• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97 
98 /*
99  * This is the single most critical data structure when it comes
100  * to the dcache: the hashtable for lookups. Somebody should try
101  * to make this good - I've just made it work.
102  *
103  * This hash-function tries to avoid losing too many bits of hash
104  * information, yet avoid using a prime hash-size or similar.
105  */
106 
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109 
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111 
d_hash(unsigned int hash)112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116 
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119 
in_lookup_hash(const struct dentry * parent,unsigned int hash)120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 					unsigned int hash)
122 {
123 	hash += (unsigned long) parent / L1_CACHE_BYTES;
124 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126 
127 
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 	.age_limit = 45,
131 };
132 
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135 
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137 
138 /*
139  * Here we resort to our own counters instead of using generic per-cpu counters
140  * for consistency with what the vfs inode code does. We are expected to harvest
141  * better code and performance by having our own specialized counters.
142  *
143  * Please note that the loop is done over all possible CPUs, not over all online
144  * CPUs. The reason for this is that we don't want to play games with CPUs going
145  * on and off. If one of them goes off, we will just keep their counters.
146  *
147  * glommer: See cffbc8a for details, and if you ever intend to change this,
148  * please update all vfs counters to match.
149  */
get_nr_dentry(void)150 static long get_nr_dentry(void)
151 {
152 	int i;
153 	long sum = 0;
154 	for_each_possible_cpu(i)
155 		sum += per_cpu(nr_dentry, i);
156 	return sum < 0 ? 0 : sum;
157 }
158 
get_nr_dentry_unused(void)159 static long get_nr_dentry_unused(void)
160 {
161 	int i;
162 	long sum = 0;
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_unused, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176 
177 /*
178  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179  * The strings are both count bytes long, and count is non-zero.
180  */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182 
183 #include <asm/word-at-a-time.h>
184 /*
185  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186  * aligned allocation for this particular component. We don't
187  * strictly need the load_unaligned_zeropad() safety, but it
188  * doesn't hurt either.
189  *
190  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191  * need the careful unaligned handling.
192  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 	unsigned long a,b,mask;
196 
197 	for (;;) {
198 		a = *(unsigned long *)cs;
199 		b = load_unaligned_zeropad(ct);
200 		if (tcount < sizeof(unsigned long))
201 			break;
202 		if (unlikely(a != b))
203 			return 1;
204 		cs += sizeof(unsigned long);
205 		ct += sizeof(unsigned long);
206 		tcount -= sizeof(unsigned long);
207 		if (!tcount)
208 			return 0;
209 	}
210 	mask = bytemask_from_count(tcount);
211 	return unlikely(!!((a ^ b) & mask));
212 }
213 
214 #else
215 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 	do {
219 		if (*cs != *ct)
220 			return 1;
221 		cs++;
222 		ct++;
223 		tcount--;
224 	} while (tcount);
225 	return 0;
226 }
227 
228 #endif
229 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 	/*
233 	 * Be careful about RCU walk racing with rename:
234 	 * use 'READ_ONCE' to fetch the name pointer.
235 	 *
236 	 * NOTE! Even if a rename will mean that the length
237 	 * was not loaded atomically, we don't care. The
238 	 * RCU walk will check the sequence count eventually,
239 	 * and catch it. And we won't overrun the buffer,
240 	 * because we're reading the name pointer atomically,
241 	 * and a dentry name is guaranteed to be properly
242 	 * terminated with a NUL byte.
243 	 *
244 	 * End result: even if 'len' is wrong, we'll exit
245 	 * early because the data cannot match (there can
246 	 * be no NUL in the ct/tcount data)
247 	 */
248 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249 
250 	return dentry_string_cmp(cs, ct, tcount);
251 }
252 
253 struct external_name {
254 	union {
255 		atomic_t count;
256 		struct rcu_head head;
257 	} u;
258 	unsigned char name[];
259 };
260 
external_name(struct dentry * dentry)261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 	return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265 
__d_free(struct rcu_head * head)266 static void __d_free(struct rcu_head *head)
267 {
268 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269 
270 	kmem_cache_free(dentry_cache, dentry);
271 }
272 
__d_free_external_name(struct rcu_head * head)273 static void __d_free_external_name(struct rcu_head *head)
274 {
275 	struct external_name *name = container_of(head, struct external_name,
276 						  u.head);
277 
278 	mod_node_page_state(page_pgdat(virt_to_page(name)),
279 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
280 			    -ksize(name));
281 
282 	kfree(name);
283 }
284 
__d_free_external(struct rcu_head * head)285 static void __d_free_external(struct rcu_head *head)
286 {
287 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
288 
289 	__d_free_external_name(&external_name(dentry)->u.head);
290 
291 	kmem_cache_free(dentry_cache, dentry);
292 }
293 
dname_external(const struct dentry * dentry)294 static inline int dname_external(const struct dentry *dentry)
295 {
296 	return dentry->d_name.name != dentry->d_iname;
297 }
298 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)299 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
300 {
301 	spin_lock(&dentry->d_lock);
302 	if (unlikely(dname_external(dentry))) {
303 		struct external_name *p = external_name(dentry);
304 		atomic_inc(&p->u.count);
305 		spin_unlock(&dentry->d_lock);
306 		name->name = p->name;
307 	} else {
308 		memcpy(name->inline_name, dentry->d_iname,
309 		       dentry->d_name.len + 1);
310 		spin_unlock(&dentry->d_lock);
311 		name->name = name->inline_name;
312 	}
313 }
314 EXPORT_SYMBOL(take_dentry_name_snapshot);
315 
release_dentry_name_snapshot(struct name_snapshot * name)316 void release_dentry_name_snapshot(struct name_snapshot *name)
317 {
318 	if (unlikely(name->name != name->inline_name)) {
319 		struct external_name *p;
320 		p = container_of(name->name, struct external_name, name[0]);
321 		if (unlikely(atomic_dec_and_test(&p->u.count)))
322 			call_rcu(&p->u.head, __d_free_external_name);
323 	}
324 }
325 EXPORT_SYMBOL(release_dentry_name_snapshot);
326 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)327 static inline void __d_set_inode_and_type(struct dentry *dentry,
328 					  struct inode *inode,
329 					  unsigned type_flags)
330 {
331 	unsigned flags;
332 
333 	dentry->d_inode = inode;
334 	flags = READ_ONCE(dentry->d_flags);
335 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
336 	flags |= type_flags;
337 	WRITE_ONCE(dentry->d_flags, flags);
338 }
339 
__d_clear_type_and_inode(struct dentry * dentry)340 static inline void __d_clear_type_and_inode(struct dentry *dentry)
341 {
342 	unsigned flags = READ_ONCE(dentry->d_flags);
343 
344 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
345 	WRITE_ONCE(dentry->d_flags, flags);
346 	dentry->d_inode = NULL;
347 }
348 
dentry_free(struct dentry * dentry)349 static void dentry_free(struct dentry *dentry)
350 {
351 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
352 	if (unlikely(dname_external(dentry))) {
353 		struct external_name *p = external_name(dentry);
354 		if (likely(atomic_dec_and_test(&p->u.count))) {
355 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
356 			return;
357 		}
358 	}
359 	/* if dentry was never visible to RCU, immediate free is OK */
360 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
361 		__d_free(&dentry->d_u.d_rcu);
362 	else
363 		call_rcu(&dentry->d_u.d_rcu, __d_free);
364 }
365 
366 /*
367  * Release the dentry's inode, using the filesystem
368  * d_iput() operation if defined.
369  */
dentry_unlink_inode(struct dentry * dentry)370 static void dentry_unlink_inode(struct dentry * dentry)
371 	__releases(dentry->d_lock)
372 	__releases(dentry->d_inode->i_lock)
373 {
374 	struct inode *inode = dentry->d_inode;
375 
376 	raw_write_seqcount_begin(&dentry->d_seq);
377 	__d_clear_type_and_inode(dentry);
378 	hlist_del_init(&dentry->d_u.d_alias);
379 	raw_write_seqcount_end(&dentry->d_seq);
380 	spin_unlock(&dentry->d_lock);
381 	spin_unlock(&inode->i_lock);
382 	if (!inode->i_nlink)
383 		fsnotify_inoderemove(inode);
384 	if (dentry->d_op && dentry->d_op->d_iput)
385 		dentry->d_op->d_iput(dentry, inode);
386 	else
387 		iput(inode);
388 }
389 
390 /*
391  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
392  * is in use - which includes both the "real" per-superblock
393  * LRU list _and_ the DCACHE_SHRINK_LIST use.
394  *
395  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
396  * on the shrink list (ie not on the superblock LRU list).
397  *
398  * The per-cpu "nr_dentry_unused" counters are updated with
399  * the DCACHE_LRU_LIST bit.
400  *
401  * These helper functions make sure we always follow the
402  * rules. d_lock must be held by the caller.
403  */
404 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)405 static void d_lru_add(struct dentry *dentry)
406 {
407 	D_FLAG_VERIFY(dentry, 0);
408 	dentry->d_flags |= DCACHE_LRU_LIST;
409 	this_cpu_inc(nr_dentry_unused);
410 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
411 }
412 
d_lru_del(struct dentry * dentry)413 static void d_lru_del(struct dentry *dentry)
414 {
415 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 	dentry->d_flags &= ~DCACHE_LRU_LIST;
417 	this_cpu_dec(nr_dentry_unused);
418 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
419 }
420 
d_shrink_del(struct dentry * dentry)421 static void d_shrink_del(struct dentry *dentry)
422 {
423 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424 	list_del_init(&dentry->d_lru);
425 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
426 	this_cpu_dec(nr_dentry_unused);
427 }
428 
d_shrink_add(struct dentry * dentry,struct list_head * list)429 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
430 {
431 	D_FLAG_VERIFY(dentry, 0);
432 	list_add(&dentry->d_lru, list);
433 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
434 	this_cpu_inc(nr_dentry_unused);
435 }
436 
437 /*
438  * These can only be called under the global LRU lock, ie during the
439  * callback for freeing the LRU list. "isolate" removes it from the
440  * LRU lists entirely, while shrink_move moves it to the indicated
441  * private list.
442  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)443 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
444 {
445 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
446 	dentry->d_flags &= ~DCACHE_LRU_LIST;
447 	this_cpu_dec(nr_dentry_unused);
448 	list_lru_isolate(lru, &dentry->d_lru);
449 }
450 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452 			      struct list_head *list)
453 {
454 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455 	dentry->d_flags |= DCACHE_SHRINK_LIST;
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /*
460  * dentry_lru_(add|del)_list) must be called with d_lock held.
461  */
dentry_lru_add(struct dentry * dentry)462 static void dentry_lru_add(struct dentry *dentry)
463 {
464 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
465 		d_lru_add(dentry);
466 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
467 		dentry->d_flags |= DCACHE_REFERENCED;
468 }
469 
470 /**
471  * d_drop - drop a dentry
472  * @dentry: dentry to drop
473  *
474  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
475  * be found through a VFS lookup any more. Note that this is different from
476  * deleting the dentry - d_delete will try to mark the dentry negative if
477  * possible, giving a successful _negative_ lookup, while d_drop will
478  * just make the cache lookup fail.
479  *
480  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
481  * reason (NFS timeouts or autofs deletes).
482  *
483  * __d_drop requires dentry->d_lock
484  * ___d_drop doesn't mark dentry as "unhashed"
485  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
486  */
___d_drop(struct dentry * dentry)487 static void ___d_drop(struct dentry *dentry)
488 {
489 	if (!d_unhashed(dentry)) {
490 		struct hlist_bl_head *b;
491 		/*
492 		 * Hashed dentries are normally on the dentry hashtable,
493 		 * with the exception of those newly allocated by
494 		 * d_obtain_alias, which are always IS_ROOT:
495 		 */
496 		if (unlikely(IS_ROOT(dentry)))
497 			b = &dentry->d_sb->s_anon;
498 		else
499 			b = d_hash(dentry->d_name.hash);
500 
501 		hlist_bl_lock(b);
502 		__hlist_bl_del(&dentry->d_hash);
503 		hlist_bl_unlock(b);
504 		/* After this call, in-progress rcu-walk path lookup will fail. */
505 		write_seqcount_invalidate(&dentry->d_seq);
506 	}
507 }
508 
__d_drop(struct dentry * dentry)509 void __d_drop(struct dentry *dentry)
510 {
511 	___d_drop(dentry);
512 	dentry->d_hash.pprev = NULL;
513 }
514 EXPORT_SYMBOL(__d_drop);
515 
d_drop(struct dentry * dentry)516 void d_drop(struct dentry *dentry)
517 {
518 	spin_lock(&dentry->d_lock);
519 	__d_drop(dentry);
520 	spin_unlock(&dentry->d_lock);
521 }
522 EXPORT_SYMBOL(d_drop);
523 
dentry_unlist(struct dentry * dentry,struct dentry * parent)524 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
525 {
526 	struct dentry *next;
527 	/*
528 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
529 	 * attached to the dentry tree
530 	 */
531 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
532 	if (unlikely(list_empty(&dentry->d_child)))
533 		return;
534 	__list_del_entry(&dentry->d_child);
535 	/*
536 	 * Cursors can move around the list of children.  While we'd been
537 	 * a normal list member, it didn't matter - ->d_child.next would've
538 	 * been updated.  However, from now on it won't be and for the
539 	 * things like d_walk() it might end up with a nasty surprise.
540 	 * Normally d_walk() doesn't care about cursors moving around -
541 	 * ->d_lock on parent prevents that and since a cursor has no children
542 	 * of its own, we get through it without ever unlocking the parent.
543 	 * There is one exception, though - if we ascend from a child that
544 	 * gets killed as soon as we unlock it, the next sibling is found
545 	 * using the value left in its ->d_child.next.  And if _that_
546 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
547 	 * before d_walk() regains parent->d_lock, we'll end up skipping
548 	 * everything the cursor had been moved past.
549 	 *
550 	 * Solution: make sure that the pointer left behind in ->d_child.next
551 	 * points to something that won't be moving around.  I.e. skip the
552 	 * cursors.
553 	 */
554 	while (dentry->d_child.next != &parent->d_subdirs) {
555 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
556 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
557 			break;
558 		dentry->d_child.next = next->d_child.next;
559 	}
560 }
561 
__dentry_kill(struct dentry * dentry)562 static void __dentry_kill(struct dentry *dentry)
563 {
564 	struct dentry *parent = NULL;
565 	bool can_free = true;
566 	if (!IS_ROOT(dentry))
567 		parent = dentry->d_parent;
568 
569 	/*
570 	 * The dentry is now unrecoverably dead to the world.
571 	 */
572 	lockref_mark_dead(&dentry->d_lockref);
573 
574 	/*
575 	 * inform the fs via d_prune that this dentry is about to be
576 	 * unhashed and destroyed.
577 	 */
578 	if (dentry->d_flags & DCACHE_OP_PRUNE)
579 		dentry->d_op->d_prune(dentry);
580 
581 	if (dentry->d_flags & DCACHE_LRU_LIST) {
582 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
583 			d_lru_del(dentry);
584 	}
585 	/* if it was on the hash then remove it */
586 	__d_drop(dentry);
587 	dentry_unlist(dentry, parent);
588 	if (parent)
589 		spin_unlock(&parent->d_lock);
590 	if (dentry->d_inode)
591 		dentry_unlink_inode(dentry);
592 	else
593 		spin_unlock(&dentry->d_lock);
594 	this_cpu_dec(nr_dentry);
595 	if (dentry->d_op && dentry->d_op->d_release)
596 		dentry->d_op->d_release(dentry);
597 
598 	spin_lock(&dentry->d_lock);
599 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
600 		dentry->d_flags |= DCACHE_MAY_FREE;
601 		can_free = false;
602 	}
603 	spin_unlock(&dentry->d_lock);
604 	if (likely(can_free))
605 		dentry_free(dentry);
606 }
607 
608 /*
609  * Finish off a dentry we've decided to kill.
610  * dentry->d_lock must be held, returns with it unlocked.
611  * If ref is non-zero, then decrement the refcount too.
612  * Returns dentry requiring refcount drop, or NULL if we're done.
613  */
dentry_kill(struct dentry * dentry)614 static struct dentry *dentry_kill(struct dentry *dentry)
615 	__releases(dentry->d_lock)
616 {
617 	struct inode *inode = dentry->d_inode;
618 	struct dentry *parent = NULL;
619 
620 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
621 		goto failed;
622 
623 	if (!IS_ROOT(dentry)) {
624 		parent = dentry->d_parent;
625 		if (unlikely(!spin_trylock(&parent->d_lock))) {
626 			if (inode)
627 				spin_unlock(&inode->i_lock);
628 			goto failed;
629 		}
630 	}
631 
632 	__dentry_kill(dentry);
633 	return parent;
634 
635 failed:
636 	spin_unlock(&dentry->d_lock);
637 	return dentry; /* try again with same dentry */
638 }
639 
lock_parent(struct dentry * dentry)640 static inline struct dentry *lock_parent(struct dentry *dentry)
641 {
642 	struct dentry *parent = dentry->d_parent;
643 	if (IS_ROOT(dentry))
644 		return NULL;
645 	if (unlikely(dentry->d_lockref.count < 0))
646 		return NULL;
647 	if (likely(spin_trylock(&parent->d_lock)))
648 		return parent;
649 	rcu_read_lock();
650 	spin_unlock(&dentry->d_lock);
651 again:
652 	parent = ACCESS_ONCE(dentry->d_parent);
653 	spin_lock(&parent->d_lock);
654 	/*
655 	 * We can't blindly lock dentry until we are sure
656 	 * that we won't violate the locking order.
657 	 * Any changes of dentry->d_parent must have
658 	 * been done with parent->d_lock held, so
659 	 * spin_lock() above is enough of a barrier
660 	 * for checking if it's still our child.
661 	 */
662 	if (unlikely(parent != dentry->d_parent)) {
663 		spin_unlock(&parent->d_lock);
664 		goto again;
665 	}
666 	if (parent != dentry) {
667 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
668 		if (unlikely(dentry->d_lockref.count < 0)) {
669 			spin_unlock(&parent->d_lock);
670 			parent = NULL;
671 		}
672 	} else {
673 		parent = NULL;
674 	}
675 	rcu_read_unlock();
676 	return parent;
677 }
678 
679 /*
680  * Try to do a lockless dput(), and return whether that was successful.
681  *
682  * If unsuccessful, we return false, having already taken the dentry lock.
683  *
684  * The caller needs to hold the RCU read lock, so that the dentry is
685  * guaranteed to stay around even if the refcount goes down to zero!
686  */
fast_dput(struct dentry * dentry)687 static inline bool fast_dput(struct dentry *dentry)
688 {
689 	int ret;
690 	unsigned int d_flags;
691 
692 	/*
693 	 * If we have a d_op->d_delete() operation, we sould not
694 	 * let the dentry count go to zero, so use "put_or_lock".
695 	 */
696 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
697 		return lockref_put_or_lock(&dentry->d_lockref);
698 
699 	/*
700 	 * .. otherwise, we can try to just decrement the
701 	 * lockref optimistically.
702 	 */
703 	ret = lockref_put_return(&dentry->d_lockref);
704 
705 	/*
706 	 * If the lockref_put_return() failed due to the lock being held
707 	 * by somebody else, the fast path has failed. We will need to
708 	 * get the lock, and then check the count again.
709 	 */
710 	if (unlikely(ret < 0)) {
711 		spin_lock(&dentry->d_lock);
712 		if (dentry->d_lockref.count > 1) {
713 			dentry->d_lockref.count--;
714 			spin_unlock(&dentry->d_lock);
715 			return 1;
716 		}
717 		return 0;
718 	}
719 
720 	/*
721 	 * If we weren't the last ref, we're done.
722 	 */
723 	if (ret)
724 		return 1;
725 
726 	/*
727 	 * Careful, careful. The reference count went down
728 	 * to zero, but we don't hold the dentry lock, so
729 	 * somebody else could get it again, and do another
730 	 * dput(), and we need to not race with that.
731 	 *
732 	 * However, there is a very special and common case
733 	 * where we don't care, because there is nothing to
734 	 * do: the dentry is still hashed, it does not have
735 	 * a 'delete' op, and it's referenced and already on
736 	 * the LRU list.
737 	 *
738 	 * NOTE! Since we aren't locked, these values are
739 	 * not "stable". However, it is sufficient that at
740 	 * some point after we dropped the reference the
741 	 * dentry was hashed and the flags had the proper
742 	 * value. Other dentry users may have re-gotten
743 	 * a reference to the dentry and change that, but
744 	 * our work is done - we can leave the dentry
745 	 * around with a zero refcount.
746 	 */
747 	smp_rmb();
748 	d_flags = ACCESS_ONCE(dentry->d_flags);
749 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
750 
751 	/* Nothing to do? Dropping the reference was all we needed? */
752 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
753 		return 1;
754 
755 	/*
756 	 * Not the fast normal case? Get the lock. We've already decremented
757 	 * the refcount, but we'll need to re-check the situation after
758 	 * getting the lock.
759 	 */
760 	spin_lock(&dentry->d_lock);
761 
762 	/*
763 	 * Did somebody else grab a reference to it in the meantime, and
764 	 * we're no longer the last user after all? Alternatively, somebody
765 	 * else could have killed it and marked it dead. Either way, we
766 	 * don't need to do anything else.
767 	 */
768 	if (dentry->d_lockref.count) {
769 		spin_unlock(&dentry->d_lock);
770 		return 1;
771 	}
772 
773 	/*
774 	 * Re-get the reference we optimistically dropped. We hold the
775 	 * lock, and we just tested that it was zero, so we can just
776 	 * set it to 1.
777 	 */
778 	dentry->d_lockref.count = 1;
779 	return 0;
780 }
781 
782 
783 /*
784  * This is dput
785  *
786  * This is complicated by the fact that we do not want to put
787  * dentries that are no longer on any hash chain on the unused
788  * list: we'd much rather just get rid of them immediately.
789  *
790  * However, that implies that we have to traverse the dentry
791  * tree upwards to the parents which might _also_ now be
792  * scheduled for deletion (it may have been only waiting for
793  * its last child to go away).
794  *
795  * This tail recursion is done by hand as we don't want to depend
796  * on the compiler to always get this right (gcc generally doesn't).
797  * Real recursion would eat up our stack space.
798  */
799 
800 /*
801  * dput - release a dentry
802  * @dentry: dentry to release
803  *
804  * Release a dentry. This will drop the usage count and if appropriate
805  * call the dentry unlink method as well as removing it from the queues and
806  * releasing its resources. If the parent dentries were scheduled for release
807  * they too may now get deleted.
808  */
dput(struct dentry * dentry)809 void dput(struct dentry *dentry)
810 {
811 	if (unlikely(!dentry))
812 		return;
813 
814 repeat:
815 	might_sleep();
816 
817 	rcu_read_lock();
818 	if (likely(fast_dput(dentry))) {
819 		rcu_read_unlock();
820 		return;
821 	}
822 
823 	/* Slow case: now with the dentry lock held */
824 	rcu_read_unlock();
825 
826 	WARN_ON(d_in_lookup(dentry));
827 
828 	/* Unreachable? Get rid of it */
829 	if (unlikely(d_unhashed(dentry)))
830 		goto kill_it;
831 
832 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
833 		goto kill_it;
834 
835 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
836 		if (dentry->d_op->d_delete(dentry))
837 			goto kill_it;
838 	}
839 
840 	dentry_lru_add(dentry);
841 
842 	dentry->d_lockref.count--;
843 	spin_unlock(&dentry->d_lock);
844 	return;
845 
846 kill_it:
847 	dentry = dentry_kill(dentry);
848 	if (dentry) {
849 		cond_resched();
850 		goto repeat;
851 	}
852 }
853 EXPORT_SYMBOL(dput);
854 
855 
856 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)857 static inline void __dget_dlock(struct dentry *dentry)
858 {
859 	dentry->d_lockref.count++;
860 }
861 
__dget(struct dentry * dentry)862 static inline void __dget(struct dentry *dentry)
863 {
864 	lockref_get(&dentry->d_lockref);
865 }
866 
dget_parent(struct dentry * dentry)867 struct dentry *dget_parent(struct dentry *dentry)
868 {
869 	int gotref;
870 	struct dentry *ret;
871 
872 	/*
873 	 * Do optimistic parent lookup without any
874 	 * locking.
875 	 */
876 	rcu_read_lock();
877 	ret = ACCESS_ONCE(dentry->d_parent);
878 	gotref = lockref_get_not_zero(&ret->d_lockref);
879 	rcu_read_unlock();
880 	if (likely(gotref)) {
881 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
882 			return ret;
883 		dput(ret);
884 	}
885 
886 repeat:
887 	/*
888 	 * Don't need rcu_dereference because we re-check it was correct under
889 	 * the lock.
890 	 */
891 	rcu_read_lock();
892 	ret = dentry->d_parent;
893 	spin_lock(&ret->d_lock);
894 	if (unlikely(ret != dentry->d_parent)) {
895 		spin_unlock(&ret->d_lock);
896 		rcu_read_unlock();
897 		goto repeat;
898 	}
899 	rcu_read_unlock();
900 	BUG_ON(!ret->d_lockref.count);
901 	ret->d_lockref.count++;
902 	spin_unlock(&ret->d_lock);
903 	return ret;
904 }
905 EXPORT_SYMBOL(dget_parent);
906 
907 /**
908  * d_find_alias - grab a hashed alias of inode
909  * @inode: inode in question
910  *
911  * If inode has a hashed alias, or is a directory and has any alias,
912  * acquire the reference to alias and return it. Otherwise return NULL.
913  * Notice that if inode is a directory there can be only one alias and
914  * it can be unhashed only if it has no children, or if it is the root
915  * of a filesystem, or if the directory was renamed and d_revalidate
916  * was the first vfs operation to notice.
917  *
918  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
919  * any other hashed alias over that one.
920  */
__d_find_alias(struct inode * inode)921 static struct dentry *__d_find_alias(struct inode *inode)
922 {
923 	struct dentry *alias, *discon_alias;
924 
925 again:
926 	discon_alias = NULL;
927 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
928 		spin_lock(&alias->d_lock);
929  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
930 			if (IS_ROOT(alias) &&
931 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
932 				discon_alias = alias;
933 			} else {
934 				__dget_dlock(alias);
935 				spin_unlock(&alias->d_lock);
936 				return alias;
937 			}
938 		}
939 		spin_unlock(&alias->d_lock);
940 	}
941 	if (discon_alias) {
942 		alias = discon_alias;
943 		spin_lock(&alias->d_lock);
944 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
945 			__dget_dlock(alias);
946 			spin_unlock(&alias->d_lock);
947 			return alias;
948 		}
949 		spin_unlock(&alias->d_lock);
950 		goto again;
951 	}
952 	return NULL;
953 }
954 
d_find_alias(struct inode * inode)955 struct dentry *d_find_alias(struct inode *inode)
956 {
957 	struct dentry *de = NULL;
958 
959 	if (!hlist_empty(&inode->i_dentry)) {
960 		spin_lock(&inode->i_lock);
961 		de = __d_find_alias(inode);
962 		spin_unlock(&inode->i_lock);
963 	}
964 	return de;
965 }
966 EXPORT_SYMBOL(d_find_alias);
967 
968 /*
969  *	Try to kill dentries associated with this inode.
970  * WARNING: you must own a reference to inode.
971  */
d_prune_aliases(struct inode * inode)972 void d_prune_aliases(struct inode *inode)
973 {
974 	struct dentry *dentry;
975 restart:
976 	spin_lock(&inode->i_lock);
977 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
978 		spin_lock(&dentry->d_lock);
979 		if (!dentry->d_lockref.count) {
980 			struct dentry *parent = lock_parent(dentry);
981 			if (likely(!dentry->d_lockref.count)) {
982 				__dentry_kill(dentry);
983 				dput(parent);
984 				goto restart;
985 			}
986 			if (parent)
987 				spin_unlock(&parent->d_lock);
988 		}
989 		spin_unlock(&dentry->d_lock);
990 	}
991 	spin_unlock(&inode->i_lock);
992 }
993 EXPORT_SYMBOL(d_prune_aliases);
994 
shrink_dentry_list(struct list_head * list)995 static void shrink_dentry_list(struct list_head *list)
996 {
997 	struct dentry *dentry, *parent;
998 
999 	while (!list_empty(list)) {
1000 		struct inode *inode;
1001 		dentry = list_entry(list->prev, struct dentry, d_lru);
1002 		spin_lock(&dentry->d_lock);
1003 		parent = lock_parent(dentry);
1004 
1005 		/*
1006 		 * The dispose list is isolated and dentries are not accounted
1007 		 * to the LRU here, so we can simply remove it from the list
1008 		 * here regardless of whether it is referenced or not.
1009 		 */
1010 		d_shrink_del(dentry);
1011 
1012 		/*
1013 		 * We found an inuse dentry which was not removed from
1014 		 * the LRU because of laziness during lookup. Do not free it.
1015 		 */
1016 		if (dentry->d_lockref.count > 0) {
1017 			spin_unlock(&dentry->d_lock);
1018 			if (parent)
1019 				spin_unlock(&parent->d_lock);
1020 			continue;
1021 		}
1022 
1023 
1024 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1025 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1026 			spin_unlock(&dentry->d_lock);
1027 			if (parent)
1028 				spin_unlock(&parent->d_lock);
1029 			if (can_free)
1030 				dentry_free(dentry);
1031 			continue;
1032 		}
1033 
1034 		inode = dentry->d_inode;
1035 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1036 			d_shrink_add(dentry, list);
1037 			spin_unlock(&dentry->d_lock);
1038 			if (parent)
1039 				spin_unlock(&parent->d_lock);
1040 			continue;
1041 		}
1042 
1043 		__dentry_kill(dentry);
1044 
1045 		/*
1046 		 * We need to prune ancestors too. This is necessary to prevent
1047 		 * quadratic behavior of shrink_dcache_parent(), but is also
1048 		 * expected to be beneficial in reducing dentry cache
1049 		 * fragmentation.
1050 		 */
1051 		dentry = parent;
1052 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1053 			parent = lock_parent(dentry);
1054 			if (dentry->d_lockref.count != 1) {
1055 				dentry->d_lockref.count--;
1056 				spin_unlock(&dentry->d_lock);
1057 				if (parent)
1058 					spin_unlock(&parent->d_lock);
1059 				break;
1060 			}
1061 			inode = dentry->d_inode;	/* can't be NULL */
1062 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1063 				spin_unlock(&dentry->d_lock);
1064 				if (parent)
1065 					spin_unlock(&parent->d_lock);
1066 				cpu_relax();
1067 				continue;
1068 			}
1069 			__dentry_kill(dentry);
1070 			dentry = parent;
1071 		}
1072 	}
1073 }
1074 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1075 static enum lru_status dentry_lru_isolate(struct list_head *item,
1076 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1077 {
1078 	struct list_head *freeable = arg;
1079 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1080 
1081 
1082 	/*
1083 	 * we are inverting the lru lock/dentry->d_lock here,
1084 	 * so use a trylock. If we fail to get the lock, just skip
1085 	 * it
1086 	 */
1087 	if (!spin_trylock(&dentry->d_lock))
1088 		return LRU_SKIP;
1089 
1090 	/*
1091 	 * Referenced dentries are still in use. If they have active
1092 	 * counts, just remove them from the LRU. Otherwise give them
1093 	 * another pass through the LRU.
1094 	 */
1095 	if (dentry->d_lockref.count) {
1096 		d_lru_isolate(lru, dentry);
1097 		spin_unlock(&dentry->d_lock);
1098 		return LRU_REMOVED;
1099 	}
1100 
1101 	if (dentry->d_flags & DCACHE_REFERENCED) {
1102 		dentry->d_flags &= ~DCACHE_REFERENCED;
1103 		spin_unlock(&dentry->d_lock);
1104 
1105 		/*
1106 		 * The list move itself will be made by the common LRU code. At
1107 		 * this point, we've dropped the dentry->d_lock but keep the
1108 		 * lru lock. This is safe to do, since every list movement is
1109 		 * protected by the lru lock even if both locks are held.
1110 		 *
1111 		 * This is guaranteed by the fact that all LRU management
1112 		 * functions are intermediated by the LRU API calls like
1113 		 * list_lru_add and list_lru_del. List movement in this file
1114 		 * only ever occur through this functions or through callbacks
1115 		 * like this one, that are called from the LRU API.
1116 		 *
1117 		 * The only exceptions to this are functions like
1118 		 * shrink_dentry_list, and code that first checks for the
1119 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1120 		 * operating only with stack provided lists after they are
1121 		 * properly isolated from the main list.  It is thus, always a
1122 		 * local access.
1123 		 */
1124 		return LRU_ROTATE;
1125 	}
1126 
1127 	d_lru_shrink_move(lru, dentry, freeable);
1128 	spin_unlock(&dentry->d_lock);
1129 
1130 	return LRU_REMOVED;
1131 }
1132 
1133 /**
1134  * prune_dcache_sb - shrink the dcache
1135  * @sb: superblock
1136  * @sc: shrink control, passed to list_lru_shrink_walk()
1137  *
1138  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1139  * is done when we need more memory and called from the superblock shrinker
1140  * function.
1141  *
1142  * This function may fail to free any resources if all the dentries are in
1143  * use.
1144  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1145 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1146 {
1147 	LIST_HEAD(dispose);
1148 	long freed;
1149 
1150 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1151 				     dentry_lru_isolate, &dispose);
1152 	shrink_dentry_list(&dispose);
1153 	return freed;
1154 }
1155 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1156 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1157 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1158 {
1159 	struct list_head *freeable = arg;
1160 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1161 
1162 	/*
1163 	 * we are inverting the lru lock/dentry->d_lock here,
1164 	 * so use a trylock. If we fail to get the lock, just skip
1165 	 * it
1166 	 */
1167 	if (!spin_trylock(&dentry->d_lock))
1168 		return LRU_SKIP;
1169 
1170 	d_lru_shrink_move(lru, dentry, freeable);
1171 	spin_unlock(&dentry->d_lock);
1172 
1173 	return LRU_REMOVED;
1174 }
1175 
1176 
1177 /**
1178  * shrink_dcache_sb - shrink dcache for a superblock
1179  * @sb: superblock
1180  *
1181  * Shrink the dcache for the specified super block. This is used to free
1182  * the dcache before unmounting a file system.
1183  */
shrink_dcache_sb(struct super_block * sb)1184 void shrink_dcache_sb(struct super_block *sb)
1185 {
1186 	do {
1187 		LIST_HEAD(dispose);
1188 
1189 		list_lru_walk(&sb->s_dentry_lru,
1190 			dentry_lru_isolate_shrink, &dispose, 1024);
1191 		shrink_dentry_list(&dispose);
1192 		cond_resched();
1193 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1194 }
1195 EXPORT_SYMBOL(shrink_dcache_sb);
1196 
1197 /**
1198  * enum d_walk_ret - action to talke during tree walk
1199  * @D_WALK_CONTINUE:	contrinue walk
1200  * @D_WALK_QUIT:	quit walk
1201  * @D_WALK_NORETRY:	quit when retry is needed
1202  * @D_WALK_SKIP:	skip this dentry and its children
1203  */
1204 enum d_walk_ret {
1205 	D_WALK_CONTINUE,
1206 	D_WALK_QUIT,
1207 	D_WALK_NORETRY,
1208 	D_WALK_SKIP,
1209 };
1210 
1211 /**
1212  * d_walk - walk the dentry tree
1213  * @parent:	start of walk
1214  * @data:	data passed to @enter() and @finish()
1215  * @enter:	callback when first entering the dentry
1216  * @finish:	callback when successfully finished the walk
1217  *
1218  * The @enter() and @finish() callbacks are called with d_lock held.
1219  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1220 static void d_walk(struct dentry *parent, void *data,
1221 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1222 		   void (*finish)(void *))
1223 {
1224 	struct dentry *this_parent;
1225 	struct list_head *next;
1226 	unsigned seq = 0;
1227 	enum d_walk_ret ret;
1228 	bool retry = true;
1229 
1230 again:
1231 	read_seqbegin_or_lock(&rename_lock, &seq);
1232 	this_parent = parent;
1233 	spin_lock(&this_parent->d_lock);
1234 
1235 	ret = enter(data, this_parent);
1236 	switch (ret) {
1237 	case D_WALK_CONTINUE:
1238 		break;
1239 	case D_WALK_QUIT:
1240 	case D_WALK_SKIP:
1241 		goto out_unlock;
1242 	case D_WALK_NORETRY:
1243 		retry = false;
1244 		break;
1245 	}
1246 repeat:
1247 	next = this_parent->d_subdirs.next;
1248 resume:
1249 	while (next != &this_parent->d_subdirs) {
1250 		struct list_head *tmp = next;
1251 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1252 		next = tmp->next;
1253 
1254 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1255 			continue;
1256 
1257 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1258 
1259 		ret = enter(data, dentry);
1260 		switch (ret) {
1261 		case D_WALK_CONTINUE:
1262 			break;
1263 		case D_WALK_QUIT:
1264 			spin_unlock(&dentry->d_lock);
1265 			goto out_unlock;
1266 		case D_WALK_NORETRY:
1267 			retry = false;
1268 			break;
1269 		case D_WALK_SKIP:
1270 			spin_unlock(&dentry->d_lock);
1271 			continue;
1272 		}
1273 
1274 		if (!list_empty(&dentry->d_subdirs)) {
1275 			spin_unlock(&this_parent->d_lock);
1276 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1277 			this_parent = dentry;
1278 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1279 			goto repeat;
1280 		}
1281 		spin_unlock(&dentry->d_lock);
1282 	}
1283 	/*
1284 	 * All done at this level ... ascend and resume the search.
1285 	 */
1286 	rcu_read_lock();
1287 ascend:
1288 	if (this_parent != parent) {
1289 		struct dentry *child = this_parent;
1290 		this_parent = child->d_parent;
1291 
1292 		spin_unlock(&child->d_lock);
1293 		spin_lock(&this_parent->d_lock);
1294 
1295 		/* might go back up the wrong parent if we have had a rename. */
1296 		if (need_seqretry(&rename_lock, seq))
1297 			goto rename_retry;
1298 		/* go into the first sibling still alive */
1299 		do {
1300 			next = child->d_child.next;
1301 			if (next == &this_parent->d_subdirs)
1302 				goto ascend;
1303 			child = list_entry(next, struct dentry, d_child);
1304 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1305 		rcu_read_unlock();
1306 		goto resume;
1307 	}
1308 	if (need_seqretry(&rename_lock, seq))
1309 		goto rename_retry;
1310 	rcu_read_unlock();
1311 	if (finish)
1312 		finish(data);
1313 
1314 out_unlock:
1315 	spin_unlock(&this_parent->d_lock);
1316 	done_seqretry(&rename_lock, seq);
1317 	return;
1318 
1319 rename_retry:
1320 	spin_unlock(&this_parent->d_lock);
1321 	rcu_read_unlock();
1322 	BUG_ON(seq & 1);
1323 	if (!retry)
1324 		return;
1325 	seq = 1;
1326 	goto again;
1327 }
1328 
1329 struct check_mount {
1330 	struct vfsmount *mnt;
1331 	unsigned int mounted;
1332 };
1333 
path_check_mount(void * data,struct dentry * dentry)1334 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1335 {
1336 	struct check_mount *info = data;
1337 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1338 
1339 	if (likely(!d_mountpoint(dentry)))
1340 		return D_WALK_CONTINUE;
1341 	if (__path_is_mountpoint(&path)) {
1342 		info->mounted = 1;
1343 		return D_WALK_QUIT;
1344 	}
1345 	return D_WALK_CONTINUE;
1346 }
1347 
1348 /**
1349  * path_has_submounts - check for mounts over a dentry in the
1350  *                      current namespace.
1351  * @parent: path to check.
1352  *
1353  * Return true if the parent or its subdirectories contain
1354  * a mount point in the current namespace.
1355  */
path_has_submounts(const struct path * parent)1356 int path_has_submounts(const struct path *parent)
1357 {
1358 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1359 
1360 	read_seqlock_excl(&mount_lock);
1361 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1362 	read_sequnlock_excl(&mount_lock);
1363 
1364 	return data.mounted;
1365 }
1366 EXPORT_SYMBOL(path_has_submounts);
1367 
1368 /*
1369  * Called by mount code to set a mountpoint and check if the mountpoint is
1370  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1371  * subtree can become unreachable).
1372  *
1373  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1374  * this reason take rename_lock and d_lock on dentry and ancestors.
1375  */
d_set_mounted(struct dentry * dentry)1376 int d_set_mounted(struct dentry *dentry)
1377 {
1378 	struct dentry *p;
1379 	int ret = -ENOENT;
1380 	write_seqlock(&rename_lock);
1381 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1382 		/* Need exclusion wrt. d_invalidate() */
1383 		spin_lock(&p->d_lock);
1384 		if (unlikely(d_unhashed(p))) {
1385 			spin_unlock(&p->d_lock);
1386 			goto out;
1387 		}
1388 		spin_unlock(&p->d_lock);
1389 	}
1390 	spin_lock(&dentry->d_lock);
1391 	if (!d_unlinked(dentry)) {
1392 		ret = -EBUSY;
1393 		if (!d_mountpoint(dentry)) {
1394 			dentry->d_flags |= DCACHE_MOUNTED;
1395 			ret = 0;
1396 		}
1397 	}
1398  	spin_unlock(&dentry->d_lock);
1399 out:
1400 	write_sequnlock(&rename_lock);
1401 	return ret;
1402 }
1403 
1404 /*
1405  * Search the dentry child list of the specified parent,
1406  * and move any unused dentries to the end of the unused
1407  * list for prune_dcache(). We descend to the next level
1408  * whenever the d_subdirs list is non-empty and continue
1409  * searching.
1410  *
1411  * It returns zero iff there are no unused children,
1412  * otherwise  it returns the number of children moved to
1413  * the end of the unused list. This may not be the total
1414  * number of unused children, because select_parent can
1415  * drop the lock and return early due to latency
1416  * constraints.
1417  */
1418 
1419 struct select_data {
1420 	struct dentry *start;
1421 	struct list_head dispose;
1422 	int found;
1423 };
1424 
select_collect(void * _data,struct dentry * dentry)1425 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1426 {
1427 	struct select_data *data = _data;
1428 	enum d_walk_ret ret = D_WALK_CONTINUE;
1429 
1430 	if (data->start == dentry)
1431 		goto out;
1432 
1433 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1434 		data->found++;
1435 	} else {
1436 		if (dentry->d_flags & DCACHE_LRU_LIST)
1437 			d_lru_del(dentry);
1438 		if (!dentry->d_lockref.count) {
1439 			d_shrink_add(dentry, &data->dispose);
1440 			data->found++;
1441 		}
1442 	}
1443 	/*
1444 	 * We can return to the caller if we have found some (this
1445 	 * ensures forward progress). We'll be coming back to find
1446 	 * the rest.
1447 	 */
1448 	if (!list_empty(&data->dispose))
1449 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1450 out:
1451 	return ret;
1452 }
1453 
1454 /**
1455  * shrink_dcache_parent - prune dcache
1456  * @parent: parent of entries to prune
1457  *
1458  * Prune the dcache to remove unused children of the parent dentry.
1459  */
shrink_dcache_parent(struct dentry * parent)1460 void shrink_dcache_parent(struct dentry *parent)
1461 {
1462 	for (;;) {
1463 		struct select_data data;
1464 
1465 		INIT_LIST_HEAD(&data.dispose);
1466 		data.start = parent;
1467 		data.found = 0;
1468 
1469 		d_walk(parent, &data, select_collect, NULL);
1470 		if (!data.found)
1471 			break;
1472 
1473 		shrink_dentry_list(&data.dispose);
1474 		cond_resched();
1475 	}
1476 }
1477 EXPORT_SYMBOL(shrink_dcache_parent);
1478 
umount_check(void * _data,struct dentry * dentry)1479 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1480 {
1481 	/* it has busy descendents; complain about those instead */
1482 	if (!list_empty(&dentry->d_subdirs))
1483 		return D_WALK_CONTINUE;
1484 
1485 	/* root with refcount 1 is fine */
1486 	if (dentry == _data && dentry->d_lockref.count == 1)
1487 		return D_WALK_CONTINUE;
1488 
1489 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1490 			" still in use (%d) [unmount of %s %s]\n",
1491 		       dentry,
1492 		       dentry->d_inode ?
1493 		       dentry->d_inode->i_ino : 0UL,
1494 		       dentry,
1495 		       dentry->d_lockref.count,
1496 		       dentry->d_sb->s_type->name,
1497 		       dentry->d_sb->s_id);
1498 	WARN_ON(1);
1499 	return D_WALK_CONTINUE;
1500 }
1501 
do_one_tree(struct dentry * dentry)1502 static void do_one_tree(struct dentry *dentry)
1503 {
1504 	shrink_dcache_parent(dentry);
1505 	d_walk(dentry, dentry, umount_check, NULL);
1506 	d_drop(dentry);
1507 	dput(dentry);
1508 }
1509 
1510 /*
1511  * destroy the dentries attached to a superblock on unmounting
1512  */
shrink_dcache_for_umount(struct super_block * sb)1513 void shrink_dcache_for_umount(struct super_block *sb)
1514 {
1515 	struct dentry *dentry;
1516 
1517 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1518 
1519 	dentry = sb->s_root;
1520 	sb->s_root = NULL;
1521 	do_one_tree(dentry);
1522 
1523 	while (!hlist_bl_empty(&sb->s_anon)) {
1524 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1525 		do_one_tree(dentry);
1526 	}
1527 }
1528 
1529 struct detach_data {
1530 	struct select_data select;
1531 	struct dentry *mountpoint;
1532 };
detach_and_collect(void * _data,struct dentry * dentry)1533 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1534 {
1535 	struct detach_data *data = _data;
1536 
1537 	if (d_mountpoint(dentry)) {
1538 		__dget_dlock(dentry);
1539 		data->mountpoint = dentry;
1540 		return D_WALK_QUIT;
1541 	}
1542 
1543 	return select_collect(&data->select, dentry);
1544 }
1545 
check_and_drop(void * _data)1546 static void check_and_drop(void *_data)
1547 {
1548 	struct detach_data *data = _data;
1549 
1550 	if (!data->mountpoint && list_empty(&data->select.dispose))
1551 		__d_drop(data->select.start);
1552 }
1553 
1554 /**
1555  * d_invalidate - detach submounts, prune dcache, and drop
1556  * @dentry: dentry to invalidate (aka detach, prune and drop)
1557  *
1558  * no dcache lock.
1559  *
1560  * The final d_drop is done as an atomic operation relative to
1561  * rename_lock ensuring there are no races with d_set_mounted.  This
1562  * ensures there are no unhashed dentries on the path to a mountpoint.
1563  */
d_invalidate(struct dentry * dentry)1564 void d_invalidate(struct dentry *dentry)
1565 {
1566 	/*
1567 	 * If it's already been dropped, return OK.
1568 	 */
1569 	spin_lock(&dentry->d_lock);
1570 	if (d_unhashed(dentry)) {
1571 		spin_unlock(&dentry->d_lock);
1572 		return;
1573 	}
1574 	spin_unlock(&dentry->d_lock);
1575 
1576 	/* Negative dentries can be dropped without further checks */
1577 	if (!dentry->d_inode) {
1578 		d_drop(dentry);
1579 		return;
1580 	}
1581 
1582 	for (;;) {
1583 		struct detach_data data;
1584 
1585 		data.mountpoint = NULL;
1586 		INIT_LIST_HEAD(&data.select.dispose);
1587 		data.select.start = dentry;
1588 		data.select.found = 0;
1589 
1590 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1591 
1592 		if (!list_empty(&data.select.dispose))
1593 			shrink_dentry_list(&data.select.dispose);
1594 		else if (!data.mountpoint)
1595 			return;
1596 
1597 		if (data.mountpoint) {
1598 			detach_mounts(data.mountpoint);
1599 			dput(data.mountpoint);
1600 		}
1601 		cond_resched();
1602 	}
1603 }
1604 EXPORT_SYMBOL(d_invalidate);
1605 
1606 /**
1607  * __d_alloc	-	allocate a dcache entry
1608  * @sb: filesystem it will belong to
1609  * @name: qstr of the name
1610  *
1611  * Allocates a dentry. It returns %NULL if there is insufficient memory
1612  * available. On a success the dentry is returned. The name passed in is
1613  * copied and the copy passed in may be reused after this call.
1614  */
1615 
__d_alloc(struct super_block * sb,const struct qstr * name)1616 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1617 {
1618 	struct external_name *ext = NULL;
1619 	struct dentry *dentry;
1620 	char *dname;
1621 	int err;
1622 
1623 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1624 	if (!dentry)
1625 		return NULL;
1626 
1627 	/*
1628 	 * We guarantee that the inline name is always NUL-terminated.
1629 	 * This way the memcpy() done by the name switching in rename
1630 	 * will still always have a NUL at the end, even if we might
1631 	 * be overwriting an internal NUL character
1632 	 */
1633 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1634 	if (unlikely(!name)) {
1635 		name = &slash_name;
1636 		dname = dentry->d_iname;
1637 	} else if (name->len > DNAME_INLINE_LEN-1) {
1638 		size_t size = offsetof(struct external_name, name[1]);
1639 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1640 		if (!ext) {
1641 			kmem_cache_free(dentry_cache, dentry);
1642 			return NULL;
1643 		}
1644 		atomic_set(&ext->u.count, 1);
1645 		dname = ext->name;
1646 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1647 			kasan_unpoison_shadow(dname,
1648 				round_up(name->len + 1,	sizeof(unsigned long)));
1649 	} else  {
1650 		dname = dentry->d_iname;
1651 	}
1652 
1653 	dentry->d_name.len = name->len;
1654 	dentry->d_name.hash = name->hash;
1655 	memcpy(dname, name->name, name->len);
1656 	dname[name->len] = 0;
1657 
1658 	/* Make sure we always see the terminating NUL character */
1659 	smp_wmb();
1660 	dentry->d_name.name = dname;
1661 
1662 	dentry->d_lockref.count = 1;
1663 	dentry->d_flags = 0;
1664 	spin_lock_init(&dentry->d_lock);
1665 	seqcount_init(&dentry->d_seq);
1666 	dentry->d_inode = NULL;
1667 	dentry->d_parent = dentry;
1668 	dentry->d_sb = sb;
1669 	dentry->d_op = NULL;
1670 	dentry->d_fsdata = NULL;
1671 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1672 	INIT_LIST_HEAD(&dentry->d_lru);
1673 	INIT_LIST_HEAD(&dentry->d_subdirs);
1674 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1675 	INIT_LIST_HEAD(&dentry->d_child);
1676 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1677 
1678 	if (dentry->d_op && dentry->d_op->d_init) {
1679 		err = dentry->d_op->d_init(dentry);
1680 		if (err) {
1681 			if (dname_external(dentry))
1682 				kfree(external_name(dentry));
1683 			kmem_cache_free(dentry_cache, dentry);
1684 			return NULL;
1685 		}
1686 	}
1687 
1688 	if (unlikely(ext)) {
1689 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1690 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1691 				    ksize(ext));
1692 	}
1693 
1694 	this_cpu_inc(nr_dentry);
1695 
1696 	return dentry;
1697 }
1698 
1699 /**
1700  * d_alloc	-	allocate a dcache entry
1701  * @parent: parent of entry to allocate
1702  * @name: qstr of the name
1703  *
1704  * Allocates a dentry. It returns %NULL if there is insufficient memory
1705  * available. On a success the dentry is returned. The name passed in is
1706  * copied and the copy passed in may be reused after this call.
1707  */
d_alloc(struct dentry * parent,const struct qstr * name)1708 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1709 {
1710 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1711 	if (!dentry)
1712 		return NULL;
1713 	dentry->d_flags |= DCACHE_RCUACCESS;
1714 	spin_lock(&parent->d_lock);
1715 	/*
1716 	 * don't need child lock because it is not subject
1717 	 * to concurrency here
1718 	 */
1719 	__dget_dlock(parent);
1720 	dentry->d_parent = parent;
1721 	list_add(&dentry->d_child, &parent->d_subdirs);
1722 	spin_unlock(&parent->d_lock);
1723 
1724 	return dentry;
1725 }
1726 EXPORT_SYMBOL(d_alloc);
1727 
d_alloc_cursor(struct dentry * parent)1728 struct dentry *d_alloc_cursor(struct dentry * parent)
1729 {
1730 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1731 	if (dentry) {
1732 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1733 		dentry->d_parent = dget(parent);
1734 	}
1735 	return dentry;
1736 }
1737 
1738 /**
1739  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1740  * @sb: the superblock
1741  * @name: qstr of the name
1742  *
1743  * For a filesystem that just pins its dentries in memory and never
1744  * performs lookups at all, return an unhashed IS_ROOT dentry.
1745  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1746 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1747 {
1748 	return __d_alloc(sb, name);
1749 }
1750 EXPORT_SYMBOL(d_alloc_pseudo);
1751 
d_alloc_name(struct dentry * parent,const char * name)1752 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1753 {
1754 	struct qstr q;
1755 
1756 	q.name = name;
1757 	q.hash_len = hashlen_string(parent, name);
1758 	return d_alloc(parent, &q);
1759 }
1760 EXPORT_SYMBOL(d_alloc_name);
1761 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1762 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1763 {
1764 	WARN_ON_ONCE(dentry->d_op);
1765 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1766 				DCACHE_OP_COMPARE	|
1767 				DCACHE_OP_REVALIDATE	|
1768 				DCACHE_OP_WEAK_REVALIDATE	|
1769 				DCACHE_OP_DELETE	|
1770 				DCACHE_OP_REAL));
1771 	dentry->d_op = op;
1772 	if (!op)
1773 		return;
1774 	if (op->d_hash)
1775 		dentry->d_flags |= DCACHE_OP_HASH;
1776 	if (op->d_compare)
1777 		dentry->d_flags |= DCACHE_OP_COMPARE;
1778 	if (op->d_revalidate)
1779 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1780 	if (op->d_weak_revalidate)
1781 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1782 	if (op->d_delete)
1783 		dentry->d_flags |= DCACHE_OP_DELETE;
1784 	if (op->d_prune)
1785 		dentry->d_flags |= DCACHE_OP_PRUNE;
1786 	if (op->d_real)
1787 		dentry->d_flags |= DCACHE_OP_REAL;
1788 
1789 }
1790 EXPORT_SYMBOL(d_set_d_op);
1791 
1792 
1793 /*
1794  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1795  * @dentry - The dentry to mark
1796  *
1797  * Mark a dentry as falling through to the lower layer (as set with
1798  * d_pin_lower()).  This flag may be recorded on the medium.
1799  */
d_set_fallthru(struct dentry * dentry)1800 void d_set_fallthru(struct dentry *dentry)
1801 {
1802 	spin_lock(&dentry->d_lock);
1803 	dentry->d_flags |= DCACHE_FALLTHRU;
1804 	spin_unlock(&dentry->d_lock);
1805 }
1806 EXPORT_SYMBOL(d_set_fallthru);
1807 
d_flags_for_inode(struct inode * inode)1808 static unsigned d_flags_for_inode(struct inode *inode)
1809 {
1810 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1811 
1812 	if (!inode)
1813 		return DCACHE_MISS_TYPE;
1814 
1815 	if (S_ISDIR(inode->i_mode)) {
1816 		add_flags = DCACHE_DIRECTORY_TYPE;
1817 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1818 			if (unlikely(!inode->i_op->lookup))
1819 				add_flags = DCACHE_AUTODIR_TYPE;
1820 			else
1821 				inode->i_opflags |= IOP_LOOKUP;
1822 		}
1823 		goto type_determined;
1824 	}
1825 
1826 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1827 		if (unlikely(inode->i_op->get_link)) {
1828 			add_flags = DCACHE_SYMLINK_TYPE;
1829 			goto type_determined;
1830 		}
1831 		inode->i_opflags |= IOP_NOFOLLOW;
1832 	}
1833 
1834 	if (unlikely(!S_ISREG(inode->i_mode)))
1835 		add_flags = DCACHE_SPECIAL_TYPE;
1836 
1837 type_determined:
1838 	if (unlikely(IS_AUTOMOUNT(inode)))
1839 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1840 	return add_flags;
1841 }
1842 
__d_instantiate(struct dentry * dentry,struct inode * inode)1843 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1844 {
1845 	unsigned add_flags = d_flags_for_inode(inode);
1846 	WARN_ON(d_in_lookup(dentry));
1847 
1848 	spin_lock(&dentry->d_lock);
1849 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1850 	raw_write_seqcount_begin(&dentry->d_seq);
1851 	__d_set_inode_and_type(dentry, inode, add_flags);
1852 	raw_write_seqcount_end(&dentry->d_seq);
1853 	fsnotify_update_flags(dentry);
1854 	spin_unlock(&dentry->d_lock);
1855 }
1856 
1857 /**
1858  * d_instantiate - fill in inode information for a dentry
1859  * @entry: dentry to complete
1860  * @inode: inode to attach to this dentry
1861  *
1862  * Fill in inode information in the entry.
1863  *
1864  * This turns negative dentries into productive full members
1865  * of society.
1866  *
1867  * NOTE! This assumes that the inode count has been incremented
1868  * (or otherwise set) by the caller to indicate that it is now
1869  * in use by the dcache.
1870  */
1871 
d_instantiate(struct dentry * entry,struct inode * inode)1872 void d_instantiate(struct dentry *entry, struct inode * inode)
1873 {
1874 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1875 	if (inode) {
1876 		security_d_instantiate(entry, inode);
1877 		spin_lock(&inode->i_lock);
1878 		__d_instantiate(entry, inode);
1879 		spin_unlock(&inode->i_lock);
1880 	}
1881 }
1882 EXPORT_SYMBOL(d_instantiate);
1883 
1884 /*
1885  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1886  * with lockdep-related part of unlock_new_inode() done before
1887  * anything else.  Use that instead of open-coding d_instantiate()/
1888  * unlock_new_inode() combinations.
1889  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1890 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1891 {
1892 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1893 	BUG_ON(!inode);
1894 	lockdep_annotate_inode_mutex_key(inode);
1895 	security_d_instantiate(entry, inode);
1896 	spin_lock(&inode->i_lock);
1897 	__d_instantiate(entry, inode);
1898 	WARN_ON(!(inode->i_state & I_NEW));
1899 	inode->i_state &= ~I_NEW;
1900 	smp_mb();
1901 	wake_up_bit(&inode->i_state, __I_NEW);
1902 	spin_unlock(&inode->i_lock);
1903 }
1904 EXPORT_SYMBOL(d_instantiate_new);
1905 
1906 /**
1907  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1908  * @entry: dentry to complete
1909  * @inode: inode to attach to this dentry
1910  *
1911  * Fill in inode information in the entry.  If a directory alias is found, then
1912  * return an error (and drop inode).  Together with d_materialise_unique() this
1913  * guarantees that a directory inode may never have more than one alias.
1914  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1915 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1916 {
1917 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1918 
1919 	security_d_instantiate(entry, inode);
1920 	spin_lock(&inode->i_lock);
1921 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1922 		spin_unlock(&inode->i_lock);
1923 		iput(inode);
1924 		return -EBUSY;
1925 	}
1926 	__d_instantiate(entry, inode);
1927 	spin_unlock(&inode->i_lock);
1928 
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL(d_instantiate_no_diralias);
1932 
d_make_root(struct inode * root_inode)1933 struct dentry *d_make_root(struct inode *root_inode)
1934 {
1935 	struct dentry *res = NULL;
1936 
1937 	if (root_inode) {
1938 		res = __d_alloc(root_inode->i_sb, NULL);
1939 		if (res) {
1940 			res->d_flags |= DCACHE_RCUACCESS;
1941 			d_instantiate(res, root_inode);
1942 		} else {
1943 			iput(root_inode);
1944 		}
1945 	}
1946 	return res;
1947 }
1948 EXPORT_SYMBOL(d_make_root);
1949 
__d_find_any_alias(struct inode * inode)1950 static struct dentry * __d_find_any_alias(struct inode *inode)
1951 {
1952 	struct dentry *alias;
1953 
1954 	if (hlist_empty(&inode->i_dentry))
1955 		return NULL;
1956 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1957 	__dget(alias);
1958 	return alias;
1959 }
1960 
1961 /**
1962  * d_find_any_alias - find any alias for a given inode
1963  * @inode: inode to find an alias for
1964  *
1965  * If any aliases exist for the given inode, take and return a
1966  * reference for one of them.  If no aliases exist, return %NULL.
1967  */
d_find_any_alias(struct inode * inode)1968 struct dentry *d_find_any_alias(struct inode *inode)
1969 {
1970 	struct dentry *de;
1971 
1972 	spin_lock(&inode->i_lock);
1973 	de = __d_find_any_alias(inode);
1974 	spin_unlock(&inode->i_lock);
1975 	return de;
1976 }
1977 EXPORT_SYMBOL(d_find_any_alias);
1978 
__d_obtain_alias(struct inode * inode,int disconnected)1979 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1980 {
1981 	struct dentry *tmp;
1982 	struct dentry *res;
1983 	unsigned add_flags;
1984 
1985 	if (!inode)
1986 		return ERR_PTR(-ESTALE);
1987 	if (IS_ERR(inode))
1988 		return ERR_CAST(inode);
1989 
1990 	res = d_find_any_alias(inode);
1991 	if (res)
1992 		goto out_iput;
1993 
1994 	tmp = __d_alloc(inode->i_sb, NULL);
1995 	if (!tmp) {
1996 		res = ERR_PTR(-ENOMEM);
1997 		goto out_iput;
1998 	}
1999 
2000 	security_d_instantiate(tmp, inode);
2001 	spin_lock(&inode->i_lock);
2002 	res = __d_find_any_alias(inode);
2003 	if (res) {
2004 		spin_unlock(&inode->i_lock);
2005 		dput(tmp);
2006 		goto out_iput;
2007 	}
2008 
2009 	/* attach a disconnected dentry */
2010 	add_flags = d_flags_for_inode(inode);
2011 
2012 	if (disconnected)
2013 		add_flags |= DCACHE_DISCONNECTED;
2014 
2015 	spin_lock(&tmp->d_lock);
2016 	__d_set_inode_and_type(tmp, inode, add_flags);
2017 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2018 	hlist_bl_lock(&tmp->d_sb->s_anon);
2019 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2020 	hlist_bl_unlock(&tmp->d_sb->s_anon);
2021 	spin_unlock(&tmp->d_lock);
2022 	spin_unlock(&inode->i_lock);
2023 
2024 	return tmp;
2025 
2026  out_iput:
2027 	iput(inode);
2028 	return res;
2029 }
2030 
2031 /**
2032  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2033  * @inode: inode to allocate the dentry for
2034  *
2035  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2036  * similar open by handle operations.  The returned dentry may be anonymous,
2037  * or may have a full name (if the inode was already in the cache).
2038  *
2039  * When called on a directory inode, we must ensure that the inode only ever
2040  * has one dentry.  If a dentry is found, that is returned instead of
2041  * allocating a new one.
2042  *
2043  * On successful return, the reference to the inode has been transferred
2044  * to the dentry.  In case of an error the reference on the inode is released.
2045  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2046  * be passed in and the error will be propagated to the return value,
2047  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2048  */
d_obtain_alias(struct inode * inode)2049 struct dentry *d_obtain_alias(struct inode *inode)
2050 {
2051 	return __d_obtain_alias(inode, 1);
2052 }
2053 EXPORT_SYMBOL(d_obtain_alias);
2054 
2055 /**
2056  * d_obtain_root - find or allocate a dentry for a given inode
2057  * @inode: inode to allocate the dentry for
2058  *
2059  * Obtain an IS_ROOT dentry for the root of a filesystem.
2060  *
2061  * We must ensure that directory inodes only ever have one dentry.  If a
2062  * dentry is found, that is returned instead of allocating a new one.
2063  *
2064  * On successful return, the reference to the inode has been transferred
2065  * to the dentry.  In case of an error the reference on the inode is
2066  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2067  * error will be propagate to the return value, with a %NULL @inode
2068  * replaced by ERR_PTR(-ESTALE).
2069  */
d_obtain_root(struct inode * inode)2070 struct dentry *d_obtain_root(struct inode *inode)
2071 {
2072 	return __d_obtain_alias(inode, 0);
2073 }
2074 EXPORT_SYMBOL(d_obtain_root);
2075 
2076 /**
2077  * d_add_ci - lookup or allocate new dentry with case-exact name
2078  * @inode:  the inode case-insensitive lookup has found
2079  * @dentry: the negative dentry that was passed to the parent's lookup func
2080  * @name:   the case-exact name to be associated with the returned dentry
2081  *
2082  * This is to avoid filling the dcache with case-insensitive names to the
2083  * same inode, only the actual correct case is stored in the dcache for
2084  * case-insensitive filesystems.
2085  *
2086  * For a case-insensitive lookup match and if the the case-exact dentry
2087  * already exists in in the dcache, use it and return it.
2088  *
2089  * If no entry exists with the exact case name, allocate new dentry with
2090  * the exact case, and return the spliced entry.
2091  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2092 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2093 			struct qstr *name)
2094 {
2095 	struct dentry *found, *res;
2096 
2097 	/*
2098 	 * First check if a dentry matching the name already exists,
2099 	 * if not go ahead and create it now.
2100 	 */
2101 	found = d_hash_and_lookup(dentry->d_parent, name);
2102 	if (found) {
2103 		iput(inode);
2104 		return found;
2105 	}
2106 	if (d_in_lookup(dentry)) {
2107 		found = d_alloc_parallel(dentry->d_parent, name,
2108 					dentry->d_wait);
2109 		if (IS_ERR(found) || !d_in_lookup(found)) {
2110 			iput(inode);
2111 			return found;
2112 		}
2113 	} else {
2114 		found = d_alloc(dentry->d_parent, name);
2115 		if (!found) {
2116 			iput(inode);
2117 			return ERR_PTR(-ENOMEM);
2118 		}
2119 	}
2120 	res = d_splice_alias(inode, found);
2121 	if (res) {
2122 		dput(found);
2123 		return res;
2124 	}
2125 	return found;
2126 }
2127 EXPORT_SYMBOL(d_add_ci);
2128 
2129 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2130 static inline bool d_same_name(const struct dentry *dentry,
2131 				const struct dentry *parent,
2132 				const struct qstr *name)
2133 {
2134 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2135 		if (dentry->d_name.len != name->len)
2136 			return false;
2137 		return dentry_cmp(dentry, name->name, name->len) == 0;
2138 	}
2139 	return parent->d_op->d_compare(dentry,
2140 				       dentry->d_name.len, dentry->d_name.name,
2141 				       name) == 0;
2142 }
2143 
2144 /**
2145  * __d_lookup_rcu - search for a dentry (racy, store-free)
2146  * @parent: parent dentry
2147  * @name: qstr of name we wish to find
2148  * @seqp: returns d_seq value at the point where the dentry was found
2149  * Returns: dentry, or NULL
2150  *
2151  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2152  * resolution (store-free path walking) design described in
2153  * Documentation/filesystems/path-lookup.txt.
2154  *
2155  * This is not to be used outside core vfs.
2156  *
2157  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2158  * held, and rcu_read_lock held. The returned dentry must not be stored into
2159  * without taking d_lock and checking d_seq sequence count against @seq
2160  * returned here.
2161  *
2162  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2163  * function.
2164  *
2165  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2166  * the returned dentry, so long as its parent's seqlock is checked after the
2167  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2168  * is formed, giving integrity down the path walk.
2169  *
2170  * NOTE! The caller *has* to check the resulting dentry against the sequence
2171  * number we've returned before using any of the resulting dentry state!
2172  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2173 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2174 				const struct qstr *name,
2175 				unsigned *seqp)
2176 {
2177 	u64 hashlen = name->hash_len;
2178 	const unsigned char *str = name->name;
2179 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2180 	struct hlist_bl_node *node;
2181 	struct dentry *dentry;
2182 
2183 	/*
2184 	 * Note: There is significant duplication with __d_lookup_rcu which is
2185 	 * required to prevent single threaded performance regressions
2186 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2187 	 * Keep the two functions in sync.
2188 	 */
2189 
2190 	/*
2191 	 * The hash list is protected using RCU.
2192 	 *
2193 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2194 	 * races with d_move().
2195 	 *
2196 	 * It is possible that concurrent renames can mess up our list
2197 	 * walk here and result in missing our dentry, resulting in the
2198 	 * false-negative result. d_lookup() protects against concurrent
2199 	 * renames using rename_lock seqlock.
2200 	 *
2201 	 * See Documentation/filesystems/path-lookup.txt for more details.
2202 	 */
2203 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2204 		unsigned seq;
2205 
2206 seqretry:
2207 		/*
2208 		 * The dentry sequence count protects us from concurrent
2209 		 * renames, and thus protects parent and name fields.
2210 		 *
2211 		 * The caller must perform a seqcount check in order
2212 		 * to do anything useful with the returned dentry.
2213 		 *
2214 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2215 		 * we don't wait for the sequence count to stabilize if it
2216 		 * is in the middle of a sequence change. If we do the slow
2217 		 * dentry compare, we will do seqretries until it is stable,
2218 		 * and if we end up with a successful lookup, we actually
2219 		 * want to exit RCU lookup anyway.
2220 		 *
2221 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2222 		 * we are still guaranteed NUL-termination of ->d_name.name.
2223 		 */
2224 		seq = raw_seqcount_begin(&dentry->d_seq);
2225 		if (dentry->d_parent != parent)
2226 			continue;
2227 		if (d_unhashed(dentry))
2228 			continue;
2229 
2230 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2231 			int tlen;
2232 			const char *tname;
2233 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2234 				continue;
2235 			tlen = dentry->d_name.len;
2236 			tname = dentry->d_name.name;
2237 			/* we want a consistent (name,len) pair */
2238 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2239 				cpu_relax();
2240 				goto seqretry;
2241 			}
2242 			if (parent->d_op->d_compare(dentry,
2243 						    tlen, tname, name) != 0)
2244 				continue;
2245 		} else {
2246 			if (dentry->d_name.hash_len != hashlen)
2247 				continue;
2248 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2249 				continue;
2250 		}
2251 		*seqp = seq;
2252 		return dentry;
2253 	}
2254 	return NULL;
2255 }
2256 
2257 /**
2258  * d_lookup - search for a dentry
2259  * @parent: parent dentry
2260  * @name: qstr of name we wish to find
2261  * Returns: dentry, or NULL
2262  *
2263  * d_lookup searches the children of the parent dentry for the name in
2264  * question. If the dentry is found its reference count is incremented and the
2265  * dentry is returned. The caller must use dput to free the entry when it has
2266  * finished using it. %NULL is returned if the dentry does not exist.
2267  */
d_lookup(const struct dentry * parent,const struct qstr * name)2268 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2269 {
2270 	struct dentry *dentry;
2271 	unsigned seq;
2272 
2273 	do {
2274 		seq = read_seqbegin(&rename_lock);
2275 		dentry = __d_lookup(parent, name);
2276 		if (dentry)
2277 			break;
2278 	} while (read_seqretry(&rename_lock, seq));
2279 	return dentry;
2280 }
2281 EXPORT_SYMBOL(d_lookup);
2282 
2283 /**
2284  * __d_lookup - search for a dentry (racy)
2285  * @parent: parent dentry
2286  * @name: qstr of name we wish to find
2287  * Returns: dentry, or NULL
2288  *
2289  * __d_lookup is like d_lookup, however it may (rarely) return a
2290  * false-negative result due to unrelated rename activity.
2291  *
2292  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2293  * however it must be used carefully, eg. with a following d_lookup in
2294  * the case of failure.
2295  *
2296  * __d_lookup callers must be commented.
2297  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2298 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2299 {
2300 	unsigned int hash = name->hash;
2301 	struct hlist_bl_head *b = d_hash(hash);
2302 	struct hlist_bl_node *node;
2303 	struct dentry *found = NULL;
2304 	struct dentry *dentry;
2305 
2306 	/*
2307 	 * Note: There is significant duplication with __d_lookup_rcu which is
2308 	 * required to prevent single threaded performance regressions
2309 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2310 	 * Keep the two functions in sync.
2311 	 */
2312 
2313 	/*
2314 	 * The hash list is protected using RCU.
2315 	 *
2316 	 * Take d_lock when comparing a candidate dentry, to avoid races
2317 	 * with d_move().
2318 	 *
2319 	 * It is possible that concurrent renames can mess up our list
2320 	 * walk here and result in missing our dentry, resulting in the
2321 	 * false-negative result. d_lookup() protects against concurrent
2322 	 * renames using rename_lock seqlock.
2323 	 *
2324 	 * See Documentation/filesystems/path-lookup.txt for more details.
2325 	 */
2326 	rcu_read_lock();
2327 
2328 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2329 
2330 		if (dentry->d_name.hash != hash)
2331 			continue;
2332 
2333 		spin_lock(&dentry->d_lock);
2334 		if (dentry->d_parent != parent)
2335 			goto next;
2336 		if (d_unhashed(dentry))
2337 			goto next;
2338 
2339 		if (!d_same_name(dentry, parent, name))
2340 			goto next;
2341 
2342 		dentry->d_lockref.count++;
2343 		found = dentry;
2344 		spin_unlock(&dentry->d_lock);
2345 		break;
2346 next:
2347 		spin_unlock(&dentry->d_lock);
2348  	}
2349  	rcu_read_unlock();
2350 
2351  	return found;
2352 }
2353 
2354 /**
2355  * d_hash_and_lookup - hash the qstr then search for a dentry
2356  * @dir: Directory to search in
2357  * @name: qstr of name we wish to find
2358  *
2359  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2360  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2361 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2362 {
2363 	/*
2364 	 * Check for a fs-specific hash function. Note that we must
2365 	 * calculate the standard hash first, as the d_op->d_hash()
2366 	 * routine may choose to leave the hash value unchanged.
2367 	 */
2368 	name->hash = full_name_hash(dir, name->name, name->len);
2369 	if (dir->d_flags & DCACHE_OP_HASH) {
2370 		int err = dir->d_op->d_hash(dir, name);
2371 		if (unlikely(err < 0))
2372 			return ERR_PTR(err);
2373 	}
2374 	return d_lookup(dir, name);
2375 }
2376 EXPORT_SYMBOL(d_hash_and_lookup);
2377 
2378 /*
2379  * When a file is deleted, we have two options:
2380  * - turn this dentry into a negative dentry
2381  * - unhash this dentry and free it.
2382  *
2383  * Usually, we want to just turn this into
2384  * a negative dentry, but if anybody else is
2385  * currently using the dentry or the inode
2386  * we can't do that and we fall back on removing
2387  * it from the hash queues and waiting for
2388  * it to be deleted later when it has no users
2389  */
2390 
2391 /**
2392  * d_delete - delete a dentry
2393  * @dentry: The dentry to delete
2394  *
2395  * Turn the dentry into a negative dentry if possible, otherwise
2396  * remove it from the hash queues so it can be deleted later
2397  */
2398 
d_delete(struct dentry * dentry)2399 void d_delete(struct dentry * dentry)
2400 {
2401 	struct inode *inode;
2402 	int isdir = 0;
2403 	/*
2404 	 * Are we the only user?
2405 	 */
2406 again:
2407 	spin_lock(&dentry->d_lock);
2408 	inode = dentry->d_inode;
2409 	isdir = S_ISDIR(inode->i_mode);
2410 	if (dentry->d_lockref.count == 1) {
2411 		if (!spin_trylock(&inode->i_lock)) {
2412 			spin_unlock(&dentry->d_lock);
2413 			cpu_relax();
2414 			goto again;
2415 		}
2416 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2417 		dentry_unlink_inode(dentry);
2418 		fsnotify_nameremove(dentry, isdir);
2419 		return;
2420 	}
2421 
2422 	if (!d_unhashed(dentry))
2423 		__d_drop(dentry);
2424 
2425 	spin_unlock(&dentry->d_lock);
2426 
2427 	fsnotify_nameremove(dentry, isdir);
2428 }
2429 EXPORT_SYMBOL(d_delete);
2430 
__d_rehash(struct dentry * entry)2431 static void __d_rehash(struct dentry *entry)
2432 {
2433 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2434 
2435 	hlist_bl_lock(b);
2436 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2437 	hlist_bl_unlock(b);
2438 }
2439 
2440 /**
2441  * d_rehash	- add an entry back to the hash
2442  * @entry: dentry to add to the hash
2443  *
2444  * Adds a dentry to the hash according to its name.
2445  */
2446 
d_rehash(struct dentry * entry)2447 void d_rehash(struct dentry * entry)
2448 {
2449 	spin_lock(&entry->d_lock);
2450 	__d_rehash(entry);
2451 	spin_unlock(&entry->d_lock);
2452 }
2453 EXPORT_SYMBOL(d_rehash);
2454 
start_dir_add(struct inode * dir)2455 static inline unsigned start_dir_add(struct inode *dir)
2456 {
2457 
2458 	for (;;) {
2459 		unsigned n = dir->i_dir_seq;
2460 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2461 			return n;
2462 		cpu_relax();
2463 	}
2464 }
2465 
end_dir_add(struct inode * dir,unsigned n)2466 static inline void end_dir_add(struct inode *dir, unsigned n)
2467 {
2468 	smp_store_release(&dir->i_dir_seq, n + 2);
2469 }
2470 
d_wait_lookup(struct dentry * dentry)2471 static void d_wait_lookup(struct dentry *dentry)
2472 {
2473 	if (d_in_lookup(dentry)) {
2474 		DECLARE_WAITQUEUE(wait, current);
2475 		add_wait_queue(dentry->d_wait, &wait);
2476 		do {
2477 			set_current_state(TASK_UNINTERRUPTIBLE);
2478 			spin_unlock(&dentry->d_lock);
2479 			schedule();
2480 			spin_lock(&dentry->d_lock);
2481 		} while (d_in_lookup(dentry));
2482 	}
2483 }
2484 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2485 struct dentry *d_alloc_parallel(struct dentry *parent,
2486 				const struct qstr *name,
2487 				wait_queue_head_t *wq)
2488 {
2489 	unsigned int hash = name->hash;
2490 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2491 	struct hlist_bl_node *node;
2492 	struct dentry *new = d_alloc(parent, name);
2493 	struct dentry *dentry;
2494 	unsigned seq, r_seq, d_seq;
2495 
2496 	if (unlikely(!new))
2497 		return ERR_PTR(-ENOMEM);
2498 
2499 retry:
2500 	rcu_read_lock();
2501 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2502 	r_seq = read_seqbegin(&rename_lock);
2503 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2504 	if (unlikely(dentry)) {
2505 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2506 			rcu_read_unlock();
2507 			goto retry;
2508 		}
2509 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2510 			rcu_read_unlock();
2511 			dput(dentry);
2512 			goto retry;
2513 		}
2514 		rcu_read_unlock();
2515 		dput(new);
2516 		return dentry;
2517 	}
2518 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2519 		rcu_read_unlock();
2520 		goto retry;
2521 	}
2522 
2523 	if (unlikely(seq & 1)) {
2524 		rcu_read_unlock();
2525 		goto retry;
2526 	}
2527 
2528 	hlist_bl_lock(b);
2529 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2530 		hlist_bl_unlock(b);
2531 		rcu_read_unlock();
2532 		goto retry;
2533 	}
2534 	/*
2535 	 * No changes for the parent since the beginning of d_lookup().
2536 	 * Since all removals from the chain happen with hlist_bl_lock(),
2537 	 * any potential in-lookup matches are going to stay here until
2538 	 * we unlock the chain.  All fields are stable in everything
2539 	 * we encounter.
2540 	 */
2541 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2542 		if (dentry->d_name.hash != hash)
2543 			continue;
2544 		if (dentry->d_parent != parent)
2545 			continue;
2546 		if (!d_same_name(dentry, parent, name))
2547 			continue;
2548 		hlist_bl_unlock(b);
2549 		/* now we can try to grab a reference */
2550 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2551 			rcu_read_unlock();
2552 			goto retry;
2553 		}
2554 
2555 		rcu_read_unlock();
2556 		/*
2557 		 * somebody is likely to be still doing lookup for it;
2558 		 * wait for them to finish
2559 		 */
2560 		spin_lock(&dentry->d_lock);
2561 		d_wait_lookup(dentry);
2562 		/*
2563 		 * it's not in-lookup anymore; in principle we should repeat
2564 		 * everything from dcache lookup, but it's likely to be what
2565 		 * d_lookup() would've found anyway.  If it is, just return it;
2566 		 * otherwise we really have to repeat the whole thing.
2567 		 */
2568 		if (unlikely(dentry->d_name.hash != hash))
2569 			goto mismatch;
2570 		if (unlikely(dentry->d_parent != parent))
2571 			goto mismatch;
2572 		if (unlikely(d_unhashed(dentry)))
2573 			goto mismatch;
2574 		if (unlikely(!d_same_name(dentry, parent, name)))
2575 			goto mismatch;
2576 		/* OK, it *is* a hashed match; return it */
2577 		spin_unlock(&dentry->d_lock);
2578 		dput(new);
2579 		return dentry;
2580 	}
2581 	rcu_read_unlock();
2582 	/* we can't take ->d_lock here; it's OK, though. */
2583 	new->d_flags |= DCACHE_PAR_LOOKUP;
2584 	new->d_wait = wq;
2585 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2586 	hlist_bl_unlock(b);
2587 	return new;
2588 mismatch:
2589 	spin_unlock(&dentry->d_lock);
2590 	dput(dentry);
2591 	goto retry;
2592 }
2593 EXPORT_SYMBOL(d_alloc_parallel);
2594 
__d_lookup_done(struct dentry * dentry)2595 void __d_lookup_done(struct dentry *dentry)
2596 {
2597 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2598 						 dentry->d_name.hash);
2599 	hlist_bl_lock(b);
2600 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2601 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2602 	wake_up_all(dentry->d_wait);
2603 	dentry->d_wait = NULL;
2604 	hlist_bl_unlock(b);
2605 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2606 	INIT_LIST_HEAD(&dentry->d_lru);
2607 }
2608 EXPORT_SYMBOL(__d_lookup_done);
2609 
2610 /* inode->i_lock held if inode is non-NULL */
2611 
__d_add(struct dentry * dentry,struct inode * inode)2612 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2613 {
2614 	struct inode *dir = NULL;
2615 	unsigned n;
2616 	spin_lock(&dentry->d_lock);
2617 	if (unlikely(d_in_lookup(dentry))) {
2618 		dir = dentry->d_parent->d_inode;
2619 		n = start_dir_add(dir);
2620 		__d_lookup_done(dentry);
2621 	}
2622 	if (inode) {
2623 		unsigned add_flags = d_flags_for_inode(inode);
2624 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2625 		raw_write_seqcount_begin(&dentry->d_seq);
2626 		__d_set_inode_and_type(dentry, inode, add_flags);
2627 		raw_write_seqcount_end(&dentry->d_seq);
2628 		fsnotify_update_flags(dentry);
2629 	}
2630 	__d_rehash(dentry);
2631 	if (dir)
2632 		end_dir_add(dir, n);
2633 	spin_unlock(&dentry->d_lock);
2634 	if (inode)
2635 		spin_unlock(&inode->i_lock);
2636 }
2637 
2638 /**
2639  * d_add - add dentry to hash queues
2640  * @entry: dentry to add
2641  * @inode: The inode to attach to this dentry
2642  *
2643  * This adds the entry to the hash queues and initializes @inode.
2644  * The entry was actually filled in earlier during d_alloc().
2645  */
2646 
d_add(struct dentry * entry,struct inode * inode)2647 void d_add(struct dentry *entry, struct inode *inode)
2648 {
2649 	if (inode) {
2650 		security_d_instantiate(entry, inode);
2651 		spin_lock(&inode->i_lock);
2652 	}
2653 	__d_add(entry, inode);
2654 }
2655 EXPORT_SYMBOL(d_add);
2656 
2657 /**
2658  * d_exact_alias - find and hash an exact unhashed alias
2659  * @entry: dentry to add
2660  * @inode: The inode to go with this dentry
2661  *
2662  * If an unhashed dentry with the same name/parent and desired
2663  * inode already exists, hash and return it.  Otherwise, return
2664  * NULL.
2665  *
2666  * Parent directory should be locked.
2667  */
d_exact_alias(struct dentry * entry,struct inode * inode)2668 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2669 {
2670 	struct dentry *alias;
2671 	unsigned int hash = entry->d_name.hash;
2672 
2673 	spin_lock(&inode->i_lock);
2674 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2675 		/*
2676 		 * Don't need alias->d_lock here, because aliases with
2677 		 * d_parent == entry->d_parent are not subject to name or
2678 		 * parent changes, because the parent inode i_mutex is held.
2679 		 */
2680 		if (alias->d_name.hash != hash)
2681 			continue;
2682 		if (alias->d_parent != entry->d_parent)
2683 			continue;
2684 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2685 			continue;
2686 		spin_lock(&alias->d_lock);
2687 		if (!d_unhashed(alias)) {
2688 			spin_unlock(&alias->d_lock);
2689 			alias = NULL;
2690 		} else {
2691 			__dget_dlock(alias);
2692 			__d_rehash(alias);
2693 			spin_unlock(&alias->d_lock);
2694 		}
2695 		spin_unlock(&inode->i_lock);
2696 		return alias;
2697 	}
2698 	spin_unlock(&inode->i_lock);
2699 	return NULL;
2700 }
2701 EXPORT_SYMBOL(d_exact_alias);
2702 
2703 /**
2704  * dentry_update_name_case - update case insensitive dentry with a new name
2705  * @dentry: dentry to be updated
2706  * @name: new name
2707  *
2708  * Update a case insensitive dentry with new case of name.
2709  *
2710  * dentry must have been returned by d_lookup with name @name. Old and new
2711  * name lengths must match (ie. no d_compare which allows mismatched name
2712  * lengths).
2713  *
2714  * Parent inode i_mutex must be held over d_lookup and into this call (to
2715  * keep renames and concurrent inserts, and readdir(2) away).
2716  */
dentry_update_name_case(struct dentry * dentry,const struct qstr * name)2717 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2718 {
2719 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2720 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2721 
2722 	spin_lock(&dentry->d_lock);
2723 	write_seqcount_begin(&dentry->d_seq);
2724 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2725 	write_seqcount_end(&dentry->d_seq);
2726 	spin_unlock(&dentry->d_lock);
2727 }
2728 EXPORT_SYMBOL(dentry_update_name_case);
2729 
swap_names(struct dentry * dentry,struct dentry * target)2730 static void swap_names(struct dentry *dentry, struct dentry *target)
2731 {
2732 	if (unlikely(dname_external(target))) {
2733 		if (unlikely(dname_external(dentry))) {
2734 			/*
2735 			 * Both external: swap the pointers
2736 			 */
2737 			swap(target->d_name.name, dentry->d_name.name);
2738 		} else {
2739 			/*
2740 			 * dentry:internal, target:external.  Steal target's
2741 			 * storage and make target internal.
2742 			 */
2743 			memcpy(target->d_iname, dentry->d_name.name,
2744 					dentry->d_name.len + 1);
2745 			dentry->d_name.name = target->d_name.name;
2746 			target->d_name.name = target->d_iname;
2747 		}
2748 	} else {
2749 		if (unlikely(dname_external(dentry))) {
2750 			/*
2751 			 * dentry:external, target:internal.  Give dentry's
2752 			 * storage to target and make dentry internal
2753 			 */
2754 			memcpy(dentry->d_iname, target->d_name.name,
2755 					target->d_name.len + 1);
2756 			target->d_name.name = dentry->d_name.name;
2757 			dentry->d_name.name = dentry->d_iname;
2758 		} else {
2759 			/*
2760 			 * Both are internal.
2761 			 */
2762 			unsigned int i;
2763 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2764 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2765 				swap(((long *) &dentry->d_iname)[i],
2766 				     ((long *) &target->d_iname)[i]);
2767 			}
2768 		}
2769 	}
2770 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2771 }
2772 
copy_name(struct dentry * dentry,struct dentry * target)2773 static void copy_name(struct dentry *dentry, struct dentry *target)
2774 {
2775 	struct external_name *old_name = NULL;
2776 	if (unlikely(dname_external(dentry)))
2777 		old_name = external_name(dentry);
2778 	if (unlikely(dname_external(target))) {
2779 		atomic_inc(&external_name(target)->u.count);
2780 		dentry->d_name = target->d_name;
2781 	} else {
2782 		memcpy(dentry->d_iname, target->d_name.name,
2783 				target->d_name.len + 1);
2784 		dentry->d_name.name = dentry->d_iname;
2785 		dentry->d_name.hash_len = target->d_name.hash_len;
2786 	}
2787 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2788 		call_rcu(&old_name->u.head, __d_free_external_name);
2789 }
2790 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2791 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2792 {
2793 	/*
2794 	 * XXXX: do we really need to take target->d_lock?
2795 	 */
2796 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2797 		spin_lock(&target->d_parent->d_lock);
2798 	else {
2799 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2800 			spin_lock(&dentry->d_parent->d_lock);
2801 			spin_lock_nested(&target->d_parent->d_lock,
2802 						DENTRY_D_LOCK_NESTED);
2803 		} else {
2804 			spin_lock(&target->d_parent->d_lock);
2805 			spin_lock_nested(&dentry->d_parent->d_lock,
2806 						DENTRY_D_LOCK_NESTED);
2807 		}
2808 	}
2809 	if (target < dentry) {
2810 		spin_lock_nested(&target->d_lock, 2);
2811 		spin_lock_nested(&dentry->d_lock, 3);
2812 	} else {
2813 		spin_lock_nested(&dentry->d_lock, 2);
2814 		spin_lock_nested(&target->d_lock, 3);
2815 	}
2816 }
2817 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2818 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2819 {
2820 	if (target->d_parent != dentry->d_parent)
2821 		spin_unlock(&dentry->d_parent->d_lock);
2822 	if (target->d_parent != target)
2823 		spin_unlock(&target->d_parent->d_lock);
2824 	spin_unlock(&target->d_lock);
2825 	spin_unlock(&dentry->d_lock);
2826 }
2827 
2828 /*
2829  * When switching names, the actual string doesn't strictly have to
2830  * be preserved in the target - because we're dropping the target
2831  * anyway. As such, we can just do a simple memcpy() to copy over
2832  * the new name before we switch, unless we are going to rehash
2833  * it.  Note that if we *do* unhash the target, we are not allowed
2834  * to rehash it without giving it a new name/hash key - whether
2835  * we swap or overwrite the names here, resulting name won't match
2836  * the reality in filesystem; it's only there for d_path() purposes.
2837  * Note that all of this is happening under rename_lock, so the
2838  * any hash lookup seeing it in the middle of manipulations will
2839  * be discarded anyway.  So we do not care what happens to the hash
2840  * key in that case.
2841  */
2842 /*
2843  * __d_move - move a dentry
2844  * @dentry: entry to move
2845  * @target: new dentry
2846  * @exchange: exchange the two dentries
2847  *
2848  * Update the dcache to reflect the move of a file name. Negative
2849  * dcache entries should not be moved in this way. Caller must hold
2850  * rename_lock, the i_mutex of the source and target directories,
2851  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2852  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2853 static void __d_move(struct dentry *dentry, struct dentry *target,
2854 		     bool exchange)
2855 {
2856 	struct inode *dir = NULL;
2857 	unsigned n;
2858 	if (!dentry->d_inode)
2859 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2860 
2861 	BUG_ON(d_ancestor(dentry, target));
2862 	BUG_ON(d_ancestor(target, dentry));
2863 
2864 	dentry_lock_for_move(dentry, target);
2865 	if (unlikely(d_in_lookup(target))) {
2866 		dir = target->d_parent->d_inode;
2867 		n = start_dir_add(dir);
2868 		__d_lookup_done(target);
2869 	}
2870 
2871 	write_seqcount_begin(&dentry->d_seq);
2872 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2873 
2874 	/* unhash both */
2875 	/* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2876 	___d_drop(dentry);
2877 	___d_drop(target);
2878 
2879 	/* Switch the names.. */
2880 	if (exchange)
2881 		swap_names(dentry, target);
2882 	else
2883 		copy_name(dentry, target);
2884 
2885 	/* rehash in new place(s) */
2886 	__d_rehash(dentry);
2887 	if (exchange)
2888 		__d_rehash(target);
2889 	else
2890 		target->d_hash.pprev = NULL;
2891 
2892 	/* ... and switch them in the tree */
2893 	if (IS_ROOT(dentry)) {
2894 		/* splicing a tree */
2895 		dentry->d_flags |= DCACHE_RCUACCESS;
2896 		dentry->d_parent = target->d_parent;
2897 		target->d_parent = target;
2898 		list_del_init(&target->d_child);
2899 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2900 	} else {
2901 		/* swapping two dentries */
2902 		swap(dentry->d_parent, target->d_parent);
2903 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2904 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2905 		if (exchange)
2906 			fsnotify_update_flags(target);
2907 		fsnotify_update_flags(dentry);
2908 	}
2909 
2910 	write_seqcount_end(&target->d_seq);
2911 	write_seqcount_end(&dentry->d_seq);
2912 
2913 	if (dir)
2914 		end_dir_add(dir, n);
2915 	dentry_unlock_for_move(dentry, target);
2916 }
2917 
2918 /*
2919  * d_move - move a dentry
2920  * @dentry: entry to move
2921  * @target: new dentry
2922  *
2923  * Update the dcache to reflect the move of a file name. Negative
2924  * dcache entries should not be moved in this way. See the locking
2925  * requirements for __d_move.
2926  */
d_move(struct dentry * dentry,struct dentry * target)2927 void d_move(struct dentry *dentry, struct dentry *target)
2928 {
2929 	write_seqlock(&rename_lock);
2930 	__d_move(dentry, target, false);
2931 	write_sequnlock(&rename_lock);
2932 }
2933 EXPORT_SYMBOL(d_move);
2934 
2935 /*
2936  * d_exchange - exchange two dentries
2937  * @dentry1: first dentry
2938  * @dentry2: second dentry
2939  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2940 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2941 {
2942 	write_seqlock(&rename_lock);
2943 
2944 	WARN_ON(!dentry1->d_inode);
2945 	WARN_ON(!dentry2->d_inode);
2946 	WARN_ON(IS_ROOT(dentry1));
2947 	WARN_ON(IS_ROOT(dentry2));
2948 
2949 	__d_move(dentry1, dentry2, true);
2950 
2951 	write_sequnlock(&rename_lock);
2952 }
2953 
2954 /**
2955  * d_ancestor - search for an ancestor
2956  * @p1: ancestor dentry
2957  * @p2: child dentry
2958  *
2959  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2960  * an ancestor of p2, else NULL.
2961  */
d_ancestor(struct dentry * p1,struct dentry * p2)2962 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2963 {
2964 	struct dentry *p;
2965 
2966 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2967 		if (p->d_parent == p1)
2968 			return p;
2969 	}
2970 	return NULL;
2971 }
2972 
2973 /*
2974  * This helper attempts to cope with remotely renamed directories
2975  *
2976  * It assumes that the caller is already holding
2977  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2978  *
2979  * Note: If ever the locking in lock_rename() changes, then please
2980  * remember to update this too...
2981  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2982 static int __d_unalias(struct inode *inode,
2983 		struct dentry *dentry, struct dentry *alias)
2984 {
2985 	struct mutex *m1 = NULL;
2986 	struct rw_semaphore *m2 = NULL;
2987 	int ret = -ESTALE;
2988 
2989 	/* If alias and dentry share a parent, then no extra locks required */
2990 	if (alias->d_parent == dentry->d_parent)
2991 		goto out_unalias;
2992 
2993 	/* See lock_rename() */
2994 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2995 		goto out_err;
2996 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2997 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2998 		goto out_err;
2999 	m2 = &alias->d_parent->d_inode->i_rwsem;
3000 out_unalias:
3001 	__d_move(alias, dentry, false);
3002 	ret = 0;
3003 out_err:
3004 	if (m2)
3005 		up_read(m2);
3006 	if (m1)
3007 		mutex_unlock(m1);
3008 	return ret;
3009 }
3010 
3011 /**
3012  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3013  * @inode:  the inode which may have a disconnected dentry
3014  * @dentry: a negative dentry which we want to point to the inode.
3015  *
3016  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3017  * place of the given dentry and return it, else simply d_add the inode
3018  * to the dentry and return NULL.
3019  *
3020  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3021  * we should error out: directories can't have multiple aliases.
3022  *
3023  * This is needed in the lookup routine of any filesystem that is exportable
3024  * (via knfsd) so that we can build dcache paths to directories effectively.
3025  *
3026  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3027  * is returned.  This matches the expected return value of ->lookup.
3028  *
3029  * Cluster filesystems may call this function with a negative, hashed dentry.
3030  * In that case, we know that the inode will be a regular file, and also this
3031  * will only occur during atomic_open. So we need to check for the dentry
3032  * being already hashed only in the final case.
3033  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3034 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3035 {
3036 	if (IS_ERR(inode))
3037 		return ERR_CAST(inode);
3038 
3039 	BUG_ON(!d_unhashed(dentry));
3040 
3041 	if (!inode)
3042 		goto out;
3043 
3044 	security_d_instantiate(dentry, inode);
3045 	spin_lock(&inode->i_lock);
3046 	if (S_ISDIR(inode->i_mode)) {
3047 		struct dentry *new = __d_find_any_alias(inode);
3048 		if (unlikely(new)) {
3049 			/* The reference to new ensures it remains an alias */
3050 			spin_unlock(&inode->i_lock);
3051 			write_seqlock(&rename_lock);
3052 			if (unlikely(d_ancestor(new, dentry))) {
3053 				write_sequnlock(&rename_lock);
3054 				dput(new);
3055 				new = ERR_PTR(-ELOOP);
3056 				pr_warn_ratelimited(
3057 					"VFS: Lookup of '%s' in %s %s"
3058 					" would have caused loop\n",
3059 					dentry->d_name.name,
3060 					inode->i_sb->s_type->name,
3061 					inode->i_sb->s_id);
3062 			} else if (!IS_ROOT(new)) {
3063 				int err = __d_unalias(inode, dentry, new);
3064 				write_sequnlock(&rename_lock);
3065 				if (err) {
3066 					dput(new);
3067 					new = ERR_PTR(err);
3068 				}
3069 			} else {
3070 				__d_move(new, dentry, false);
3071 				write_sequnlock(&rename_lock);
3072 			}
3073 			iput(inode);
3074 			return new;
3075 		}
3076 	}
3077 out:
3078 	__d_add(dentry, inode);
3079 	return NULL;
3080 }
3081 EXPORT_SYMBOL(d_splice_alias);
3082 
prepend(char ** buffer,int * buflen,const char * str,int namelen)3083 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3084 {
3085 	*buflen -= namelen;
3086 	if (*buflen < 0)
3087 		return -ENAMETOOLONG;
3088 	*buffer -= namelen;
3089 	memcpy(*buffer, str, namelen);
3090 	return 0;
3091 }
3092 
3093 /**
3094  * prepend_name - prepend a pathname in front of current buffer pointer
3095  * @buffer: buffer pointer
3096  * @buflen: allocated length of the buffer
3097  * @name:   name string and length qstr structure
3098  *
3099  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3100  * make sure that either the old or the new name pointer and length are
3101  * fetched. However, there may be mismatch between length and pointer.
3102  * The length cannot be trusted, we need to copy it byte-by-byte until
3103  * the length is reached or a null byte is found. It also prepends "/" at
3104  * the beginning of the name. The sequence number check at the caller will
3105  * retry it again when a d_move() does happen. So any garbage in the buffer
3106  * due to mismatched pointer and length will be discarded.
3107  *
3108  * Data dependency barrier is needed to make sure that we see that terminating
3109  * NUL.  Alpha strikes again, film at 11...
3110  */
prepend_name(char ** buffer,int * buflen,const struct qstr * name)3111 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3112 {
3113 	const char *dname = ACCESS_ONCE(name->name);
3114 	u32 dlen = ACCESS_ONCE(name->len);
3115 	char *p;
3116 
3117 	smp_read_barrier_depends();
3118 
3119 	*buflen -= dlen + 1;
3120 	if (*buflen < 0)
3121 		return -ENAMETOOLONG;
3122 	p = *buffer -= dlen + 1;
3123 	*p++ = '/';
3124 	while (dlen--) {
3125 		char c = *dname++;
3126 		if (!c)
3127 			break;
3128 		*p++ = c;
3129 	}
3130 	return 0;
3131 }
3132 
3133 /**
3134  * prepend_path - Prepend path string to a buffer
3135  * @path: the dentry/vfsmount to report
3136  * @root: root vfsmnt/dentry
3137  * @buffer: pointer to the end of the buffer
3138  * @buflen: pointer to buffer length
3139  *
3140  * The function will first try to write out the pathname without taking any
3141  * lock other than the RCU read lock to make sure that dentries won't go away.
3142  * It only checks the sequence number of the global rename_lock as any change
3143  * in the dentry's d_seq will be preceded by changes in the rename_lock
3144  * sequence number. If the sequence number had been changed, it will restart
3145  * the whole pathname back-tracing sequence again by taking the rename_lock.
3146  * In this case, there is no need to take the RCU read lock as the recursive
3147  * parent pointer references will keep the dentry chain alive as long as no
3148  * rename operation is performed.
3149  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)3150 static int prepend_path(const struct path *path,
3151 			const struct path *root,
3152 			char **buffer, int *buflen)
3153 {
3154 	struct dentry *dentry;
3155 	struct vfsmount *vfsmnt;
3156 	struct mount *mnt;
3157 	int error = 0;
3158 	unsigned seq, m_seq = 0;
3159 	char *bptr;
3160 	int blen;
3161 
3162 	rcu_read_lock();
3163 restart_mnt:
3164 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3165 	seq = 0;
3166 	rcu_read_lock();
3167 restart:
3168 	bptr = *buffer;
3169 	blen = *buflen;
3170 	error = 0;
3171 	dentry = path->dentry;
3172 	vfsmnt = path->mnt;
3173 	mnt = real_mount(vfsmnt);
3174 	read_seqbegin_or_lock(&rename_lock, &seq);
3175 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3176 		struct dentry * parent;
3177 
3178 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3179 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3180 			/* Escaped? */
3181 			if (dentry != vfsmnt->mnt_root) {
3182 				bptr = *buffer;
3183 				blen = *buflen;
3184 				error = 3;
3185 				break;
3186 			}
3187 			/* Global root? */
3188 			if (mnt != parent) {
3189 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3190 				mnt = parent;
3191 				vfsmnt = &mnt->mnt;
3192 				continue;
3193 			}
3194 			if (!error)
3195 				error = is_mounted(vfsmnt) ? 1 : 2;
3196 			break;
3197 		}
3198 		parent = dentry->d_parent;
3199 		prefetch(parent);
3200 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3201 		if (error)
3202 			break;
3203 
3204 		dentry = parent;
3205 	}
3206 	if (!(seq & 1))
3207 		rcu_read_unlock();
3208 	if (need_seqretry(&rename_lock, seq)) {
3209 		seq = 1;
3210 		goto restart;
3211 	}
3212 	done_seqretry(&rename_lock, seq);
3213 
3214 	if (!(m_seq & 1))
3215 		rcu_read_unlock();
3216 	if (need_seqretry(&mount_lock, m_seq)) {
3217 		m_seq = 1;
3218 		goto restart_mnt;
3219 	}
3220 	done_seqretry(&mount_lock, m_seq);
3221 
3222 	if (error >= 0 && bptr == *buffer) {
3223 		if (--blen < 0)
3224 			error = -ENAMETOOLONG;
3225 		else
3226 			*--bptr = '/';
3227 	}
3228 	*buffer = bptr;
3229 	*buflen = blen;
3230 	return error;
3231 }
3232 
3233 /**
3234  * __d_path - return the path of a dentry
3235  * @path: the dentry/vfsmount to report
3236  * @root: root vfsmnt/dentry
3237  * @buf: buffer to return value in
3238  * @buflen: buffer length
3239  *
3240  * Convert a dentry into an ASCII path name.
3241  *
3242  * Returns a pointer into the buffer or an error code if the
3243  * path was too long.
3244  *
3245  * "buflen" should be positive.
3246  *
3247  * If the path is not reachable from the supplied root, return %NULL.
3248  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3249 char *__d_path(const struct path *path,
3250 	       const struct path *root,
3251 	       char *buf, int buflen)
3252 {
3253 	char *res = buf + buflen;
3254 	int error;
3255 
3256 	prepend(&res, &buflen, "\0", 1);
3257 	error = prepend_path(path, root, &res, &buflen);
3258 
3259 	if (error < 0)
3260 		return ERR_PTR(error);
3261 	if (error > 0)
3262 		return NULL;
3263 	return res;
3264 }
3265 
d_absolute_path(const struct path * path,char * buf,int buflen)3266 char *d_absolute_path(const struct path *path,
3267 	       char *buf, int buflen)
3268 {
3269 	struct path root = {};
3270 	char *res = buf + buflen;
3271 	int error;
3272 
3273 	prepend(&res, &buflen, "\0", 1);
3274 	error = prepend_path(path, &root, &res, &buflen);
3275 
3276 	if (error > 1)
3277 		error = -EINVAL;
3278 	if (error < 0)
3279 		return ERR_PTR(error);
3280 	return res;
3281 }
3282 EXPORT_SYMBOL(d_absolute_path);
3283 
3284 /*
3285  * same as __d_path but appends "(deleted)" for unlinked files.
3286  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3287 static int path_with_deleted(const struct path *path,
3288 			     const struct path *root,
3289 			     char **buf, int *buflen)
3290 {
3291 	prepend(buf, buflen, "\0", 1);
3292 	if (d_unlinked(path->dentry)) {
3293 		int error = prepend(buf, buflen, " (deleted)", 10);
3294 		if (error)
3295 			return error;
3296 	}
3297 
3298 	return prepend_path(path, root, buf, buflen);
3299 }
3300 
prepend_unreachable(char ** buffer,int * buflen)3301 static int prepend_unreachable(char **buffer, int *buflen)
3302 {
3303 	return prepend(buffer, buflen, "(unreachable)", 13);
3304 }
3305 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3306 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3307 {
3308 	unsigned seq;
3309 
3310 	do {
3311 		seq = read_seqcount_begin(&fs->seq);
3312 		*root = fs->root;
3313 	} while (read_seqcount_retry(&fs->seq, seq));
3314 }
3315 
3316 /**
3317  * d_path - return the path of a dentry
3318  * @path: path to report
3319  * @buf: buffer to return value in
3320  * @buflen: buffer length
3321  *
3322  * Convert a dentry into an ASCII path name. If the entry has been deleted
3323  * the string " (deleted)" is appended. Note that this is ambiguous.
3324  *
3325  * Returns a pointer into the buffer or an error code if the path was
3326  * too long. Note: Callers should use the returned pointer, not the passed
3327  * in buffer, to use the name! The implementation often starts at an offset
3328  * into the buffer, and may leave 0 bytes at the start.
3329  *
3330  * "buflen" should be positive.
3331  */
d_path(const struct path * path,char * buf,int buflen)3332 char *d_path(const struct path *path, char *buf, int buflen)
3333 {
3334 	char *res = buf + buflen;
3335 	struct path root;
3336 	int error;
3337 
3338 	/*
3339 	 * We have various synthetic filesystems that never get mounted.  On
3340 	 * these filesystems dentries are never used for lookup purposes, and
3341 	 * thus don't need to be hashed.  They also don't need a name until a
3342 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3343 	 * below allows us to generate a name for these objects on demand:
3344 	 *
3345 	 * Some pseudo inodes are mountable.  When they are mounted
3346 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3347 	 * and instead have d_path return the mounted path.
3348 	 */
3349 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3350 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3351 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3352 
3353 	rcu_read_lock();
3354 	get_fs_root_rcu(current->fs, &root);
3355 	error = path_with_deleted(path, &root, &res, &buflen);
3356 	rcu_read_unlock();
3357 
3358 	if (error < 0)
3359 		res = ERR_PTR(error);
3360 	return res;
3361 }
3362 EXPORT_SYMBOL(d_path);
3363 
3364 /*
3365  * Helper function for dentry_operations.d_dname() members
3366  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3367 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3368 			const char *fmt, ...)
3369 {
3370 	va_list args;
3371 	char temp[64];
3372 	int sz;
3373 
3374 	va_start(args, fmt);
3375 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3376 	va_end(args);
3377 
3378 	if (sz > sizeof(temp) || sz > buflen)
3379 		return ERR_PTR(-ENAMETOOLONG);
3380 
3381 	buffer += buflen - sz;
3382 	return memcpy(buffer, temp, sz);
3383 }
3384 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3385 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3386 {
3387 	char *end = buffer + buflen;
3388 	/* these dentries are never renamed, so d_lock is not needed */
3389 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3390 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3391 	    prepend(&end, &buflen, "/", 1))
3392 		end = ERR_PTR(-ENAMETOOLONG);
3393 	return end;
3394 }
3395 EXPORT_SYMBOL(simple_dname);
3396 
3397 /*
3398  * Write full pathname from the root of the filesystem into the buffer.
3399  */
__dentry_path(struct dentry * d,char * buf,int buflen)3400 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3401 {
3402 	struct dentry *dentry;
3403 	char *end, *retval;
3404 	int len, seq = 0;
3405 	int error = 0;
3406 
3407 	if (buflen < 2)
3408 		goto Elong;
3409 
3410 	rcu_read_lock();
3411 restart:
3412 	dentry = d;
3413 	end = buf + buflen;
3414 	len = buflen;
3415 	prepend(&end, &len, "\0", 1);
3416 	/* Get '/' right */
3417 	retval = end-1;
3418 	*retval = '/';
3419 	read_seqbegin_or_lock(&rename_lock, &seq);
3420 	while (!IS_ROOT(dentry)) {
3421 		struct dentry *parent = dentry->d_parent;
3422 
3423 		prefetch(parent);
3424 		error = prepend_name(&end, &len, &dentry->d_name);
3425 		if (error)
3426 			break;
3427 
3428 		retval = end;
3429 		dentry = parent;
3430 	}
3431 	if (!(seq & 1))
3432 		rcu_read_unlock();
3433 	if (need_seqretry(&rename_lock, seq)) {
3434 		seq = 1;
3435 		goto restart;
3436 	}
3437 	done_seqretry(&rename_lock, seq);
3438 	if (error)
3439 		goto Elong;
3440 	return retval;
3441 Elong:
3442 	return ERR_PTR(-ENAMETOOLONG);
3443 }
3444 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3445 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3446 {
3447 	return __dentry_path(dentry, buf, buflen);
3448 }
3449 EXPORT_SYMBOL(dentry_path_raw);
3450 
dentry_path(struct dentry * dentry,char * buf,int buflen)3451 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3452 {
3453 	char *p = NULL;
3454 	char *retval;
3455 
3456 	if (d_unlinked(dentry)) {
3457 		p = buf + buflen;
3458 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3459 			goto Elong;
3460 		buflen++;
3461 	}
3462 	retval = __dentry_path(dentry, buf, buflen);
3463 	if (!IS_ERR(retval) && p)
3464 		*p = '/';	/* restore '/' overriden with '\0' */
3465 	return retval;
3466 Elong:
3467 	return ERR_PTR(-ENAMETOOLONG);
3468 }
3469 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3470 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3471 				    struct path *pwd)
3472 {
3473 	unsigned seq;
3474 
3475 	do {
3476 		seq = read_seqcount_begin(&fs->seq);
3477 		*root = fs->root;
3478 		*pwd = fs->pwd;
3479 	} while (read_seqcount_retry(&fs->seq, seq));
3480 }
3481 
3482 /*
3483  * NOTE! The user-level library version returns a
3484  * character pointer. The kernel system call just
3485  * returns the length of the buffer filled (which
3486  * includes the ending '\0' character), or a negative
3487  * error value. So libc would do something like
3488  *
3489  *	char *getcwd(char * buf, size_t size)
3490  *	{
3491  *		int retval;
3492  *
3493  *		retval = sys_getcwd(buf, size);
3494  *		if (retval >= 0)
3495  *			return buf;
3496  *		errno = -retval;
3497  *		return NULL;
3498  *	}
3499  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3500 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3501 {
3502 	int error;
3503 	struct path pwd, root;
3504 	char *page = __getname();
3505 
3506 	if (!page)
3507 		return -ENOMEM;
3508 
3509 	rcu_read_lock();
3510 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3511 
3512 	error = -ENOENT;
3513 	if (!d_unlinked(pwd.dentry)) {
3514 		unsigned long len;
3515 		char *cwd = page + PATH_MAX;
3516 		int buflen = PATH_MAX;
3517 
3518 		prepend(&cwd, &buflen, "\0", 1);
3519 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3520 		rcu_read_unlock();
3521 
3522 		if (error < 0)
3523 			goto out;
3524 
3525 		/* Unreachable from current root */
3526 		if (error > 0) {
3527 			error = prepend_unreachable(&cwd, &buflen);
3528 			if (error)
3529 				goto out;
3530 		}
3531 
3532 		error = -ERANGE;
3533 		len = PATH_MAX + page - cwd;
3534 		if (len <= size) {
3535 			error = len;
3536 			if (copy_to_user(buf, cwd, len))
3537 				error = -EFAULT;
3538 		}
3539 	} else {
3540 		rcu_read_unlock();
3541 	}
3542 
3543 out:
3544 	__putname(page);
3545 	return error;
3546 }
3547 
3548 /*
3549  * Test whether new_dentry is a subdirectory of old_dentry.
3550  *
3551  * Trivially implemented using the dcache structure
3552  */
3553 
3554 /**
3555  * is_subdir - is new dentry a subdirectory of old_dentry
3556  * @new_dentry: new dentry
3557  * @old_dentry: old dentry
3558  *
3559  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3560  * Returns false otherwise.
3561  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3562  */
3563 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3564 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3565 {
3566 	bool result;
3567 	unsigned seq;
3568 
3569 	if (new_dentry == old_dentry)
3570 		return true;
3571 
3572 	do {
3573 		/* for restarting inner loop in case of seq retry */
3574 		seq = read_seqbegin(&rename_lock);
3575 		/*
3576 		 * Need rcu_readlock to protect against the d_parent trashing
3577 		 * due to d_move
3578 		 */
3579 		rcu_read_lock();
3580 		if (d_ancestor(old_dentry, new_dentry))
3581 			result = true;
3582 		else
3583 			result = false;
3584 		rcu_read_unlock();
3585 	} while (read_seqretry(&rename_lock, seq));
3586 
3587 	return result;
3588 }
3589 
d_genocide_kill(void * data,struct dentry * dentry)3590 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3591 {
3592 	struct dentry *root = data;
3593 	if (dentry != root) {
3594 		if (d_unhashed(dentry) || !dentry->d_inode)
3595 			return D_WALK_SKIP;
3596 
3597 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3598 			dentry->d_flags |= DCACHE_GENOCIDE;
3599 			dentry->d_lockref.count--;
3600 		}
3601 	}
3602 	return D_WALK_CONTINUE;
3603 }
3604 
d_genocide(struct dentry * parent)3605 void d_genocide(struct dentry *parent)
3606 {
3607 	d_walk(parent, parent, d_genocide_kill, NULL);
3608 }
3609 
d_tmpfile(struct dentry * dentry,struct inode * inode)3610 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3611 {
3612 	inode_dec_link_count(inode);
3613 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3614 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3615 		!d_unlinked(dentry));
3616 	spin_lock(&dentry->d_parent->d_lock);
3617 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3618 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3619 				(unsigned long long)inode->i_ino);
3620 	spin_unlock(&dentry->d_lock);
3621 	spin_unlock(&dentry->d_parent->d_lock);
3622 	d_instantiate(dentry, inode);
3623 }
3624 EXPORT_SYMBOL(d_tmpfile);
3625 
3626 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3627 static int __init set_dhash_entries(char *str)
3628 {
3629 	if (!str)
3630 		return 0;
3631 	dhash_entries = simple_strtoul(str, &str, 0);
3632 	return 1;
3633 }
3634 __setup("dhash_entries=", set_dhash_entries);
3635 
dcache_init_early(void)3636 static void __init dcache_init_early(void)
3637 {
3638 	/* If hashes are distributed across NUMA nodes, defer
3639 	 * hash allocation until vmalloc space is available.
3640 	 */
3641 	if (hashdist)
3642 		return;
3643 
3644 	dentry_hashtable =
3645 		alloc_large_system_hash("Dentry cache",
3646 					sizeof(struct hlist_bl_head),
3647 					dhash_entries,
3648 					13,
3649 					HASH_EARLY | HASH_ZERO,
3650 					&d_hash_shift,
3651 					&d_hash_mask,
3652 					0,
3653 					0);
3654 }
3655 
dcache_init(void)3656 static void __init dcache_init(void)
3657 {
3658 	/*
3659 	 * A constructor could be added for stable state like the lists,
3660 	 * but it is probably not worth it because of the cache nature
3661 	 * of the dcache.
3662 	 */
3663 	dentry_cache = KMEM_CACHE(dentry,
3664 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3665 
3666 	/* Hash may have been set up in dcache_init_early */
3667 	if (!hashdist)
3668 		return;
3669 
3670 	dentry_hashtable =
3671 		alloc_large_system_hash("Dentry cache",
3672 					sizeof(struct hlist_bl_head),
3673 					dhash_entries,
3674 					13,
3675 					HASH_ZERO,
3676 					&d_hash_shift,
3677 					&d_hash_mask,
3678 					0,
3679 					0);
3680 }
3681 
3682 /* SLAB cache for __getname() consumers */
3683 struct kmem_cache *names_cachep __read_mostly;
3684 EXPORT_SYMBOL(names_cachep);
3685 
3686 EXPORT_SYMBOL(d_genocide);
3687 
vfs_caches_init_early(void)3688 void __init vfs_caches_init_early(void)
3689 {
3690 	int i;
3691 
3692 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3693 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3694 
3695 	dcache_init_early();
3696 	inode_init_early();
3697 }
3698 
vfs_caches_init(void)3699 void __init vfs_caches_init(void)
3700 {
3701 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3702 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3703 
3704 	dcache_init();
3705 	inode_init();
3706 	files_init();
3707 	files_maxfiles_init();
3708 	mnt_init();
3709 	bdev_cache_init();
3710 	chrdev_init();
3711 }
3712