• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * e100net.c: A network driver for the ETRAX 100LX network controller.
4  *
5  * Copyright (c) 1998-2002 Axis Communications AB.
6  *
7  * The outline of this driver comes from skeleton.c.
8  *
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/ptrace.h>
17 #include <linux/ioport.h>
18 #include <linux/in.h>
19 #include <linux/string.h>
20 #include <linux/spinlock.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/bitops.h>
24 
25 #include <linux/if.h>
26 #include <linux/mii.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/ethtool.h>
31 
32 #include <arch/svinto.h>/* DMA and register descriptions */
33 #include <asm/io.h>         /* CRIS_LED_* I/O functions */
34 #include <asm/irq.h>
35 #include <asm/dma.h>
36 #include <asm/ethernet.h>
37 #include <asm/cache.h>
38 #include <arch/io_interface_mux.h>
39 
40 //#define ETHDEBUG
41 #define D(x)
42 
43 /*
44  * The name of the card. Is used for messages and in the requests for
45  * io regions, irqs and dma channels
46  */
47 
48 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
49 
50 /* A default ethernet address. Highlevel SW will set the real one later */
51 
52 static struct sockaddr default_mac = {
53 	0,
54 	{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
55 };
56 
57 /* Information that need to be kept for each board. */
58 struct net_local {
59 	struct mii_if_info mii_if;
60 
61 	/* Tx control lock.  This protects the transmit buffer ring
62 	 * state along with the "tx full" state of the driver.  This
63 	 * means all netif_queue flow control actions are protected
64 	 * by this lock as well.
65 	 */
66 	spinlock_t lock;
67 
68 	spinlock_t led_lock; /* Protect LED state */
69 	spinlock_t transceiver_lock; /* Protect transceiver state. */
70 };
71 
72 typedef struct etrax_eth_descr
73 {
74 	etrax_dma_descr descr;
75 	struct sk_buff* skb;
76 } etrax_eth_descr;
77 
78 /* Some transceivers requires special handling */
79 struct transceiver_ops
80 {
81 	unsigned int oui;
82 	void (*check_speed)(struct net_device* dev);
83 	void (*check_duplex)(struct net_device* dev);
84 };
85 
86 /* Duplex settings */
87 enum duplex
88 {
89 	half,
90 	full,
91 	autoneg
92 };
93 
94 /* Dma descriptors etc. */
95 
96 #define MAX_MEDIA_DATA_SIZE 1522
97 
98 #define MIN_PACKET_LEN      46
99 #define ETHER_HEAD_LEN      14
100 
101 /*
102 ** MDIO constants.
103 */
104 #define MDIO_START                          0x1
105 #define MDIO_READ                           0x2
106 #define MDIO_WRITE                          0x1
107 #define MDIO_PREAMBLE              0xfffffffful
108 
109 /* Broadcom specific */
110 #define MDIO_AUX_CTRL_STATUS_REG           0x18
111 #define MDIO_BC_FULL_DUPLEX_IND             0x1
112 #define MDIO_BC_SPEED                       0x2
113 
114 /* TDK specific */
115 #define MDIO_TDK_DIAGNOSTIC_REG              18
116 #define MDIO_TDK_DIAGNOSTIC_RATE          0x400
117 #define MDIO_TDK_DIAGNOSTIC_DPLX          0x800
118 
119 /*Intel LXT972A specific*/
120 #define MDIO_INT_STATUS_REG_2			0x0011
121 #define MDIO_INT_FULL_DUPLEX_IND       (1 << 9)
122 #define MDIO_INT_SPEED                (1 << 14)
123 
124 /* Network flash constants */
125 #define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
126 #define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
127 #define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
128 #define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */
129 
130 #define NO_NETWORK_ACTIVITY 0
131 #define NETWORK_ACTIVITY    1
132 
133 #define NBR_OF_RX_DESC     32
134 #define NBR_OF_TX_DESC     16
135 
136 /* Large packets are sent directly to upper layers while small packets are */
137 /* copied (to reduce memory waste). The following constant decides the breakpoint */
138 #define RX_COPYBREAK 256
139 
140 /* Due to a chip bug we need to flush the cache when descriptors are returned */
141 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
142 /* The following constant determines the number of descriptors to return. */
143 #define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2
144 
145 #define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)
146 
147 /* Define some macros to access ETRAX 100 registers */
148 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
149 					  IO_FIELD_(reg##_, field##_, val)
150 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
151 					  IO_STATE_(reg##_, field##_, _##val)
152 
153 static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
154                                           to be processed */
155 static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */
156 
157 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
158 
159 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
160 static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
161 static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
162 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
163 
164 static unsigned int network_rec_config_shadow = 0;
165 
166 static unsigned int network_tr_ctrl_shadow = 0;
167 
168 /* Network speed indication. */
169 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
170 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
171 static int current_speed; /* Speed read from transceiver */
172 static int current_speed_selection; /* Speed selected by user */
173 static unsigned long led_next_time;
174 static int led_active;
175 static int rx_queue_len;
176 
177 /* Duplex */
178 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
179 static int full_duplex;
180 static enum duplex current_duplex;
181 
182 /* Index to functions, as function prototypes. */
183 
184 static int etrax_ethernet_init(void);
185 
186 static int e100_open(struct net_device *dev);
187 static int e100_set_mac_address(struct net_device *dev, void *addr);
188 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
189 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
190 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
191 static void e100_rx(struct net_device *dev);
192 static int e100_close(struct net_device *dev);
193 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
194 static int e100_set_config(struct net_device* dev, struct ifmap* map);
195 static void e100_tx_timeout(struct net_device *dev);
196 static struct net_device_stats *e100_get_stats(struct net_device *dev);
197 static void set_multicast_list(struct net_device *dev);
198 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
199 static void update_rx_stats(struct net_device_stats *);
200 static void update_tx_stats(struct net_device_stats *);
201 static int e100_probe_transceiver(struct net_device* dev);
202 
203 static void e100_check_speed(unsigned long priv);
204 static void e100_set_speed(struct net_device* dev, unsigned long speed);
205 static void e100_check_duplex(unsigned long priv);
206 static void e100_set_duplex(struct net_device* dev, enum duplex);
207 static void e100_negotiate(struct net_device* dev);
208 
209 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
210 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
211 
212 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
213 static void e100_send_mdio_bit(unsigned char bit);
214 static unsigned char e100_receive_mdio_bit(void);
215 static void e100_reset_transceiver(struct net_device* net);
216 
217 static void e100_clear_network_leds(unsigned long dummy);
218 static void e100_set_network_leds(int active);
219 
220 static const struct ethtool_ops e100_ethtool_ops;
221 #if defined(CONFIG_ETRAX_NO_PHY)
222 static void dummy_check_speed(struct net_device* dev);
223 static void dummy_check_duplex(struct net_device* dev);
224 #else
225 static void broadcom_check_speed(struct net_device* dev);
226 static void broadcom_check_duplex(struct net_device* dev);
227 static void tdk_check_speed(struct net_device* dev);
228 static void tdk_check_duplex(struct net_device* dev);
229 static void intel_check_speed(struct net_device* dev);
230 static void intel_check_duplex(struct net_device* dev);
231 static void generic_check_speed(struct net_device* dev);
232 static void generic_check_duplex(struct net_device* dev);
233 #endif
234 #ifdef CONFIG_NET_POLL_CONTROLLER
235 static void e100_netpoll(struct net_device* dev);
236 #endif
237 
238 static int autoneg_normal = 1;
239 
240 struct transceiver_ops transceivers[] =
241 {
242 #if defined(CONFIG_ETRAX_NO_PHY)
243 	{0x0000, dummy_check_speed, dummy_check_duplex}        /* Dummy */
244 #else
245 	{0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
246 	{0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
247 	{0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
248         {0x04de, intel_check_speed, intel_check_duplex},     	/* Intel LXT972A*/
249 	{0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
250 #endif
251 };
252 
253 struct transceiver_ops* transceiver = &transceivers[0];
254 
255 static const struct net_device_ops e100_netdev_ops = {
256 	.ndo_open		= e100_open,
257 	.ndo_stop		= e100_close,
258 	.ndo_start_xmit		= e100_send_packet,
259 	.ndo_tx_timeout		= e100_tx_timeout,
260 	.ndo_get_stats		= e100_get_stats,
261 	.ndo_set_rx_mode	= set_multicast_list,
262 	.ndo_do_ioctl		= e100_ioctl,
263 	.ndo_set_mac_address	= e100_set_mac_address,
264 	.ndo_validate_addr	= eth_validate_addr,
265 	.ndo_set_config		= e100_set_config,
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 	.ndo_poll_controller	= e100_netpoll,
268 #endif
269 };
270 
271 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
272 
273 /*
274  * Check for a network adaptor of this type, and return '0' if one exists.
275  * If dev->base_addr == 0, probe all likely locations.
276  * If dev->base_addr == 1, always return failure.
277  * If dev->base_addr == 2, allocate space for the device and return success
278  * (detachable devices only).
279  */
280 
281 static int __init
etrax_ethernet_init(void)282 etrax_ethernet_init(void)
283 {
284 	struct net_device *dev;
285         struct net_local* np;
286 	int i, err;
287 
288 	printk(KERN_INFO
289 	       "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
290 
291 	if (cris_request_io_interface(if_eth, cardname)) {
292 		printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
293 		return -EBUSY;
294 	}
295 
296 	dev = alloc_etherdev(sizeof(struct net_local));
297 	if (!dev)
298 		return -ENOMEM;
299 
300 	np = netdev_priv(dev);
301 
302 	/* we do our own locking */
303 	dev->features |= NETIF_F_LLTX;
304 
305 	dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
306 
307 	/* now setup our etrax specific stuff */
308 
309 	dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
310 	dev->dma = NETWORK_RX_DMA_NBR;
311 
312 	/* fill in our handlers so the network layer can talk to us in the future */
313 
314 	dev->ethtool_ops	= &e100_ethtool_ops;
315 	dev->netdev_ops		= &e100_netdev_ops;
316 
317 	spin_lock_init(&np->lock);
318 	spin_lock_init(&np->led_lock);
319 	spin_lock_init(&np->transceiver_lock);
320 
321 	/* Initialise the list of Etrax DMA-descriptors */
322 
323 	/* Initialise receive descriptors */
324 
325 	for (i = 0; i < NBR_OF_RX_DESC; i++) {
326 		/* Allocate two extra cachelines to make sure that buffer used
327 		 * by DMA does not share cacheline with any other data (to
328 		 * avoid cache bug)
329 		 */
330 		RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
331 		if (!RxDescList[i].skb)
332 			return -ENOMEM;
333 		RxDescList[i].descr.ctrl   = 0;
334 		RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
335 		RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
336 		RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
337 		RxDescList[i].descr.status = 0;
338 		RxDescList[i].descr.hw_len = 0;
339 		prepare_rx_descriptor(&RxDescList[i].descr);
340 	}
341 
342 	RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
343 	RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
344 	rx_queue_len = 0;
345 
346 	/* Initialize transmit descriptors */
347 	for (i = 0; i < NBR_OF_TX_DESC; i++) {
348 		TxDescList[i].descr.ctrl   = 0;
349 		TxDescList[i].descr.sw_len = 0;
350 		TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
351 		TxDescList[i].descr.buf    = 0;
352 		TxDescList[i].descr.status = 0;
353 		TxDescList[i].descr.hw_len = 0;
354 		TxDescList[i].skb = 0;
355 	}
356 
357 	TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
358 	TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);
359 
360 	/* Initialise initial pointers */
361 
362 	myNextRxDesc  = &RxDescList[0];
363 	myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
364 	myFirstTxDesc = &TxDescList[0];
365 	myNextTxDesc  = &TxDescList[0];
366 	myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];
367 
368 	/* Register device */
369 	err = register_netdev(dev);
370 	if (err) {
371 		free_netdev(dev);
372 		return err;
373 	}
374 
375 	/* set the default MAC address */
376 
377 	e100_set_mac_address(dev, &default_mac);
378 
379 	/* Initialize speed indicator stuff. */
380 
381 	current_speed = 10;
382 	current_speed_selection = 0; /* Auto */
383 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
384 	speed_timer.data = (unsigned long)dev;
385 	speed_timer.function = e100_check_speed;
386 
387 	clear_led_timer.function = e100_clear_network_leds;
388 	clear_led_timer.data = (unsigned long)dev;
389 
390 	full_duplex = 0;
391 	current_duplex = autoneg;
392 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
393         duplex_timer.data = (unsigned long)dev;
394 	duplex_timer.function = e100_check_duplex;
395 
396         /* Initialize mii interface */
397 	np->mii_if.phy_id_mask = 0x1f;
398 	np->mii_if.reg_num_mask = 0x1f;
399 	np->mii_if.dev = dev;
400 	np->mii_if.mdio_read = e100_get_mdio_reg;
401 	np->mii_if.mdio_write = e100_set_mdio_reg;
402 
403 	/* Initialize group address registers to make sure that no */
404 	/* unwanted addresses are matched */
405 	*R_NETWORK_GA_0 = 0x00000000;
406 	*R_NETWORK_GA_1 = 0x00000000;
407 
408 	/* Initialize next time the led can flash */
409 	led_next_time = jiffies;
410 	return 0;
411 }
device_initcall(etrax_ethernet_init)412 device_initcall(etrax_ethernet_init)
413 
414 /* set MAC address of the interface. called from the core after a
415  * SIOCSIFADDR ioctl, and from the bootup above.
416  */
417 
418 static int
419 e100_set_mac_address(struct net_device *dev, void *p)
420 {
421 	struct net_local *np = netdev_priv(dev);
422 	struct sockaddr *addr = p;
423 
424 	spin_lock(&np->lock); /* preemption protection */
425 
426 	/* remember it */
427 
428 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
429 
430 	/* Write it to the hardware.
431 	 * Note the way the address is wrapped:
432 	 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
433 	 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
434 	 */
435 
436 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
437 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
438 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
439 	*R_NETWORK_SA_2 = 0;
440 
441 	/* show it in the log as well */
442 
443 	printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
444 
445 	spin_unlock(&np->lock);
446 
447 	return 0;
448 }
449 
450 /*
451  * Open/initialize the board. This is called (in the current kernel)
452  * sometime after booting when the 'ifconfig' program is run.
453  *
454  * This routine should set everything up anew at each open, even
455  * registers that "should" only need to be set once at boot, so that
456  * there is non-reboot way to recover if something goes wrong.
457  */
458 
459 static int
e100_open(struct net_device * dev)460 e100_open(struct net_device *dev)
461 {
462 	unsigned long flags;
463 
464 	/* enable the MDIO output pin */
465 
466 	*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
467 
468 	*R_IRQ_MASK0_CLR =
469 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
470 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
471 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
472 
473 	/* clear dma0 and 1 eop and descr irq masks */
474 	*R_IRQ_MASK2_CLR =
475 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
476 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
477 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
478 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
479 
480 	/* Reset and wait for the DMA channels */
481 
482 	RESET_DMA(NETWORK_TX_DMA_NBR);
483 	RESET_DMA(NETWORK_RX_DMA_NBR);
484 	WAIT_DMA(NETWORK_TX_DMA_NBR);
485 	WAIT_DMA(NETWORK_RX_DMA_NBR);
486 
487 	/* Initialise the etrax network controller */
488 
489 	/* allocate the irq corresponding to the receiving DMA */
490 
491 	if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
492 			(void *)dev)) {
493 		goto grace_exit0;
494 	}
495 
496 	/* allocate the irq corresponding to the transmitting DMA */
497 
498 	if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
499 			cardname, (void *)dev)) {
500 		goto grace_exit1;
501 	}
502 
503 	/* allocate the irq corresponding to the network errors etc */
504 
505 	if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
506 			cardname, (void *)dev)) {
507 		goto grace_exit2;
508 	}
509 
510 	/*
511 	 * Always allocate the DMA channels after the IRQ,
512 	 * and clean up on failure.
513 	 */
514 
515 	if (cris_request_dma(NETWORK_TX_DMA_NBR,
516 	                     cardname,
517 	                     DMA_VERBOSE_ON_ERROR,
518 	                     dma_eth)) {
519 		goto grace_exit3;
520         }
521 
522 	if (cris_request_dma(NETWORK_RX_DMA_NBR,
523 	                     cardname,
524 	                     DMA_VERBOSE_ON_ERROR,
525 	                     dma_eth)) {
526 		goto grace_exit4;
527         }
528 
529 	/* give the HW an idea of what MAC address we want */
530 
531 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
532 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
533 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
534 	*R_NETWORK_SA_2 = 0;
535 
536 #if 0
537 	/* use promiscuous mode for testing */
538 	*R_NETWORK_GA_0 = 0xffffffff;
539 	*R_NETWORK_GA_1 = 0xffffffff;
540 
541 	*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
542 #else
543 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
544 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
545 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
546 	SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
547 	*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
548 #endif
549 
550 	*R_NETWORK_GEN_CONFIG =
551 		IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
552 		IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
553 
554 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
555 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
556 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
557 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
558 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
559 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
560 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
561 	*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
562 
563 	local_irq_save(flags);
564 
565 	/* enable the irq's for ethernet DMA */
566 
567 	*R_IRQ_MASK2_SET =
568 		IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
569 		IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
570 
571 	*R_IRQ_MASK0_SET =
572 		IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
573 		IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
574 		IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
575 
576 	/* make sure the irqs are cleared */
577 
578 	*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
579 	*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
580 
581 	/* make sure the rec and transmit error counters are cleared */
582 
583 	(void)*R_REC_COUNTERS;  /* dummy read */
584 	(void)*R_TR_COUNTERS;   /* dummy read */
585 
586 	/* start the receiving DMA channel so we can receive packets from now on */
587 
588 	*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
589 	*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
590 
591 	/* Set up transmit DMA channel so it can be restarted later */
592 
593 	*R_DMA_CH0_FIRST = 0;
594 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
595 	netif_start_queue(dev);
596 
597 	local_irq_restore(flags);
598 
599 	/* Probe for transceiver */
600 	if (e100_probe_transceiver(dev))
601 		goto grace_exit5;
602 
603 	/* Start duplex/speed timers */
604 	add_timer(&speed_timer);
605 	add_timer(&duplex_timer);
606 
607 	/* We are now ready to accept transmit requeusts from
608 	 * the queueing layer of the networking.
609 	 */
610 	netif_carrier_on(dev);
611 
612 	return 0;
613 
614 grace_exit5:
615 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
616 grace_exit4:
617 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
618 grace_exit3:
619 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
620 grace_exit2:
621 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
622 grace_exit1:
623 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
624 grace_exit0:
625 	return -EAGAIN;
626 }
627 
628 #if defined(CONFIG_ETRAX_NO_PHY)
629 static void
dummy_check_speed(struct net_device * dev)630 dummy_check_speed(struct net_device* dev)
631 {
632 	current_speed = 100;
633 }
634 #else
635 static void
generic_check_speed(struct net_device * dev)636 generic_check_speed(struct net_device* dev)
637 {
638 	unsigned long data;
639 	struct net_local *np = netdev_priv(dev);
640 
641 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
642 	if ((data & ADVERTISE_100FULL) ||
643 	    (data & ADVERTISE_100HALF))
644 		current_speed = 100;
645 	else
646 		current_speed = 10;
647 }
648 
649 static void
tdk_check_speed(struct net_device * dev)650 tdk_check_speed(struct net_device* dev)
651 {
652 	unsigned long data;
653 	struct net_local *np = netdev_priv(dev);
654 
655 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
656 				 MDIO_TDK_DIAGNOSTIC_REG);
657 	current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
658 }
659 
660 static void
broadcom_check_speed(struct net_device * dev)661 broadcom_check_speed(struct net_device* dev)
662 {
663 	unsigned long data;
664 	struct net_local *np = netdev_priv(dev);
665 
666 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
667 				 MDIO_AUX_CTRL_STATUS_REG);
668 	current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
669 }
670 
671 static void
intel_check_speed(struct net_device * dev)672 intel_check_speed(struct net_device* dev)
673 {
674 	unsigned long data;
675 	struct net_local *np = netdev_priv(dev);
676 
677 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
678 				 MDIO_INT_STATUS_REG_2);
679 	current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
680 }
681 #endif
682 static void
e100_check_speed(unsigned long priv)683 e100_check_speed(unsigned long priv)
684 {
685 	struct net_device* dev = (struct net_device*)priv;
686 	struct net_local *np = netdev_priv(dev);
687 	static int led_initiated = 0;
688 	unsigned long data;
689 	int old_speed = current_speed;
690 
691 	spin_lock(&np->transceiver_lock);
692 
693 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
694 	if (!(data & BMSR_LSTATUS)) {
695 		current_speed = 0;
696 	} else {
697 		transceiver->check_speed(dev);
698 	}
699 
700 	spin_lock(&np->led_lock);
701 	if ((old_speed != current_speed) || !led_initiated) {
702 		led_initiated = 1;
703 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
704 		if (current_speed)
705 			netif_carrier_on(dev);
706 		else
707 			netif_carrier_off(dev);
708 	}
709 	spin_unlock(&np->led_lock);
710 
711 	/* Reinitialize the timer. */
712 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
713 	add_timer(&speed_timer);
714 
715 	spin_unlock(&np->transceiver_lock);
716 }
717 
718 static void
e100_negotiate(struct net_device * dev)719 e100_negotiate(struct net_device* dev)
720 {
721 	struct net_local *np = netdev_priv(dev);
722 	unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
723 						MII_ADVERTISE);
724 
725 	/* Discard old speed and duplex settings */
726 	data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
727 	          ADVERTISE_10HALF | ADVERTISE_10FULL);
728 
729 	switch (current_speed_selection) {
730 		case 10:
731 			if (current_duplex == full)
732 				data |= ADVERTISE_10FULL;
733 			else if (current_duplex == half)
734 				data |= ADVERTISE_10HALF;
735 			else
736 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
737 			break;
738 
739 		case 100:
740 			 if (current_duplex == full)
741 				data |= ADVERTISE_100FULL;
742 			else if (current_duplex == half)
743 				data |= ADVERTISE_100HALF;
744 			else
745 				data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
746 			break;
747 
748 		case 0: /* Auto */
749 			 if (current_duplex == full)
750 				data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
751 			else if (current_duplex == half)
752 				data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
753 			else
754 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
755 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
756 			break;
757 
758 		default: /* assume autoneg speed and duplex */
759 			data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
760 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
761 			break;
762 	}
763 
764 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
765 
766 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
767 	if (autoneg_normal) {
768 		/* Renegotiate with link partner */
769 		data |= BMCR_ANENABLE | BMCR_ANRESTART;
770 	} else {
771 		/* Don't negotiate speed or duplex */
772 		data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
773 
774 		/* Set speed and duplex static */
775 		if (current_speed_selection == 10)
776 			data &= ~BMCR_SPEED100;
777 		else
778 			data |= BMCR_SPEED100;
779 
780 		if (current_duplex != full)
781 			data &= ~BMCR_FULLDPLX;
782 		else
783 			data |= BMCR_FULLDPLX;
784 	}
785 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
786 }
787 
788 static void
e100_set_speed(struct net_device * dev,unsigned long speed)789 e100_set_speed(struct net_device* dev, unsigned long speed)
790 {
791 	struct net_local *np = netdev_priv(dev);
792 
793 	spin_lock(&np->transceiver_lock);
794 	if (speed != current_speed_selection) {
795 		current_speed_selection = speed;
796 		e100_negotiate(dev);
797 	}
798 	spin_unlock(&np->transceiver_lock);
799 }
800 
801 static void
e100_check_duplex(unsigned long priv)802 e100_check_duplex(unsigned long priv)
803 {
804 	struct net_device *dev = (struct net_device *)priv;
805 	struct net_local *np = netdev_priv(dev);
806 	int old_duplex;
807 
808 	spin_lock(&np->transceiver_lock);
809 	old_duplex = full_duplex;
810 	transceiver->check_duplex(dev);
811 	if (old_duplex != full_duplex) {
812 		/* Duplex changed */
813 		SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
814 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
815 	}
816 
817 	/* Reinitialize the timer. */
818 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
819 	add_timer(&duplex_timer);
820 	np->mii_if.full_duplex = full_duplex;
821 	spin_unlock(&np->transceiver_lock);
822 }
823 #if defined(CONFIG_ETRAX_NO_PHY)
824 static void
dummy_check_duplex(struct net_device * dev)825 dummy_check_duplex(struct net_device* dev)
826 {
827 	full_duplex = 1;
828 }
829 #else
830 static void
generic_check_duplex(struct net_device * dev)831 generic_check_duplex(struct net_device* dev)
832 {
833 	unsigned long data;
834 	struct net_local *np = netdev_priv(dev);
835 
836 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
837 	if ((data & ADVERTISE_10FULL) ||
838 	    (data & ADVERTISE_100FULL))
839 		full_duplex = 1;
840 	else
841 		full_duplex = 0;
842 }
843 
844 static void
tdk_check_duplex(struct net_device * dev)845 tdk_check_duplex(struct net_device* dev)
846 {
847 	unsigned long data;
848 	struct net_local *np = netdev_priv(dev);
849 
850 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
851 				 MDIO_TDK_DIAGNOSTIC_REG);
852 	full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
853 }
854 
855 static void
broadcom_check_duplex(struct net_device * dev)856 broadcom_check_duplex(struct net_device* dev)
857 {
858 	unsigned long data;
859 	struct net_local *np = netdev_priv(dev);
860 
861 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
862 				 MDIO_AUX_CTRL_STATUS_REG);
863 	full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
864 }
865 
866 static void
intel_check_duplex(struct net_device * dev)867 intel_check_duplex(struct net_device* dev)
868 {
869 	unsigned long data;
870 	struct net_local *np = netdev_priv(dev);
871 
872 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
873 				 MDIO_INT_STATUS_REG_2);
874 	full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
875 }
876 #endif
877 static void
e100_set_duplex(struct net_device * dev,enum duplex new_duplex)878 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
879 {
880 	struct net_local *np = netdev_priv(dev);
881 
882 	spin_lock(&np->transceiver_lock);
883 	if (new_duplex != current_duplex) {
884 		current_duplex = new_duplex;
885 		e100_negotiate(dev);
886 	}
887 	spin_unlock(&np->transceiver_lock);
888 }
889 
890 static int
e100_probe_transceiver(struct net_device * dev)891 e100_probe_transceiver(struct net_device* dev)
892 {
893 	int ret = 0;
894 
895 #if !defined(CONFIG_ETRAX_NO_PHY)
896 	unsigned int phyid_high;
897 	unsigned int phyid_low;
898 	unsigned int oui;
899 	struct transceiver_ops* ops = NULL;
900 	struct net_local *np = netdev_priv(dev);
901 
902 	spin_lock(&np->transceiver_lock);
903 
904 	/* Probe MDIO physical address */
905 	for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
906 	     np->mii_if.phy_id++) {
907 		if (e100_get_mdio_reg(dev,
908 				      np->mii_if.phy_id, MII_BMSR) != 0xffff)
909 			break;
910 	}
911 	if (np->mii_if.phy_id == 32) {
912 		ret = -ENODEV;
913 		goto out;
914 	}
915 
916 	/* Get manufacturer */
917 	phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
918 	phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
919 	oui = (phyid_high << 6) | (phyid_low >> 10);
920 
921 	for (ops = &transceivers[0]; ops->oui; ops++) {
922 		if (ops->oui == oui)
923 			break;
924 	}
925 	transceiver = ops;
926 out:
927 	spin_unlock(&np->transceiver_lock);
928 #endif
929 	return ret;
930 }
931 
932 static int
e100_get_mdio_reg(struct net_device * dev,int phy_id,int location)933 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
934 {
935 	unsigned short cmd;    /* Data to be sent on MDIO port */
936 	int data;   /* Data read from MDIO */
937 	int bitCounter;
938 
939 	/* Start of frame, OP Code, Physical Address, Register Address */
940 	cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
941 		(location << 2);
942 
943 	e100_send_mdio_cmd(cmd, 0);
944 
945 	data = 0;
946 
947 	/* Data... */
948 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
949 		data |= (e100_receive_mdio_bit() << bitCounter);
950 	}
951 
952 	return data;
953 }
954 
955 static void
e100_set_mdio_reg(struct net_device * dev,int phy_id,int location,int value)956 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
957 {
958 	int bitCounter;
959 	unsigned short cmd;
960 
961 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
962 	      (location << 2);
963 
964 	e100_send_mdio_cmd(cmd, 1);
965 
966 	/* Data... */
967 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
968 		e100_send_mdio_bit(GET_BIT(bitCounter, value));
969 	}
970 
971 }
972 
973 static void
e100_send_mdio_cmd(unsigned short cmd,int write_cmd)974 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
975 {
976 	int bitCounter;
977 	unsigned char data = 0x2;
978 
979 	/* Preamble */
980 	for (bitCounter = 31; bitCounter>= 0; bitCounter--)
981 		e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
982 
983 	for (bitCounter = 15; bitCounter >= 2; bitCounter--)
984 		e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
985 
986 	/* Turnaround */
987 	for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
988 		if (write_cmd)
989 			e100_send_mdio_bit(GET_BIT(bitCounter, data));
990 		else
991 			e100_receive_mdio_bit();
992 }
993 
994 static void
e100_send_mdio_bit(unsigned char bit)995 e100_send_mdio_bit(unsigned char bit)
996 {
997 	*R_NETWORK_MGM_CTRL =
998 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
999 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1000 	udelay(1);
1001 	*R_NETWORK_MGM_CTRL =
1002 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1003 		IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1004 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1005 	udelay(1);
1006 }
1007 
1008 static unsigned char
e100_receive_mdio_bit(void)1009 e100_receive_mdio_bit(void)
1010 {
1011 	unsigned char bit;
1012 	*R_NETWORK_MGM_CTRL = 0;
1013 	bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1014 	udelay(1);
1015 	*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1016 	udelay(1);
1017 	return bit;
1018 }
1019 
1020 static void
e100_reset_transceiver(struct net_device * dev)1021 e100_reset_transceiver(struct net_device* dev)
1022 {
1023 	struct net_local *np = netdev_priv(dev);
1024 	unsigned short cmd;
1025 	unsigned short data;
1026 	int bitCounter;
1027 
1028 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1029 
1030 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1031 
1032 	e100_send_mdio_cmd(cmd, 1);
1033 
1034 	data |= 0x8000;
1035 
1036 	for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1037 		e100_send_mdio_bit(GET_BIT(bitCounter, data));
1038 	}
1039 }
1040 
1041 /* Called by upper layers if they decide it took too long to complete
1042  * sending a packet - we need to reset and stuff.
1043  */
1044 
1045 static void
e100_tx_timeout(struct net_device * dev)1046 e100_tx_timeout(struct net_device *dev)
1047 {
1048 	struct net_local *np = netdev_priv(dev);
1049 	unsigned long flags;
1050 
1051 	spin_lock_irqsave(&np->lock, flags);
1052 
1053 	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1054 	       tx_done(dev) ? "IRQ problem" : "network cable problem");
1055 
1056 	/* remember we got an error */
1057 
1058 	dev->stats.tx_errors++;
1059 
1060 	/* reset the TX DMA in case it has hung on something */
1061 
1062 	RESET_DMA(NETWORK_TX_DMA_NBR);
1063 	WAIT_DMA(NETWORK_TX_DMA_NBR);
1064 
1065 	/* Reset the transceiver. */
1066 
1067 	e100_reset_transceiver(dev);
1068 
1069 	/* and get rid of the packets that never got an interrupt */
1070 	while (myFirstTxDesc != myNextTxDesc) {
1071 		dev_kfree_skb(myFirstTxDesc->skb);
1072 		myFirstTxDesc->skb = 0;
1073 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1074 	}
1075 
1076 	/* Set up transmit DMA channel so it can be restarted later */
1077 	*R_DMA_CH0_FIRST = 0;
1078 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1079 
1080 	/* tell the upper layers we're ok again */
1081 
1082 	netif_wake_queue(dev);
1083 	spin_unlock_irqrestore(&np->lock, flags);
1084 }
1085 
1086 
1087 /* This will only be invoked if the driver is _not_ in XOFF state.
1088  * What this means is that we need not check it, and that this
1089  * invariant will hold if we make sure that the netif_*_queue()
1090  * calls are done at the proper times.
1091  */
1092 
1093 static int
e100_send_packet(struct sk_buff * skb,struct net_device * dev)1094 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1095 {
1096 	struct net_local *np = netdev_priv(dev);
1097 	unsigned char *buf = skb->data;
1098 	unsigned long flags;
1099 
1100 #ifdef ETHDEBUG
1101 	printk("send packet len %d\n", length);
1102 #endif
1103 	spin_lock_irqsave(&np->lock, flags);  /* protect from tx_interrupt and ourself */
1104 
1105 	myNextTxDesc->skb = skb;
1106 
1107 	netif_trans_update(dev); /* NETIF_F_LLTX driver :( */
1108 
1109 	e100_hardware_send_packet(np, buf, skb->len);
1110 
1111 	myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1112 
1113 	/* Stop queue if full */
1114 	if (myNextTxDesc == myFirstTxDesc) {
1115 		netif_stop_queue(dev);
1116 	}
1117 
1118 	spin_unlock_irqrestore(&np->lock, flags);
1119 
1120 	return NETDEV_TX_OK;
1121 }
1122 
1123 /*
1124  * The typical workload of the driver:
1125  *   Handle the network interface interrupts.
1126  */
1127 
1128 static irqreturn_t
e100rxtx_interrupt(int irq,void * dev_id)1129 e100rxtx_interrupt(int irq, void *dev_id)
1130 {
1131 	struct net_device *dev = (struct net_device *)dev_id;
1132 	unsigned long irqbits;
1133 
1134 	/*
1135 	 * Note that both rx and tx interrupts are blocked at this point,
1136 	 * regardless of which got us here.
1137 	 */
1138 
1139 	irqbits = *R_IRQ_MASK2_RD;
1140 
1141 	/* Handle received packets */
1142 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1143 		/* acknowledge the eop interrupt */
1144 
1145 		*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1146 
1147 		/* check if one or more complete packets were indeed received */
1148 
1149 		while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1150 		       (myNextRxDesc != myLastRxDesc)) {
1151 			/* Take out the buffer and give it to the OS, then
1152 			 * allocate a new buffer to put a packet in.
1153 			 */
1154 			e100_rx(dev);
1155 			dev->stats.rx_packets++;
1156 			/* restart/continue on the channel, for safety */
1157 			*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1158 			/* clear dma channel 1 eop/descr irq bits */
1159 			*R_DMA_CH1_CLR_INTR =
1160 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1161 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1162 
1163 			/* now, we might have gotten another packet
1164 			   so we have to loop back and check if so */
1165 		}
1166 	}
1167 
1168 	/* Report any packets that have been sent */
1169 	while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1170 	       (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1171 		dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1172 		dev->stats.tx_packets++;
1173 
1174 		/* dma is ready with the transmission of the data in tx_skb, so now
1175 		   we can release the skb memory */
1176 		dev_kfree_skb_irq(myFirstTxDesc->skb);
1177 		myFirstTxDesc->skb = 0;
1178 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1179                 /* Wake up queue. */
1180 		netif_wake_queue(dev);
1181 	}
1182 
1183 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1184 		/* acknowledge the eop interrupt. */
1185 		*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1186 	}
1187 
1188 	return IRQ_HANDLED;
1189 }
1190 
1191 static irqreturn_t
e100nw_interrupt(int irq,void * dev_id)1192 e100nw_interrupt(int irq, void *dev_id)
1193 {
1194 	struct net_device *dev = (struct net_device *)dev_id;
1195 	unsigned long irqbits = *R_IRQ_MASK0_RD;
1196 
1197 	/* check for underrun irq */
1198 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1199 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1200 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1201 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1202 		dev->stats.tx_errors++;
1203 		D(printk("ethernet receiver underrun!\n"));
1204 	}
1205 
1206 	/* check for overrun irq */
1207 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1208 		update_rx_stats(&dev->stats); /* this will ack the irq */
1209 		D(printk("ethernet receiver overrun!\n"));
1210 	}
1211 	/* check for excessive collision irq */
1212 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1213 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1214 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1215 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1216 		dev->stats.tx_errors++;
1217 		D(printk("ethernet excessive collisions!\n"));
1218 	}
1219 	return IRQ_HANDLED;
1220 }
1221 
1222 /* We have a good packet(s), get it/them out of the buffers. */
1223 static void
e100_rx(struct net_device * dev)1224 e100_rx(struct net_device *dev)
1225 {
1226 	struct sk_buff *skb;
1227 	int length = 0;
1228 	struct net_local *np = netdev_priv(dev);
1229 	unsigned char *skb_data_ptr;
1230 #ifdef ETHDEBUG
1231 	int i;
1232 #endif
1233 	etrax_eth_descr *prevRxDesc;  /* The descriptor right before myNextRxDesc */
1234 	spin_lock(&np->led_lock);
1235 	if (!led_active && time_after(jiffies, led_next_time)) {
1236 		/* light the network leds depending on the current speed. */
1237 		e100_set_network_leds(NETWORK_ACTIVITY);
1238 
1239 		/* Set the earliest time we may clear the LED */
1240 		led_next_time = jiffies + NET_FLASH_TIME;
1241 		led_active = 1;
1242 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1243 	}
1244 	spin_unlock(&np->led_lock);
1245 
1246 	length = myNextRxDesc->descr.hw_len - 4;
1247 	dev->stats.rx_bytes += length;
1248 
1249 #ifdef ETHDEBUG
1250 	printk("Got a packet of length %d:\n", length);
1251 	/* dump the first bytes in the packet */
1252 	skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1253 	for (i = 0; i < 8; i++) {
1254 		printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1255 		       skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1256 		       skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1257 		skb_data_ptr += 8;
1258 	}
1259 #endif
1260 
1261 	if (length < RX_COPYBREAK) {
1262 		/* Small packet, copy data */
1263 		skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1264 		if (!skb) {
1265 			dev->stats.rx_errors++;
1266 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1267 			goto update_nextrxdesc;
1268 		}
1269 
1270 		skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
1271 		skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1272 
1273 #ifdef ETHDEBUG
1274 		printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1275 		       skb->head, skb->data, skb_tail_pointer(skb),
1276 		       skb_end_pointer(skb));
1277 		printk("copying packet to 0x%x.\n", skb_data_ptr);
1278 #endif
1279 
1280 		memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1281 	}
1282 	else {
1283 		/* Large packet, send directly to upper layers and allocate new
1284 		 * memory (aligned to cache line boundary to avoid bug).
1285 		 * Before sending the skb to upper layers we must make sure
1286 		 * that skb->data points to the aligned start of the packet.
1287 		 */
1288 		int align;
1289 		struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1290 		if (!new_skb) {
1291 			dev->stats.rx_errors++;
1292 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1293 			goto update_nextrxdesc;
1294 		}
1295 		skb = myNextRxDesc->skb;
1296 		align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1297 		skb_put(skb, length + align);
1298 		skb_pull(skb, align); /* Remove alignment bytes */
1299 		myNextRxDesc->skb = new_skb;
1300 		myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1301 	}
1302 
1303 	skb->protocol = eth_type_trans(skb, dev);
1304 
1305 	/* Send the packet to the upper layers */
1306 	netif_rx(skb);
1307 
1308   update_nextrxdesc:
1309 	/* Prepare for next packet */
1310 	myNextRxDesc->descr.status = 0;
1311 	prevRxDesc = myNextRxDesc;
1312 	myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1313 
1314 	rx_queue_len++;
1315 
1316 	/* Check if descriptors should be returned */
1317 	if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1318 		flush_etrax_cache();
1319 		prevRxDesc->descr.ctrl |= d_eol;
1320 		myLastRxDesc->descr.ctrl &= ~d_eol;
1321 		myLastRxDesc = prevRxDesc;
1322 		rx_queue_len = 0;
1323 	}
1324 }
1325 
1326 /* The inverse routine to net_open(). */
1327 static int
e100_close(struct net_device * dev)1328 e100_close(struct net_device *dev)
1329 {
1330 	printk(KERN_INFO "Closing %s.\n", dev->name);
1331 
1332 	netif_stop_queue(dev);
1333 
1334 	*R_IRQ_MASK0_CLR =
1335 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1336 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1337 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1338 
1339 	*R_IRQ_MASK2_CLR =
1340 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1341 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1342 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1343 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1344 
1345 	/* Stop the receiver and the transmitter */
1346 
1347 	RESET_DMA(NETWORK_TX_DMA_NBR);
1348 	RESET_DMA(NETWORK_RX_DMA_NBR);
1349 
1350 	/* Flush the Tx and disable Rx here. */
1351 
1352 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1353 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1354 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1355 
1356 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1357 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1358 
1359 	/* Update the statistics here. */
1360 
1361 	update_rx_stats(&dev->stats);
1362 	update_tx_stats(&dev->stats);
1363 
1364 	/* Stop speed/duplex timers */
1365 	del_timer(&speed_timer);
1366 	del_timer(&duplex_timer);
1367 
1368 	return 0;
1369 }
1370 
1371 static int
e100_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1372 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1373 {
1374 	struct mii_ioctl_data *data = if_mii(ifr);
1375 	struct net_local *np = netdev_priv(dev);
1376 	int rc = 0;
1377         int old_autoneg;
1378 
1379 	spin_lock(&np->lock); /* Preempt protection */
1380 	switch (cmd) {
1381 		/* The ioctls below should be considered obsolete but are */
1382 		/* still present for compatibility with old scripts/apps  */
1383 		case SET_ETH_SPEED_10:                  /* 10 Mbps */
1384 			e100_set_speed(dev, 10);
1385 			break;
1386 		case SET_ETH_SPEED_100:                /* 100 Mbps */
1387 			e100_set_speed(dev, 100);
1388 			break;
1389 		case SET_ETH_SPEED_AUTO:        /* Auto-negotiate speed */
1390 			e100_set_speed(dev, 0);
1391 			break;
1392 		case SET_ETH_DUPLEX_HALF:       /* Half duplex */
1393 			e100_set_duplex(dev, half);
1394 			break;
1395 		case SET_ETH_DUPLEX_FULL:       /* Full duplex */
1396 			e100_set_duplex(dev, full);
1397 			break;
1398 		case SET_ETH_DUPLEX_AUTO:       /* Auto-negotiate duplex */
1399 			e100_set_duplex(dev, autoneg);
1400 			break;
1401 	        case SET_ETH_AUTONEG:
1402 			old_autoneg = autoneg_normal;
1403 		        autoneg_normal = *(int*)data;
1404 			if (autoneg_normal != old_autoneg)
1405 				e100_negotiate(dev);
1406 			break;
1407 		default:
1408 			rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1409 						cmd, NULL);
1410 			break;
1411 	}
1412 	spin_unlock(&np->lock);
1413 	return rc;
1414 }
1415 
e100_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1416 static int e100_get_link_ksettings(struct net_device *dev,
1417 				   struct ethtool_link_ksettings *cmd)
1418 {
1419 	struct net_local *np = netdev_priv(dev);
1420 	u32 supported;
1421 
1422 	spin_lock_irq(&np->lock);
1423 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1424 	spin_unlock_irq(&np->lock);
1425 
1426 	/* The PHY may support 1000baseT, but the Etrax100 does not.  */
1427 	ethtool_convert_link_mode_to_legacy_u32(&supported,
1428 						cmd->link_modes.supported);
1429 
1430 	supported &= ~(SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full);
1431 
1432 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1433 						supported);
1434 
1435 	return 0;
1436 }
1437 
e100_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * ecmd)1438 static int e100_set_link_ksettings(struct net_device *dev,
1439 				   const struct ethtool_link_ksettings *ecmd)
1440 {
1441 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
1442 		e100_set_duplex(dev, autoneg);
1443 		e100_set_speed(dev, 0);
1444 	} else {
1445 		e100_set_duplex(dev, ecmd->base.duplex == DUPLEX_HALF ?
1446 				half : full);
1447 		e100_set_speed(dev, ecmd->base.speed == SPEED_10 ? 10 : 100);
1448 	}
1449 
1450 	return 0;
1451 }
1452 
e100_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1453 static void e100_get_drvinfo(struct net_device *dev,
1454 			     struct ethtool_drvinfo *info)
1455 {
1456 	strlcpy(info->driver, "ETRAX 100LX", sizeof(info->driver));
1457 	strlcpy(info->version, "$Revision: 1.31 $", sizeof(info->version));
1458 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1459 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1460 }
1461 
e100_nway_reset(struct net_device * dev)1462 static int e100_nway_reset(struct net_device *dev)
1463 {
1464 	if (current_duplex == autoneg && current_speed_selection == 0)
1465 		e100_negotiate(dev);
1466 	return 0;
1467 }
1468 
1469 static const struct ethtool_ops e100_ethtool_ops = {
1470 	.get_drvinfo	= e100_get_drvinfo,
1471 	.nway_reset	= e100_nway_reset,
1472 	.get_link	= ethtool_op_get_link,
1473 	.get_link_ksettings	= e100_get_link_ksettings,
1474 	.set_link_ksettings	= e100_set_link_ksettings,
1475 };
1476 
1477 static int
e100_set_config(struct net_device * dev,struct ifmap * map)1478 e100_set_config(struct net_device *dev, struct ifmap *map)
1479 {
1480 	struct net_local *np = netdev_priv(dev);
1481 
1482 	spin_lock(&np->lock); /* Preempt protection */
1483 
1484 	switch(map->port) {
1485 		case IF_PORT_UNKNOWN:
1486 			/* Use autoneg */
1487 			e100_set_speed(dev, 0);
1488 			e100_set_duplex(dev, autoneg);
1489 			break;
1490 		case IF_PORT_10BASET:
1491 			e100_set_speed(dev, 10);
1492 			e100_set_duplex(dev, autoneg);
1493 			break;
1494 		case IF_PORT_100BASET:
1495 		case IF_PORT_100BASETX:
1496 			e100_set_speed(dev, 100);
1497 			e100_set_duplex(dev, autoneg);
1498 			break;
1499 		case IF_PORT_100BASEFX:
1500 		case IF_PORT_10BASE2:
1501 		case IF_PORT_AUI:
1502 			spin_unlock(&np->lock);
1503 			return -EOPNOTSUPP;
1504 		default:
1505 			printk(KERN_ERR "%s: Invalid media selected", dev->name);
1506 			spin_unlock(&np->lock);
1507 			return -EINVAL;
1508 	}
1509 	spin_unlock(&np->lock);
1510 	return 0;
1511 }
1512 
1513 static void
update_rx_stats(struct net_device_stats * es)1514 update_rx_stats(struct net_device_stats *es)
1515 {
1516 	unsigned long r = *R_REC_COUNTERS;
1517 	/* update stats relevant to reception errors */
1518 	es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1519 	es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1520 	es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1521 	es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1522 }
1523 
1524 static void
update_tx_stats(struct net_device_stats * es)1525 update_tx_stats(struct net_device_stats *es)
1526 {
1527 	unsigned long r = *R_TR_COUNTERS;
1528 	/* update stats relevant to transmission errors */
1529 	es->collisions +=
1530 		IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1531 		IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1532 }
1533 
1534 /*
1535  * Get the current statistics.
1536  * This may be called with the card open or closed.
1537  */
1538 static struct net_device_stats *
e100_get_stats(struct net_device * dev)1539 e100_get_stats(struct net_device *dev)
1540 {
1541 	struct net_local *lp = netdev_priv(dev);
1542 	unsigned long flags;
1543 
1544 	spin_lock_irqsave(&lp->lock, flags);
1545 
1546 	update_rx_stats(&dev->stats);
1547 	update_tx_stats(&dev->stats);
1548 
1549 	spin_unlock_irqrestore(&lp->lock, flags);
1550 	return &dev->stats;
1551 }
1552 
1553 /*
1554  * Set or clear the multicast filter for this adaptor.
1555  * num_addrs == -1	Promiscuous mode, receive all packets
1556  * num_addrs == 0	Normal mode, clear multicast list
1557  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1558  *			and do best-effort filtering.
1559  */
1560 static void
set_multicast_list(struct net_device * dev)1561 set_multicast_list(struct net_device *dev)
1562 {
1563 	struct net_local *lp = netdev_priv(dev);
1564 	int num_addr = netdev_mc_count(dev);
1565 	unsigned long int lo_bits;
1566 	unsigned long int hi_bits;
1567 
1568 	spin_lock(&lp->lock);
1569 	if (dev->flags & IFF_PROMISC) {
1570 		/* promiscuous mode */
1571 		lo_bits = 0xfffffffful;
1572 		hi_bits = 0xfffffffful;
1573 
1574 		/* Enable individual receive */
1575 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1576 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1577 	} else if (dev->flags & IFF_ALLMULTI) {
1578 		/* enable all multicasts */
1579 		lo_bits = 0xfffffffful;
1580 		hi_bits = 0xfffffffful;
1581 
1582 		/* Disable individual receive */
1583 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1584 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1585 	} else if (num_addr == 0) {
1586 		/* Normal, clear the mc list */
1587 		lo_bits = 0x00000000ul;
1588 		hi_bits = 0x00000000ul;
1589 
1590 		/* Disable individual receive */
1591 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1592 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1593 	} else {
1594 		/* MC mode, receive normal and MC packets */
1595 		char hash_ix;
1596 		struct netdev_hw_addr *ha;
1597 		char *baddr;
1598 
1599 		lo_bits = 0x00000000ul;
1600 		hi_bits = 0x00000000ul;
1601 		netdev_for_each_mc_addr(ha, dev) {
1602 			/* Calculate the hash index for the GA registers */
1603 
1604 			hash_ix = 0;
1605 			baddr = ha->addr;
1606 			hash_ix ^= (*baddr) & 0x3f;
1607 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1608 			++baddr;
1609 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1610 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1611 			++baddr;
1612 			hash_ix ^= ((*baddr) << 4) & 0x30;
1613 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1614 			++baddr;
1615 			hash_ix ^= (*baddr) & 0x3f;
1616 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1617 			++baddr;
1618 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1619 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1620 			++baddr;
1621 			hash_ix ^= ((*baddr) << 4) & 0x30;
1622 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1623 
1624 			hash_ix &= 0x3f;
1625 
1626 			if (hash_ix >= 32) {
1627 				hi_bits |= (1 << (hash_ix-32));
1628 			} else {
1629 				lo_bits |= (1 << hash_ix);
1630 			}
1631 		}
1632 		/* Disable individual receive */
1633 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1634 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1635 	}
1636 	*R_NETWORK_GA_0 = lo_bits;
1637 	*R_NETWORK_GA_1 = hi_bits;
1638 	spin_unlock(&lp->lock);
1639 }
1640 
1641 void
e100_hardware_send_packet(struct net_local * np,char * buf,int length)1642 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1643 {
1644 	D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1645 
1646 	spin_lock(&np->led_lock);
1647 	if (!led_active && time_after(jiffies, led_next_time)) {
1648 		/* light the network leds depending on the current speed. */
1649 		e100_set_network_leds(NETWORK_ACTIVITY);
1650 
1651 		/* Set the earliest time we may clear the LED */
1652 		led_next_time = jiffies + NET_FLASH_TIME;
1653 		led_active = 1;
1654 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1655 	}
1656 	spin_unlock(&np->led_lock);
1657 
1658 	/* configure the tx dma descriptor */
1659 	myNextTxDesc->descr.sw_len = length;
1660 	myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1661 	myNextTxDesc->descr.buf = virt_to_phys(buf);
1662 
1663         /* Move end of list */
1664         myLastTxDesc->descr.ctrl &= ~d_eol;
1665         myLastTxDesc = myNextTxDesc;
1666 
1667 	/* Restart DMA channel */
1668 	*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1669 }
1670 
1671 static void
e100_clear_network_leds(unsigned long dummy)1672 e100_clear_network_leds(unsigned long dummy)
1673 {
1674 	struct net_device *dev = (struct net_device *)dummy;
1675 	struct net_local *np = netdev_priv(dev);
1676 
1677 	spin_lock(&np->led_lock);
1678 
1679 	if (led_active && time_after(jiffies, led_next_time)) {
1680 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
1681 
1682 		/* Set the earliest time we may set the LED */
1683 		led_next_time = jiffies + NET_FLASH_PAUSE;
1684 		led_active = 0;
1685 	}
1686 
1687 	spin_unlock(&np->led_lock);
1688 }
1689 
1690 static void
e100_set_network_leds(int active)1691 e100_set_network_leds(int active)
1692 {
1693 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1694 	int light_leds = (active == NO_NETWORK_ACTIVITY);
1695 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1696 	int light_leds = (active == NETWORK_ACTIVITY);
1697 #else
1698 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1699 #endif
1700 
1701 	if (!current_speed) {
1702 		/* Make LED red, link is down */
1703 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1704 	} else if (light_leds) {
1705 		if (current_speed == 10) {
1706 			CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1707 		} else {
1708 			CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1709 		}
1710 	} else {
1711 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1712 	}
1713 }
1714 
1715 #ifdef CONFIG_NET_POLL_CONTROLLER
1716 static void
e100_netpoll(struct net_device * netdev)1717 e100_netpoll(struct net_device* netdev)
1718 {
1719 	e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev);
1720 }
1721 #endif
1722 
1723 
1724 static int __init
e100_boot_setup(char * str)1725 e100_boot_setup(char* str)
1726 {
1727 	struct sockaddr sa = {0};
1728 	int i;
1729 
1730 	/* Parse the colon separated Ethernet station address */
1731 	for (i = 0; i <  ETH_ALEN; i++) {
1732 		unsigned int tmp;
1733 		if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1734 			printk(KERN_WARNING "Malformed station address");
1735 			return 0;
1736 		}
1737 		sa.sa_data[i] = (char)tmp;
1738 	}
1739 
1740 	default_mac = sa;
1741 	return 1;
1742 }
1743 
1744 __setup("etrax100_eth=", e100_boot_setup);
1745