• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24 
25 #include <asm/amd_nb.h>
26 #include <asm/traps.h>
27 #include <asm/apic.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
31 
32 #include "mce-internal.h"
33 
34 #define NR_BLOCKS         5
35 #define THRESHOLD_MAX     0xFFF
36 #define INT_TYPE_APIC     0x00020000
37 #define MASK_VALID_HI     0x80000000
38 #define MASK_CNTP_HI      0x40000000
39 #define MASK_LOCKED_HI    0x20000000
40 #define MASK_LVTOFF_HI    0x00F00000
41 #define MASK_COUNT_EN_HI  0x00080000
42 #define MASK_INT_TYPE_HI  0x00060000
43 #define MASK_OVERFLOW_HI  0x00010000
44 #define MASK_ERR_COUNT_HI 0x00000FFF
45 #define MASK_BLKPTR_LO    0xFF000000
46 #define MCG_XBLK_ADDR     0xC0000400
47 
48 /* Deferred error settings */
49 #define MSR_CU_DEF_ERR		0xC0000410
50 #define MASK_DEF_LVTOFF		0x000000F0
51 #define MASK_DEF_INT_TYPE	0x00000006
52 #define DEF_LVT_OFF		0x2
53 #define DEF_INT_TYPE_APIC	0x2
54 
55 /* Scalable MCA: */
56 
57 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
58 #define SMCA_THR_LVT_OFF	0xF000
59 
60 static bool thresholding_irq_en;
61 
62 static const char * const th_names[] = {
63 	"load_store",
64 	"insn_fetch",
65 	"combined_unit",
66 	"decode_unit",
67 	"northbridge",
68 	"execution_unit",
69 };
70 
71 static const char * const smca_umc_block_names[] = {
72 	"dram_ecc",
73 	"misc_umc"
74 };
75 
76 struct smca_bank_name {
77 	const char *name;	/* Short name for sysfs */
78 	const char *long_name;	/* Long name for pretty-printing */
79 };
80 
81 static struct smca_bank_name smca_names[] = {
82 	[SMCA_LS]	= { "load_store",	"Load Store Unit" },
83 	[SMCA_IF]	= { "insn_fetch",	"Instruction Fetch Unit" },
84 	[SMCA_L2_CACHE]	= { "l2_cache",		"L2 Cache" },
85 	[SMCA_DE]	= { "decode_unit",	"Decode Unit" },
86 	[SMCA_RESERVED]	= { "reserved",		"Reserved" },
87 	[SMCA_EX]	= { "execution_unit",	"Execution Unit" },
88 	[SMCA_FP]	= { "floating_point",	"Floating Point Unit" },
89 	[SMCA_L3_CACHE]	= { "l3_cache",		"L3 Cache" },
90 	[SMCA_CS]	= { "coherent_slave",	"Coherent Slave" },
91 	[SMCA_PIE]	= { "pie",		"Power, Interrupts, etc." },
92 	[SMCA_UMC]	= { "umc",		"Unified Memory Controller" },
93 	[SMCA_PB]	= { "param_block",	"Parameter Block" },
94 	[SMCA_PSP]	= { "psp",		"Platform Security Processor" },
95 	[SMCA_SMU]	= { "smu",		"System Management Unit" },
96 };
97 
98 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
99 {
100 	[0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
101 };
102 
smca_get_name(enum smca_bank_types t)103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105 	if (t >= N_SMCA_BANK_TYPES)
106 		return NULL;
107 
108 	return smca_names[t].name;
109 }
110 
smca_get_long_name(enum smca_bank_types t)111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113 	if (t >= N_SMCA_BANK_TYPES)
114 		return NULL;
115 
116 	return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119 
smca_get_bank_type(unsigned int bank)120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122 	struct smca_bank *b;
123 
124 	if (bank >= MAX_NR_BANKS)
125 		return N_SMCA_BANK_TYPES;
126 
127 	b = &smca_banks[bank];
128 	if (!b->hwid)
129 		return N_SMCA_BANK_TYPES;
130 
131 	return b->hwid->bank_type;
132 }
133 
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135 	/* { bank_type, hwid_mcatype, xec_bitmap } */
136 
137 	/* Reserved type */
138 	{ SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
139 
140 	/* ZN Core (HWID=0xB0) MCA types */
141 	{ SMCA_LS,	 HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
142 	{ SMCA_IF,	 HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
143 	{ SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
144 	{ SMCA_DE,	 HWID_MCATYPE(0xB0, 0x3), 0x1FF },
145 	/* HWID 0xB0 MCATYPE 0x4 is Reserved */
146 	{ SMCA_EX,	 HWID_MCATYPE(0xB0, 0x5), 0x7FF },
147 	{ SMCA_FP,	 HWID_MCATYPE(0xB0, 0x6), 0x7F },
148 	{ SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
149 
150 	/* Data Fabric MCA types */
151 	{ SMCA_CS,	 HWID_MCATYPE(0x2E, 0x0), 0x1FF },
152 	{ SMCA_PIE,	 HWID_MCATYPE(0x2E, 0x1), 0xF },
153 
154 	/* Unified Memory Controller MCA type */
155 	{ SMCA_UMC,	 HWID_MCATYPE(0x96, 0x0), 0x3F },
156 
157 	/* Parameter Block MCA type */
158 	{ SMCA_PB,	 HWID_MCATYPE(0x05, 0x0), 0x1 },
159 
160 	/* Platform Security Processor MCA type */
161 	{ SMCA_PSP,	 HWID_MCATYPE(0xFF, 0x0), 0x1 },
162 
163 	/* System Management Unit MCA type */
164 	{ SMCA_SMU,	 HWID_MCATYPE(0x01, 0x0), 0x1 },
165 };
166 
167 struct smca_bank smca_banks[MAX_NR_BANKS];
168 EXPORT_SYMBOL_GPL(smca_banks);
169 
170 /*
171  * In SMCA enabled processors, we can have multiple banks for a given IP type.
172  * So to define a unique name for each bank, we use a temp c-string to append
173  * the MCA_IPID[InstanceId] to type's name in get_name().
174  *
175  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
176  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
177  */
178 #define MAX_MCATYPE_NAME_LEN	30
179 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
180 
181 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
182 static DEFINE_PER_CPU(unsigned int, bank_map);	/* see which banks are on */
183 
184 static void amd_threshold_interrupt(void);
185 static void amd_deferred_error_interrupt(void);
186 
default_deferred_error_interrupt(void)187 static void default_deferred_error_interrupt(void)
188 {
189 	pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
190 }
191 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
192 
smca_configure(unsigned int bank,unsigned int cpu)193 static void smca_configure(unsigned int bank, unsigned int cpu)
194 {
195 	unsigned int i, hwid_mcatype;
196 	struct smca_hwid *s_hwid;
197 	u32 high, low;
198 	u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
199 
200 	/* Set appropriate bits in MCA_CONFIG */
201 	if (!rdmsr_safe(smca_config, &low, &high)) {
202 		/*
203 		 * OS is required to set the MCAX bit to acknowledge that it is
204 		 * now using the new MSR ranges and new registers under each
205 		 * bank. It also means that the OS will configure deferred
206 		 * errors in the new MCx_CONFIG register. If the bit is not set,
207 		 * uncorrectable errors will cause a system panic.
208 		 *
209 		 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
210 		 */
211 		high |= BIT(0);
212 
213 		/*
214 		 * SMCA sets the Deferred Error Interrupt type per bank.
215 		 *
216 		 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
217 		 * if the DeferredIntType bit field is available.
218 		 *
219 		 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
220 		 * high portion of the MSR). OS should set this to 0x1 to enable
221 		 * APIC based interrupt. First, check that no interrupt has been
222 		 * set.
223 		 */
224 		if ((low & BIT(5)) && !((high >> 5) & 0x3))
225 			high |= BIT(5);
226 
227 		wrmsr(smca_config, low, high);
228 	}
229 
230 	/* Return early if this bank was already initialized. */
231 	if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
232 		return;
233 
234 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
235 		pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
236 		return;
237 	}
238 
239 	hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
240 				    (high & MCI_IPID_MCATYPE) >> 16);
241 
242 	for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
243 		s_hwid = &smca_hwid_mcatypes[i];
244 		if (hwid_mcatype == s_hwid->hwid_mcatype) {
245 			smca_banks[bank].hwid = s_hwid;
246 			smca_banks[bank].id = low;
247 			smca_banks[bank].sysfs_id = s_hwid->count++;
248 			break;
249 		}
250 	}
251 }
252 
253 struct thresh_restart {
254 	struct threshold_block	*b;
255 	int			reset;
256 	int			set_lvt_off;
257 	int			lvt_off;
258 	u16			old_limit;
259 };
260 
is_shared_bank(int bank)261 static inline bool is_shared_bank(int bank)
262 {
263 	/*
264 	 * Scalable MCA provides for only one core to have access to the MSRs of
265 	 * a shared bank.
266 	 */
267 	if (mce_flags.smca)
268 		return false;
269 
270 	/* Bank 4 is for northbridge reporting and is thus shared */
271 	return (bank == 4);
272 }
273 
bank4_names(const struct threshold_block * b)274 static const char *bank4_names(const struct threshold_block *b)
275 {
276 	switch (b->address) {
277 	/* MSR4_MISC0 */
278 	case 0x00000413:
279 		return "dram";
280 
281 	case 0xc0000408:
282 		return "ht_links";
283 
284 	case 0xc0000409:
285 		return "l3_cache";
286 
287 	default:
288 		WARN(1, "Funny MSR: 0x%08x\n", b->address);
289 		return "";
290 	}
291 };
292 
293 
lvt_interrupt_supported(unsigned int bank,u32 msr_high_bits)294 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
295 {
296 	/*
297 	 * bank 4 supports APIC LVT interrupts implicitly since forever.
298 	 */
299 	if (bank == 4)
300 		return true;
301 
302 	/*
303 	 * IntP: interrupt present; if this bit is set, the thresholding
304 	 * bank can generate APIC LVT interrupts
305 	 */
306 	return msr_high_bits & BIT(28);
307 }
308 
lvt_off_valid(struct threshold_block * b,int apic,u32 lo,u32 hi)309 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
310 {
311 	int msr = (hi & MASK_LVTOFF_HI) >> 20;
312 
313 	if (apic < 0) {
314 		pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
315 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
316 		       b->bank, b->block, b->address, hi, lo);
317 		return 0;
318 	}
319 
320 	if (apic != msr) {
321 		/*
322 		 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
323 		 * the BIOS provides the value. The original field where LVT offset
324 		 * was set is reserved. Return early here:
325 		 */
326 		if (mce_flags.smca)
327 			return 0;
328 
329 		pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
330 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
331 		       b->cpu, apic, b->bank, b->block, b->address, hi, lo);
332 		return 0;
333 	}
334 
335 	return 1;
336 };
337 
338 /* Reprogram MCx_MISC MSR behind this threshold bank. */
threshold_restart_bank(void * _tr)339 static void threshold_restart_bank(void *_tr)
340 {
341 	struct thresh_restart *tr = _tr;
342 	u32 hi, lo;
343 
344 	rdmsr(tr->b->address, lo, hi);
345 
346 	if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
347 		tr->reset = 1;	/* limit cannot be lower than err count */
348 
349 	if (tr->reset) {		/* reset err count and overflow bit */
350 		hi =
351 		    (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
352 		    (THRESHOLD_MAX - tr->b->threshold_limit);
353 	} else if (tr->old_limit) {	/* change limit w/o reset */
354 		int new_count = (hi & THRESHOLD_MAX) +
355 		    (tr->old_limit - tr->b->threshold_limit);
356 
357 		hi = (hi & ~MASK_ERR_COUNT_HI) |
358 		    (new_count & THRESHOLD_MAX);
359 	}
360 
361 	/* clear IntType */
362 	hi &= ~MASK_INT_TYPE_HI;
363 
364 	if (!tr->b->interrupt_capable)
365 		goto done;
366 
367 	if (tr->set_lvt_off) {
368 		if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
369 			/* set new lvt offset */
370 			hi &= ~MASK_LVTOFF_HI;
371 			hi |= tr->lvt_off << 20;
372 		}
373 	}
374 
375 	if (tr->b->interrupt_enable)
376 		hi |= INT_TYPE_APIC;
377 
378  done:
379 
380 	hi |= MASK_COUNT_EN_HI;
381 	wrmsr(tr->b->address, lo, hi);
382 }
383 
mce_threshold_block_init(struct threshold_block * b,int offset)384 static void mce_threshold_block_init(struct threshold_block *b, int offset)
385 {
386 	struct thresh_restart tr = {
387 		.b			= b,
388 		.set_lvt_off		= 1,
389 		.lvt_off		= offset,
390 	};
391 
392 	b->threshold_limit		= THRESHOLD_MAX;
393 	threshold_restart_bank(&tr);
394 };
395 
setup_APIC_mce_threshold(int reserved,int new)396 static int setup_APIC_mce_threshold(int reserved, int new)
397 {
398 	if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
399 					      APIC_EILVT_MSG_FIX, 0))
400 		return new;
401 
402 	return reserved;
403 }
404 
setup_APIC_deferred_error(int reserved,int new)405 static int setup_APIC_deferred_error(int reserved, int new)
406 {
407 	if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
408 					      APIC_EILVT_MSG_FIX, 0))
409 		return new;
410 
411 	return reserved;
412 }
413 
deferred_error_interrupt_enable(struct cpuinfo_x86 * c)414 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
415 {
416 	u32 low = 0, high = 0;
417 	int def_offset = -1, def_new;
418 
419 	if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
420 		return;
421 
422 	def_new = (low & MASK_DEF_LVTOFF) >> 4;
423 	if (!(low & MASK_DEF_LVTOFF)) {
424 		pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
425 		def_new = DEF_LVT_OFF;
426 		low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
427 	}
428 
429 	def_offset = setup_APIC_deferred_error(def_offset, def_new);
430 	if ((def_offset == def_new) &&
431 	    (deferred_error_int_vector != amd_deferred_error_interrupt))
432 		deferred_error_int_vector = amd_deferred_error_interrupt;
433 
434 	low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435 	wrmsr(MSR_CU_DEF_ERR, low, high);
436 }
437 
smca_get_block_address(unsigned int cpu,unsigned int bank,unsigned int block)438 static u32 smca_get_block_address(unsigned int cpu, unsigned int bank,
439 				  unsigned int block)
440 {
441 	u32 low, high;
442 	u32 addr = 0;
443 
444 	if (smca_get_bank_type(bank) == SMCA_RESERVED)
445 		return addr;
446 
447 	if (!block)
448 		return MSR_AMD64_SMCA_MCx_MISC(bank);
449 
450 	/* Check our cache first: */
451 	if (smca_bank_addrs[bank][block] != -1)
452 		return smca_bank_addrs[bank][block];
453 
454 	/*
455 	 * For SMCA enabled processors, BLKPTR field of the first MISC register
456 	 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
457 	 */
458 	if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459 		goto out;
460 
461 	if (!(low & MCI_CONFIG_MCAX))
462 		goto out;
463 
464 	if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465 	    (low & MASK_BLKPTR_LO))
466 		addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
467 
468 out:
469 	smca_bank_addrs[bank][block] = addr;
470 	return addr;
471 }
472 
get_block_address(unsigned int cpu,u32 current_addr,u32 low,u32 high,unsigned int bank,unsigned int block)473 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
474 			     unsigned int bank, unsigned int block)
475 {
476 	u32 addr = 0, offset = 0;
477 
478 	if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479 		return addr;
480 
481 	if (mce_flags.smca)
482 		return smca_get_block_address(cpu, bank, block);
483 
484 	/* Fall back to method we used for older processors: */
485 	switch (block) {
486 	case 0:
487 		addr = msr_ops.misc(bank);
488 		break;
489 	case 1:
490 		offset = ((low & MASK_BLKPTR_LO) >> 21);
491 		if (offset)
492 			addr = MCG_XBLK_ADDR + offset;
493 		break;
494 	default:
495 		addr = ++current_addr;
496 	}
497 	return addr;
498 }
499 
500 static int
prepare_threshold_block(unsigned int bank,unsigned int block,u32 addr,int offset,u32 misc_high)501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502 			int offset, u32 misc_high)
503 {
504 	unsigned int cpu = smp_processor_id();
505 	u32 smca_low, smca_high;
506 	struct threshold_block b;
507 	int new;
508 
509 	if (!block)
510 		per_cpu(bank_map, cpu) |= (1 << bank);
511 
512 	memset(&b, 0, sizeof(b));
513 	b.cpu			= cpu;
514 	b.bank			= bank;
515 	b.block			= block;
516 	b.address		= addr;
517 	b.interrupt_capable	= lvt_interrupt_supported(bank, misc_high);
518 
519 	if (!b.interrupt_capable)
520 		goto done;
521 
522 	b.interrupt_enable = 1;
523 
524 	if (!mce_flags.smca) {
525 		new = (misc_high & MASK_LVTOFF_HI) >> 20;
526 		goto set_offset;
527 	}
528 
529 	/* Gather LVT offset for thresholding: */
530 	if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531 		goto out;
532 
533 	new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
534 
535 set_offset:
536 	offset = setup_APIC_mce_threshold(offset, new);
537 	if (offset == new)
538 		thresholding_irq_en = true;
539 
540 done:
541 	mce_threshold_block_init(&b, offset);
542 
543 out:
544 	return offset;
545 }
546 
547 /*
548  * Turn off MC4_MISC thresholding banks on all family 0x15 models since
549  * they're not supported there.
550  */
disable_err_thresholding(struct cpuinfo_x86 * c)551 void disable_err_thresholding(struct cpuinfo_x86 *c)
552 {
553 	int i;
554 	u64 hwcr;
555 	bool need_toggle;
556 	u32 msrs[] = {
557 		0x00000413, /* MC4_MISC0 */
558 		0xc0000408, /* MC4_MISC1 */
559 	};
560 
561 	if (c->x86 != 0x15)
562 		return;
563 
564 	rdmsrl(MSR_K7_HWCR, hwcr);
565 
566 	/* McStatusWrEn has to be set */
567 	need_toggle = !(hwcr & BIT(18));
568 
569 	if (need_toggle)
570 		wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
571 
572 	/* Clear CntP bit safely */
573 	for (i = 0; i < ARRAY_SIZE(msrs); i++)
574 		msr_clear_bit(msrs[i], 62);
575 
576 	/* restore old settings */
577 	if (need_toggle)
578 		wrmsrl(MSR_K7_HWCR, hwcr);
579 }
580 
581 /* cpu init entry point, called from mce.c with preempt off */
mce_amd_feature_init(struct cpuinfo_x86 * c)582 void mce_amd_feature_init(struct cpuinfo_x86 *c)
583 {
584 	u32 low = 0, high = 0, address = 0;
585 	unsigned int bank, block, cpu = smp_processor_id();
586 	int offset = -1;
587 
588 	disable_err_thresholding(c);
589 
590 	for (bank = 0; bank < mca_cfg.banks; ++bank) {
591 		if (mce_flags.smca)
592 			smca_configure(bank, cpu);
593 
594 		for (block = 0; block < NR_BLOCKS; ++block) {
595 			address = get_block_address(cpu, address, low, high, bank, block);
596 			if (!address)
597 				break;
598 
599 			if (rdmsr_safe(address, &low, &high))
600 				break;
601 
602 			if (!(high & MASK_VALID_HI))
603 				continue;
604 
605 			if (!(high & MASK_CNTP_HI)  ||
606 			     (high & MASK_LOCKED_HI))
607 				continue;
608 
609 			offset = prepare_threshold_block(bank, block, address, offset, high);
610 		}
611 	}
612 
613 	if (mce_flags.succor)
614 		deferred_error_interrupt_enable(c);
615 }
616 
umc_normaddr_to_sysaddr(u64 norm_addr,u16 nid,u8 umc,u64 * sys_addr)617 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
618 {
619 	u64 dram_base_addr, dram_limit_addr, dram_hole_base;
620 	/* We start from the normalized address */
621 	u64 ret_addr = norm_addr;
622 
623 	u32 tmp;
624 
625 	u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
626 	u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
627 	u8 intlv_addr_sel, intlv_addr_bit;
628 	u8 num_intlv_bits, hashed_bit;
629 	u8 lgcy_mmio_hole_en, base = 0;
630 	u8 cs_mask, cs_id = 0;
631 	bool hash_enabled = false;
632 
633 	/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
634 	if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
635 		goto out_err;
636 
637 	/* Remove HiAddrOffset from normalized address, if enabled: */
638 	if (tmp & BIT(0)) {
639 		u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
640 
641 		if (norm_addr >= hi_addr_offset) {
642 			ret_addr -= hi_addr_offset;
643 			base = 1;
644 		}
645 	}
646 
647 	/* Read D18F0x110 (DramBaseAddress). */
648 	if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
649 		goto out_err;
650 
651 	/* Check if address range is valid. */
652 	if (!(tmp & BIT(0))) {
653 		pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
654 			__func__, tmp);
655 		goto out_err;
656 	}
657 
658 	lgcy_mmio_hole_en = tmp & BIT(1);
659 	intlv_num_chan	  = (tmp >> 4) & 0xF;
660 	intlv_addr_sel	  = (tmp >> 8) & 0x7;
661 	dram_base_addr	  = (tmp & GENMASK_ULL(31, 12)) << 16;
662 
663 	/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
664 	if (intlv_addr_sel > 3) {
665 		pr_err("%s: Invalid interleave address select %d.\n",
666 			__func__, intlv_addr_sel);
667 		goto out_err;
668 	}
669 
670 	/* Read D18F0x114 (DramLimitAddress). */
671 	if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
672 		goto out_err;
673 
674 	intlv_num_sockets = (tmp >> 8) & 0x1;
675 	intlv_num_dies	  = (tmp >> 10) & 0x3;
676 	dram_limit_addr	  = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
677 
678 	intlv_addr_bit = intlv_addr_sel + 8;
679 
680 	/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
681 	switch (intlv_num_chan) {
682 	case 0:	intlv_num_chan = 0; break;
683 	case 1: intlv_num_chan = 1; break;
684 	case 3: intlv_num_chan = 2; break;
685 	case 5:	intlv_num_chan = 3; break;
686 	case 7:	intlv_num_chan = 4; break;
687 
688 	case 8: intlv_num_chan = 1;
689 		hash_enabled = true;
690 		break;
691 	default:
692 		pr_err("%s: Invalid number of interleaved channels %d.\n",
693 			__func__, intlv_num_chan);
694 		goto out_err;
695 	}
696 
697 	num_intlv_bits = intlv_num_chan;
698 
699 	if (intlv_num_dies > 2) {
700 		pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
701 			__func__, intlv_num_dies);
702 		goto out_err;
703 	}
704 
705 	num_intlv_bits += intlv_num_dies;
706 
707 	/* Add a bit if sockets are interleaved. */
708 	num_intlv_bits += intlv_num_sockets;
709 
710 	/* Assert num_intlv_bits <= 4 */
711 	if (num_intlv_bits > 4) {
712 		pr_err("%s: Invalid interleave bits %d.\n",
713 			__func__, num_intlv_bits);
714 		goto out_err;
715 	}
716 
717 	if (num_intlv_bits > 0) {
718 		u64 temp_addr_x, temp_addr_i, temp_addr_y;
719 		u8 die_id_bit, sock_id_bit, cs_fabric_id;
720 
721 		/*
722 		 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
723 		 * This is the fabric id for this coherent slave. Use
724 		 * umc/channel# as instance id of the coherent slave
725 		 * for FICAA.
726 		 */
727 		if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
728 			goto out_err;
729 
730 		cs_fabric_id = (tmp >> 8) & 0xFF;
731 		die_id_bit   = 0;
732 
733 		/* If interleaved over more than 1 channel: */
734 		if (intlv_num_chan) {
735 			die_id_bit = intlv_num_chan;
736 			cs_mask	   = (1 << die_id_bit) - 1;
737 			cs_id	   = cs_fabric_id & cs_mask;
738 		}
739 
740 		sock_id_bit = die_id_bit;
741 
742 		/* Read D18F1x208 (SystemFabricIdMask). */
743 		if (intlv_num_dies || intlv_num_sockets)
744 			if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
745 				goto out_err;
746 
747 		/* If interleaved over more than 1 die. */
748 		if (intlv_num_dies) {
749 			sock_id_bit  = die_id_bit + intlv_num_dies;
750 			die_id_shift = (tmp >> 24) & 0xF;
751 			die_id_mask  = (tmp >> 8) & 0xFF;
752 
753 			cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
754 		}
755 
756 		/* If interleaved over more than 1 socket. */
757 		if (intlv_num_sockets) {
758 			socket_id_shift	= (tmp >> 28) & 0xF;
759 			socket_id_mask	= (tmp >> 16) & 0xFF;
760 
761 			cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
762 		}
763 
764 		/*
765 		 * The pre-interleaved address consists of XXXXXXIIIYYYYY
766 		 * where III is the ID for this CS, and XXXXXXYYYYY are the
767 		 * address bits from the post-interleaved address.
768 		 * "num_intlv_bits" has been calculated to tell us how many "I"
769 		 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
770 		 * there are (where "I" starts).
771 		 */
772 		temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
773 		temp_addr_i = (cs_id << intlv_addr_bit);
774 		temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
775 		ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
776 	}
777 
778 	/* Add dram base address */
779 	ret_addr += dram_base_addr;
780 
781 	/* If legacy MMIO hole enabled */
782 	if (lgcy_mmio_hole_en) {
783 		if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
784 			goto out_err;
785 
786 		dram_hole_base = tmp & GENMASK(31, 24);
787 		if (ret_addr >= dram_hole_base)
788 			ret_addr += (BIT_ULL(32) - dram_hole_base);
789 	}
790 
791 	if (hash_enabled) {
792 		/* Save some parentheses and grab ls-bit at the end. */
793 		hashed_bit =	(ret_addr >> 12) ^
794 				(ret_addr >> 18) ^
795 				(ret_addr >> 21) ^
796 				(ret_addr >> 30) ^
797 				cs_id;
798 
799 		hashed_bit &= BIT(0);
800 
801 		if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
802 			ret_addr ^= BIT(intlv_addr_bit);
803 	}
804 
805 	/* Is calculated system address is above DRAM limit address? */
806 	if (ret_addr > dram_limit_addr)
807 		goto out_err;
808 
809 	*sys_addr = ret_addr;
810 	return 0;
811 
812 out_err:
813 	return -EINVAL;
814 }
815 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
816 
amd_mce_is_memory_error(struct mce * m)817 bool amd_mce_is_memory_error(struct mce *m)
818 {
819 	/* ErrCodeExt[20:16] */
820 	u8 xec = (m->status >> 16) & 0x1f;
821 
822 	if (mce_flags.smca)
823 		return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
824 
825 	return m->bank == 4 && xec == 0x8;
826 }
827 
__log_error(unsigned int bank,u64 status,u64 addr,u64 misc)828 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
829 {
830 	struct mce m;
831 
832 	mce_setup(&m);
833 
834 	m.status = status;
835 	m.misc   = misc;
836 	m.bank   = bank;
837 	m.tsc	 = rdtsc();
838 
839 	if (m.status & MCI_STATUS_ADDRV) {
840 		m.addr = addr;
841 
842 		/*
843 		 * Extract [55:<lsb>] where lsb is the least significant
844 		 * *valid* bit of the address bits.
845 		 */
846 		if (mce_flags.smca) {
847 			u8 lsb = (m.addr >> 56) & 0x3f;
848 
849 			m.addr &= GENMASK_ULL(55, lsb);
850 		}
851 	}
852 
853 	if (mce_flags.smca) {
854 		rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
855 
856 		if (m.status & MCI_STATUS_SYNDV)
857 			rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
858 	}
859 
860 	mce_log(&m);
861 }
862 
smp_deferred_error_interrupt(struct pt_regs * regs)863 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
864 {
865 	entering_irq();
866 	trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
867 	inc_irq_stat(irq_deferred_error_count);
868 	deferred_error_int_vector();
869 	trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
870 	exiting_ack_irq();
871 }
872 
873 /*
874  * Returns true if the logged error is deferred. False, otherwise.
875  */
876 static inline bool
_log_error_bank(unsigned int bank,u32 msr_stat,u32 msr_addr,u64 misc)877 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
878 {
879 	u64 status, addr = 0;
880 
881 	rdmsrl(msr_stat, status);
882 	if (!(status & MCI_STATUS_VAL))
883 		return false;
884 
885 	if (status & MCI_STATUS_ADDRV)
886 		rdmsrl(msr_addr, addr);
887 
888 	__log_error(bank, status, addr, misc);
889 
890 	wrmsrl(msr_stat, 0);
891 
892 	return status & MCI_STATUS_DEFERRED;
893 }
894 
895 /*
896  * We have three scenarios for checking for Deferred errors:
897  *
898  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
899  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
900  *    clear MCA_DESTAT.
901  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
902  *    log it.
903  */
log_error_deferred(unsigned int bank)904 static void log_error_deferred(unsigned int bank)
905 {
906 	bool defrd;
907 
908 	defrd = _log_error_bank(bank, msr_ops.status(bank),
909 					msr_ops.addr(bank), 0);
910 
911 	if (!mce_flags.smca)
912 		return;
913 
914 	/* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
915 	if (defrd) {
916 		wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
917 		return;
918 	}
919 
920 	/*
921 	 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
922 	 * for a valid error.
923 	 */
924 	_log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
925 			      MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
926 }
927 
928 /* APIC interrupt handler for deferred errors */
amd_deferred_error_interrupt(void)929 static void amd_deferred_error_interrupt(void)
930 {
931 	unsigned int bank;
932 
933 	for (bank = 0; bank < mca_cfg.banks; ++bank)
934 		log_error_deferred(bank);
935 }
936 
log_error_thresholding(unsigned int bank,u64 misc)937 static void log_error_thresholding(unsigned int bank, u64 misc)
938 {
939 	_log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
940 }
941 
log_and_reset_block(struct threshold_block * block)942 static void log_and_reset_block(struct threshold_block *block)
943 {
944 	struct thresh_restart tr;
945 	u32 low = 0, high = 0;
946 
947 	if (!block)
948 		return;
949 
950 	if (rdmsr_safe(block->address, &low, &high))
951 		return;
952 
953 	if (!(high & MASK_OVERFLOW_HI))
954 		return;
955 
956 	/* Log the MCE which caused the threshold event. */
957 	log_error_thresholding(block->bank, ((u64)high << 32) | low);
958 
959 	/* Reset threshold block after logging error. */
960 	memset(&tr, 0, sizeof(tr));
961 	tr.b = block;
962 	threshold_restart_bank(&tr);
963 }
964 
965 /*
966  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
967  * goes off when error_count reaches threshold_limit.
968  */
amd_threshold_interrupt(void)969 static void amd_threshold_interrupt(void)
970 {
971 	struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
972 	unsigned int bank, cpu = smp_processor_id();
973 
974 	for (bank = 0; bank < mca_cfg.banks; ++bank) {
975 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
976 			continue;
977 
978 		first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
979 		if (!first_block)
980 			continue;
981 
982 		/*
983 		 * The first block is also the head of the list. Check it first
984 		 * before iterating over the rest.
985 		 */
986 		log_and_reset_block(first_block);
987 		list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
988 			log_and_reset_block(block);
989 	}
990 }
991 
992 /*
993  * Sysfs Interface
994  */
995 
996 struct threshold_attr {
997 	struct attribute attr;
998 	ssize_t (*show) (struct threshold_block *, char *);
999 	ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1000 };
1001 
1002 #define SHOW_FIELDS(name)						\
1003 static ssize_t show_ ## name(struct threshold_block *b, char *buf)	\
1004 {									\
1005 	return sprintf(buf, "%lu\n", (unsigned long) b->name);		\
1006 }
1007 SHOW_FIELDS(interrupt_enable)
SHOW_FIELDS(threshold_limit)1008 SHOW_FIELDS(threshold_limit)
1009 
1010 static ssize_t
1011 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1012 {
1013 	struct thresh_restart tr;
1014 	unsigned long new;
1015 
1016 	if (!b->interrupt_capable)
1017 		return -EINVAL;
1018 
1019 	if (kstrtoul(buf, 0, &new) < 0)
1020 		return -EINVAL;
1021 
1022 	b->interrupt_enable = !!new;
1023 
1024 	memset(&tr, 0, sizeof(tr));
1025 	tr.b		= b;
1026 
1027 	smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1028 
1029 	return size;
1030 }
1031 
1032 static ssize_t
store_threshold_limit(struct threshold_block * b,const char * buf,size_t size)1033 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1034 {
1035 	struct thresh_restart tr;
1036 	unsigned long new;
1037 
1038 	if (kstrtoul(buf, 0, &new) < 0)
1039 		return -EINVAL;
1040 
1041 	if (new > THRESHOLD_MAX)
1042 		new = THRESHOLD_MAX;
1043 	if (new < 1)
1044 		new = 1;
1045 
1046 	memset(&tr, 0, sizeof(tr));
1047 	tr.old_limit = b->threshold_limit;
1048 	b->threshold_limit = new;
1049 	tr.b = b;
1050 
1051 	smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1052 
1053 	return size;
1054 }
1055 
show_error_count(struct threshold_block * b,char * buf)1056 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1057 {
1058 	u32 lo, hi;
1059 
1060 	rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1061 
1062 	return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1063 				     (THRESHOLD_MAX - b->threshold_limit)));
1064 }
1065 
1066 static struct threshold_attr error_count = {
1067 	.attr = {.name = __stringify(error_count), .mode = 0444 },
1068 	.show = show_error_count,
1069 };
1070 
1071 #define RW_ATTR(val)							\
1072 static struct threshold_attr val = {					\
1073 	.attr	= {.name = __stringify(val), .mode = 0644 },		\
1074 	.show	= show_## val,						\
1075 	.store	= store_## val,						\
1076 };
1077 
1078 RW_ATTR(interrupt_enable);
1079 RW_ATTR(threshold_limit);
1080 
1081 static struct attribute *default_attrs[] = {
1082 	&threshold_limit.attr,
1083 	&error_count.attr,
1084 	NULL,	/* possibly interrupt_enable if supported, see below */
1085 	NULL,
1086 };
1087 
1088 #define to_block(k)	container_of(k, struct threshold_block, kobj)
1089 #define to_attr(a)	container_of(a, struct threshold_attr, attr)
1090 
show(struct kobject * kobj,struct attribute * attr,char * buf)1091 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1092 {
1093 	struct threshold_block *b = to_block(kobj);
1094 	struct threshold_attr *a = to_attr(attr);
1095 	ssize_t ret;
1096 
1097 	ret = a->show ? a->show(b, buf) : -EIO;
1098 
1099 	return ret;
1100 }
1101 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1102 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1103 		     const char *buf, size_t count)
1104 {
1105 	struct threshold_block *b = to_block(kobj);
1106 	struct threshold_attr *a = to_attr(attr);
1107 	ssize_t ret;
1108 
1109 	ret = a->store ? a->store(b, buf, count) : -EIO;
1110 
1111 	return ret;
1112 }
1113 
1114 static const struct sysfs_ops threshold_ops = {
1115 	.show			= show,
1116 	.store			= store,
1117 };
1118 
1119 static void threshold_block_release(struct kobject *kobj);
1120 
1121 static struct kobj_type threshold_ktype = {
1122 	.sysfs_ops		= &threshold_ops,
1123 	.default_attrs		= default_attrs,
1124 	.release		= threshold_block_release,
1125 };
1126 
get_name(unsigned int bank,struct threshold_block * b)1127 static const char *get_name(unsigned int bank, struct threshold_block *b)
1128 {
1129 	enum smca_bank_types bank_type;
1130 
1131 	if (!mce_flags.smca) {
1132 		if (b && bank == 4)
1133 			return bank4_names(b);
1134 
1135 		return th_names[bank];
1136 	}
1137 
1138 	bank_type = smca_get_bank_type(bank);
1139 	if (bank_type >= N_SMCA_BANK_TYPES)
1140 		return NULL;
1141 
1142 	if (b && bank_type == SMCA_UMC) {
1143 		if (b->block < ARRAY_SIZE(smca_umc_block_names))
1144 			return smca_umc_block_names[b->block];
1145 		return NULL;
1146 	}
1147 
1148 	if (smca_banks[bank].hwid->count == 1)
1149 		return smca_get_name(bank_type);
1150 
1151 	snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1152 		 "%s_%x", smca_get_name(bank_type),
1153 			  smca_banks[bank].sysfs_id);
1154 	return buf_mcatype;
1155 }
1156 
allocate_threshold_blocks(unsigned int cpu,struct threshold_bank * tb,unsigned int bank,unsigned int block,u32 address)1157 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1158 				     unsigned int bank, unsigned int block,
1159 				     u32 address)
1160 {
1161 	struct threshold_block *b = NULL;
1162 	u32 low, high;
1163 	int err;
1164 
1165 	if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1166 		return 0;
1167 
1168 	if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1169 		return 0;
1170 
1171 	if (!(high & MASK_VALID_HI)) {
1172 		if (block)
1173 			goto recurse;
1174 		else
1175 			return 0;
1176 	}
1177 
1178 	if (!(high & MASK_CNTP_HI)  ||
1179 	     (high & MASK_LOCKED_HI))
1180 		goto recurse;
1181 
1182 	b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1183 	if (!b)
1184 		return -ENOMEM;
1185 
1186 	b->block		= block;
1187 	b->bank			= bank;
1188 	b->cpu			= cpu;
1189 	b->address		= address;
1190 	b->interrupt_enable	= 0;
1191 	b->interrupt_capable	= lvt_interrupt_supported(bank, high);
1192 	b->threshold_limit	= THRESHOLD_MAX;
1193 
1194 	if (b->interrupt_capable) {
1195 		threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1196 		b->interrupt_enable = 1;
1197 	} else {
1198 		threshold_ktype.default_attrs[2] = NULL;
1199 	}
1200 
1201 	INIT_LIST_HEAD(&b->miscj);
1202 
1203 	if (tb->blocks)
1204 		list_add(&b->miscj, &tb->blocks->miscj);
1205 	else
1206 		tb->blocks = b;
1207 
1208 	err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1209 	if (err)
1210 		goto out_free;
1211 recurse:
1212 	address = get_block_address(cpu, address, low, high, bank, ++block);
1213 	if (!address)
1214 		return 0;
1215 
1216 	err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1217 	if (err)
1218 		goto out_free;
1219 
1220 	if (b)
1221 		kobject_uevent(&b->kobj, KOBJ_ADD);
1222 
1223 	return err;
1224 
1225 out_free:
1226 	if (b) {
1227 		kobject_put(&b->kobj);
1228 		list_del(&b->miscj);
1229 		kfree(b);
1230 	}
1231 	return err;
1232 }
1233 
__threshold_add_blocks(struct threshold_bank * b)1234 static int __threshold_add_blocks(struct threshold_bank *b)
1235 {
1236 	struct list_head *head = &b->blocks->miscj;
1237 	struct threshold_block *pos = NULL;
1238 	struct threshold_block *tmp = NULL;
1239 	int err = 0;
1240 
1241 	err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1242 	if (err)
1243 		return err;
1244 
1245 	list_for_each_entry_safe(pos, tmp, head, miscj) {
1246 
1247 		err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1248 		if (err) {
1249 			list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1250 				kobject_del(&pos->kobj);
1251 
1252 			return err;
1253 		}
1254 	}
1255 	return err;
1256 }
1257 
threshold_create_bank(unsigned int cpu,unsigned int bank)1258 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1259 {
1260 	struct device *dev = per_cpu(mce_device, cpu);
1261 	struct amd_northbridge *nb = NULL;
1262 	struct threshold_bank *b = NULL;
1263 	const char *name = get_name(bank, NULL);
1264 	int err = 0;
1265 
1266 	if (!dev)
1267 		return -ENODEV;
1268 
1269 	if (is_shared_bank(bank)) {
1270 		nb = node_to_amd_nb(amd_get_nb_id(cpu));
1271 
1272 		/* threshold descriptor already initialized on this node? */
1273 		if (nb && nb->bank4) {
1274 			/* yes, use it */
1275 			b = nb->bank4;
1276 			err = kobject_add(b->kobj, &dev->kobj, name);
1277 			if (err)
1278 				goto out;
1279 
1280 			per_cpu(threshold_banks, cpu)[bank] = b;
1281 			refcount_inc(&b->cpus);
1282 
1283 			err = __threshold_add_blocks(b);
1284 
1285 			goto out;
1286 		}
1287 	}
1288 
1289 	b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1290 	if (!b) {
1291 		err = -ENOMEM;
1292 		goto out;
1293 	}
1294 
1295 	b->kobj = kobject_create_and_add(name, &dev->kobj);
1296 	if (!b->kobj) {
1297 		err = -EINVAL;
1298 		goto out_free;
1299 	}
1300 
1301 	if (is_shared_bank(bank)) {
1302 		refcount_set(&b->cpus, 1);
1303 
1304 		/* nb is already initialized, see above */
1305 		if (nb) {
1306 			WARN_ON(nb->bank4);
1307 			nb->bank4 = b;
1308 		}
1309 	}
1310 
1311 	err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1312 	if (err)
1313 		goto out_free;
1314 
1315 	per_cpu(threshold_banks, cpu)[bank] = b;
1316 
1317 	return 0;
1318 
1319  out_free:
1320 	kfree(b);
1321 
1322  out:
1323 	return err;
1324 }
1325 
threshold_block_release(struct kobject * kobj)1326 static void threshold_block_release(struct kobject *kobj)
1327 {
1328 	kfree(to_block(kobj));
1329 }
1330 
deallocate_threshold_block(unsigned int cpu,unsigned int bank)1331 static void deallocate_threshold_block(unsigned int cpu, unsigned int bank)
1332 {
1333 	struct threshold_block *pos = NULL;
1334 	struct threshold_block *tmp = NULL;
1335 	struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1336 
1337 	if (!head)
1338 		return;
1339 
1340 	list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1341 		list_del(&pos->miscj);
1342 		kobject_put(&pos->kobj);
1343 	}
1344 
1345 	kobject_put(&head->blocks->kobj);
1346 }
1347 
__threshold_remove_blocks(struct threshold_bank * b)1348 static void __threshold_remove_blocks(struct threshold_bank *b)
1349 {
1350 	struct threshold_block *pos = NULL;
1351 	struct threshold_block *tmp = NULL;
1352 
1353 	kobject_del(b->kobj);
1354 
1355 	list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1356 		kobject_del(&pos->kobj);
1357 }
1358 
threshold_remove_bank(unsigned int cpu,int bank)1359 static void threshold_remove_bank(unsigned int cpu, int bank)
1360 {
1361 	struct amd_northbridge *nb;
1362 	struct threshold_bank *b;
1363 
1364 	b = per_cpu(threshold_banks, cpu)[bank];
1365 	if (!b)
1366 		return;
1367 
1368 	if (!b->blocks)
1369 		goto free_out;
1370 
1371 	if (is_shared_bank(bank)) {
1372 		if (!refcount_dec_and_test(&b->cpus)) {
1373 			__threshold_remove_blocks(b);
1374 			per_cpu(threshold_banks, cpu)[bank] = NULL;
1375 			return;
1376 		} else {
1377 			/*
1378 			 * the last CPU on this node using the shared bank is
1379 			 * going away, remove that bank now.
1380 			 */
1381 			nb = node_to_amd_nb(amd_get_nb_id(cpu));
1382 			nb->bank4 = NULL;
1383 		}
1384 	}
1385 
1386 	deallocate_threshold_block(cpu, bank);
1387 
1388 free_out:
1389 	kobject_del(b->kobj);
1390 	kobject_put(b->kobj);
1391 	kfree(b);
1392 	per_cpu(threshold_banks, cpu)[bank] = NULL;
1393 }
1394 
mce_threshold_remove_device(unsigned int cpu)1395 int mce_threshold_remove_device(unsigned int cpu)
1396 {
1397 	unsigned int bank;
1398 
1399 	for (bank = 0; bank < mca_cfg.banks; ++bank) {
1400 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1401 			continue;
1402 		threshold_remove_bank(cpu, bank);
1403 	}
1404 	kfree(per_cpu(threshold_banks, cpu));
1405 	per_cpu(threshold_banks, cpu) = NULL;
1406 	return 0;
1407 }
1408 
1409 /* create dir/files for all valid threshold banks */
mce_threshold_create_device(unsigned int cpu)1410 int mce_threshold_create_device(unsigned int cpu)
1411 {
1412 	unsigned int bank;
1413 	struct threshold_bank **bp;
1414 	int err = 0;
1415 
1416 	bp = per_cpu(threshold_banks, cpu);
1417 	if (bp)
1418 		return 0;
1419 
1420 	bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1421 		     GFP_KERNEL);
1422 	if (!bp)
1423 		return -ENOMEM;
1424 
1425 	per_cpu(threshold_banks, cpu) = bp;
1426 
1427 	for (bank = 0; bank < mca_cfg.banks; ++bank) {
1428 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1429 			continue;
1430 		err = threshold_create_bank(cpu, bank);
1431 		if (err)
1432 			goto err;
1433 	}
1434 	return err;
1435 err:
1436 	mce_threshold_remove_device(cpu);
1437 	return err;
1438 }
1439 
threshold_init_device(void)1440 static __init int threshold_init_device(void)
1441 {
1442 	unsigned lcpu = 0;
1443 
1444 	/* to hit CPUs online before the notifier is up */
1445 	for_each_online_cpu(lcpu) {
1446 		int err = mce_threshold_create_device(lcpu);
1447 
1448 		if (err)
1449 			return err;
1450 	}
1451 
1452 	if (thresholding_irq_en)
1453 		mce_threshold_vector = amd_threshold_interrupt;
1454 
1455 	return 0;
1456 }
1457 /*
1458  * there are 3 funcs which need to be _initcalled in a logic sequence:
1459  * 1. xen_late_init_mcelog
1460  * 2. mcheck_init_device
1461  * 3. threshold_init_device
1462  *
1463  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1464  * native mce_chrdev_device registration if running under xen platform;
1465  *
1466  * mcheck_init_device should be inited before threshold_init_device to
1467  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1468  *
1469  * so we use following _initcalls
1470  * 1. device_initcall(xen_late_init_mcelog);
1471  * 2. device_initcall_sync(mcheck_init_device);
1472  * 3. late_initcall(threshold_init_device);
1473  *
1474  * when running under xen, the initcall order is 1,2,3;
1475  * on baremetal, we skip 1 and we do only 2 and 3.
1476  */
1477 late_initcall(threshold_init_device);
1478