 * way a task attached to that cgroup can fork (the other way to
1344 * increment the count). So code holding cgroup_mutex can safely
1345 * assume that if the count is zero, it will stay zero. Similarly, if
1346 * a task holds cgroup_mutex on a cgroup with zero count, it
1347 * knows that the cgroup won't be removed, as cgroup_rmdir()
1348 * needs that mutex.
1349 *
1350 * A cgroup can only be deleted if both its 'count' of using tasks
1351 * is zero, and its list of 'children' cgroups is empty. Since all
1352 * tasks in the system use _some_ cgroup, and since there is always at
1353 * least one task in the system (init, pid == 1), therefore, root cgroup
1354 * always has either children cgroups and/or using tasks. So we don't
1355 * need a special hack to ensure that root cgroup cannot be deleted.
1356 *
1357 * P.S. One more locking exception. RCU is used to guard the
1358 * update of a tasks cgroup pointer by cgroup_attach_task()
1359 */
1360
1361 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1362
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1363 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1364 char *buf)
1365 {
1366 struct cgroup_subsys *ss = cft->ss;
1367
1368 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1369 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1370 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1371 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1372 cft->name);
1373 else
1374 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1375 return buf;
1376 }
1377
1378 /**
1379 * cgroup_file_mode - deduce file mode of a control file
1380 * @cft: the control file in question
1381 *
1382 * S_IRUGO for read, S_IWUSR for write.
1383 */
cgroup_file_mode(const struct cftype * cft)1384 static umode_t cgroup_file_mode(const struct cftype *cft)
1385 {
1386 umode_t mode = 0;
1387
1388 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1389 mode |= S_IRUGO;
1390
1391 if (cft->write_u64 || cft->write_s64 || cft->write) {
1392 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1393 mode |= S_IWUGO;
1394 else
1395 mode |= S_IWUSR;
1396 }
1397
1398 return mode;
1399 }
1400
1401 /**
1402 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1403 * @subtree_control: the new subtree_control mask to consider
1404 * @this_ss_mask: available subsystems
1405 *
1406 * On the default hierarchy, a subsystem may request other subsystems to be
1407 * enabled together through its ->depends_on mask. In such cases, more
1408 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1409 *
1410 * This function calculates which subsystems need to be enabled if
1411 * @subtree_control is to be applied while restricted to @this_ss_mask.
1412 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1413 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1414 {
1415 u16 cur_ss_mask = subtree_control;
1416 struct cgroup_subsys *ss;
1417 int ssid;
1418
1419 lockdep_assert_held(&cgroup_mutex);
1420
1421 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1422
1423 while (true) {
1424 u16 new_ss_mask = cur_ss_mask;
1425
1426 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1427 new_ss_mask |= ss->depends_on;
1428 } while_each_subsys_mask();
1429
1430 /*
1431 * Mask out subsystems which aren't available. This can
1432 * happen only if some depended-upon subsystems were bound
1433 * to non-default hierarchies.
1434 */
1435 new_ss_mask &= this_ss_mask;
1436
1437 if (new_ss_mask == cur_ss_mask)
1438 break;
1439 cur_ss_mask = new_ss_mask;
1440 }
1441
1442 return cur_ss_mask;
1443 }
1444
1445 /**
1446 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1447 * @kn: the kernfs_node being serviced
1448 *
1449 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1450 * the method finishes if locking succeeded. Note that once this function
1451 * returns the cgroup returned by cgroup_kn_lock_live() may become
1452 * inaccessible any time. If the caller intends to continue to access the
1453 * cgroup, it should pin it before invoking this function.
1454 */
cgroup_kn_unlock(struct kernfs_node * kn)1455 void cgroup_kn_unlock(struct kernfs_node *kn)
1456 {
1457 struct cgroup *cgrp;
1458
1459 if (kernfs_type(kn) == KERNFS_DIR)
1460 cgrp = kn->priv;
1461 else
1462 cgrp = kn->parent->priv;
1463
1464 mutex_unlock(&cgroup_mutex);
1465
1466 kernfs_unbreak_active_protection(kn);
1467 cgroup_put(cgrp);
1468 }
1469
1470 /**
1471 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1472 * @kn: the kernfs_node being serviced
1473 * @drain_offline: perform offline draining on the cgroup
1474 *
1475 * This helper is to be used by a cgroup kernfs method currently servicing
1476 * @kn. It breaks the active protection, performs cgroup locking and
1477 * verifies that the associated cgroup is alive. Returns the cgroup if
1478 * alive; otherwise, %NULL. A successful return should be undone by a
1479 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1480 * cgroup is drained of offlining csses before return.
1481 *
1482 * Any cgroup kernfs method implementation which requires locking the
1483 * associated cgroup should use this helper. It avoids nesting cgroup
1484 * locking under kernfs active protection and allows all kernfs operations
1485 * including self-removal.
1486 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1487 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1488 {
1489 struct cgroup *cgrp;
1490
1491 if (kernfs_type(kn) == KERNFS_DIR)
1492 cgrp = kn->priv;
1493 else
1494 cgrp = kn->parent->priv;
1495
1496 /*
1497 * We're gonna grab cgroup_mutex which nests outside kernfs
1498 * active_ref. cgroup liveliness check alone provides enough
1499 * protection against removal. Ensure @cgrp stays accessible and
1500 * break the active_ref protection.
1501 */
1502 if (!cgroup_tryget(cgrp))
1503 return NULL;
1504 kernfs_break_active_protection(kn);
1505
1506 if (drain_offline)
1507 cgroup_lock_and_drain_offline(cgrp);
1508 else
1509 mutex_lock(&cgroup_mutex);
1510
1511 if (!cgroup_is_dead(cgrp))
1512 return cgrp;
1513
1514 cgroup_kn_unlock(kn);
1515 return NULL;
1516 }
1517
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1518 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1519 {
1520 char name[CGROUP_FILE_NAME_MAX];
1521
1522 lockdep_assert_held(&cgroup_mutex);
1523
1524 if (cft->file_offset) {
1525 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1526 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1527
1528 spin_lock_irq(&cgroup_file_kn_lock);
1529 cfile->kn = NULL;
1530 spin_unlock_irq(&cgroup_file_kn_lock);
1531 }
1532
1533 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1534 }
1535
1536 /**
1537 * css_clear_dir - remove subsys files in a cgroup directory
1538 * @css: taget css
1539 */
css_clear_dir(struct cgroup_subsys_state * css)1540 static void css_clear_dir(struct cgroup_subsys_state *css)
1541 {
1542 struct cgroup *cgrp = css->cgroup;
1543 struct cftype *cfts;
1544
1545 if (!(css->flags & CSS_VISIBLE))
1546 return;
1547
1548 css->flags &= ~CSS_VISIBLE;
1549
1550 list_for_each_entry(cfts, &css->ss->cfts, node)
1551 cgroup_addrm_files(css, cgrp, cfts, false);
1552 }
1553
1554 /**
1555 * css_populate_dir - create subsys files in a cgroup directory
1556 * @css: target css
1557 *
1558 * On failure, no file is added.
1559 */
css_populate_dir(struct cgroup_subsys_state * css)1560 static int css_populate_dir(struct cgroup_subsys_state *css)
1561 {
1562 struct cgroup *cgrp = css->cgroup;
1563 struct cftype *cfts, *failed_cfts;
1564 int ret;
1565
1566 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1567 return 0;
1568
1569 if (!css->ss) {
1570 if (cgroup_on_dfl(cgrp))
1571 cfts = cgroup_base_files;
1572 else
1573 cfts = cgroup1_base_files;
1574
1575 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1576 }
1577
1578 list_for_each_entry(cfts, &css->ss->cfts, node) {
1579 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1580 if (ret < 0) {
1581 failed_cfts = cfts;
1582 goto err;
1583 }
1584 }
1585
1586 css->flags |= CSS_VISIBLE;
1587
1588 return 0;
1589 err:
1590 list_for_each_entry(cfts, &css->ss->cfts, node) {
1591 if (cfts == failed_cfts)
1592 break;
1593 cgroup_addrm_files(css, cgrp, cfts, false);
1594 }
1595 return ret;
1596 }
1597
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1598 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1599 {
1600 struct cgroup *dcgrp = &dst_root->cgrp;
1601 struct cgroup_subsys *ss;
1602 int ssid, i, ret;
1603
1604 lockdep_assert_held(&cgroup_mutex);
1605
1606 do_each_subsys_mask(ss, ssid, ss_mask) {
1607 /*
1608 * If @ss has non-root csses attached to it, can't move.
1609 * If @ss is an implicit controller, it is exempt from this
1610 * rule and can be stolen.
1611 */
1612 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1613 !ss->implicit_on_dfl)
1614 return -EBUSY;
1615
1616 /* can't move between two non-dummy roots either */
1617 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1618 return -EBUSY;
1619 } while_each_subsys_mask();
1620
1621 do_each_subsys_mask(ss, ssid, ss_mask) {
1622 struct cgroup_root *src_root = ss->root;
1623 struct cgroup *scgrp = &src_root->cgrp;
1624 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1625 struct css_set *cset;
1626
1627 WARN_ON(!css || cgroup_css(dcgrp, ss));
1628
1629 /* disable from the source */
1630 src_root->subsys_mask &= ~(1 << ssid);
1631 WARN_ON(cgroup_apply_control(scgrp));
1632 cgroup_finalize_control(scgrp, 0);
1633
1634 /* rebind */
1635 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1636 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1637 ss->root = dst_root;
1638 css->cgroup = dcgrp;
1639
1640 spin_lock_irq(&css_set_lock);
1641 hash_for_each(css_set_table, i, cset, hlist)
1642 list_move_tail(&cset->e_cset_node[ss->id],
1643 &dcgrp->e_csets[ss->id]);
1644 spin_unlock_irq(&css_set_lock);
1645
1646 /* default hierarchy doesn't enable controllers by default */
1647 dst_root->subsys_mask |= 1 << ssid;
1648 if (dst_root == &cgrp_dfl_root) {
1649 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1650 } else {
1651 dcgrp->subtree_control |= 1 << ssid;
1652 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1653 }
1654
1655 ret = cgroup_apply_control(dcgrp);
1656 if (ret)
1657 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1658 ss->name, ret);
1659
1660 if (ss->bind)
1661 ss->bind(css);
1662 } while_each_subsys_mask();
1663
1664 kernfs_activate(dcgrp->kn);
1665 return 0;
1666 }
1667
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1668 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1669 struct kernfs_root *kf_root)
1670 {
1671 int len = 0;
1672 char *buf = NULL;
1673 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1674 struct cgroup *ns_cgroup;
1675
1676 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1677 if (!buf)
1678 return -ENOMEM;
1679
1680 spin_lock_irq(&css_set_lock);
1681 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1682 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1683 spin_unlock_irq(&css_set_lock);
1684
1685 if (len >= PATH_MAX)
1686 len = -ERANGE;
1687 else if (len > 0) {
1688 seq_escape(sf, buf, " \t\n\\");
1689 len = 0;
1690 }
1691 kfree(buf);
1692 return len;
1693 }
1694
parse_cgroup_root_flags(char * data,unsigned int * root_flags)1695 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1696 {
1697 char *token;
1698
1699 *root_flags = 0;
1700
1701 if (!data || *data == '\0')
1702 return 0;
1703
1704 while ((token = strsep(&data, ",")) != NULL) {
1705 if (!strcmp(token, "nsdelegate")) {
1706 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1707 continue;
1708 }
1709
1710 pr_err("cgroup2: unknown option \"%s\"\n", token);
1711 return -EINVAL;
1712 }
1713
1714 return 0;
1715 }
1716
apply_cgroup_root_flags(unsigned int root_flags)1717 static void apply_cgroup_root_flags(unsigned int root_flags)
1718 {
1719 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1720 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1721 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1722 else
1723 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1724 }
1725 }
1726
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1727 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1728 {
1729 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1730 seq_puts(seq, ",nsdelegate");
1731 return 0;
1732 }
1733
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1734 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1735 {
1736 unsigned int root_flags;
1737 int ret;
1738
1739 ret = parse_cgroup_root_flags(data, &root_flags);
1740 if (ret)
1741 return ret;
1742
1743 apply_cgroup_root_flags(root_flags);
1744 return 0;
1745 }
1746
1747 /*
1748 * To reduce the fork() overhead for systems that are not actually using
1749 * their cgroups capability, we don't maintain the lists running through
1750 * each css_set to its tasks until we see the list actually used - in other
1751 * words after the first mount.
1752 */
1753 static bool use_task_css_set_links __read_mostly;
1754
cgroup_enable_task_cg_lists(void)1755 static void cgroup_enable_task_cg_lists(void)
1756 {
1757 struct task_struct *p, *g;
1758
1759 spin_lock_irq(&css_set_lock);
1760
1761 if (use_task_css_set_links)
1762 goto out_unlock;
1763
1764 use_task_css_set_links = true;
1765
1766 /*
1767 * We need tasklist_lock because RCU is not safe against
1768 * while_each_thread(). Besides, a forking task that has passed
1769 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1770 * is not guaranteed to have its child immediately visible in the
1771 * tasklist if we walk through it with RCU.
1772 */
1773 read_lock(&tasklist_lock);
1774 do_each_thread(g, p) {
1775 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1776 task_css_set(p) != &init_css_set);
1777
1778 /*
1779 * We should check if the process is exiting, otherwise
1780 * it will race with cgroup_exit() in that the list
1781 * entry won't be deleted though the process has exited.
1782 * Do it while holding siglock so that we don't end up
1783 * racing against cgroup_exit().
1784 *
1785 * Interrupts were already disabled while acquiring
1786 * the css_set_lock, so we do not need to disable it
1787 * again when acquiring the sighand->siglock here.
1788 */
1789 spin_lock(&p->sighand->siglock);
1790 if (!(p->flags & PF_EXITING)) {
1791 struct css_set *cset = task_css_set(p);
1792
1793 if (!css_set_populated(cset))
1794 css_set_update_populated(cset, true);
1795 list_add_tail(&p->cg_list, &cset->tasks);
1796 get_css_set(cset);
1797 cset->nr_tasks++;
1798 }
1799 spin_unlock(&p->sighand->siglock);
1800 } while_each_thread(g, p);
1801 read_unlock(&tasklist_lock);
1802 out_unlock:
1803 spin_unlock_irq(&css_set_lock);
1804 }
1805
init_cgroup_housekeeping(struct cgroup * cgrp)1806 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1807 {
1808 struct cgroup_subsys *ss;
1809 int ssid;
1810
1811 INIT_LIST_HEAD(&cgrp->self.sibling);
1812 INIT_LIST_HEAD(&cgrp->self.children);
1813 INIT_LIST_HEAD(&cgrp->cset_links);
1814 INIT_LIST_HEAD(&cgrp->pidlists);
1815 mutex_init(&cgrp->pidlist_mutex);
1816 cgrp->self.cgroup = cgrp;
1817 cgrp->self.flags |= CSS_ONLINE;
1818 cgrp->dom_cgrp = cgrp;
1819 cgrp->max_descendants = INT_MAX;
1820 cgrp->max_depth = INT_MAX;
1821
1822 for_each_subsys(ss, ssid)
1823 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1824
1825 init_waitqueue_head(&cgrp->offline_waitq);
1826 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1827 }
1828
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1829 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1830 {
1831 struct cgroup *cgrp = &root->cgrp;
1832
1833 INIT_LIST_HEAD(&root->root_list);
1834 atomic_set(&root->nr_cgrps, 1);
1835 cgrp->root = root;
1836 init_cgroup_housekeeping(cgrp);
1837 idr_init(&root->cgroup_idr);
1838
1839 root->flags = opts->flags;
1840 if (opts->release_agent)
1841 strcpy(root->release_agent_path, opts->release_agent);
1842 if (opts->name)
1843 strcpy(root->name, opts->name);
1844 if (opts->cpuset_clone_children)
1845 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1846 }
1847
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask,int ref_flags)1848 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1849 {
1850 LIST_HEAD(tmp_links);
1851 struct cgroup *root_cgrp = &root->cgrp;
1852 struct kernfs_syscall_ops *kf_sops;
1853 struct css_set *cset;
1854 int i, ret;
1855
1856 lockdep_assert_held(&cgroup_mutex);
1857
1858 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1859 if (ret < 0)
1860 goto out;
1861 root_cgrp->id = ret;
1862 root_cgrp->ancestor_ids[0] = ret;
1863
1864 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1865 ref_flags, GFP_KERNEL);
1866 if (ret)
1867 goto out;
1868
1869 /*
1870 * We're accessing css_set_count without locking css_set_lock here,
1871 * but that's OK - it can only be increased by someone holding
1872 * cgroup_lock, and that's us. Later rebinding may disable
1873 * controllers on the default hierarchy and thus create new csets,
1874 * which can't be more than the existing ones. Allocate 2x.
1875 */
1876 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1877 if (ret)
1878 goto cancel_ref;
1879
1880 ret = cgroup_init_root_id(root);
1881 if (ret)
1882 goto cancel_ref;
1883
1884 kf_sops = root == &cgrp_dfl_root ?
1885 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1886
1887 root->kf_root = kernfs_create_root(kf_sops,
1888 KERNFS_ROOT_CREATE_DEACTIVATED |
1889 KERNFS_ROOT_SUPPORT_EXPORTOP,
1890 root_cgrp);
1891 if (IS_ERR(root->kf_root)) {
1892 ret = PTR_ERR(root->kf_root);
1893 goto exit_root_id;
1894 }
1895 root_cgrp->kn = root->kf_root->kn;
1896
1897 ret = css_populate_dir(&root_cgrp->self);
1898 if (ret)
1899 goto destroy_root;
1900
1901 ret = rebind_subsystems(root, ss_mask);
1902 if (ret)
1903 goto destroy_root;
1904
1905 trace_cgroup_setup_root(root);
1906
1907 /*
1908 * There must be no failure case after here, since rebinding takes
1909 * care of subsystems' refcounts, which are explicitly dropped in
1910 * the failure exit path.
1911 */
1912 list_add(&root->root_list, &cgroup_roots);
1913 cgroup_root_count++;
1914
1915 /*
1916 * Link the root cgroup in this hierarchy into all the css_set
1917 * objects.
1918 */
1919 spin_lock_irq(&css_set_lock);
1920 hash_for_each(css_set_table, i, cset, hlist) {
1921 link_css_set(&tmp_links, cset, root_cgrp);
1922 if (css_set_populated(cset))
1923 cgroup_update_populated(root_cgrp, true);
1924 }
1925 spin_unlock_irq(&css_set_lock);
1926
1927 BUG_ON(!list_empty(&root_cgrp->self.children));
1928 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1929
1930 kernfs_activate(root_cgrp->kn);
1931 ret = 0;
1932 goto out;
1933
1934 destroy_root:
1935 kernfs_destroy_root(root->kf_root);
1936 root->kf_root = NULL;
1937 exit_root_id:
1938 cgroup_exit_root_id(root);
1939 cancel_ref:
1940 percpu_ref_exit(&root_cgrp->self.refcnt);
1941 out:
1942 free_cgrp_cset_links(&tmp_links);
1943 return ret;
1944 }
1945
cgroup_do_mount(struct file_system_type * fs_type,int flags,struct cgroup_root * root,unsigned long magic,struct cgroup_namespace * ns)1946 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1947 struct cgroup_root *root, unsigned long magic,
1948 struct cgroup_namespace *ns)
1949 {
1950 struct dentry *dentry;
1951 bool new_sb = false;
1952
1953 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1954
1955 /*
1956 * In non-init cgroup namespace, instead of root cgroup's dentry,
1957 * we return the dentry corresponding to the cgroupns->root_cgrp.
1958 */
1959 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1960 struct dentry *nsdentry;
1961 struct super_block *sb = dentry->d_sb;
1962 struct cgroup *cgrp;
1963
1964 mutex_lock(&cgroup_mutex);
1965 spin_lock_irq(&css_set_lock);
1966
1967 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1968
1969 spin_unlock_irq(&css_set_lock);
1970 mutex_unlock(&cgroup_mutex);
1971
1972 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
1973 dput(dentry);
1974 if (IS_ERR(nsdentry))
1975 deactivate_locked_super(sb);
1976 dentry = nsdentry;
1977 }
1978
1979 if (!new_sb)
1980 cgroup_put(&root->cgrp);
1981
1982 return dentry;
1983 }
1984
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1985 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1986 int flags, const char *unused_dev_name,
1987 void *data)
1988 {
1989 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1990 struct dentry *dentry;
1991 int ret;
1992
1993 get_cgroup_ns(ns);
1994
1995 /* Check if the caller has permission to mount. */
1996 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1997 put_cgroup_ns(ns);
1998 return ERR_PTR(-EPERM);
1999 }
2000
2001 /*
2002 * The first time anyone tries to mount a cgroup, enable the list
2003 * linking each css_set to its tasks and fix up all existing tasks.
2004 */
2005 if (!use_task_css_set_links)
2006 cgroup_enable_task_cg_lists();
2007
2008 if (fs_type == &cgroup2_fs_type) {
2009 unsigned int root_flags;
2010
2011 ret = parse_cgroup_root_flags(data, &root_flags);
2012 if (ret) {
2013 put_cgroup_ns(ns);
2014 return ERR_PTR(ret);
2015 }
2016
2017 cgrp_dfl_visible = true;
2018 cgroup_get_live(&cgrp_dfl_root.cgrp);
2019
2020 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2021 CGROUP2_SUPER_MAGIC, ns);
2022 if (!IS_ERR(dentry))
2023 apply_cgroup_root_flags(root_flags);
2024 } else {
2025 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2026 CGROUP_SUPER_MAGIC, ns);
2027 }
2028
2029 put_cgroup_ns(ns);
2030 return dentry;
2031 }
2032
cgroup_kill_sb(struct super_block * sb)2033 static void cgroup_kill_sb(struct super_block *sb)
2034 {
2035 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2036 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2037
2038 /*
2039 * If @root doesn't have any mounts or children, start killing it.
2040 * This prevents new mounts by disabling percpu_ref_tryget_live().
2041 * cgroup_mount() may wait for @root's release.
2042 *
2043 * And don't kill the default root.
2044 */
2045 if (!list_empty(&root->cgrp.self.children) ||
2046 root == &cgrp_dfl_root)
2047 cgroup_put(&root->cgrp);
2048 else
2049 percpu_ref_kill(&root->cgrp.self.refcnt);
2050
2051 kernfs_kill_sb(sb);
2052 }
2053
2054 struct file_system_type cgroup_fs_type = {
2055 .name = "cgroup",
2056 .mount = cgroup_mount,
2057 .kill_sb = cgroup_kill_sb,
2058 .fs_flags = FS_USERNS_MOUNT,
2059 };
2060
2061 static struct file_system_type cgroup2_fs_type = {
2062 .name = "cgroup2",
2063 .mount = cgroup_mount,
2064 .kill_sb = cgroup_kill_sb,
2065 .fs_flags = FS_USERNS_MOUNT,
2066 };
2067
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2068 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2069 struct cgroup_namespace *ns)
2070 {
2071 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2072
2073 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2074 }
2075
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2076 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2077 struct cgroup_namespace *ns)
2078 {
2079 int ret;
2080
2081 mutex_lock(&cgroup_mutex);
2082 spin_lock_irq(&css_set_lock);
2083
2084 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2085
2086 spin_unlock_irq(&css_set_lock);
2087 mutex_unlock(&cgroup_mutex);
2088
2089 return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2092
2093 /**
2094 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2095 * @task: target task
2096 * @buf: the buffer to write the path into
2097 * @buflen: the length of the buffer
2098 *
2099 * Determine @task's cgroup on the first (the one with the lowest non-zero
2100 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2101 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2102 * cgroup controller callbacks.
2103 *
2104 * Return value is the same as kernfs_path().
2105 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2106 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2107 {
2108 struct cgroup_root *root;
2109 struct cgroup *cgrp;
2110 int hierarchy_id = 1;
2111 int ret;
2112
2113 mutex_lock(&cgroup_mutex);
2114 spin_lock_irq(&css_set_lock);
2115
2116 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2117
2118 if (root) {
2119 cgrp = task_cgroup_from_root(task, root);
2120 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2121 } else {
2122 /* if no hierarchy exists, everyone is in "/" */
2123 ret = strlcpy(buf, "/", buflen);
2124 }
2125
2126 spin_unlock_irq(&css_set_lock);
2127 mutex_unlock(&cgroup_mutex);
2128 return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(task_cgroup_path);
2131
2132 /**
2133 * cgroup_migrate_add_task - add a migration target task to a migration context
2134 * @task: target task
2135 * @mgctx: target migration context
2136 *
2137 * Add @task, which is a migration target, to @mgctx->tset. This function
2138 * becomes noop if @task doesn't need to be migrated. @task's css_set
2139 * should have been added as a migration source and @task->cg_list will be
2140 * moved from the css_set's tasks list to mg_tasks one.
2141 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2142 static void cgroup_migrate_add_task(struct task_struct *task,
2143 struct cgroup_mgctx *mgctx)
2144 {
2145 struct css_set *cset;
2146
2147 lockdep_assert_held(&css_set_lock);
2148
2149 /* @task either already exited or can't exit until the end */
2150 if (task->flags & PF_EXITING)
2151 return;
2152
2153 /* leave @task alone if post_fork() hasn't linked it yet */
2154 if (list_empty(&task->cg_list))
2155 return;
2156
2157 cset = task_css_set(task);
2158 if (!cset->mg_src_cgrp)
2159 return;
2160
2161 mgctx->tset.nr_tasks++;
2162
2163 list_move_tail(&task->cg_list, &cset->mg_tasks);
2164 if (list_empty(&cset->mg_node))
2165 list_add_tail(&cset->mg_node,
2166 &mgctx->tset.src_csets);
2167 if (list_empty(&cset->mg_dst_cset->mg_node))
2168 list_add_tail(&cset->mg_dst_cset->mg_node,
2169 &mgctx->tset.dst_csets);
2170 }
2171
2172 /**
2173 * cgroup_taskset_first - reset taskset and return the first task
2174 * @tset: taskset of interest
2175 * @dst_cssp: output variable for the destination css
2176 *
2177 * @tset iteration is initialized and the first task is returned.
2178 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2179 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2180 struct cgroup_subsys_state **dst_cssp)
2181 {
2182 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2183 tset->cur_task = NULL;
2184
2185 return cgroup_taskset_next(tset, dst_cssp);
2186 }
2187
2188 /**
2189 * cgroup_taskset_next - iterate to the next task in taskset
2190 * @tset: taskset of interest
2191 * @dst_cssp: output variable for the destination css
2192 *
2193 * Return the next task in @tset. Iteration must have been initialized
2194 * with cgroup_taskset_first().
2195 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2196 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2197 struct cgroup_subsys_state **dst_cssp)
2198 {
2199 struct css_set *cset = tset->cur_cset;
2200 struct task_struct *task = tset->cur_task;
2201
2202 while (&cset->mg_node != tset->csets) {
2203 if (!task)
2204 task = list_first_entry(&cset->mg_tasks,
2205 struct task_struct, cg_list);
2206 else
2207 task = list_next_entry(task, cg_list);
2208
2209 if (&task->cg_list != &cset->mg_tasks) {
2210 tset->cur_cset = cset;
2211 tset->cur_task = task;
2212
2213 /*
2214 * This function may be called both before and
2215 * after cgroup_taskset_migrate(). The two cases
2216 * can be distinguished by looking at whether @cset
2217 * has its ->mg_dst_cset set.
2218 */
2219 if (cset->mg_dst_cset)
2220 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2221 else
2222 *dst_cssp = cset->subsys[tset->ssid];
2223
2224 return task;
2225 }
2226
2227 cset = list_next_entry(cset, mg_node);
2228 task = NULL;
2229 }
2230
2231 return NULL;
2232 }
2233
2234 /**
2235 * cgroup_taskset_migrate - migrate a taskset
2236 * @mgctx: migration context
2237 *
2238 * Migrate tasks in @mgctx as setup by migration preparation functions.
2239 * This function fails iff one of the ->can_attach callbacks fails and
2240 * guarantees that either all or none of the tasks in @mgctx are migrated.
2241 * @mgctx is consumed regardless of success.
2242 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2243 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2244 {
2245 struct cgroup_taskset *tset = &mgctx->tset;
2246 struct cgroup_subsys *ss;
2247 struct task_struct *task, *tmp_task;
2248 struct css_set *cset, *tmp_cset;
2249 int ssid, failed_ssid, ret;
2250
2251 /* check that we can legitimately attach to the cgroup */
2252 if (tset->nr_tasks) {
2253 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2254 if (ss->can_attach) {
2255 tset->ssid = ssid;
2256 ret = ss->can_attach(tset);
2257 if (ret) {
2258 failed_ssid = ssid;
2259 goto out_cancel_attach;
2260 }
2261 }
2262 } while_each_subsys_mask();
2263 }
2264
2265 /*
2266 * Now that we're guaranteed success, proceed to move all tasks to
2267 * the new cgroup. There are no failure cases after here, so this
2268 * is the commit point.
2269 */
2270 spin_lock_irq(&css_set_lock);
2271 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2272 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2273 struct css_set *from_cset = task_css_set(task);
2274 struct css_set *to_cset = cset->mg_dst_cset;
2275
2276 get_css_set(to_cset);
2277 to_cset->nr_tasks++;
2278 css_set_move_task(task, from_cset, to_cset, true);
2279 put_css_set_locked(from_cset);
2280 from_cset->nr_tasks--;
2281 }
2282 }
2283 spin_unlock_irq(&css_set_lock);
2284
2285 /*
2286 * Migration is committed, all target tasks are now on dst_csets.
2287 * Nothing is sensitive to fork() after this point. Notify
2288 * controllers that migration is complete.
2289 */
2290 tset->csets = &tset->dst_csets;
2291
2292 if (tset->nr_tasks) {
2293 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2294 if (ss->attach) {
2295 tset->ssid = ssid;
2296 ss->attach(tset);
2297 }
2298 } while_each_subsys_mask();
2299 }
2300
2301 ret = 0;
2302 goto out_release_tset;
2303
2304 out_cancel_attach:
2305 if (tset->nr_tasks) {
2306 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2307 if (ssid == failed_ssid)
2308 break;
2309 if (ss->cancel_attach) {
2310 tset->ssid = ssid;
2311 ss->cancel_attach(tset);
2312 }
2313 } while_each_subsys_mask();
2314 }
2315 out_release_tset:
2316 spin_lock_irq(&css_set_lock);
2317 list_splice_init(&tset->dst_csets, &tset->src_csets);
2318 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2319 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2320 list_del_init(&cset->mg_node);
2321 }
2322 spin_unlock_irq(&css_set_lock);
2323
2324 /*
2325 * Re-initialize the cgroup_taskset structure in case it is reused
2326 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2327 * iteration.
2328 */
2329 tset->nr_tasks = 0;
2330 tset->csets = &tset->src_csets;
2331 return ret;
2332 }
2333
2334 /**
2335 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2336 * @dst_cgrp: destination cgroup to test
2337 *
2338 * On the default hierarchy, except for the mixable, (possible) thread root
2339 * and threaded cgroups, subtree_control must be zero for migration
2340 * destination cgroups with tasks so that child cgroups don't compete
2341 * against tasks.
2342 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2343 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2344 {
2345 /* v1 doesn't have any restriction */
2346 if (!cgroup_on_dfl(dst_cgrp))
2347 return 0;
2348
2349 /* verify @dst_cgrp can host resources */
2350 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2351 return -EOPNOTSUPP;
2352
2353 /* mixables don't care */
2354 if (cgroup_is_mixable(dst_cgrp))
2355 return 0;
2356
2357 /*
2358 * If @dst_cgrp is already or can become a thread root or is
2359 * threaded, it doesn't matter.
2360 */
2361 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2362 return 0;
2363
2364 /* apply no-internal-process constraint */
2365 if (dst_cgrp->subtree_control)
2366 return -EBUSY;
2367
2368 return 0;
2369 }
2370
2371 /**
2372 * cgroup_migrate_finish - cleanup after attach
2373 * @mgctx: migration context
2374 *
2375 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2376 * those functions for details.
2377 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2378 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2379 {
2380 LIST_HEAD(preloaded);
2381 struct css_set *cset, *tmp_cset;
2382
2383 lockdep_assert_held(&cgroup_mutex);
2384
2385 spin_lock_irq(&css_set_lock);
2386
2387 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2388 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2389
2390 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2391 cset->mg_src_cgrp = NULL;
2392 cset->mg_dst_cgrp = NULL;
2393 cset->mg_dst_cset = NULL;
2394 list_del_init(&cset->mg_preload_node);
2395 put_css_set_locked(cset);
2396 }
2397
2398 spin_unlock_irq(&css_set_lock);
2399 }
2400
2401 /**
2402 * cgroup_migrate_add_src - add a migration source css_set
2403 * @src_cset: the source css_set to add
2404 * @dst_cgrp: the destination cgroup
2405 * @mgctx: migration context
2406 *
2407 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2408 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2409 * up by cgroup_migrate_finish().
2410 *
2411 * This function may be called without holding cgroup_threadgroup_rwsem
2412 * even if the target is a process. Threads may be created and destroyed
2413 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2414 * into play and the preloaded css_sets are guaranteed to cover all
2415 * migrations.
2416 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2417 void cgroup_migrate_add_src(struct css_set *src_cset,
2418 struct cgroup *dst_cgrp,
2419 struct cgroup_mgctx *mgctx)
2420 {
2421 struct cgroup *src_cgrp;
2422
2423 lockdep_assert_held(&cgroup_mutex);
2424 lockdep_assert_held(&css_set_lock);
2425
2426 /*
2427 * If ->dead, @src_set is associated with one or more dead cgroups
2428 * and doesn't contain any migratable tasks. Ignore it early so
2429 * that the rest of migration path doesn't get confused by it.
2430 */
2431 if (src_cset->dead)
2432 return;
2433
2434 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2435
2436 if (!list_empty(&src_cset->mg_preload_node))
2437 return;
2438
2439 WARN_ON(src_cset->mg_src_cgrp);
2440 WARN_ON(src_cset->mg_dst_cgrp);
2441 WARN_ON(!list_empty(&src_cset->mg_tasks));
2442 WARN_ON(!list_empty(&src_cset->mg_node));
2443
2444 src_cset->mg_src_cgrp = src_cgrp;
2445 src_cset->mg_dst_cgrp = dst_cgrp;
2446 get_css_set(src_cset);
2447 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2448 }
2449
2450 /**
2451 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2452 * @mgctx: migration context
2453 *
2454 * Tasks are about to be moved and all the source css_sets have been
2455 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2456 * pins all destination css_sets, links each to its source, and append them
2457 * to @mgctx->preloaded_dst_csets.
2458 *
2459 * This function must be called after cgroup_migrate_add_src() has been
2460 * called on each migration source css_set. After migration is performed
2461 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2462 * @mgctx.
2463 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2464 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2465 {
2466 struct css_set *src_cset, *tmp_cset;
2467
2468 lockdep_assert_held(&cgroup_mutex);
2469
2470 /* look up the dst cset for each src cset and link it to src */
2471 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2472 mg_preload_node) {
2473 struct css_set *dst_cset;
2474 struct cgroup_subsys *ss;
2475 int ssid;
2476
2477 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2478 if (!dst_cset)
2479 goto err;
2480
2481 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2482
2483 /*
2484 * If src cset equals dst, it's noop. Drop the src.
2485 * cgroup_migrate() will skip the cset too. Note that we
2486 * can't handle src == dst as some nodes are used by both.
2487 */
2488 if (src_cset == dst_cset) {
2489 src_cset->mg_src_cgrp = NULL;
2490 src_cset->mg_dst_cgrp = NULL;
2491 list_del_init(&src_cset->mg_preload_node);
2492 put_css_set(src_cset);
2493 put_css_set(dst_cset);
2494 continue;
2495 }
2496
2497 src_cset->mg_dst_cset = dst_cset;
2498
2499 if (list_empty(&dst_cset->mg_preload_node))
2500 list_add_tail(&dst_cset->mg_preload_node,
2501 &mgctx->preloaded_dst_csets);
2502 else
2503 put_css_set(dst_cset);
2504
2505 for_each_subsys(ss, ssid)
2506 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2507 mgctx->ss_mask |= 1 << ssid;
2508 }
2509
2510 return 0;
2511 err:
2512 cgroup_migrate_finish(mgctx);
2513 return -ENOMEM;
2514 }
2515
2516 /**
2517 * cgroup_migrate - migrate a process or task to a cgroup
2518 * @leader: the leader of the process or the task to migrate
2519 * @threadgroup: whether @leader points to the whole process or a single task
2520 * @mgctx: migration context
2521 *
2522 * Migrate a process or task denoted by @leader. If migrating a process,
2523 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2524 * responsible for invoking cgroup_migrate_add_src() and
2525 * cgroup_migrate_prepare_dst() on the targets before invoking this
2526 * function and following up with cgroup_migrate_finish().
2527 *
2528 * As long as a controller's ->can_attach() doesn't fail, this function is
2529 * guaranteed to succeed. This means that, excluding ->can_attach()
2530 * failure, when migrating multiple targets, the success or failure can be
2531 * decided for all targets by invoking group_migrate_prepare_dst() before
2532 * actually starting migrating.
2533 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2534 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2535 struct cgroup_mgctx *mgctx)
2536 {
2537 struct task_struct *task;
2538
2539 /*
2540 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2541 * already PF_EXITING could be freed from underneath us unless we
2542 * take an rcu_read_lock.
2543 */
2544 spin_lock_irq(&css_set_lock);
2545 rcu_read_lock();
2546 task = leader;
2547 do {
2548 cgroup_migrate_add_task(task, mgctx);
2549 if (!threadgroup)
2550 break;
2551 } while_each_thread(leader, task);
2552 rcu_read_unlock();
2553 spin_unlock_irq(&css_set_lock);
2554
2555 return cgroup_migrate_execute(mgctx);
2556 }
2557
2558 /**
2559 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2560 * @dst_cgrp: the cgroup to attach to
2561 * @leader: the task or the leader of the threadgroup to be attached
2562 * @threadgroup: attach the whole threadgroup?
2563 *
2564 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2565 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2566 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2567 bool threadgroup)
2568 {
2569 DEFINE_CGROUP_MGCTX(mgctx);
2570 struct task_struct *task;
2571 int ret;
2572
2573 ret = cgroup_migrate_vet_dst(dst_cgrp);
2574 if (ret)
2575 return ret;
2576
2577 /* look up all src csets */
2578 spin_lock_irq(&css_set_lock);
2579 rcu_read_lock();
2580 task = leader;
2581 do {
2582 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2583 if (!threadgroup)
2584 break;
2585 } while_each_thread(leader, task);
2586 rcu_read_unlock();
2587 spin_unlock_irq(&css_set_lock);
2588
2589 /* prepare dst csets and commit */
2590 ret = cgroup_migrate_prepare_dst(&mgctx);
2591 if (!ret)
2592 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2593
2594 cgroup_migrate_finish(&mgctx);
2595
2596 if (!ret)
2597 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2598
2599 return ret;
2600 }
2601
cgroup_procs_write_start(char * buf,bool threadgroup)2602 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2603 __acquires(&cgroup_threadgroup_rwsem)
2604 {
2605 struct task_struct *tsk;
2606 pid_t pid;
2607
2608 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2609 return ERR_PTR(-EINVAL);
2610
2611 percpu_down_write(&cgroup_threadgroup_rwsem);
2612
2613 rcu_read_lock();
2614 if (pid) {
2615 tsk = find_task_by_vpid(pid);
2616 if (!tsk) {
2617 tsk = ERR_PTR(-ESRCH);
2618 goto out_unlock_threadgroup;
2619 }
2620 } else {
2621 tsk = current;
2622 }
2623
2624 if (threadgroup)
2625 tsk = tsk->group_leader;
2626
2627 /*
2628 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2629 * If userland migrates such a kthread to a non-root cgroup, it can
2630 * become trapped in a cpuset, or RT kthread may be born in a
2631 * cgroup with no rt_runtime allocated. Just say no.
2632 */
2633 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2634 tsk = ERR_PTR(-EINVAL);
2635 goto out_unlock_threadgroup;
2636 }
2637
2638 get_task_struct(tsk);
2639 goto out_unlock_rcu;
2640
2641 out_unlock_threadgroup:
2642 percpu_up_write(&cgroup_threadgroup_rwsem);
2643 out_unlock_rcu:
2644 rcu_read_unlock();
2645 return tsk;
2646 }
2647
cgroup_procs_write_finish(struct task_struct * task)2648 void cgroup_procs_write_finish(struct task_struct *task)
2649 __releases(&cgroup_threadgroup_rwsem)
2650 {
2651 struct cgroup_subsys *ss;
2652 int ssid;
2653
2654 /* release reference from cgroup_procs_write_start() */
2655 put_task_struct(task);
2656
2657 percpu_up_write(&cgroup_threadgroup_rwsem);
2658 for_each_subsys(ss, ssid)
2659 if (ss->post_attach)
2660 ss->post_attach();
2661 }
2662
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2663 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2664 {
2665 struct cgroup_subsys *ss;
2666 bool printed = false;
2667 int ssid;
2668
2669 do_each_subsys_mask(ss, ssid, ss_mask) {
2670 if (printed)
2671 seq_putc(seq, ' ');
2672 seq_printf(seq, "%s", ss->name);
2673 printed = true;
2674 } while_each_subsys_mask();
2675 if (printed)
2676 seq_putc(seq, '\n');
2677 }
2678
2679 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2680 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2681 {
2682 struct cgroup *cgrp = seq_css(seq)->cgroup;
2683
2684 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2685 return 0;
2686 }
2687
2688 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2689 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2690 {
2691 struct cgroup *cgrp = seq_css(seq)->cgroup;
2692
2693 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2694 return 0;
2695 }
2696
2697 /**
2698 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2699 * @cgrp: root of the subtree to update csses for
2700 *
2701 * @cgrp's control masks have changed and its subtree's css associations
2702 * need to be updated accordingly. This function looks up all css_sets
2703 * which are attached to the subtree, creates the matching updated css_sets
2704 * and migrates the tasks to the new ones.
2705 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2706 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2707 {
2708 DEFINE_CGROUP_MGCTX(mgctx);
2709 struct cgroup_subsys_state *d_css;
2710 struct cgroup *dsct;
2711 struct css_set *src_cset;
2712 int ret;
2713
2714 lockdep_assert_held(&cgroup_mutex);
2715
2716 percpu_down_write(&cgroup_threadgroup_rwsem);
2717
2718 /* look up all csses currently attached to @cgrp's subtree */
2719 spin_lock_irq(&css_set_lock);
2720 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2721 struct cgrp_cset_link *link;
2722
2723 list_for_each_entry(link, &dsct->cset_links, cset_link)
2724 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2725 }
2726 spin_unlock_irq(&css_set_lock);
2727
2728 /* NULL dst indicates self on default hierarchy */
2729 ret = cgroup_migrate_prepare_dst(&mgctx);
2730 if (ret)
2731 goto out_finish;
2732
2733 spin_lock_irq(&css_set_lock);
2734 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2735 struct task_struct *task, *ntask;
2736
2737 /* all tasks in src_csets need to be migrated */
2738 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2739 cgroup_migrate_add_task(task, &mgctx);
2740 }
2741 spin_unlock_irq(&css_set_lock);
2742
2743 ret = cgroup_migrate_execute(&mgctx);
2744 out_finish:
2745 cgroup_migrate_finish(&mgctx);
2746 percpu_up_write(&cgroup_threadgroup_rwsem);
2747 return ret;
2748 }
2749
2750 /**
2751 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2752 * @cgrp: root of the target subtree
2753 *
2754 * Because css offlining is asynchronous, userland may try to re-enable a
2755 * controller while the previous css is still around. This function grabs
2756 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2757 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2758 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2759 __acquires(&cgroup_mutex)
2760 {
2761 struct cgroup *dsct;
2762 struct cgroup_subsys_state *d_css;
2763 struct cgroup_subsys *ss;
2764 int ssid;
2765
2766 restart:
2767 mutex_lock(&cgroup_mutex);
2768
2769 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2770 for_each_subsys(ss, ssid) {
2771 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2772 DEFINE_WAIT(wait);
2773
2774 if (!css || !percpu_ref_is_dying(&css->refcnt))
2775 continue;
2776
2777 cgroup_get_live(dsct);
2778 prepare_to_wait(&dsct->offline_waitq, &wait,
2779 TASK_UNINTERRUPTIBLE);
2780
2781 mutex_unlock(&cgroup_mutex);
2782 schedule();
2783 finish_wait(&dsct->offline_waitq, &wait);
2784
2785 cgroup_put(dsct);
2786 goto restart;
2787 }
2788 }
2789 }
2790
2791 /**
2792 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2793 * @cgrp: root of the target subtree
2794 *
2795 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2796 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2797 * itself.
2798 */
cgroup_save_control(struct cgroup * cgrp)2799 static void cgroup_save_control(struct cgroup *cgrp)
2800 {
2801 struct cgroup *dsct;
2802 struct cgroup_subsys_state *d_css;
2803
2804 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2805 dsct->old_subtree_control = dsct->subtree_control;
2806 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2807 dsct->old_dom_cgrp = dsct->dom_cgrp;
2808 }
2809 }
2810
2811 /**
2812 * cgroup_propagate_control - refresh control masks of a subtree
2813 * @cgrp: root of the target subtree
2814 *
2815 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2816 * ->subtree_control and propagate controller availability through the
2817 * subtree so that descendants don't have unavailable controllers enabled.
2818 */
cgroup_propagate_control(struct cgroup * cgrp)2819 static void cgroup_propagate_control(struct cgroup *cgrp)
2820 {
2821 struct cgroup *dsct;
2822 struct cgroup_subsys_state *d_css;
2823
2824 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2825 dsct->subtree_control &= cgroup_control(dsct);
2826 dsct->subtree_ss_mask =
2827 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2828 cgroup_ss_mask(dsct));
2829 }
2830 }
2831
2832 /**
2833 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2834 * @cgrp: root of the target subtree
2835 *
2836 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2837 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2838 * itself.
2839 */
cgroup_restore_control(struct cgroup * cgrp)2840 static void cgroup_restore_control(struct cgroup *cgrp)
2841 {
2842 struct cgroup *dsct;
2843 struct cgroup_subsys_state *d_css;
2844
2845 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2846 dsct->subtree_control = dsct->old_subtree_control;
2847 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2848 dsct->dom_cgrp = dsct->old_dom_cgrp;
2849 }
2850 }
2851
css_visible(struct cgroup_subsys_state * css)2852 static bool css_visible(struct cgroup_subsys_state *css)
2853 {
2854 struct cgroup_subsys *ss = css->ss;
2855 struct cgroup *cgrp = css->cgroup;
2856
2857 if (cgroup_control(cgrp) & (1 << ss->id))
2858 return true;
2859 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2860 return false;
2861 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2862 }
2863
2864 /**
2865 * cgroup_apply_control_enable - enable or show csses according to control
2866 * @cgrp: root of the target subtree
2867 *
2868 * Walk @cgrp's subtree and create new csses or make the existing ones
2869 * visible. A css is created invisible if it's being implicitly enabled
2870 * through dependency. An invisible css is made visible when the userland
2871 * explicitly enables it.
2872 *
2873 * Returns 0 on success, -errno on failure. On failure, csses which have
2874 * been processed already aren't cleaned up. The caller is responsible for
2875 * cleaning up with cgroup_apply_control_disable().
2876 */
cgroup_apply_control_enable(struct cgroup * cgrp)2877 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2878 {
2879 struct cgroup *dsct;
2880 struct cgroup_subsys_state *d_css;
2881 struct cgroup_subsys *ss;
2882 int ssid, ret;
2883
2884 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2885 for_each_subsys(ss, ssid) {
2886 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2887
2888 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2889 continue;
2890
2891 if (!css) {
2892 css = css_create(dsct, ss);
2893 if (IS_ERR(css))
2894 return PTR_ERR(css);
2895 }
2896
2897 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
2898
2899 if (css_visible(css)) {
2900 ret = css_populate_dir(css);
2901 if (ret)
2902 return ret;
2903 }
2904 }
2905 }
2906
2907 return 0;
2908 }
2909
2910 /**
2911 * cgroup_apply_control_disable - kill or hide csses according to control
2912 * @cgrp: root of the target subtree
2913 *
2914 * Walk @cgrp's subtree and kill and hide csses so that they match
2915 * cgroup_ss_mask() and cgroup_visible_mask().
2916 *
2917 * A css is hidden when the userland requests it to be disabled while other
2918 * subsystems are still depending on it. The css must not actively control
2919 * resources and be in the vanilla state if it's made visible again later.
2920 * Controllers which may be depended upon should provide ->css_reset() for
2921 * this purpose.
2922 */
cgroup_apply_control_disable(struct cgroup * cgrp)2923 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2924 {
2925 struct cgroup *dsct;
2926 struct cgroup_subsys_state *d_css;
2927 struct cgroup_subsys *ss;
2928 int ssid;
2929
2930 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2931 for_each_subsys(ss, ssid) {
2932 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2933
2934 if (!css)
2935 continue;
2936
2937 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
2938
2939 if (css->parent &&
2940 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2941 kill_css(css);
2942 } else if (!css_visible(css)) {
2943 css_clear_dir(css);
2944 if (ss->css_reset)
2945 ss->css_reset(css);
2946 }
2947 }
2948 }
2949 }
2950
2951 /**
2952 * cgroup_apply_control - apply control mask updates to the subtree
2953 * @cgrp: root of the target subtree
2954 *
2955 * subsystems can be enabled and disabled in a subtree using the following
2956 * steps.
2957 *
2958 * 1. Call cgroup_save_control() to stash the current state.
2959 * 2. Update ->subtree_control masks in the subtree as desired.
2960 * 3. Call cgroup_apply_control() to apply the changes.
2961 * 4. Optionally perform other related operations.
2962 * 5. Call cgroup_finalize_control() to finish up.
2963 *
2964 * This function implements step 3 and propagates the mask changes
2965 * throughout @cgrp's subtree, updates csses accordingly and perform
2966 * process migrations.
2967 */
cgroup_apply_control(struct cgroup * cgrp)2968 static int cgroup_apply_control(struct cgroup *cgrp)
2969 {
2970 int ret;
2971
2972 cgroup_propagate_control(cgrp);
2973
2974 ret = cgroup_apply_control_enable(cgrp);
2975 if (ret)
2976 return ret;
2977
2978 /*
2979 * At this point, cgroup_e_css() results reflect the new csses
2980 * making the following cgroup_update_dfl_csses() properly update
2981 * css associations of all tasks in the subtree.
2982 */
2983 ret = cgroup_update_dfl_csses(cgrp);
2984 if (ret)
2985 return ret;
2986
2987 return 0;
2988 }
2989
2990 /**
2991 * cgroup_finalize_control - finalize control mask update
2992 * @cgrp: root of the target subtree
2993 * @ret: the result of the update
2994 *
2995 * Finalize control mask update. See cgroup_apply_control() for more info.
2996 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)2997 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2998 {
2999 if (ret) {
3000 cgroup_restore_control(cgrp);
3001 cgroup_propagate_control(cgrp);
3002 }
3003
3004 cgroup_apply_control_disable(cgrp);
3005 }
3006
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3007 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3008 {
3009 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3010
3011 /* if nothing is getting enabled, nothing to worry about */
3012 if (!enable)
3013 return 0;
3014
3015 /* can @cgrp host any resources? */
3016 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3017 return -EOPNOTSUPP;
3018
3019 /* mixables don't care */
3020 if (cgroup_is_mixable(cgrp))
3021 return 0;
3022
3023 if (domain_enable) {
3024 /* can't enable domain controllers inside a thread subtree */
3025 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3026 return -EOPNOTSUPP;
3027 } else {
3028 /*
3029 * Threaded controllers can handle internal competitions
3030 * and are always allowed inside a (prospective) thread
3031 * subtree.
3032 */
3033 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3034 return 0;
3035 }
3036
3037 /*
3038 * Controllers can't be enabled for a cgroup with tasks to avoid
3039 * child cgroups competing against tasks.
3040 */
3041 if (cgroup_has_tasks(cgrp))
3042 return -EBUSY;
3043
3044 return 0;
3045 }
3046
3047 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3048 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3049 char *buf, size_t nbytes,
3050 loff_t off)
3051 {
3052 u16 enable = 0, disable = 0;
3053 struct cgroup *cgrp, *child;
3054 struct cgroup_subsys *ss;
3055 char *tok;
3056 int ssid, ret;
3057
3058 /*
3059 * Parse input - space separated list of subsystem names prefixed
3060 * with either + or -.
3061 */
3062 buf = strstrip(buf);
3063 while ((tok = strsep(&buf, " "))) {
3064 if (tok[0] == '\0')
3065 continue;
3066 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3067 if (!cgroup_ssid_enabled(ssid) ||
3068 strcmp(tok + 1, ss->name))
3069 continue;
3070
3071 if (*tok == '+') {
3072 enable |= 1 << ssid;
3073 disable &= ~(1 << ssid);
3074 } else if (*tok == '-') {
3075 disable |= 1 << ssid;
3076 enable &= ~(1 << ssid);
3077 } else {
3078 return -EINVAL;
3079 }
3080 break;
3081 } while_each_subsys_mask();
3082 if (ssid == CGROUP_SUBSYS_COUNT)
3083 return -EINVAL;
3084 }
3085
3086 cgrp = cgroup_kn_lock_live(of->kn, true);
3087 if (!cgrp)
3088 return -ENODEV;
3089
3090 for_each_subsys(ss, ssid) {
3091 if (enable & (1 << ssid)) {
3092 if (cgrp->subtree_control & (1 << ssid)) {
3093 enable &= ~(1 << ssid);
3094 continue;
3095 }
3096
3097 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3098 ret = -ENOENT;
3099 goto out_unlock;
3100 }
3101 } else if (disable & (1 << ssid)) {
3102 if (!(cgrp->subtree_control & (1 << ssid))) {
3103 disable &= ~(1 << ssid);
3104 continue;
3105 }
3106
3107 /* a child has it enabled? */
3108 cgroup_for_each_live_child(child, cgrp) {
3109 if (child->subtree_control & (1 << ssid)) {
3110 ret = -EBUSY;
3111 goto out_unlock;
3112 }
3113 }
3114 }
3115 }
3116
3117 if (!enable && !disable) {
3118 ret = 0;
3119 goto out_unlock;
3120 }
3121
3122 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3123 if (ret)
3124 goto out_unlock;
3125
3126 /* save and update control masks and prepare csses */
3127 cgroup_save_control(cgrp);
3128
3129 cgrp->subtree_control |= enable;
3130 cgrp->subtree_control &= ~disable;
3131
3132 ret = cgroup_apply_control(cgrp);
3133 cgroup_finalize_control(cgrp, ret);
3134 if (ret)
3135 goto out_unlock;
3136
3137 kernfs_activate(cgrp->kn);
3138 out_unlock:
3139 cgroup_kn_unlock(of->kn);
3140 return ret ?: nbytes;
3141 }
3142
3143 /**
3144 * cgroup_enable_threaded - make @cgrp threaded
3145 * @cgrp: the target cgroup
3146 *
3147 * Called when "threaded" is written to the cgroup.type interface file and
3148 * tries to make @cgrp threaded and join the parent's resource domain.
3149 * This function is never called on the root cgroup as cgroup.type doesn't
3150 * exist on it.
3151 */
cgroup_enable_threaded(struct cgroup * cgrp)3152 static int cgroup_enable_threaded(struct cgroup *cgrp)
3153 {
3154 struct cgroup *parent = cgroup_parent(cgrp);
3155 struct cgroup *dom_cgrp = parent->dom_cgrp;
3156 struct cgroup *dsct;
3157 struct cgroup_subsys_state *d_css;
3158 int ret;
3159
3160 lockdep_assert_held(&cgroup_mutex);
3161
3162 /* noop if already threaded */
3163 if (cgroup_is_threaded(cgrp))
3164 return 0;
3165
3166 /*
3167 * If @cgroup is populated or has domain controllers enabled, it
3168 * can't be switched. While the below cgroup_can_be_thread_root()
3169 * test can catch the same conditions, that's only when @parent is
3170 * not mixable, so let's check it explicitly.
3171 */
3172 if (cgroup_is_populated(cgrp) ||
3173 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3174 return -EOPNOTSUPP;
3175
3176 /* we're joining the parent's domain, ensure its validity */
3177 if (!cgroup_is_valid_domain(dom_cgrp) ||
3178 !cgroup_can_be_thread_root(dom_cgrp))
3179 return -EOPNOTSUPP;
3180
3181 /*
3182 * The following shouldn't cause actual migrations and should
3183 * always succeed.
3184 */
3185 cgroup_save_control(cgrp);
3186
3187 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3188 if (dsct == cgrp || cgroup_is_threaded(dsct))
3189 dsct->dom_cgrp = dom_cgrp;
3190
3191 ret = cgroup_apply_control(cgrp);
3192 if (!ret)
3193 parent->nr_threaded_children++;
3194
3195 cgroup_finalize_control(cgrp, ret);
3196 return ret;
3197 }
3198
cgroup_type_show(struct seq_file * seq,void * v)3199 static int cgroup_type_show(struct seq_file *seq, void *v)
3200 {
3201 struct cgroup *cgrp = seq_css(seq)->cgroup;
3202
3203 if (cgroup_is_threaded(cgrp))
3204 seq_puts(seq, "threaded\n");
3205 else if (!cgroup_is_valid_domain(cgrp))
3206 seq_puts(seq, "domain invalid\n");
3207 else if (cgroup_is_thread_root(cgrp))
3208 seq_puts(seq, "domain threaded\n");
3209 else
3210 seq_puts(seq, "domain\n");
3211
3212 return 0;
3213 }
3214
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3215 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3216 size_t nbytes, loff_t off)
3217 {
3218 struct cgroup *cgrp;
3219 int ret;
3220
3221 /* only switching to threaded mode is supported */
3222 if (strcmp(strstrip(buf), "threaded"))
3223 return -EINVAL;
3224
3225 /* drain dying csses before we re-apply (threaded) subtree control */
3226 cgrp = cgroup_kn_lock_live(of->kn, true);
3227 if (!cgrp)
3228 return -ENOENT;
3229
3230 /* threaded can only be enabled */
3231 ret = cgroup_enable_threaded(cgrp);
3232
3233 cgroup_kn_unlock(of->kn);
3234 return ret ?: nbytes;
3235 }
3236
cgroup_max_descendants_show(struct seq_file * seq,void * v)3237 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3238 {
3239 struct cgroup *cgrp = seq_css(seq)->cgroup;
3240 int descendants = READ_ONCE(cgrp->max_descendants);
3241
3242 if (descendants == INT_MAX)
3243 seq_puts(seq, "max\n");
3244 else
3245 seq_printf(seq, "%d\n", descendants);
3246
3247 return 0;
3248 }
3249
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3250 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3251 char *buf, size_t nbytes, loff_t off)
3252 {
3253 struct cgroup *cgrp;
3254 int descendants;
3255 ssize_t ret;
3256
3257 buf = strstrip(buf);
3258 if (!strcmp(buf, "max")) {
3259 descendants = INT_MAX;
3260 } else {
3261 ret = kstrtoint(buf, 0, &descendants);
3262 if (ret)
3263 return ret;
3264 }
3265
3266 if (descendants < 0)
3267 return -ERANGE;
3268
3269 cgrp = cgroup_kn_lock_live(of->kn, false);
3270 if (!cgrp)
3271 return -ENOENT;
3272
3273 cgrp->max_descendants = descendants;
3274
3275 cgroup_kn_unlock(of->kn);
3276
3277 return nbytes;
3278 }
3279
cgroup_max_depth_show(struct seq_file * seq,void * v)3280 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3281 {
3282 struct cgroup *cgrp = seq_css(seq)->cgroup;
3283 int depth = READ_ONCE(cgrp->max_depth);
3284
3285 if (depth == INT_MAX)
3286 seq_puts(seq, "max\n");
3287 else
3288 seq_printf(seq, "%d\n", depth);
3289
3290 return 0;
3291 }
3292
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3293 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3294 char *buf, size_t nbytes, loff_t off)
3295 {
3296 struct cgroup *cgrp;
3297 ssize_t ret;
3298 int depth;
3299
3300 buf = strstrip(buf);
3301 if (!strcmp(buf, "max")) {
3302 depth = INT_MAX;
3303 } else {
3304 ret = kstrtoint(buf, 0, &depth);
3305 if (ret)
3306 return ret;
3307 }
3308
3309 if (depth < 0)
3310 return -ERANGE;
3311
3312 cgrp = cgroup_kn_lock_live(of->kn, false);
3313 if (!cgrp)
3314 return -ENOENT;
3315
3316 cgrp->max_depth = depth;
3317
3318 cgroup_kn_unlock(of->kn);
3319
3320 return nbytes;
3321 }
3322
cgroup_events_show(struct seq_file * seq,void * v)3323 static int cgroup_events_show(struct seq_file *seq, void *v)
3324 {
3325 seq_printf(seq, "populated %d\n",
3326 cgroup_is_populated(seq_css(seq)->cgroup));
3327 return 0;
3328 }
3329
cgroup_stat_show(struct seq_file * seq,void * v)3330 static int cgroup_stat_show(struct seq_file *seq, void *v)
3331 {
3332 struct cgroup *cgroup = seq_css(seq)->cgroup;
3333
3334 seq_printf(seq, "nr_descendants %d\n",
3335 cgroup->nr_descendants);
3336 seq_printf(seq, "nr_dying_descendants %d\n",
3337 cgroup->nr_dying_descendants);
3338
3339 return 0;
3340 }
3341
3342 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3343 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3344 {
3345 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3346 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3347 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3348 {
3349 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3350 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3351 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3352 {
3353 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3354 }
3355
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3356 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3357 size_t nbytes, enum psi_res res)
3358 {
3359 struct psi_trigger *new;
3360 struct cgroup *cgrp;
3361
3362 cgrp = cgroup_kn_lock_live(of->kn, false);
3363 if (!cgrp)
3364 return -ENODEV;
3365
3366 cgroup_get(cgrp);
3367 cgroup_kn_unlock(of->kn);
3368
3369 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3370 if (IS_ERR(new)) {
3371 cgroup_put(cgrp);
3372 return PTR_ERR(new);
3373 }
3374
3375 psi_trigger_replace(&of->priv, new);
3376
3377 cgroup_put(cgrp);
3378
3379 return nbytes;
3380 }
3381
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3382 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3383 char *buf, size_t nbytes,
3384 loff_t off)
3385 {
3386 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3387 }
3388
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3389 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3390 char *buf, size_t nbytes,
3391 loff_t off)
3392 {
3393 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3394 }
3395
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3396 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3397 char *buf, size_t nbytes,
3398 loff_t off)
3399 {
3400 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3401 }
3402
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3403 static unsigned int cgroup_pressure_poll(struct kernfs_open_file *of,
3404 poll_table *pt)
3405 {
3406 return psi_trigger_poll(&of->priv, of->file, pt);
3407 }
3408
cgroup_pressure_release(struct kernfs_open_file * of)3409 static void cgroup_pressure_release(struct kernfs_open_file *of)
3410 {
3411 psi_trigger_replace(&of->priv, NULL);
3412 }
3413 #endif /* CONFIG_PSI */
3414
cgroup_file_open(struct kernfs_open_file * of)3415 static int cgroup_file_open(struct kernfs_open_file *of)
3416 {
3417 struct cftype *cft = of->kn->priv;
3418
3419 if (cft->open)
3420 return cft->open(of);
3421 return 0;
3422 }
3423
cgroup_file_release(struct kernfs_open_file * of)3424 static void cgroup_file_release(struct kernfs_open_file *of)
3425 {
3426 struct cftype *cft = of->kn->priv;
3427
3428 if (cft->release)
3429 cft->release(of);
3430 }
3431
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3432 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3433 size_t nbytes, loff_t off)
3434 {
3435 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3436 struct cgroup *cgrp = of->kn->parent->priv;
3437 struct cftype *cft = of->kn->priv;
3438 struct cgroup_subsys_state *css;
3439 int ret;
3440
3441 /*
3442 * If namespaces are delegation boundaries, disallow writes to
3443 * files in an non-init namespace root from inside the namespace
3444 * except for the files explicitly marked delegatable -
3445 * cgroup.procs and cgroup.subtree_control.
3446 */
3447 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3448 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3449 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3450 return -EPERM;
3451
3452 if (cft->write)
3453 return cft->write(of, buf, nbytes, off);
3454
3455 /*
3456 * kernfs guarantees that a file isn't deleted with operations in
3457 * flight, which means that the matching css is and stays alive and
3458 * doesn't need to be pinned. The RCU locking is not necessary
3459 * either. It's just for the convenience of using cgroup_css().
3460 */
3461 rcu_read_lock();
3462 css = cgroup_css(cgrp, cft->ss);
3463 rcu_read_unlock();
3464
3465 if (cft->write_u64) {
3466 unsigned long long v;
3467 ret = kstrtoull(buf, 0, &v);
3468 if (!ret)
3469 ret = cft->write_u64(css, cft, v);
3470 } else if (cft->write_s64) {
3471 long long v;
3472 ret = kstrtoll(buf, 0, &v);
3473 if (!ret)
3474 ret = cft->write_s64(css, cft, v);
3475 } else {
3476 ret = -EINVAL;
3477 }
3478
3479 return ret ?: nbytes;
3480 }
3481
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3482 static unsigned int cgroup_file_poll(struct kernfs_open_file *of,
3483 poll_table *pt)
3484 {
3485 struct cftype *cft = of->kn->priv;
3486
3487 if (cft->poll)
3488 return cft->poll(of, pt);
3489
3490 return kernfs_generic_poll(of, pt);
3491 }
3492
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3493 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3494 {
3495 return seq_cft(seq)->seq_start(seq, ppos);
3496 }
3497
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3498 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3499 {
3500 return seq_cft(seq)->seq_next(seq, v, ppos);
3501 }
3502
cgroup_seqfile_stop(struct seq_file * seq,void * v)3503 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3504 {
3505 if (seq_cft(seq)->seq_stop)
3506 seq_cft(seq)->seq_stop(seq, v);
3507 }
3508
cgroup_seqfile_show(struct seq_file * m,void * arg)3509 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3510 {
3511 struct cftype *cft = seq_cft(m);
3512 struct cgroup_subsys_state *css = seq_css(m);
3513
3514 if (cft->seq_show)
3515 return cft->seq_show(m, arg);
3516
3517 if (cft->read_u64)
3518 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3519 else if (cft->read_s64)
3520 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3521 else
3522 return -EINVAL;
3523 return 0;
3524 }
3525
3526 static struct kernfs_ops cgroup_kf_single_ops = {
3527 .atomic_write_len = PAGE_SIZE,
3528 .open = cgroup_file_open,
3529 .release = cgroup_file_release,
3530 .write = cgroup_file_write,
3531 .poll = cgroup_file_poll,
3532 .seq_show = cgroup_seqfile_show,
3533 };
3534
3535 static struct kernfs_ops cgroup_kf_ops = {
3536 .atomic_write_len = PAGE_SIZE,
3537 .open = cgroup_file_open,
3538 .release = cgroup_file_release,
3539 .write = cgroup_file_write,
3540 .poll = cgroup_file_poll,
3541 .seq_start = cgroup_seqfile_start,
3542 .seq_next = cgroup_seqfile_next,
3543 .seq_stop = cgroup_seqfile_stop,
3544 .seq_show = cgroup_seqfile_show,
3545 };
3546
3547 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3548 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3549 {
3550 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3551 .ia_uid = current_fsuid(),
3552 .ia_gid = current_fsgid(), };
3553
3554 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3555 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3556 return 0;
3557
3558 return kernfs_setattr(kn, &iattr);
3559 }
3560
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3561 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3562 struct cftype *cft)
3563 {
3564 char name[CGROUP_FILE_NAME_MAX];
3565 struct kernfs_node *kn;
3566 struct lock_class_key *key = NULL;
3567 int ret;
3568
3569 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3570 key = &cft->lockdep_key;
3571 #endif
3572 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3573 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3574 NULL, key);
3575 if (IS_ERR(kn))
3576 return PTR_ERR(kn);
3577
3578 ret = cgroup_kn_set_ugid(kn);
3579 if (ret) {
3580 kernfs_remove(kn);
3581 return ret;
3582 }
3583
3584 if (cft->file_offset) {
3585 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3586
3587 spin_lock_irq(&cgroup_file_kn_lock);
3588 cfile->kn = kn;
3589 spin_unlock_irq(&cgroup_file_kn_lock);
3590 }
3591
3592 return 0;
3593 }
3594
3595 /**
3596 * cgroup_addrm_files - add or remove files to a cgroup directory
3597 * @css: the target css
3598 * @cgrp: the target cgroup (usually css->cgroup)
3599 * @cfts: array of cftypes to be added
3600 * @is_add: whether to add or remove
3601 *
3602 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3603 * For removals, this function never fails.
3604 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3605 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3606 struct cgroup *cgrp, struct cftype cfts[],
3607 bool is_add)
3608 {
3609 struct cftype *cft, *cft_end = NULL;
3610 int ret = 0;
3611
3612 lockdep_assert_held(&cgroup_mutex);
3613
3614 restart:
3615 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3616 /* does cft->flags tell us to skip this file on @cgrp? */
3617 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3618 continue;
3619 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3620 continue;
3621 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3622 continue;
3623 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3624 continue;
3625
3626 if (is_add) {
3627 ret = cgroup_add_file(css, cgrp, cft);
3628 if (ret) {
3629 pr_warn("%s: failed to add %s, err=%d\n",
3630 __func__, cft->name, ret);
3631 cft_end = cft;
3632 is_add = false;
3633 goto restart;
3634 }
3635 } else {
3636 cgroup_rm_file(cgrp, cft);
3637 }
3638 }
3639 return ret;
3640 }
3641
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3642 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3643 {
3644 struct cgroup_subsys *ss = cfts[0].ss;
3645 struct cgroup *root = &ss->root->cgrp;
3646 struct cgroup_subsys_state *css;
3647 int ret = 0;
3648
3649 lockdep_assert_held(&cgroup_mutex);
3650
3651 /* add/rm files for all cgroups created before */
3652 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3653 struct cgroup *cgrp = css->cgroup;
3654
3655 if (!(css->flags & CSS_VISIBLE))
3656 continue;
3657
3658 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3659 if (ret)
3660 break;
3661 }
3662
3663 if (is_add && !ret)
3664 kernfs_activate(root->kn);
3665 return ret;
3666 }
3667
cgroup_exit_cftypes(struct cftype * cfts)3668 static void cgroup_exit_cftypes(struct cftype *cfts)
3669 {
3670 struct cftype *cft;
3671
3672 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3673 /* free copy for custom atomic_write_len, see init_cftypes() */
3674 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3675 kfree(cft->kf_ops);
3676 cft->kf_ops = NULL;
3677 cft->ss = NULL;
3678
3679 /* revert flags set by cgroup core while adding @cfts */
3680 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3681 }
3682 }
3683
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3684 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3685 {
3686 struct cftype *cft;
3687
3688 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3689 struct kernfs_ops *kf_ops;
3690
3691 WARN_ON(cft->ss || cft->kf_ops);
3692
3693 if (cft->seq_start)
3694 kf_ops = &cgroup_kf_ops;
3695 else
3696 kf_ops = &cgroup_kf_single_ops;
3697
3698 /*
3699 * Ugh... if @cft wants a custom max_write_len, we need to
3700 * make a copy of kf_ops to set its atomic_write_len.
3701 */
3702 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3703 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3704 if (!kf_ops) {
3705 cgroup_exit_cftypes(cfts);
3706 return -ENOMEM;
3707 }
3708 kf_ops->atomic_write_len = cft->max_write_len;
3709 }
3710
3711 cft->kf_ops = kf_ops;
3712 cft->ss = ss;
3713 }
3714
3715 return 0;
3716 }
3717
cgroup_rm_cftypes_locked(struct cftype * cfts)3718 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3719 {
3720 lockdep_assert_held(&cgroup_mutex);
3721
3722 if (!cfts || !cfts[0].ss)
3723 return -ENOENT;
3724
3725 list_del(&cfts->node);
3726 cgroup_apply_cftypes(cfts, false);
3727 cgroup_exit_cftypes(cfts);
3728 return 0;
3729 }
3730
3731 /**
3732 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3733 * @cfts: zero-length name terminated array of cftypes
3734 *
3735 * Unregister @cfts. Files described by @cfts are removed from all
3736 * existing cgroups and all future cgroups won't have them either. This
3737 * function can be called anytime whether @cfts' subsys is attached or not.
3738 *
3739 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3740 * registered.
3741 */
cgroup_rm_cftypes(struct cftype * cfts)3742 int cgroup_rm_cftypes(struct cftype *cfts)
3743 {
3744 int ret;
3745
3746 mutex_lock(&cgroup_mutex);
3747 ret = cgroup_rm_cftypes_locked(cfts);
3748 mutex_unlock(&cgroup_mutex);
3749 return ret;
3750 }
3751
3752 /**
3753 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3754 * @ss: target cgroup subsystem
3755 * @cfts: zero-length name terminated array of cftypes
3756 *
3757 * Register @cfts to @ss. Files described by @cfts are created for all
3758 * existing cgroups to which @ss is attached and all future cgroups will
3759 * have them too. This function can be called anytime whether @ss is
3760 * attached or not.
3761 *
3762 * Returns 0 on successful registration, -errno on failure. Note that this
3763 * function currently returns 0 as long as @cfts registration is successful
3764 * even if some file creation attempts on existing cgroups fail.
3765 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3766 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3767 {
3768 int ret;
3769
3770 if (!cgroup_ssid_enabled(ss->id))
3771 return 0;
3772
3773 if (!cfts || cfts[0].name[0] == '\0')
3774 return 0;
3775
3776 ret = cgroup_init_cftypes(ss, cfts);
3777 if (ret)
3778 return ret;
3779
3780 mutex_lock(&cgroup_mutex);
3781
3782 list_add_tail(&cfts->node, &ss->cfts);
3783 ret = cgroup_apply_cftypes(cfts, true);
3784 if (ret)
3785 cgroup_rm_cftypes_locked(cfts);
3786
3787 mutex_unlock(&cgroup_mutex);
3788 return ret;
3789 }
3790
3791 /**
3792 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3793 * @ss: target cgroup subsystem
3794 * @cfts: zero-length name terminated array of cftypes
3795 *
3796 * Similar to cgroup_add_cftypes() but the added files are only used for
3797 * the default hierarchy.
3798 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3799 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3800 {
3801 struct cftype *cft;
3802
3803 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3804 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3805 return cgroup_add_cftypes(ss, cfts);
3806 }
3807
3808 /**
3809 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3810 * @ss: target cgroup subsystem
3811 * @cfts: zero-length name terminated array of cftypes
3812 *
3813 * Similar to cgroup_add_cftypes() but the added files are only used for
3814 * the legacy hierarchies.
3815 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3816 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3817 {
3818 struct cftype *cft;
3819
3820 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3821 cft->flags |= __CFTYPE_NOT_ON_DFL;
3822 return cgroup_add_cftypes(ss, cfts);
3823 }
3824
3825 /**
3826 * cgroup_file_notify - generate a file modified event for a cgroup_file
3827 * @cfile: target cgroup_file
3828 *
3829 * @cfile must have been obtained by setting cftype->file_offset.
3830 */
cgroup_file_notify(struct cgroup_file * cfile)3831 void cgroup_file_notify(struct cgroup_file *cfile)
3832 {
3833 unsigned long flags;
3834
3835 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3836 if (cfile->kn)
3837 kernfs_notify(cfile->kn);
3838 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3839 }
3840
3841 /**
3842 * css_next_child - find the next child of a given css
3843 * @pos: the current position (%NULL to initiate traversal)
3844 * @parent: css whose children to walk
3845 *
3846 * This function returns the next child of @parent and should be called
3847 * under either cgroup_mutex or RCU read lock. The only requirement is
3848 * that @parent and @pos are accessible. The next sibling is guaranteed to
3849 * be returned regardless of their states.
3850 *
3851 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3852 * css which finished ->css_online() is guaranteed to be visible in the
3853 * future iterations and will stay visible until the last reference is put.
3854 * A css which hasn't finished ->css_online() or already finished
3855 * ->css_offline() may show up during traversal. It's each subsystem's
3856 * responsibility to synchronize against on/offlining.
3857 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3858 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3859 struct cgroup_subsys_state *parent)
3860 {
3861 struct cgroup_subsys_state *next;
3862
3863 cgroup_assert_mutex_or_rcu_locked();
3864
3865 /*
3866 * @pos could already have been unlinked from the sibling list.
3867 * Once a cgroup is removed, its ->sibling.next is no longer
3868 * updated when its next sibling changes. CSS_RELEASED is set when
3869 * @pos is taken off list, at which time its next pointer is valid,
3870 * and, as releases are serialized, the one pointed to by the next
3871 * pointer is guaranteed to not have started release yet. This
3872 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3873 * critical section, the one pointed to by its next pointer is
3874 * guaranteed to not have finished its RCU grace period even if we
3875 * have dropped rcu_read_lock() inbetween iterations.
3876 *
3877 * If @pos has CSS_RELEASED set, its next pointer can't be
3878 * dereferenced; however, as each css is given a monotonically
3879 * increasing unique serial number and always appended to the
3880 * sibling list, the next one can be found by walking the parent's
3881 * children until the first css with higher serial number than
3882 * @pos's. While this path can be slower, it happens iff iteration
3883 * races against release and the race window is very small.
3884 */
3885 if (!pos) {
3886 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3887 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3888 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3889 } else {
3890 list_for_each_entry_rcu(next, &parent->children, sibling)
3891 if (next->serial_nr > pos->serial_nr)
3892 break;
3893 }
3894
3895 /*
3896 * @next, if not pointing to the head, can be dereferenced and is
3897 * the next sibling.
3898 */
3899 if (&next->sibling != &parent->children)
3900 return next;
3901 return NULL;
3902 }
3903
3904 /**
3905 * css_next_descendant_pre - find the next descendant for pre-order walk
3906 * @pos: the current position (%NULL to initiate traversal)
3907 * @root: css whose descendants to walk
3908 *
3909 * To be used by css_for_each_descendant_pre(). Find the next descendant
3910 * to visit for pre-order traversal of @root's descendants. @root is
3911 * included in the iteration and the first node to be visited.
3912 *
3913 * While this function requires cgroup_mutex or RCU read locking, it
3914 * doesn't require the whole traversal to be contained in a single critical
3915 * section. This function will return the correct next descendant as long
3916 * as both @pos and @root are accessible and @pos is a descendant of @root.
3917 *
3918 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3919 * css which finished ->css_online() is guaranteed to be visible in the
3920 * future iterations and will stay visible until the last reference is put.
3921 * A css which hasn't finished ->css_online() or already finished
3922 * ->css_offline() may show up during traversal. It's each subsystem's
3923 * responsibility to synchronize against on/offlining.
3924 */
3925 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3926 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3927 struct cgroup_subsys_state *root)
3928 {
3929 struct cgroup_subsys_state *next;
3930
3931 cgroup_assert_mutex_or_rcu_locked();
3932
3933 /* if first iteration, visit @root */
3934 if (!pos)
3935 return root;
3936
3937 /* visit the first child if exists */
3938 next = css_next_child(NULL, pos);
3939 if (next)
3940 return next;
3941
3942 /* no child, visit my or the closest ancestor's next sibling */
3943 while (pos != root) {
3944 next = css_next_child(pos, pos->parent);
3945 if (next)
3946 return next;
3947 pos = pos->parent;
3948 }
3949
3950 return NULL;
3951 }
3952
3953 /**
3954 * css_rightmost_descendant - return the rightmost descendant of a css
3955 * @pos: css of interest
3956 *
3957 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3958 * is returned. This can be used during pre-order traversal to skip
3959 * subtree of @pos.
3960 *
3961 * While this function requires cgroup_mutex or RCU read locking, it
3962 * doesn't require the whole traversal to be contained in a single critical
3963 * section. This function will return the correct rightmost descendant as
3964 * long as @pos is accessible.
3965 */
3966 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3967 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3968 {
3969 struct cgroup_subsys_state *last, *tmp;
3970
3971 cgroup_assert_mutex_or_rcu_locked();
3972
3973 do {
3974 last = pos;
3975 /* ->prev isn't RCU safe, walk ->next till the end */
3976 pos = NULL;
3977 css_for_each_child(tmp, last)
3978 pos = tmp;
3979 } while (pos);
3980
3981 return last;
3982 }
3983
3984 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3985 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3986 {
3987 struct cgroup_subsys_state *last;
3988
3989 do {
3990 last = pos;
3991 pos = css_next_child(NULL, pos);
3992 } while (pos);
3993
3994 return last;
3995 }
3996
3997 /**
3998 * css_next_descendant_post - find the next descendant for post-order walk
3999 * @pos: the current position (%NULL to initiate traversal)
4000 * @root: css whose descendants to walk
4001 *
4002 * To be used by css_for_each_descendant_post(). Find the next descendant
4003 * to visit for post-order traversal of @root's descendants. @root is
4004 * included in the iteration and the last node to be visited.
4005 *
4006 * While this function requires cgroup_mutex or RCU read locking, it
4007 * doesn't require the whole traversal to be contained in a single critical
4008 * section. This function will return the correct next descendant as long
4009 * as both @pos and @cgroup are accessible and @pos is a descendant of
4010 * @cgroup.
4011 *
4012 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4013 * css which finished ->css_online() is guaranteed to be visible in the
4014 * future iterations and will stay visible until the last reference is put.
4015 * A css which hasn't finished ->css_online() or already finished
4016 * ->css_offline() may show up during traversal. It's each subsystem's
4017 * responsibility to synchronize against on/offlining.
4018 */
4019 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4020 css_next_descendant_post(struct cgroup_subsys_state *pos,
4021 struct cgroup_subsys_state *root)
4022 {
4023 struct cgroup_subsys_state *next;
4024
4025 cgroup_assert_mutex_or_rcu_locked();
4026
4027 /* if first iteration, visit leftmost descendant which may be @root */
4028 if (!pos)
4029 return css_leftmost_descendant(root);
4030
4031 /* if we visited @root, we're done */
4032 if (pos == root)
4033 return NULL;
4034
4035 /* if there's an unvisited sibling, visit its leftmost descendant */
4036 next = css_next_child(pos, pos->parent);
4037 if (next)
4038 return css_leftmost_descendant(next);
4039
4040 /* no sibling left, visit parent */
4041 return pos->parent;
4042 }
4043
4044 /**
4045 * css_has_online_children - does a css have online children
4046 * @css: the target css
4047 *
4048 * Returns %true if @css has any online children; otherwise, %false. This
4049 * function can be called from any context but the caller is responsible
4050 * for synchronizing against on/offlining as necessary.
4051 */
css_has_online_children(struct cgroup_subsys_state * css)4052 bool css_has_online_children(struct cgroup_subsys_state *css)
4053 {
4054 struct cgroup_subsys_state *child;
4055 bool ret = false;
4056
4057 rcu_read_lock();
4058 css_for_each_child(child, css) {
4059 if (child->flags & CSS_ONLINE) {
4060 ret = true;
4061 break;
4062 }
4063 }
4064 rcu_read_unlock();
4065 return ret;
4066 }
4067
css_task_iter_next_css_set(struct css_task_iter * it)4068 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4069 {
4070 struct list_head *l;
4071 struct cgrp_cset_link *link;
4072 struct css_set *cset;
4073
4074 lockdep_assert_held(&css_set_lock);
4075
4076 /* find the next threaded cset */
4077 if (it->tcset_pos) {
4078 l = it->tcset_pos->next;
4079
4080 if (l != it->tcset_head) {
4081 it->tcset_pos = l;
4082 return container_of(l, struct css_set,
4083 threaded_csets_node);
4084 }
4085
4086 it->tcset_pos = NULL;
4087 }
4088
4089 /* find the next cset */
4090 l = it->cset_pos;
4091 l = l->next;
4092 if (l == it->cset_head) {
4093 it->cset_pos = NULL;
4094 return NULL;
4095 }
4096
4097 if (it->ss) {
4098 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4099 } else {
4100 link = list_entry(l, struct cgrp_cset_link, cset_link);
4101 cset = link->cset;
4102 }
4103
4104 it->cset_pos = l;
4105
4106 /* initialize threaded css_set walking */
4107 if (it->flags & CSS_TASK_ITER_THREADED) {
4108 if (it->cur_dcset)
4109 put_css_set_locked(it->cur_dcset);
4110 it->cur_dcset = cset;
4111 get_css_set(cset);
4112
4113 it->tcset_head = &cset->threaded_csets;
4114 it->tcset_pos = &cset->threaded_csets;
4115 }
4116
4117 return cset;
4118 }
4119
4120 /**
4121 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4122 * @it: the iterator to advance
4123 *
4124 * Advance @it to the next css_set to walk.
4125 */
css_task_iter_advance_css_set(struct css_task_iter * it)4126 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4127 {
4128 struct css_set *cset;
4129
4130 lockdep_assert_held(&css_set_lock);
4131
4132 /* Advance to the next non-empty css_set */
4133 do {
4134 cset = css_task_iter_next_css_set(it);
4135 if (!cset) {
4136 it->task_pos = NULL;
4137 return;
4138 }
4139 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4140
4141 if (!list_empty(&cset->tasks)) {
4142 it->task_pos = cset->tasks.next;
4143 it->cur_tasks_head = &cset->tasks;
4144 } else if (!list_empty(&cset->mg_tasks)) {
4145 it->task_pos = cset->mg_tasks.next;
4146 it->cur_tasks_head = &cset->mg_tasks;
4147 } else {
4148 it->task_pos = cset->dying_tasks.next;
4149 it->cur_tasks_head = &cset->dying_tasks;
4150 }
4151
4152 it->tasks_head = &cset->tasks;
4153 it->mg_tasks_head = &cset->mg_tasks;
4154 it->dying_tasks_head = &cset->dying_tasks;
4155
4156 /*
4157 * We don't keep css_sets locked across iteration steps and thus
4158 * need to take steps to ensure that iteration can be resumed after
4159 * the lock is re-acquired. Iteration is performed at two levels -
4160 * css_sets and tasks in them.
4161 *
4162 * Once created, a css_set never leaves its cgroup lists, so a
4163 * pinned css_set is guaranteed to stay put and we can resume
4164 * iteration afterwards.
4165 *
4166 * Tasks may leave @cset across iteration steps. This is resolved
4167 * by registering each iterator with the css_set currently being
4168 * walked and making css_set_move_task() advance iterators whose
4169 * next task is leaving.
4170 */
4171 if (it->cur_cset) {
4172 list_del(&it->iters_node);
4173 put_css_set_locked(it->cur_cset);
4174 }
4175 get_css_set(cset);
4176 it->cur_cset = cset;
4177 list_add(&it->iters_node, &cset->task_iters);
4178 }
4179
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4180 static void css_task_iter_skip(struct css_task_iter *it,
4181 struct task_struct *task)
4182 {
4183 lockdep_assert_held(&css_set_lock);
4184
4185 if (it->task_pos == &task->cg_list) {
4186 it->task_pos = it->task_pos->next;
4187 it->flags |= CSS_TASK_ITER_SKIPPED;
4188 }
4189 }
4190
css_task_iter_advance(struct css_task_iter * it)4191 static void css_task_iter_advance(struct css_task_iter *it)
4192 {
4193 struct task_struct *task;
4194
4195 lockdep_assert_held(&css_set_lock);
4196 repeat:
4197 if (it->task_pos) {
4198 /*
4199 * Advance iterator to find next entry. cset->tasks is
4200 * consumed first and then ->mg_tasks. After ->mg_tasks,
4201 * we move onto the next cset.
4202 */
4203 if (it->flags & CSS_TASK_ITER_SKIPPED)
4204 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4205 else
4206 it->task_pos = it->task_pos->next;
4207
4208 if (it->task_pos == it->tasks_head) {
4209 it->task_pos = it->mg_tasks_head->next;
4210 it->cur_tasks_head = it->mg_tasks_head;
4211 }
4212 if (it->task_pos == it->mg_tasks_head) {
4213 it->task_pos = it->dying_tasks_head->next;
4214 it->cur_tasks_head = it->dying_tasks_head;
4215 }
4216 if (it->task_pos == it->dying_tasks_head)
4217 css_task_iter_advance_css_set(it);
4218 } else {
4219 /* called from start, proceed to the first cset */
4220 css_task_iter_advance_css_set(it);
4221 }
4222
4223 if (!it->task_pos)
4224 return;
4225
4226 task = list_entry(it->task_pos, struct task_struct, cg_list);
4227
4228 if (it->flags & CSS_TASK_ITER_PROCS) {
4229 /* if PROCS, skip over tasks which aren't group leaders */
4230 if (!thread_group_leader(task))
4231 goto repeat;
4232
4233 /* and dying leaders w/o live member threads */
4234 if (it->cur_tasks_head == it->dying_tasks_head &&
4235 !atomic_read(&task->signal->live))
4236 goto repeat;
4237 } else {
4238 /* skip all dying ones */
4239 if (it->cur_tasks_head == it->dying_tasks_head)
4240 goto repeat;
4241 }
4242 }
4243
4244 /**
4245 * css_task_iter_start - initiate task iteration
4246 * @css: the css to walk tasks of
4247 * @flags: CSS_TASK_ITER_* flags
4248 * @it: the task iterator to use
4249 *
4250 * Initiate iteration through the tasks of @css. The caller can call
4251 * css_task_iter_next() to walk through the tasks until the function
4252 * returns NULL. On completion of iteration, css_task_iter_end() must be
4253 * called.
4254 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4255 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4256 struct css_task_iter *it)
4257 {
4258 /* no one should try to iterate before mounting cgroups */
4259 WARN_ON_ONCE(!use_task_css_set_links);
4260
4261 memset(it, 0, sizeof(*it));
4262
4263 spin_lock_irq(&css_set_lock);
4264
4265 it->ss = css->ss;
4266 it->flags = flags;
4267
4268 if (it->ss)
4269 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4270 else
4271 it->cset_pos = &css->cgroup->cset_links;
4272
4273 it->cset_head = it->cset_pos;
4274
4275 css_task_iter_advance(it);
4276
4277 spin_unlock_irq(&css_set_lock);
4278 }
4279
4280 /**
4281 * css_task_iter_next - return the next task for the iterator
4282 * @it: the task iterator being iterated
4283 *
4284 * The "next" function for task iteration. @it should have been
4285 * initialized via css_task_iter_start(). Returns NULL when the iteration
4286 * reaches the end.
4287 */
css_task_iter_next(struct css_task_iter * it)4288 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4289 {
4290 if (it->cur_task) {
4291 put_task_struct(it->cur_task);
4292 it->cur_task = NULL;
4293 }
4294
4295 spin_lock_irq(&css_set_lock);
4296
4297 /* @it may be half-advanced by skips, finish advancing */
4298 if (it->flags & CSS_TASK_ITER_SKIPPED)
4299 css_task_iter_advance(it);
4300
4301 if (it->task_pos) {
4302 it->cur_task = list_entry(it->task_pos, struct task_struct,
4303 cg_list);
4304 get_task_struct(it->cur_task);
4305 css_task_iter_advance(it);
4306 }
4307
4308 spin_unlock_irq(&css_set_lock);
4309
4310 return it->cur_task;
4311 }
4312
4313 /**
4314 * css_task_iter_end - finish task iteration
4315 * @it: the task iterator to finish
4316 *
4317 * Finish task iteration started by css_task_iter_start().
4318 */
css_task_iter_end(struct css_task_iter * it)4319 void css_task_iter_end(struct css_task_iter *it)
4320 {
4321 if (it->cur_cset) {
4322 spin_lock_irq(&css_set_lock);
4323 list_del(&it->iters_node);
4324 put_css_set_locked(it->cur_cset);
4325 spin_unlock_irq(&css_set_lock);
4326 }
4327
4328 if (it->cur_dcset)
4329 put_css_set(it->cur_dcset);
4330
4331 if (it->cur_task)
4332 put_task_struct(it->cur_task);
4333 }
4334
cgroup_procs_release(struct kernfs_open_file * of)4335 static void cgroup_procs_release(struct kernfs_open_file *of)
4336 {
4337 if (of->priv) {
4338 css_task_iter_end(of->priv);
4339 kfree(of->priv);
4340 }
4341 }
4342
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4343 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4344 {
4345 struct kernfs_open_file *of = s->private;
4346 struct css_task_iter *it = of->priv;
4347
4348 if (pos)
4349 (*pos)++;
4350
4351 return css_task_iter_next(it);
4352 }
4353
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4354 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4355 unsigned int iter_flags)
4356 {
4357 struct kernfs_open_file *of = s->private;
4358 struct cgroup *cgrp = seq_css(s)->cgroup;
4359 struct css_task_iter *it = of->priv;
4360
4361 /*
4362 * When a seq_file is seeked, it's always traversed sequentially
4363 * from position 0, so we can simply keep iterating on !0 *pos.
4364 */
4365 if (!it) {
4366 if (WARN_ON_ONCE((*pos)))
4367 return ERR_PTR(-EINVAL);
4368
4369 it = kzalloc(sizeof(*it), GFP_KERNEL);
4370 if (!it)
4371 return ERR_PTR(-ENOMEM);
4372 of->priv = it;
4373 css_task_iter_start(&cgrp->self, iter_flags, it);
4374 } else if (!(*pos)) {
4375 css_task_iter_end(it);
4376 css_task_iter_start(&cgrp->self, iter_flags, it);
4377 } else
4378 return it->cur_task;
4379
4380 return cgroup_procs_next(s, NULL, NULL);
4381 }
4382
cgroup_procs_start(struct seq_file * s,loff_t * pos)4383 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4384 {
4385 struct cgroup *cgrp = seq_css(s)->cgroup;
4386
4387 /*
4388 * All processes of a threaded subtree belong to the domain cgroup
4389 * of the subtree. Only threads can be distributed across the
4390 * subtree. Reject reads on cgroup.procs in the subtree proper.
4391 * They're always empty anyway.
4392 */
4393 if (cgroup_is_threaded(cgrp))
4394 return ERR_PTR(-EOPNOTSUPP);
4395
4396 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4397 CSS_TASK_ITER_THREADED);
4398 }
4399
cgroup_procs_show(struct seq_file * s,void * v)4400 static int cgroup_procs_show(struct seq_file *s, void *v)
4401 {
4402 seq_printf(s, "%d\n", task_pid_vnr(v));
4403 return 0;
4404 }
4405
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4406 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4407 struct cgroup *dst_cgrp,
4408 struct super_block *sb)
4409 {
4410 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4411 struct cgroup *com_cgrp = src_cgrp;
4412 struct inode *inode;
4413 int ret;
4414
4415 lockdep_assert_held(&cgroup_mutex);
4416
4417 /* find the common ancestor */
4418 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4419 com_cgrp = cgroup_parent(com_cgrp);
4420
4421 /* %current should be authorized to migrate to the common ancestor */
4422 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4423 if (!inode)
4424 return -ENOMEM;
4425
4426 ret = inode_permission(inode, MAY_WRITE);
4427 iput(inode);
4428 if (ret)
4429 return ret;
4430
4431 /*
4432 * If namespaces are delegation boundaries, %current must be able
4433 * to see both source and destination cgroups from its namespace.
4434 */
4435 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4436 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4437 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4438 return -ENOENT;
4439
4440 return 0;
4441 }
4442
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4443 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4444 char *buf, size_t nbytes, loff_t off)
4445 {
4446 struct cgroup *src_cgrp, *dst_cgrp;
4447 struct task_struct *task;
4448 ssize_t ret;
4449
4450 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4451 if (!dst_cgrp)
4452 return -ENODEV;
4453
4454 task = cgroup_procs_write_start(buf, true);
4455 ret = PTR_ERR_OR_ZERO(task);
4456 if (ret)
4457 goto out_unlock;
4458
4459 /* find the source cgroup */
4460 spin_lock_irq(&css_set_lock);
4461 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4462 spin_unlock_irq(&css_set_lock);
4463
4464 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4465 of->file->f_path.dentry->d_sb);
4466 if (ret)
4467 goto out_finish;
4468
4469 ret = cgroup_attach_task(dst_cgrp, task, true);
4470
4471 out_finish:
4472 cgroup_procs_write_finish(task);
4473 out_unlock:
4474 cgroup_kn_unlock(of->kn);
4475
4476 return ret ?: nbytes;
4477 }
4478
cgroup_threads_start(struct seq_file * s,loff_t * pos)4479 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4480 {
4481 return __cgroup_procs_start(s, pos, 0);
4482 }
4483
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4484 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4485 char *buf, size_t nbytes, loff_t off)
4486 {
4487 struct cgroup *src_cgrp, *dst_cgrp;
4488 struct task_struct *task;
4489 ssize_t ret;
4490
4491 buf = strstrip(buf);
4492
4493 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4494 if (!dst_cgrp)
4495 return -ENODEV;
4496
4497 task = cgroup_procs_write_start(buf, false);
4498 ret = PTR_ERR_OR_ZERO(task);
4499 if (ret)
4500 goto out_unlock;
4501
4502 /* find the source cgroup */
4503 spin_lock_irq(&css_set_lock);
4504 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4505 spin_unlock_irq(&css_set_lock);
4506
4507 /* thread migrations follow the cgroup.procs delegation rule */
4508 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4509 of->file->f_path.dentry->d_sb);
4510 if (ret)
4511 goto out_finish;
4512
4513 /* and must be contained in the same domain */
4514 ret = -EOPNOTSUPP;
4515 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4516 goto out_finish;
4517
4518 ret = cgroup_attach_task(dst_cgrp, task, false);
4519
4520 out_finish:
4521 cgroup_procs_write_finish(task);
4522 out_unlock:
4523 cgroup_kn_unlock(of->kn);
4524
4525 return ret ?: nbytes;
4526 }
4527
4528 /* cgroup core interface files for the default hierarchy */
4529 static struct cftype cgroup_base_files[] = {
4530 {
4531 .name = "cgroup.type",
4532 .flags = CFTYPE_NOT_ON_ROOT,
4533 .seq_show = cgroup_type_show,
4534 .write = cgroup_type_write,
4535 },
4536 {
4537 .name = "cgroup.procs",
4538 .flags = CFTYPE_NS_DELEGATABLE,
4539 .file_offset = offsetof(struct cgroup, procs_file),
4540 .release = cgroup_procs_release,
4541 .seq_start = cgroup_procs_start,
4542 .seq_next = cgroup_procs_next,
4543 .seq_show = cgroup_procs_show,
4544 .write = cgroup_procs_write,
4545 },
4546 {
4547 .name = "cgroup.threads",
4548 .release = cgroup_procs_release,
4549 .seq_start = cgroup_threads_start,
4550 .seq_next = cgroup_procs_next,
4551 .seq_show = cgroup_procs_show,
4552 .write = cgroup_threads_write,
4553 },
4554 {
4555 .name = "cgroup.controllers",
4556 .seq_show = cgroup_controllers_show,
4557 },
4558 {
4559 .name = "cgroup.subtree_control",
4560 .flags = CFTYPE_NS_DELEGATABLE,
4561 .seq_show = cgroup_subtree_control_show,
4562 .write = cgroup_subtree_control_write,
4563 },
4564 {
4565 .name = "cgroup.events",
4566 .flags = CFTYPE_NOT_ON_ROOT,
4567 .file_offset = offsetof(struct cgroup, events_file),
4568 .seq_show = cgroup_events_show,
4569 },
4570 {
4571 .name = "cgroup.max.descendants",
4572 .seq_show = cgroup_max_descendants_show,
4573 .write = cgroup_max_descendants_write,
4574 },
4575 {
4576 .name = "cgroup.max.depth",
4577 .seq_show = cgroup_max_depth_show,
4578 .write = cgroup_max_depth_write,
4579 },
4580 {
4581 .name = "cgroup.stat",
4582 .seq_show = cgroup_stat_show,
4583 },
4584 #ifdef CONFIG_PSI
4585 {
4586 .name = "io.pressure",
4587 .flags = CFTYPE_NOT_ON_ROOT,
4588 .seq_show = cgroup_io_pressure_show,
4589 .write = cgroup_io_pressure_write,
4590 .poll = cgroup_pressure_poll,
4591 .release = cgroup_pressure_release,
4592 },
4593 {
4594 .name = "memory.pressure",
4595 .flags = CFTYPE_NOT_ON_ROOT,
4596 .seq_show = cgroup_memory_pressure_show,
4597 .write = cgroup_memory_pressure_write,
4598 .poll = cgroup_pressure_poll,
4599 .release = cgroup_pressure_release,
4600 },
4601 {
4602 .name = "cpu.pressure",
4603 .flags = CFTYPE_NOT_ON_ROOT,
4604 .seq_show = cgroup_cpu_pressure_show,
4605 .write = cgroup_cpu_pressure_write,
4606 .poll = cgroup_pressure_poll,
4607 .release = cgroup_pressure_release,
4608 },
4609 #endif /* CONFIG_PSI */
4610 { } /* terminate */
4611 };
4612
4613 /*
4614 * css destruction is four-stage process.
4615 *
4616 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4617 * Implemented in kill_css().
4618 *
4619 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4620 * and thus css_tryget_online() is guaranteed to fail, the css can be
4621 * offlined by invoking offline_css(). After offlining, the base ref is
4622 * put. Implemented in css_killed_work_fn().
4623 *
4624 * 3. When the percpu_ref reaches zero, the only possible remaining
4625 * accessors are inside RCU read sections. css_release() schedules the
4626 * RCU callback.
4627 *
4628 * 4. After the grace period, the css can be freed. Implemented in
4629 * css_free_work_fn().
4630 *
4631 * It is actually hairier because both step 2 and 4 require process context
4632 * and thus involve punting to css->destroy_work adding two additional
4633 * steps to the already complex sequence.
4634 */
css_free_work_fn(struct work_struct * work)4635 static void css_free_work_fn(struct work_struct *work)
4636 {
4637 struct cgroup_subsys_state *css =
4638 container_of(work, struct cgroup_subsys_state, destroy_work);
4639 struct cgroup_subsys *ss = css->ss;
4640 struct cgroup *cgrp = css->cgroup;
4641
4642 percpu_ref_exit(&css->refcnt);
4643
4644 if (ss) {
4645 /* css free path */
4646 struct cgroup_subsys_state *parent = css->parent;
4647 int id = css->id;
4648
4649 ss->css_free(css);
4650 cgroup_idr_remove(&ss->css_idr, id);
4651 cgroup_put(cgrp);
4652
4653 if (parent)
4654 css_put(parent);
4655 } else {
4656 /* cgroup free path */
4657 atomic_dec(&cgrp->root->nr_cgrps);
4658 cgroup1_pidlist_destroy_all(cgrp);
4659 cancel_work_sync(&cgrp->release_agent_work);
4660
4661 if (cgroup_parent(cgrp)) {
4662 /*
4663 * We get a ref to the parent, and put the ref when
4664 * this cgroup is being freed, so it's guaranteed
4665 * that the parent won't be destroyed before its
4666 * children.
4667 */
4668 cgroup_put(cgroup_parent(cgrp));
4669 kernfs_put(cgrp->kn);
4670 if (cgroup_on_dfl(cgrp))
4671 psi_cgroup_free(cgrp);
4672 kfree(cgrp);
4673 } else {
4674 /*
4675 * This is root cgroup's refcnt reaching zero,
4676 * which indicates that the root should be
4677 * released.
4678 */
4679 cgroup_destroy_root(cgrp->root);
4680 }
4681 }
4682 }
4683
css_free_rcu_fn(struct rcu_head * rcu_head)4684 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4685 {
4686 struct cgroup_subsys_state *css =
4687 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4688
4689 INIT_WORK(&css->destroy_work, css_free_work_fn);
4690 queue_work(cgroup_destroy_wq, &css->destroy_work);
4691 }
4692
css_release_work_fn(struct work_struct * work)4693 static void css_release_work_fn(struct work_struct *work)
4694 {
4695 struct cgroup_subsys_state *css =
4696 container_of(work, struct cgroup_subsys_state, destroy_work);
4697 struct cgroup_subsys *ss = css->ss;
4698 struct cgroup *cgrp = css->cgroup;
4699
4700 mutex_lock(&cgroup_mutex);
4701
4702 css->flags |= CSS_RELEASED;
4703 list_del_rcu(&css->sibling);
4704
4705 if (ss) {
4706 /* css release path */
4707 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4708 if (ss->css_released)
4709 ss->css_released(css);
4710 } else {
4711 struct cgroup *tcgrp;
4712
4713 /* cgroup release path */
4714 trace_cgroup_release(cgrp);
4715
4716 spin_lock_irq(&css_set_lock);
4717 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4718 tcgrp = cgroup_parent(tcgrp))
4719 tcgrp->nr_dying_descendants--;
4720 spin_unlock_irq(&css_set_lock);
4721
4722 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4723 cgrp->id = -1;
4724
4725 /*
4726 * There are two control paths which try to determine
4727 * cgroup from dentry without going through kernfs -
4728 * cgroupstats_build() and css_tryget_online_from_dir().
4729 * Those are supported by RCU protecting clearing of
4730 * cgrp->kn->priv backpointer.
4731 */
4732 if (cgrp->kn)
4733 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4734 NULL);
4735
4736 cgroup_bpf_put(cgrp);
4737 }
4738
4739 mutex_unlock(&cgroup_mutex);
4740
4741 call_rcu(&css->rcu_head, css_free_rcu_fn);
4742 }
4743
css_release(struct percpu_ref * ref)4744 static void css_release(struct percpu_ref *ref)
4745 {
4746 struct cgroup_subsys_state *css =
4747 container_of(ref, struct cgroup_subsys_state, refcnt);
4748
4749 INIT_WORK(&css->destroy_work, css_release_work_fn);
4750 queue_work(cgroup_destroy_wq, &css->destroy_work);
4751 }
4752
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4753 static void init_and_link_css(struct cgroup_subsys_state *css,
4754 struct cgroup_subsys *ss, struct cgroup *cgrp)
4755 {
4756 lockdep_assert_held(&cgroup_mutex);
4757
4758 cgroup_get_live(cgrp);
4759
4760 memset(css, 0, sizeof(*css));
4761 css->cgroup = cgrp;
4762 css->ss = ss;
4763 css->id = -1;
4764 INIT_LIST_HEAD(&css->sibling);
4765 INIT_LIST_HEAD(&css->children);
4766 css->serial_nr = css_serial_nr_next++;
4767 atomic_set(&css->online_cnt, 0);
4768
4769 if (cgroup_parent(cgrp)) {
4770 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4771 css_get(css->parent);
4772 }
4773
4774 BUG_ON(cgroup_css(cgrp, ss));
4775 }
4776
4777 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4778 static int online_css(struct cgroup_subsys_state *css)
4779 {
4780 struct cgroup_subsys *ss = css->ss;
4781 int ret = 0;
4782
4783 lockdep_assert_held(&cgroup_mutex);
4784
4785 if (ss->css_online)
4786 ret = ss->css_online(css);
4787 if (!ret) {
4788 css->flags |= CSS_ONLINE;
4789 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4790
4791 atomic_inc(&css->online_cnt);
4792 if (css->parent)
4793 atomic_inc(&css->parent->online_cnt);
4794 }
4795 return ret;
4796 }
4797
4798 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4799 static void offline_css(struct cgroup_subsys_state *css)
4800 {
4801 struct cgroup_subsys *ss = css->ss;
4802
4803 lockdep_assert_held(&cgroup_mutex);
4804
4805 if (!(css->flags & CSS_ONLINE))
4806 return;
4807
4808 if (ss->css_offline)
4809 ss->css_offline(css);
4810
4811 css->flags &= ~CSS_ONLINE;
4812 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4813
4814 wake_up_all(&css->cgroup->offline_waitq);
4815 }
4816
4817 /**
4818 * css_create - create a cgroup_subsys_state
4819 * @cgrp: the cgroup new css will be associated with
4820 * @ss: the subsys of new css
4821 *
4822 * Create a new css associated with @cgrp - @ss pair. On success, the new
4823 * css is online and installed in @cgrp. This function doesn't create the
4824 * interface files. Returns 0 on success, -errno on failure.
4825 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)4826 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4827 struct cgroup_subsys *ss)
4828 {
4829 struct cgroup *parent = cgroup_parent(cgrp);
4830 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4831 struct cgroup_subsys_state *css;
4832 int err;
4833
4834 lockdep_assert_held(&cgroup_mutex);
4835
4836 css = ss->css_alloc(parent_css);
4837 if (!css)
4838 css = ERR_PTR(-ENOMEM);
4839 if (IS_ERR(css))
4840 return css;
4841
4842 init_and_link_css(css, ss, cgrp);
4843
4844 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4845 if (err)
4846 goto err_free_css;
4847
4848 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4849 if (err < 0)
4850 goto err_free_css;
4851 css->id = err;
4852
4853 /* @css is ready to be brought online now, make it visible */
4854 list_add_tail_rcu(&css->sibling, &parent_css->children);
4855 cgroup_idr_replace(&ss->css_idr, css, css->id);
4856
4857 err = online_css(css);
4858 if (err)
4859 goto err_list_del;
4860
4861 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4862 cgroup_parent(parent)) {
4863 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4864 current->comm, current->pid, ss->name);
4865 if (!strcmp(ss->name, "memory"))
4866 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4867 ss->warned_broken_hierarchy = true;
4868 }
4869
4870 return css;
4871
4872 err_list_del:
4873 list_del_rcu(&css->sibling);
4874 err_free_css:
4875 call_rcu(&css->rcu_head, css_free_rcu_fn);
4876 return ERR_PTR(err);
4877 }
4878
4879 /*
4880 * The returned cgroup is fully initialized including its control mask, but
4881 * it isn't associated with its kernfs_node and doesn't have the control
4882 * mask applied.
4883 */
cgroup_create(struct cgroup * parent)4884 static struct cgroup *cgroup_create(struct cgroup *parent)
4885 {
4886 struct cgroup_root *root = parent->root;
4887 struct cgroup *cgrp, *tcgrp;
4888 int level = parent->level + 1;
4889 int ret;
4890
4891 /* allocate the cgroup and its ID, 0 is reserved for the root */
4892 cgrp = kzalloc(sizeof(*cgrp) +
4893 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4894 if (!cgrp)
4895 return ERR_PTR(-ENOMEM);
4896
4897 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4898 if (ret)
4899 goto out_free_cgrp;
4900
4901 /*
4902 * Temporarily set the pointer to NULL, so idr_find() won't return
4903 * a half-baked cgroup.
4904 */
4905 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4906 if (cgrp->id < 0) {
4907 ret = -ENOMEM;
4908 goto out_cancel_ref;
4909 }
4910
4911 init_cgroup_housekeeping(cgrp);
4912
4913 cgrp->self.parent = &parent->self;
4914 cgrp->root = root;
4915 cgrp->level = level;
4916
4917 spin_lock_irq(&css_set_lock);
4918 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4919 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4920
4921 if (tcgrp != cgrp)
4922 tcgrp->nr_descendants++;
4923 }
4924 spin_unlock_irq(&css_set_lock);
4925
4926 if (notify_on_release(parent))
4927 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4928
4929 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4930 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4931
4932 cgrp->self.serial_nr = css_serial_nr_next++;
4933
4934 /* allocation complete, commit to creation */
4935 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4936 atomic_inc(&root->nr_cgrps);
4937 cgroup_get_live(parent);
4938
4939 /*
4940 * @cgrp is now fully operational. If something fails after this
4941 * point, it'll be released via the normal destruction path.
4942 */
4943 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4944
4945 /*
4946 * On the default hierarchy, a child doesn't automatically inherit
4947 * subtree_control from the parent. Each is configured manually.
4948 */
4949 if (!cgroup_on_dfl(cgrp))
4950 cgrp->subtree_control = cgroup_control(cgrp);
4951
4952 if (cgroup_on_dfl(cgrp)) {
4953 ret = psi_cgroup_alloc(cgrp);
4954 if (ret)
4955 goto out_idr_free;
4956 }
4957
4958 if (parent)
4959 cgroup_bpf_inherit(cgrp, parent);
4960
4961 cgroup_propagate_control(cgrp);
4962
4963 return cgrp;
4964
4965 out_idr_free:
4966 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4967 out_cancel_ref:
4968 percpu_ref_exit(&cgrp->self.refcnt);
4969 out_free_cgrp:
4970 kfree(cgrp);
4971 return ERR_PTR(ret);
4972 }
4973
cgroup_check_hierarchy_limits(struct cgroup * parent)4974 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4975 {
4976 struct cgroup *cgroup;
4977 int ret = false;
4978 int level = 1;
4979
4980 lockdep_assert_held(&cgroup_mutex);
4981
4982 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4983 if (cgroup->nr_descendants >= cgroup->max_descendants)
4984 goto fail;
4985
4986 if (level > cgroup->max_depth)
4987 goto fail;
4988
4989 level++;
4990 }
4991
4992 ret = true;
4993 fail:
4994 return ret;
4995 }
4996
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4997 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4998 {
4999 struct cgroup *parent, *cgrp;
5000 struct kernfs_node *kn;
5001 int ret;
5002
5003 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5004 if (strchr(name, '\n'))
5005 return -EINVAL;
5006
5007 parent = cgroup_kn_lock_live(parent_kn, false);
5008 if (!parent)
5009 return -ENODEV;
5010
5011 if (!cgroup_check_hierarchy_limits(parent)) {
5012 ret = -EAGAIN;
5013 goto out_unlock;
5014 }
5015
5016 cgrp = cgroup_create(parent);
5017 if (IS_ERR(cgrp)) {
5018 ret = PTR_ERR(cgrp);
5019 goto out_unlock;
5020 }
5021
5022 /* create the directory */
5023 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5024 if (IS_ERR(kn)) {
5025 ret = PTR_ERR(kn);
5026 goto out_destroy;
5027 }
5028 cgrp->kn = kn;
5029
5030 /*
5031 * This extra ref will be put in cgroup_free_fn() and guarantees
5032 * that @cgrp->kn is always accessible.
5033 */
5034 kernfs_get(kn);
5035
5036 ret = cgroup_kn_set_ugid(kn);
5037 if (ret)
5038 goto out_destroy;
5039
5040 ret = css_populate_dir(&cgrp->self);
5041 if (ret)
5042 goto out_destroy;
5043
5044 ret = cgroup_apply_control_enable(cgrp);
5045 if (ret)
5046 goto out_destroy;
5047
5048 trace_cgroup_mkdir(cgrp);
5049
5050 /* let's create and online css's */
5051 kernfs_activate(kn);
5052
5053 ret = 0;
5054 goto out_unlock;
5055
5056 out_destroy:
5057 cgroup_destroy_locked(cgrp);
5058 out_unlock:
5059 cgroup_kn_unlock(parent_kn);
5060 return ret;
5061 }
5062
5063 /*
5064 * This is called when the refcnt of a css is confirmed to be killed.
5065 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5066 * initate destruction and put the css ref from kill_css().
5067 */
css_killed_work_fn(struct work_struct * work)5068 static void css_killed_work_fn(struct work_struct *work)
5069 {
5070 struct cgroup_subsys_state *css =
5071 container_of(work, struct cgroup_subsys_state, destroy_work);
5072
5073 mutex_lock(&cgroup_mutex);
5074
5075 do {
5076 offline_css(css);
5077 css_put(css);
5078 /* @css can't go away while we're holding cgroup_mutex */
5079 css = css->parent;
5080 } while (css && atomic_dec_and_test(&css->online_cnt));
5081
5082 mutex_unlock(&cgroup_mutex);
5083 }
5084
5085 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5086 static void css_killed_ref_fn(struct percpu_ref *ref)
5087 {
5088 struct cgroup_subsys_state *css =
5089 container_of(ref, struct cgroup_subsys_state, refcnt);
5090
5091 if (atomic_dec_and_test(&css->online_cnt)) {
5092 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5093 queue_work(cgroup_destroy_wq, &css->destroy_work);
5094 }
5095 }
5096
5097 /**
5098 * kill_css - destroy a css
5099 * @css: css to destroy
5100 *
5101 * This function initiates destruction of @css by removing cgroup interface
5102 * files and putting its base reference. ->css_offline() will be invoked
5103 * asynchronously once css_tryget_online() is guaranteed to fail and when
5104 * the reference count reaches zero, @css will be released.
5105 */
kill_css(struct cgroup_subsys_state * css)5106 static void kill_css(struct cgroup_subsys_state *css)
5107 {
5108 lockdep_assert_held(&cgroup_mutex);
5109
5110 if (css->flags & CSS_DYING)
5111 return;
5112
5113 css->flags |= CSS_DYING;
5114
5115 /*
5116 * This must happen before css is disassociated with its cgroup.
5117 * See seq_css() for details.
5118 */
5119 css_clear_dir(css);
5120
5121 /*
5122 * Killing would put the base ref, but we need to keep it alive
5123 * until after ->css_offline().
5124 */
5125 css_get(css);
5126
5127 /*
5128 * cgroup core guarantees that, by the time ->css_offline() is
5129 * invoked, no new css reference will be given out via
5130 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5131 * proceed to offlining css's because percpu_ref_kill() doesn't
5132 * guarantee that the ref is seen as killed on all CPUs on return.
5133 *
5134 * Use percpu_ref_kill_and_confirm() to get notifications as each
5135 * css is confirmed to be seen as killed on all CPUs.
5136 */
5137 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5138 }
5139
5140 /**
5141 * cgroup_destroy_locked - the first stage of cgroup destruction
5142 * @cgrp: cgroup to be destroyed
5143 *
5144 * css's make use of percpu refcnts whose killing latency shouldn't be
5145 * exposed to userland and are RCU protected. Also, cgroup core needs to
5146 * guarantee that css_tryget_online() won't succeed by the time
5147 * ->css_offline() is invoked. To satisfy all the requirements,
5148 * destruction is implemented in the following two steps.
5149 *
5150 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5151 * userland visible parts and start killing the percpu refcnts of
5152 * css's. Set up so that the next stage will be kicked off once all
5153 * the percpu refcnts are confirmed to be killed.
5154 *
5155 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5156 * rest of destruction. Once all cgroup references are gone, the
5157 * cgroup is RCU-freed.
5158 *
5159 * This function implements s1. After this step, @cgrp is gone as far as
5160 * the userland is concerned and a new cgroup with the same name may be
5161 * created. As cgroup doesn't care about the names internally, this
5162 * doesn't cause any problem.
5163 */
cgroup_destroy_locked(struct cgroup * cgrp)5164 static int cgroup_destroy_locked(struct cgroup *cgrp)
5165 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5166 {
5167 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5168 struct cgroup_subsys_state *css;
5169 struct cgrp_cset_link *link;
5170 int ssid;
5171
5172 lockdep_assert_held(&cgroup_mutex);
5173
5174 /*
5175 * Only migration can raise populated from zero and we're already
5176 * holding cgroup_mutex.
5177 */
5178 if (cgroup_is_populated(cgrp))
5179 return -EBUSY;
5180
5181 /*
5182 * Make sure there's no live children. We can't test emptiness of
5183 * ->self.children as dead children linger on it while being
5184 * drained; otherwise, "rmdir parent/child parent" may fail.
5185 */
5186 if (css_has_online_children(&cgrp->self))
5187 return -EBUSY;
5188
5189 /*
5190 * Mark @cgrp and the associated csets dead. The former prevents
5191 * further task migration and child creation by disabling
5192 * cgroup_lock_live_group(). The latter makes the csets ignored by
5193 * the migration path.
5194 */
5195 cgrp->self.flags &= ~CSS_ONLINE;
5196
5197 spin_lock_irq(&css_set_lock);
5198 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5199 link->cset->dead = true;
5200 spin_unlock_irq(&css_set_lock);
5201
5202 /* initiate massacre of all css's */
5203 for_each_css(css, ssid, cgrp)
5204 kill_css(css);
5205
5206 /*
5207 * Remove @cgrp directory along with the base files. @cgrp has an
5208 * extra ref on its kn.
5209 */
5210 kernfs_remove(cgrp->kn);
5211
5212 if (parent && cgroup_is_threaded(cgrp))
5213 parent->nr_threaded_children--;
5214
5215 spin_lock_irq(&css_set_lock);
5216 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5217 tcgrp->nr_descendants--;
5218 tcgrp->nr_dying_descendants++;
5219 }
5220 spin_unlock_irq(&css_set_lock);
5221
5222 cgroup1_check_for_release(parent);
5223
5224 /* put the base reference */
5225 percpu_ref_kill(&cgrp->self.refcnt);
5226
5227 return 0;
5228 };
5229
cgroup_rmdir(struct kernfs_node * kn)5230 int cgroup_rmdir(struct kernfs_node *kn)
5231 {
5232 struct cgroup *cgrp;
5233 int ret = 0;
5234
5235 cgrp = cgroup_kn_lock_live(kn, false);
5236 if (!cgrp)
5237 return 0;
5238
5239 ret = cgroup_destroy_locked(cgrp);
5240
5241 if (!ret)
5242 trace_cgroup_rmdir(cgrp);
5243
5244 cgroup_kn_unlock(kn);
5245 return ret;
5246 }
5247
5248 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5249 .show_options = cgroup_show_options,
5250 .remount_fs = cgroup_remount,
5251 .mkdir = cgroup_mkdir,
5252 .rmdir = cgroup_rmdir,
5253 .show_path = cgroup_show_path,
5254 };
5255
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5256 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5257 {
5258 struct cgroup_subsys_state *css;
5259
5260 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5261
5262 mutex_lock(&cgroup_mutex);
5263
5264 idr_init(&ss->css_idr);
5265 INIT_LIST_HEAD(&ss->cfts);
5266
5267 /* Create the root cgroup state for this subsystem */
5268 ss->root = &cgrp_dfl_root;
5269 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5270 /* We don't handle early failures gracefully */
5271 BUG_ON(IS_ERR(css));
5272 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5273
5274 /*
5275 * Root csses are never destroyed and we can't initialize
5276 * percpu_ref during early init. Disable refcnting.
5277 */
5278 css->flags |= CSS_NO_REF;
5279
5280 if (early) {
5281 /* allocation can't be done safely during early init */
5282 css->id = 1;
5283 } else {
5284 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5285 BUG_ON(css->id < 0);
5286 }
5287
5288 /* Update the init_css_set to contain a subsys
5289 * pointer to this state - since the subsystem is
5290 * newly registered, all tasks and hence the
5291 * init_css_set is in the subsystem's root cgroup. */
5292 init_css_set.subsys[ss->id] = css;
5293
5294 have_fork_callback |= (bool)ss->fork << ss->id;
5295 have_exit_callback |= (bool)ss->exit << ss->id;
5296 have_release_callback |= (bool)ss->release << ss->id;
5297 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5298
5299 /* At system boot, before all subsystems have been
5300 * registered, no tasks have been forked, so we don't
5301 * need to invoke fork callbacks here. */
5302 BUG_ON(!list_empty(&init_task.tasks));
5303
5304 BUG_ON(online_css(css));
5305
5306 mutex_unlock(&cgroup_mutex);
5307 }
5308
5309 /**
5310 * cgroup_init_early - cgroup initialization at system boot
5311 *
5312 * Initialize cgroups at system boot, and initialize any
5313 * subsystems that request early init.
5314 */
cgroup_init_early(void)5315 int __init cgroup_init_early(void)
5316 {
5317 static struct cgroup_sb_opts __initdata opts;
5318 struct cgroup_subsys *ss;
5319 int i;
5320
5321 init_cgroup_root(&cgrp_dfl_root, &opts);
5322 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5323
5324 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5325
5326 for_each_subsys(ss, i) {
5327 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5328 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5329 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5330 ss->id, ss->name);
5331 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5332 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5333
5334 ss->id = i;
5335 ss->name = cgroup_subsys_name[i];
5336 if (!ss->legacy_name)
5337 ss->legacy_name = cgroup_subsys_name[i];
5338
5339 if (ss->early_init)
5340 cgroup_init_subsys(ss, true);
5341 }
5342 return 0;
5343 }
5344
5345 static u16 cgroup_disable_mask __initdata;
5346
5347 /**
5348 * cgroup_init - cgroup initialization
5349 *
5350 * Register cgroup filesystem and /proc file, and initialize
5351 * any subsystems that didn't request early init.
5352 */
cgroup_init(void)5353 int __init cgroup_init(void)
5354 {
5355 struct cgroup_subsys *ss;
5356 int ssid;
5357
5358 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5359 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5360 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5361 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5362
5363 /*
5364 * The latency of the synchronize_sched() is too high for cgroups,
5365 * avoid it at the cost of forcing all readers into the slow path.
5366 */
5367 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5368
5369 get_user_ns(init_cgroup_ns.user_ns);
5370
5371 mutex_lock(&cgroup_mutex);
5372
5373 /*
5374 * Add init_css_set to the hash table so that dfl_root can link to
5375 * it during init.
5376 */
5377 hash_add(css_set_table, &init_css_set.hlist,
5378 css_set_hash(init_css_set.subsys));
5379
5380 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5381
5382 mutex_unlock(&cgroup_mutex);
5383
5384 for_each_subsys(ss, ssid) {
5385 if (ss->early_init) {
5386 struct cgroup_subsys_state *css =
5387 init_css_set.subsys[ss->id];
5388
5389 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5390 GFP_KERNEL);
5391 BUG_ON(css->id < 0);
5392 } else {
5393 cgroup_init_subsys(ss, false);
5394 }
5395
5396 list_add_tail(&init_css_set.e_cset_node[ssid],
5397 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5398
5399 /*
5400 * Setting dfl_root subsys_mask needs to consider the
5401 * disabled flag and cftype registration needs kmalloc,
5402 * both of which aren't available during early_init.
5403 */
5404 if (cgroup_disable_mask & (1 << ssid)) {
5405 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5406 printk(KERN_INFO "Disabling %s control group subsystem\n",
5407 ss->name);
5408 continue;
5409 }
5410
5411 if (cgroup1_ssid_disabled(ssid))
5412 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5413 ss->name);
5414
5415 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5416
5417 /* implicit controllers must be threaded too */
5418 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5419
5420 if (ss->implicit_on_dfl)
5421 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5422 else if (!ss->dfl_cftypes)
5423 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5424
5425 if (ss->threaded)
5426 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5427
5428 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5429 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5430 } else {
5431 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5432 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5433 }
5434
5435 if (ss->bind)
5436 ss->bind(init_css_set.subsys[ssid]);
5437
5438 mutex_lock(&cgroup_mutex);
5439 css_populate_dir(init_css_set.subsys[ssid]);
5440 mutex_unlock(&cgroup_mutex);
5441 }
5442
5443 /* init_css_set.subsys[] has been updated, re-hash */
5444 hash_del(&init_css_set.hlist);
5445 hash_add(css_set_table, &init_css_set.hlist,
5446 css_set_hash(init_css_set.subsys));
5447
5448 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5449 WARN_ON(register_filesystem(&cgroup_fs_type));
5450 WARN_ON(register_filesystem(&cgroup2_fs_type));
5451 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5452
5453 return 0;
5454 }
5455
cgroup_wq_init(void)5456 static int __init cgroup_wq_init(void)
5457 {
5458 /*
5459 * There isn't much point in executing destruction path in
5460 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5461 * Use 1 for @max_active.
5462 *
5463 * We would prefer to do this in cgroup_init() above, but that
5464 * is called before init_workqueues(): so leave this until after.
5465 */
5466 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5467 BUG_ON(!cgroup_destroy_wq);
5468 return 0;
5469 }
5470 core_initcall(cgroup_wq_init);
5471
cgroup_path_from_kernfs_id(const union kernfs_node_id * id,char * buf,size_t buflen)5472 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5473 char *buf, size_t buflen)
5474 {
5475 struct kernfs_node *kn;
5476
5477 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5478 if (!kn)
5479 return;
5480 kernfs_path(kn, buf, buflen);
5481 kernfs_put(kn);
5482 }
5483
5484 /*
5485 * proc_cgroup_show()
5486 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5487 * - Used for /proc/<pid>/cgroup.
5488 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5489 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5490 struct pid *pid, struct task_struct *tsk)
5491 {
5492 char *buf;
5493 int retval;
5494 struct cgroup_root *root;
5495
5496 retval = -ENOMEM;
5497 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5498 if (!buf)
5499 goto out;
5500
5501 mutex_lock(&cgroup_mutex);
5502 spin_lock_irq(&css_set_lock);
5503
5504 for_each_root(root) {
5505 struct cgroup_subsys *ss;
5506 struct cgroup *cgrp;
5507 int ssid, count = 0;
5508
5509 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5510 continue;
5511
5512 seq_printf(m, "%d:", root->hierarchy_id);
5513 if (root != &cgrp_dfl_root)
5514 for_each_subsys(ss, ssid)
5515 if (root->subsys_mask & (1 << ssid))
5516 seq_printf(m, "%s%s", count++ ? "," : "",
5517 ss->legacy_name);
5518 if (strlen(root->name))
5519 seq_printf(m, "%sname=%s", count ? "," : "",
5520 root->name);
5521 seq_putc(m, ':');
5522
5523 cgrp = task_cgroup_from_root(tsk, root);
5524
5525 /*
5526 * On traditional hierarchies, all zombie tasks show up as
5527 * belonging to the root cgroup. On the default hierarchy,
5528 * while a zombie doesn't show up in "cgroup.procs" and
5529 * thus can't be migrated, its /proc/PID/cgroup keeps
5530 * reporting the cgroup it belonged to before exiting. If
5531 * the cgroup is removed before the zombie is reaped,
5532 * " (deleted)" is appended to the cgroup path.
5533 */
5534 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5535 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5536 current->nsproxy->cgroup_ns);
5537 if (retval >= PATH_MAX)
5538 retval = -ENAMETOOLONG;
5539 if (retval < 0)
5540 goto out_unlock;
5541
5542 seq_puts(m, buf);
5543 } else {
5544 seq_puts(m, "/");
5545 }
5546
5547 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5548 seq_puts(m, " (deleted)\n");
5549 else
5550 seq_putc(m, '\n');
5551 }
5552
5553 retval = 0;
5554 out_unlock:
5555 spin_unlock_irq(&css_set_lock);
5556 mutex_unlock(&cgroup_mutex);
5557 kfree(buf);
5558 out:
5559 return retval;
5560 }
5561
5562 /**
5563 * cgroup_fork - initialize cgroup related fields during copy_process()
5564 * @child: pointer to task_struct of forking parent process.
5565 *
5566 * A task is associated with the init_css_set until cgroup_post_fork()
5567 * attaches it to the parent's css_set. Empty cg_list indicates that
5568 * @child isn't holding reference to its css_set.
5569 */
cgroup_fork(struct task_struct * child)5570 void cgroup_fork(struct task_struct *child)
5571 {
5572 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5573 INIT_LIST_HEAD(&child->cg_list);
5574 }
5575
5576 /**
5577 * cgroup_can_fork - called on a new task before the process is exposed
5578 * @child: the task in question.
5579 *
5580 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5581 * returns an error, the fork aborts with that error code. This allows for
5582 * a cgroup subsystem to conditionally allow or deny new forks.
5583 */
cgroup_can_fork(struct task_struct * child)5584 int cgroup_can_fork(struct task_struct *child)
5585 {
5586 struct cgroup_subsys *ss;
5587 int i, j, ret;
5588
5589 do_each_subsys_mask(ss, i, have_canfork_callback) {
5590 ret = ss->can_fork(child);
5591 if (ret)
5592 goto out_revert;
5593 } while_each_subsys_mask();
5594
5595 return 0;
5596
5597 out_revert:
5598 for_each_subsys(ss, j) {
5599 if (j >= i)
5600 break;
5601 if (ss->cancel_fork)
5602 ss->cancel_fork(child);
5603 }
5604
5605 return ret;
5606 }
5607
5608 /**
5609 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5610 * @child: the task in question
5611 *
5612 * This calls the cancel_fork() callbacks if a fork failed *after*
5613 * cgroup_can_fork() succeded.
5614 */
cgroup_cancel_fork(struct task_struct * child)5615 void cgroup_cancel_fork(struct task_struct *child)
5616 {
5617 struct cgroup_subsys *ss;
5618 int i;
5619
5620 for_each_subsys(ss, i)
5621 if (ss->cancel_fork)
5622 ss->cancel_fork(child);
5623 }
5624
5625 /**
5626 * cgroup_post_fork - called on a new task after adding it to the task list
5627 * @child: the task in question
5628 *
5629 * Adds the task to the list running through its css_set if necessary and
5630 * call the subsystem fork() callbacks. Has to be after the task is
5631 * visible on the task list in case we race with the first call to
5632 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5633 * list.
5634 */
cgroup_post_fork(struct task_struct * child)5635 void cgroup_post_fork(struct task_struct *child)
5636 {
5637 struct cgroup_subsys *ss;
5638 int i;
5639
5640 /*
5641 * This may race against cgroup_enable_task_cg_lists(). As that
5642 * function sets use_task_css_set_links before grabbing
5643 * tasklist_lock and we just went through tasklist_lock to add
5644 * @child, it's guaranteed that either we see the set
5645 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5646 * @child during its iteration.
5647 *
5648 * If we won the race, @child is associated with %current's
5649 * css_set. Grabbing css_set_lock guarantees both that the
5650 * association is stable, and, on completion of the parent's
5651 * migration, @child is visible in the source of migration or
5652 * already in the destination cgroup. This guarantee is necessary
5653 * when implementing operations which need to migrate all tasks of
5654 * a cgroup to another.
5655 *
5656 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5657 * will remain in init_css_set. This is safe because all tasks are
5658 * in the init_css_set before cg_links is enabled and there's no
5659 * operation which transfers all tasks out of init_css_set.
5660 */
5661 if (use_task_css_set_links) {
5662 struct css_set *cset;
5663
5664 spin_lock_irq(&css_set_lock);
5665 cset = task_css_set(current);
5666 if (list_empty(&child->cg_list)) {
5667 get_css_set(cset);
5668 cset->nr_tasks++;
5669 css_set_move_task(child, NULL, cset, false);
5670 }
5671 spin_unlock_irq(&css_set_lock);
5672 }
5673
5674 /*
5675 * Call ss->fork(). This must happen after @child is linked on
5676 * css_set; otherwise, @child might change state between ->fork()
5677 * and addition to css_set.
5678 */
5679 do_each_subsys_mask(ss, i, have_fork_callback) {
5680 ss->fork(child);
5681 } while_each_subsys_mask();
5682 }
5683
5684 /**
5685 * cgroup_exit - detach cgroup from exiting task
5686 * @tsk: pointer to task_struct of exiting process
5687 *
5688 * Description: Detach cgroup from @tsk and release it.
5689 *
5690 * Note that cgroups marked notify_on_release force every task in
5691 * them to take the global cgroup_mutex mutex when exiting.
5692 * This could impact scaling on very large systems. Be reluctant to
5693 * use notify_on_release cgroups where very high task exit scaling
5694 * is required on large systems.
5695 *
5696 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5697 * call cgroup_exit() while the task is still competent to handle
5698 * notify_on_release(), then leave the task attached to the root cgroup in
5699 * each hierarchy for the remainder of its exit. No need to bother with
5700 * init_css_set refcnting. init_css_set never goes away and we can't race
5701 * with migration path - PF_EXITING is visible to migration path.
5702 */
cgroup_exit(struct task_struct * tsk)5703 void cgroup_exit(struct task_struct *tsk)
5704 {
5705 struct cgroup_subsys *ss;
5706 struct css_set *cset;
5707 int i;
5708
5709 /*
5710 * Unlink from @tsk from its css_set. As migration path can't race
5711 * with us, we can check css_set and cg_list without synchronization.
5712 */
5713 cset = task_css_set(tsk);
5714
5715 if (!list_empty(&tsk->cg_list)) {
5716 spin_lock_irq(&css_set_lock);
5717 css_set_move_task(tsk, cset, NULL, false);
5718 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
5719 cset->nr_tasks--;
5720 spin_unlock_irq(&css_set_lock);
5721 } else {
5722 get_css_set(cset);
5723 }
5724
5725 /* see cgroup_post_fork() for details */
5726 do_each_subsys_mask(ss, i, have_exit_callback) {
5727 ss->exit(tsk);
5728 } while_each_subsys_mask();
5729 }
5730
cgroup_release(struct task_struct * task)5731 void cgroup_release(struct task_struct *task)
5732 {
5733 struct cgroup_subsys *ss;
5734 int ssid;
5735
5736 do_each_subsys_mask(ss, ssid, have_release_callback) {
5737 ss->release(task);
5738 } while_each_subsys_mask();
5739
5740 if (use_task_css_set_links) {
5741 spin_lock_irq(&css_set_lock);
5742 css_set_skip_task_iters(task_css_set(task), task);
5743 list_del_init(&task->cg_list);
5744 spin_unlock_irq(&css_set_lock);
5745 }
5746 }
5747
cgroup_free(struct task_struct * task)5748 void cgroup_free(struct task_struct *task)
5749 {
5750 struct css_set *cset = task_css_set(task);
5751 put_css_set(cset);
5752 }
5753
cgroup_disable(char * str)5754 static int __init cgroup_disable(char *str)
5755 {
5756 struct cgroup_subsys *ss;
5757 char *token;
5758 int i;
5759
5760 while ((token = strsep(&str, ",")) != NULL) {
5761 if (!*token)
5762 continue;
5763
5764 for_each_subsys(ss, i) {
5765 if (strcmp(token, ss->name) &&
5766 strcmp(token, ss->legacy_name))
5767 continue;
5768 cgroup_disable_mask |= 1 << i;
5769 }
5770 }
5771 return 1;
5772 }
5773 __setup("cgroup_disable=", cgroup_disable);
5774
5775 /**
5776 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5777 * @dentry: directory dentry of interest
5778 * @ss: subsystem of interest
5779 *
5780 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5781 * to get the corresponding css and return it. If such css doesn't exist
5782 * or can't be pinned, an ERR_PTR value is returned.
5783 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5784 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5785 struct cgroup_subsys *ss)
5786 {
5787 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5788 struct file_system_type *s_type = dentry->d_sb->s_type;
5789 struct cgroup_subsys_state *css = NULL;
5790 struct cgroup *cgrp;
5791
5792 /* is @dentry a cgroup dir? */
5793 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5794 !kn || kernfs_type(kn) != KERNFS_DIR)
5795 return ERR_PTR(-EBADF);
5796
5797 rcu_read_lock();
5798
5799 /*
5800 * This path doesn't originate from kernfs and @kn could already
5801 * have been or be removed at any point. @kn->priv is RCU
5802 * protected for this access. See css_release_work_fn() for details.
5803 */
5804 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5805 if (cgrp)
5806 css = cgroup_css(cgrp, ss);
5807
5808 if (!css || !css_tryget_online(css))
5809 css = ERR_PTR(-ENOENT);
5810
5811 rcu_read_unlock();
5812 return css;
5813 }
5814
5815 /**
5816 * css_from_id - lookup css by id
5817 * @id: the cgroup id
5818 * @ss: cgroup subsys to be looked into
5819 *
5820 * Returns the css if there's valid one with @id, otherwise returns NULL.
5821 * Should be called under rcu_read_lock().
5822 */
css_from_id(int id,struct cgroup_subsys * ss)5823 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5824 {
5825 WARN_ON_ONCE(!rcu_read_lock_held());
5826 return idr_find(&ss->css_idr, id);
5827 }
5828
5829 /**
5830 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5831 * @path: path on the default hierarchy
5832 *
5833 * Find the cgroup at @path on the default hierarchy, increment its
5834 * reference count and return it. Returns pointer to the found cgroup on
5835 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5836 * if @path points to a non-directory.
5837 */
cgroup_get_from_path(const char * path)5838 struct cgroup *cgroup_get_from_path(const char *path)
5839 {
5840 struct kernfs_node *kn;
5841 struct cgroup *cgrp;
5842
5843 mutex_lock(&cgroup_mutex);
5844
5845 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5846 if (kn) {
5847 if (kernfs_type(kn) == KERNFS_DIR) {
5848 cgrp = kn->priv;
5849 cgroup_get_live(cgrp);
5850 } else {
5851 cgrp = ERR_PTR(-ENOTDIR);
5852 }
5853 kernfs_put(kn);
5854 } else {
5855 cgrp = ERR_PTR(-ENOENT);
5856 }
5857
5858 mutex_unlock(&cgroup_mutex);
5859 return cgrp;
5860 }
5861 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5862
5863 /**
5864 * cgroup_get_from_fd - get a cgroup pointer from a fd
5865 * @fd: fd obtained by open(cgroup2_dir)
5866 *
5867 * Find the cgroup from a fd which should be obtained
5868 * by opening a cgroup directory. Returns a pointer to the
5869 * cgroup on success. ERR_PTR is returned if the cgroup
5870 * cannot be found.
5871 */
cgroup_get_from_fd(int fd)5872 struct cgroup *cgroup_get_from_fd(int fd)
5873 {
5874 struct cgroup_subsys_state *css;
5875 struct cgroup *cgrp;
5876 struct file *f;
5877
5878 f = fget_raw(fd);
5879 if (!f)
5880 return ERR_PTR(-EBADF);
5881
5882 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5883 fput(f);
5884 if (IS_ERR(css))
5885 return ERR_CAST(css);
5886
5887 cgrp = css->cgroup;
5888 if (!cgroup_on_dfl(cgrp)) {
5889 cgroup_put(cgrp);
5890 return ERR_PTR(-EBADF);
5891 }
5892
5893 return cgrp;
5894 }
5895 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5896
5897 /*
5898 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5899 * definition in cgroup-defs.h.
5900 */
5901 #ifdef CONFIG_SOCK_CGROUP_DATA
5902
5903 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5904
5905 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5906 static bool cgroup_sk_alloc_disabled __read_mostly;
5907
cgroup_sk_alloc_disable(void)5908 void cgroup_sk_alloc_disable(void)
5909 {
5910 if (cgroup_sk_alloc_disabled)
5911 return;
5912 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5913 cgroup_sk_alloc_disabled = true;
5914 }
5915
5916 #else
5917
5918 #define cgroup_sk_alloc_disabled false
5919
5920 #endif
5921
cgroup_sk_alloc(struct sock_cgroup_data * skcd)5922 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5923 {
5924 if (cgroup_sk_alloc_disabled)
5925 return;
5926
5927 /* Socket clone path */
5928 if (skcd->val) {
5929 /*
5930 * We might be cloning a socket which is left in an empty
5931 * cgroup and the cgroup might have already been rmdir'd.
5932 * Don't use cgroup_get_live().
5933 */
5934 cgroup_get(sock_cgroup_ptr(skcd));
5935 return;
5936 }
5937
5938 /* Don't associate the sock with unrelated interrupted task's cgroup. */
5939 if (in_interrupt())
5940 return;
5941
5942 rcu_read_lock();
5943
5944 while (true) {
5945 struct css_set *cset;
5946
5947 cset = task_css_set(current);
5948 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5949 skcd->val = (unsigned long)cset->dfl_cgrp;
5950 break;
5951 }
5952 cpu_relax();
5953 }
5954
5955 rcu_read_unlock();
5956 }
5957
cgroup_sk_free(struct sock_cgroup_data * skcd)5958 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5959 {
5960 cgroup_put(sock_cgroup_ptr(skcd));
5961 }
5962
5963 #endif /* CONFIG_SOCK_CGROUP_DATA */
5964
5965 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_update(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,bool overridable)5966 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5967 enum bpf_attach_type type, bool overridable)
5968 {
5969 struct cgroup *parent = cgroup_parent(cgrp);
5970 int ret;
5971
5972 mutex_lock(&cgroup_mutex);
5973 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5974 mutex_unlock(&cgroup_mutex);
5975 return ret;
5976 }
5977 #endif /* CONFIG_CGROUP_BPF */
5978