1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26
27 #include "clk.h"
28
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34
35 static int prepare_refcnt;
36 static int enable_refcnt;
37
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41
42 /*** private data structures ***/
43
44 struct clk_core {
45 const char *name;
46 const struct clk_ops *ops;
47 struct clk_hw *hw;
48 struct module *owner;
49 struct clk_core *parent;
50 const char **parent_names;
51 struct clk_core **parents;
52 u8 num_parents;
53 u8 new_parent_index;
54 unsigned long rate;
55 unsigned long req_rate;
56 unsigned long new_rate;
57 struct clk_core *new_parent;
58 struct clk_core *new_child;
59 unsigned long flags;
60 bool orphan;
61 unsigned int enable_count;
62 unsigned int prepare_count;
63 unsigned long min_rate;
64 unsigned long max_rate;
65 unsigned long accuracy;
66 int phase;
67 struct hlist_head children;
68 struct hlist_node child_node;
69 struct hlist_head clks;
70 unsigned int notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 struct dentry *dentry;
73 struct hlist_node debug_node;
74 #endif
75 struct kref ref;
76 };
77
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80
81 struct clk {
82 struct clk_core *core;
83 const char *dev_id;
84 const char *con_id;
85 unsigned long min_rate;
86 unsigned long max_rate;
87 struct hlist_node clks_node;
88 };
89
90 /*** locking ***/
clk_prepare_lock(void)91 static void clk_prepare_lock(void)
92 {
93 if (!mutex_trylock(&prepare_lock)) {
94 if (prepare_owner == current) {
95 prepare_refcnt++;
96 return;
97 }
98 mutex_lock(&prepare_lock);
99 }
100 WARN_ON_ONCE(prepare_owner != NULL);
101 WARN_ON_ONCE(prepare_refcnt != 0);
102 prepare_owner = current;
103 prepare_refcnt = 1;
104 }
105
clk_prepare_unlock(void)106 static void clk_prepare_unlock(void)
107 {
108 WARN_ON_ONCE(prepare_owner != current);
109 WARN_ON_ONCE(prepare_refcnt == 0);
110
111 if (--prepare_refcnt)
112 return;
113 prepare_owner = NULL;
114 mutex_unlock(&prepare_lock);
115 }
116
clk_enable_lock(void)117 static unsigned long clk_enable_lock(void)
118 __acquires(enable_lock)
119 {
120 unsigned long flags;
121
122 if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 if (enable_owner == current) {
124 enable_refcnt++;
125 __acquire(enable_lock);
126 return flags;
127 }
128 spin_lock_irqsave(&enable_lock, flags);
129 }
130 WARN_ON_ONCE(enable_owner != NULL);
131 WARN_ON_ONCE(enable_refcnt != 0);
132 enable_owner = current;
133 enable_refcnt = 1;
134 return flags;
135 }
136
clk_enable_unlock(unsigned long flags)137 static void clk_enable_unlock(unsigned long flags)
138 __releases(enable_lock)
139 {
140 WARN_ON_ONCE(enable_owner != current);
141 WARN_ON_ONCE(enable_refcnt == 0);
142
143 if (--enable_refcnt) {
144 __release(enable_lock);
145 return;
146 }
147 enable_owner = NULL;
148 spin_unlock_irqrestore(&enable_lock, flags);
149 }
150
clk_core_is_prepared(struct clk_core * core)151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 /*
154 * .is_prepared is optional for clocks that can prepare
155 * fall back to software usage counter if it is missing
156 */
157 if (!core->ops->is_prepared)
158 return core->prepare_count;
159
160 return core->ops->is_prepared(core->hw);
161 }
162
clk_core_is_enabled(struct clk_core * core)163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 /*
166 * .is_enabled is only mandatory for clocks that gate
167 * fall back to software usage counter if .is_enabled is missing
168 */
169 if (!core->ops->is_enabled)
170 return core->enable_count;
171
172 return core->ops->is_enabled(core->hw);
173 }
174
175 /*** helper functions ***/
176
__clk_get_name(const struct clk * clk)177 const char *__clk_get_name(const struct clk *clk)
178 {
179 return !clk ? NULL : clk->core->name;
180 }
181 EXPORT_SYMBOL_GPL(__clk_get_name);
182
clk_hw_get_name(const struct clk_hw * hw)183 const char *clk_hw_get_name(const struct clk_hw *hw)
184 {
185 return hw->core->name;
186 }
187 EXPORT_SYMBOL_GPL(clk_hw_get_name);
188
__clk_get_hw(struct clk * clk)189 struct clk_hw *__clk_get_hw(struct clk *clk)
190 {
191 return !clk ? NULL : clk->core->hw;
192 }
193 EXPORT_SYMBOL_GPL(__clk_get_hw);
194
clk_hw_get_num_parents(const struct clk_hw * hw)195 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
196 {
197 return hw->core->num_parents;
198 }
199 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
200
clk_hw_get_parent(const struct clk_hw * hw)201 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
202 {
203 return hw->core->parent ? hw->core->parent->hw : NULL;
204 }
205 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
206
__clk_lookup_subtree(const char * name,struct clk_core * core)207 static struct clk_core *__clk_lookup_subtree(const char *name,
208 struct clk_core *core)
209 {
210 struct clk_core *child;
211 struct clk_core *ret;
212
213 if (!strcmp(core->name, name))
214 return core;
215
216 hlist_for_each_entry(child, &core->children, child_node) {
217 ret = __clk_lookup_subtree(name, child);
218 if (ret)
219 return ret;
220 }
221
222 return NULL;
223 }
224
clk_core_lookup(const char * name)225 static struct clk_core *clk_core_lookup(const char *name)
226 {
227 struct clk_core *root_clk;
228 struct clk_core *ret;
229
230 if (!name)
231 return NULL;
232
233 /* search the 'proper' clk tree first */
234 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
235 ret = __clk_lookup_subtree(name, root_clk);
236 if (ret)
237 return ret;
238 }
239
240 /* if not found, then search the orphan tree */
241 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
242 ret = __clk_lookup_subtree(name, root_clk);
243 if (ret)
244 return ret;
245 }
246
247 return NULL;
248 }
249
clk_core_get_parent_by_index(struct clk_core * core,u8 index)250 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
251 u8 index)
252 {
253 if (!core || index >= core->num_parents)
254 return NULL;
255
256 if (!core->parents[index])
257 core->parents[index] =
258 clk_core_lookup(core->parent_names[index]);
259
260 return core->parents[index];
261 }
262
263 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)264 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
265 {
266 struct clk_core *parent;
267
268 parent = clk_core_get_parent_by_index(hw->core, index);
269
270 return !parent ? NULL : parent->hw;
271 }
272 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
273
__clk_get_enable_count(struct clk * clk)274 unsigned int __clk_get_enable_count(struct clk *clk)
275 {
276 return !clk ? 0 : clk->core->enable_count;
277 }
278
clk_core_get_rate_nolock(struct clk_core * core)279 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
280 {
281 unsigned long ret;
282
283 if (!core) {
284 ret = 0;
285 goto out;
286 }
287
288 ret = core->rate;
289
290 if (!core->num_parents)
291 goto out;
292
293 if (!core->parent)
294 ret = 0;
295
296 out:
297 return ret;
298 }
299
clk_hw_get_rate(const struct clk_hw * hw)300 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
301 {
302 return clk_core_get_rate_nolock(hw->core);
303 }
304 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
305
__clk_get_accuracy(struct clk_core * core)306 static unsigned long __clk_get_accuracy(struct clk_core *core)
307 {
308 if (!core)
309 return 0;
310
311 return core->accuracy;
312 }
313
__clk_get_flags(struct clk * clk)314 unsigned long __clk_get_flags(struct clk *clk)
315 {
316 return !clk ? 0 : clk->core->flags;
317 }
318 EXPORT_SYMBOL_GPL(__clk_get_flags);
319
clk_hw_get_flags(const struct clk_hw * hw)320 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
321 {
322 return hw->core->flags;
323 }
324 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
325
clk_hw_is_prepared(const struct clk_hw * hw)326 bool clk_hw_is_prepared(const struct clk_hw *hw)
327 {
328 return clk_core_is_prepared(hw->core);
329 }
330
clk_hw_is_enabled(const struct clk_hw * hw)331 bool clk_hw_is_enabled(const struct clk_hw *hw)
332 {
333 return clk_core_is_enabled(hw->core);
334 }
335
__clk_is_enabled(struct clk * clk)336 bool __clk_is_enabled(struct clk *clk)
337 {
338 if (!clk)
339 return false;
340
341 return clk_core_is_enabled(clk->core);
342 }
343 EXPORT_SYMBOL_GPL(__clk_is_enabled);
344
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)345 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
346 unsigned long best, unsigned long flags)
347 {
348 if (flags & CLK_MUX_ROUND_CLOSEST)
349 return abs(now - rate) < abs(best - rate);
350
351 return now <= rate && now > best;
352 }
353
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)354 int clk_mux_determine_rate_flags(struct clk_hw *hw,
355 struct clk_rate_request *req,
356 unsigned long flags)
357 {
358 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
359 int i, num_parents, ret;
360 unsigned long best = 0;
361 struct clk_rate_request parent_req = *req;
362
363 /* if NO_REPARENT flag set, pass through to current parent */
364 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
365 parent = core->parent;
366 if (core->flags & CLK_SET_RATE_PARENT) {
367 ret = __clk_determine_rate(parent ? parent->hw : NULL,
368 &parent_req);
369 if (ret)
370 return ret;
371
372 best = parent_req.rate;
373 } else if (parent) {
374 best = clk_core_get_rate_nolock(parent);
375 } else {
376 best = clk_core_get_rate_nolock(core);
377 }
378
379 goto out;
380 }
381
382 /* find the parent that can provide the fastest rate <= rate */
383 num_parents = core->num_parents;
384 for (i = 0; i < num_parents; i++) {
385 parent = clk_core_get_parent_by_index(core, i);
386 if (!parent)
387 continue;
388
389 if (core->flags & CLK_SET_RATE_PARENT) {
390 parent_req = *req;
391 ret = __clk_determine_rate(parent->hw, &parent_req);
392 if (ret)
393 continue;
394 } else {
395 parent_req.rate = clk_core_get_rate_nolock(parent);
396 }
397
398 if (mux_is_better_rate(req->rate, parent_req.rate,
399 best, flags)) {
400 best_parent = parent;
401 best = parent_req.rate;
402 }
403 }
404
405 if (!best_parent)
406 return -EINVAL;
407
408 out:
409 if (best_parent)
410 req->best_parent_hw = best_parent->hw;
411 req->best_parent_rate = best;
412 req->rate = best;
413
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
417
__clk_lookup(const char * name)418 struct clk *__clk_lookup(const char *name)
419 {
420 struct clk_core *core = clk_core_lookup(name);
421
422 return !core ? NULL : core->hw->clk;
423 }
424
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)425 static void clk_core_get_boundaries(struct clk_core *core,
426 unsigned long *min_rate,
427 unsigned long *max_rate)
428 {
429 struct clk *clk_user;
430
431 *min_rate = core->min_rate;
432 *max_rate = core->max_rate;
433
434 hlist_for_each_entry(clk_user, &core->clks, clks_node)
435 *min_rate = max(*min_rate, clk_user->min_rate);
436
437 hlist_for_each_entry(clk_user, &core->clks, clks_node)
438 *max_rate = min(*max_rate, clk_user->max_rate);
439 }
440
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)441 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
442 unsigned long max_rate)
443 {
444 hw->core->min_rate = min_rate;
445 hw->core->max_rate = max_rate;
446 }
447 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
448
449 /*
450 * Helper for finding best parent to provide a given frequency. This can be used
451 * directly as a determine_rate callback (e.g. for a mux), or from a more
452 * complex clock that may combine a mux with other operations.
453 */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)454 int __clk_mux_determine_rate(struct clk_hw *hw,
455 struct clk_rate_request *req)
456 {
457 return clk_mux_determine_rate_flags(hw, req, 0);
458 }
459 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
460
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)461 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
462 struct clk_rate_request *req)
463 {
464 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
465 }
466 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
467
468 /*** clk api ***/
469
clk_core_unprepare(struct clk_core * core)470 static void clk_core_unprepare(struct clk_core *core)
471 {
472 lockdep_assert_held(&prepare_lock);
473
474 if (!core)
475 return;
476
477 if (WARN_ON(core->prepare_count == 0))
478 return;
479
480 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
481 return;
482
483 if (--core->prepare_count > 0)
484 return;
485
486 WARN_ON(core->enable_count > 0);
487
488 trace_clk_unprepare(core);
489
490 if (core->ops->unprepare)
491 core->ops->unprepare(core->hw);
492
493 trace_clk_unprepare_complete(core);
494 clk_core_unprepare(core->parent);
495 }
496
clk_core_unprepare_lock(struct clk_core * core)497 static void clk_core_unprepare_lock(struct clk_core *core)
498 {
499 clk_prepare_lock();
500 clk_core_unprepare(core);
501 clk_prepare_unlock();
502 }
503
504 /**
505 * clk_unprepare - undo preparation of a clock source
506 * @clk: the clk being unprepared
507 *
508 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
509 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
510 * if the operation may sleep. One example is a clk which is accessed over
511 * I2c. In the complex case a clk gate operation may require a fast and a slow
512 * part. It is this reason that clk_unprepare and clk_disable are not mutually
513 * exclusive. In fact clk_disable must be called before clk_unprepare.
514 */
clk_unprepare(struct clk * clk)515 void clk_unprepare(struct clk *clk)
516 {
517 if (IS_ERR_OR_NULL(clk))
518 return;
519
520 clk_core_unprepare_lock(clk->core);
521 }
522 EXPORT_SYMBOL_GPL(clk_unprepare);
523
clk_core_prepare(struct clk_core * core)524 static int clk_core_prepare(struct clk_core *core)
525 {
526 int ret = 0;
527
528 lockdep_assert_held(&prepare_lock);
529
530 if (!core)
531 return 0;
532
533 if (core->prepare_count == 0) {
534 ret = clk_core_prepare(core->parent);
535 if (ret)
536 return ret;
537
538 trace_clk_prepare(core);
539
540 if (core->ops->prepare)
541 ret = core->ops->prepare(core->hw);
542
543 trace_clk_prepare_complete(core);
544
545 if (ret) {
546 clk_core_unprepare(core->parent);
547 return ret;
548 }
549 }
550
551 core->prepare_count++;
552
553 return 0;
554 }
555
clk_core_prepare_lock(struct clk_core * core)556 static int clk_core_prepare_lock(struct clk_core *core)
557 {
558 int ret;
559
560 clk_prepare_lock();
561 ret = clk_core_prepare(core);
562 clk_prepare_unlock();
563
564 return ret;
565 }
566
567 /**
568 * clk_prepare - prepare a clock source
569 * @clk: the clk being prepared
570 *
571 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
572 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
573 * operation may sleep. One example is a clk which is accessed over I2c. In
574 * the complex case a clk ungate operation may require a fast and a slow part.
575 * It is this reason that clk_prepare and clk_enable are not mutually
576 * exclusive. In fact clk_prepare must be called before clk_enable.
577 * Returns 0 on success, -EERROR otherwise.
578 */
clk_prepare(struct clk * clk)579 int clk_prepare(struct clk *clk)
580 {
581 if (!clk)
582 return 0;
583
584 return clk_core_prepare_lock(clk->core);
585 }
586 EXPORT_SYMBOL_GPL(clk_prepare);
587
clk_core_disable(struct clk_core * core)588 static void clk_core_disable(struct clk_core *core)
589 {
590 lockdep_assert_held(&enable_lock);
591
592 if (!core)
593 return;
594
595 if (WARN_ON(core->enable_count == 0))
596 return;
597
598 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
599 return;
600
601 if (--core->enable_count > 0)
602 return;
603
604 trace_clk_disable_rcuidle(core);
605
606 if (core->ops->disable)
607 core->ops->disable(core->hw);
608
609 trace_clk_disable_complete_rcuidle(core);
610
611 clk_core_disable(core->parent);
612 }
613
clk_core_disable_lock(struct clk_core * core)614 static void clk_core_disable_lock(struct clk_core *core)
615 {
616 unsigned long flags;
617
618 flags = clk_enable_lock();
619 clk_core_disable(core);
620 clk_enable_unlock(flags);
621 }
622
623 /**
624 * clk_disable - gate a clock
625 * @clk: the clk being gated
626 *
627 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
628 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
629 * clk if the operation is fast and will never sleep. One example is a
630 * SoC-internal clk which is controlled via simple register writes. In the
631 * complex case a clk gate operation may require a fast and a slow part. It is
632 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
633 * In fact clk_disable must be called before clk_unprepare.
634 */
clk_disable(struct clk * clk)635 void clk_disable(struct clk *clk)
636 {
637 if (IS_ERR_OR_NULL(clk))
638 return;
639
640 clk_core_disable_lock(clk->core);
641 }
642 EXPORT_SYMBOL_GPL(clk_disable);
643
clk_core_enable(struct clk_core * core)644 static int clk_core_enable(struct clk_core *core)
645 {
646 int ret = 0;
647
648 lockdep_assert_held(&enable_lock);
649
650 if (!core)
651 return 0;
652
653 if (WARN_ON(core->prepare_count == 0))
654 return -ESHUTDOWN;
655
656 if (core->enable_count == 0) {
657 ret = clk_core_enable(core->parent);
658
659 if (ret)
660 return ret;
661
662 trace_clk_enable_rcuidle(core);
663
664 if (core->ops->enable)
665 ret = core->ops->enable(core->hw);
666
667 trace_clk_enable_complete_rcuidle(core);
668
669 if (ret) {
670 clk_core_disable(core->parent);
671 return ret;
672 }
673 }
674
675 core->enable_count++;
676 return 0;
677 }
678
clk_core_enable_lock(struct clk_core * core)679 static int clk_core_enable_lock(struct clk_core *core)
680 {
681 unsigned long flags;
682 int ret;
683
684 flags = clk_enable_lock();
685 ret = clk_core_enable(core);
686 clk_enable_unlock(flags);
687
688 return ret;
689 }
690
691 /**
692 * clk_enable - ungate a clock
693 * @clk: the clk being ungated
694 *
695 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
696 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
697 * if the operation will never sleep. One example is a SoC-internal clk which
698 * is controlled via simple register writes. In the complex case a clk ungate
699 * operation may require a fast and a slow part. It is this reason that
700 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
701 * must be called before clk_enable. Returns 0 on success, -EERROR
702 * otherwise.
703 */
clk_enable(struct clk * clk)704 int clk_enable(struct clk *clk)
705 {
706 if (!clk)
707 return 0;
708
709 return clk_core_enable_lock(clk->core);
710 }
711 EXPORT_SYMBOL_GPL(clk_enable);
712
clk_core_prepare_enable(struct clk_core * core)713 static int clk_core_prepare_enable(struct clk_core *core)
714 {
715 int ret;
716
717 ret = clk_core_prepare_lock(core);
718 if (ret)
719 return ret;
720
721 ret = clk_core_enable_lock(core);
722 if (ret)
723 clk_core_unprepare_lock(core);
724
725 return ret;
726 }
727
clk_core_disable_unprepare(struct clk_core * core)728 static void clk_core_disable_unprepare(struct clk_core *core)
729 {
730 clk_core_disable_lock(core);
731 clk_core_unprepare_lock(core);
732 }
733
clk_unprepare_unused_subtree(struct clk_core * core)734 static void clk_unprepare_unused_subtree(struct clk_core *core)
735 {
736 struct clk_core *child;
737
738 lockdep_assert_held(&prepare_lock);
739
740 hlist_for_each_entry(child, &core->children, child_node)
741 clk_unprepare_unused_subtree(child);
742
743 if (core->prepare_count)
744 return;
745
746 if (core->flags & CLK_IGNORE_UNUSED)
747 return;
748
749 if (clk_core_is_prepared(core)) {
750 trace_clk_unprepare(core);
751 if (core->ops->unprepare_unused)
752 core->ops->unprepare_unused(core->hw);
753 else if (core->ops->unprepare)
754 core->ops->unprepare(core->hw);
755 trace_clk_unprepare_complete(core);
756 }
757 }
758
clk_disable_unused_subtree(struct clk_core * core)759 static void clk_disable_unused_subtree(struct clk_core *core)
760 {
761 struct clk_core *child;
762 unsigned long flags;
763
764 lockdep_assert_held(&prepare_lock);
765
766 hlist_for_each_entry(child, &core->children, child_node)
767 clk_disable_unused_subtree(child);
768
769 if (core->flags & CLK_OPS_PARENT_ENABLE)
770 clk_core_prepare_enable(core->parent);
771
772 flags = clk_enable_lock();
773
774 if (core->enable_count)
775 goto unlock_out;
776
777 if (core->flags & CLK_IGNORE_UNUSED)
778 goto unlock_out;
779
780 /*
781 * some gate clocks have special needs during the disable-unused
782 * sequence. call .disable_unused if available, otherwise fall
783 * back to .disable
784 */
785 if (clk_core_is_enabled(core)) {
786 trace_clk_disable(core);
787 if (core->ops->disable_unused)
788 core->ops->disable_unused(core->hw);
789 else if (core->ops->disable)
790 core->ops->disable(core->hw);
791 trace_clk_disable_complete(core);
792 }
793
794 unlock_out:
795 clk_enable_unlock(flags);
796 if (core->flags & CLK_OPS_PARENT_ENABLE)
797 clk_core_disable_unprepare(core->parent);
798 }
799
800 static bool clk_ignore_unused;
clk_ignore_unused_setup(char * __unused)801 static int __init clk_ignore_unused_setup(char *__unused)
802 {
803 clk_ignore_unused = true;
804 return 1;
805 }
806 __setup("clk_ignore_unused", clk_ignore_unused_setup);
807
clk_disable_unused(void)808 static int clk_disable_unused(void)
809 {
810 struct clk_core *core;
811
812 if (clk_ignore_unused) {
813 pr_warn("clk: Not disabling unused clocks\n");
814 return 0;
815 }
816
817 clk_prepare_lock();
818
819 hlist_for_each_entry(core, &clk_root_list, child_node)
820 clk_disable_unused_subtree(core);
821
822 hlist_for_each_entry(core, &clk_orphan_list, child_node)
823 clk_disable_unused_subtree(core);
824
825 hlist_for_each_entry(core, &clk_root_list, child_node)
826 clk_unprepare_unused_subtree(core);
827
828 hlist_for_each_entry(core, &clk_orphan_list, child_node)
829 clk_unprepare_unused_subtree(core);
830
831 clk_prepare_unlock();
832
833 return 0;
834 }
835 late_initcall_sync(clk_disable_unused);
836
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)837 static int clk_core_round_rate_nolock(struct clk_core *core,
838 struct clk_rate_request *req)
839 {
840 struct clk_core *parent;
841 long rate;
842
843 lockdep_assert_held(&prepare_lock);
844
845 if (!core)
846 return 0;
847
848 parent = core->parent;
849 if (parent) {
850 req->best_parent_hw = parent->hw;
851 req->best_parent_rate = parent->rate;
852 } else {
853 req->best_parent_hw = NULL;
854 req->best_parent_rate = 0;
855 }
856
857 if (core->ops->determine_rate) {
858 return core->ops->determine_rate(core->hw, req);
859 } else if (core->ops->round_rate) {
860 rate = core->ops->round_rate(core->hw, req->rate,
861 &req->best_parent_rate);
862 if (rate < 0)
863 return rate;
864
865 req->rate = rate;
866 } else if (core->flags & CLK_SET_RATE_PARENT) {
867 return clk_core_round_rate_nolock(parent, req);
868 } else {
869 req->rate = core->rate;
870 }
871
872 return 0;
873 }
874
875 /**
876 * __clk_determine_rate - get the closest rate actually supported by a clock
877 * @hw: determine the rate of this clock
878 * @req: target rate request
879 *
880 * Useful for clk_ops such as .set_rate and .determine_rate.
881 */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)882 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
883 {
884 if (!hw) {
885 req->rate = 0;
886 return 0;
887 }
888
889 return clk_core_round_rate_nolock(hw->core, req);
890 }
891 EXPORT_SYMBOL_GPL(__clk_determine_rate);
892
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)893 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
894 {
895 int ret;
896 struct clk_rate_request req;
897
898 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
899 req.rate = rate;
900
901 ret = clk_core_round_rate_nolock(hw->core, &req);
902 if (ret)
903 return 0;
904
905 return req.rate;
906 }
907 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
908
909 /**
910 * clk_round_rate - round the given rate for a clk
911 * @clk: the clk for which we are rounding a rate
912 * @rate: the rate which is to be rounded
913 *
914 * Takes in a rate as input and rounds it to a rate that the clk can actually
915 * use which is then returned. If clk doesn't support round_rate operation
916 * then the parent rate is returned.
917 */
clk_round_rate(struct clk * clk,unsigned long rate)918 long clk_round_rate(struct clk *clk, unsigned long rate)
919 {
920 struct clk_rate_request req;
921 int ret;
922
923 if (!clk)
924 return 0;
925
926 clk_prepare_lock();
927
928 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
929 req.rate = rate;
930
931 ret = clk_core_round_rate_nolock(clk->core, &req);
932 clk_prepare_unlock();
933
934 if (ret)
935 return ret;
936
937 return req.rate;
938 }
939 EXPORT_SYMBOL_GPL(clk_round_rate);
940
941 /**
942 * __clk_notify - call clk notifier chain
943 * @core: clk that is changing rate
944 * @msg: clk notifier type (see include/linux/clk.h)
945 * @old_rate: old clk rate
946 * @new_rate: new clk rate
947 *
948 * Triggers a notifier call chain on the clk rate-change notification
949 * for 'clk'. Passes a pointer to the struct clk and the previous
950 * and current rates to the notifier callback. Intended to be called by
951 * internal clock code only. Returns NOTIFY_DONE from the last driver
952 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
953 * a driver returns that.
954 */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)955 static int __clk_notify(struct clk_core *core, unsigned long msg,
956 unsigned long old_rate, unsigned long new_rate)
957 {
958 struct clk_notifier *cn;
959 struct clk_notifier_data cnd;
960 int ret = NOTIFY_DONE;
961
962 cnd.old_rate = old_rate;
963 cnd.new_rate = new_rate;
964
965 list_for_each_entry(cn, &clk_notifier_list, node) {
966 if (cn->clk->core == core) {
967 cnd.clk = cn->clk;
968 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
969 &cnd);
970 if (ret & NOTIFY_STOP_MASK)
971 return ret;
972 }
973 }
974
975 return ret;
976 }
977
978 /**
979 * __clk_recalc_accuracies
980 * @core: first clk in the subtree
981 *
982 * Walks the subtree of clks starting with clk and recalculates accuracies as
983 * it goes. Note that if a clk does not implement the .recalc_accuracy
984 * callback then it is assumed that the clock will take on the accuracy of its
985 * parent.
986 */
__clk_recalc_accuracies(struct clk_core * core)987 static void __clk_recalc_accuracies(struct clk_core *core)
988 {
989 unsigned long parent_accuracy = 0;
990 struct clk_core *child;
991
992 lockdep_assert_held(&prepare_lock);
993
994 if (core->parent)
995 parent_accuracy = core->parent->accuracy;
996
997 if (core->ops->recalc_accuracy)
998 core->accuracy = core->ops->recalc_accuracy(core->hw,
999 parent_accuracy);
1000 else
1001 core->accuracy = parent_accuracy;
1002
1003 hlist_for_each_entry(child, &core->children, child_node)
1004 __clk_recalc_accuracies(child);
1005 }
1006
clk_core_get_accuracy(struct clk_core * core)1007 static long clk_core_get_accuracy(struct clk_core *core)
1008 {
1009 unsigned long accuracy;
1010
1011 clk_prepare_lock();
1012 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1013 __clk_recalc_accuracies(core);
1014
1015 accuracy = __clk_get_accuracy(core);
1016 clk_prepare_unlock();
1017
1018 return accuracy;
1019 }
1020
1021 /**
1022 * clk_get_accuracy - return the accuracy of clk
1023 * @clk: the clk whose accuracy is being returned
1024 *
1025 * Simply returns the cached accuracy of the clk, unless
1026 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1027 * issued.
1028 * If clk is NULL then returns 0.
1029 */
clk_get_accuracy(struct clk * clk)1030 long clk_get_accuracy(struct clk *clk)
1031 {
1032 if (!clk)
1033 return 0;
1034
1035 return clk_core_get_accuracy(clk->core);
1036 }
1037 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1038
clk_recalc(struct clk_core * core,unsigned long parent_rate)1039 static unsigned long clk_recalc(struct clk_core *core,
1040 unsigned long parent_rate)
1041 {
1042 if (core->ops->recalc_rate)
1043 return core->ops->recalc_rate(core->hw, parent_rate);
1044 return parent_rate;
1045 }
1046
1047 /**
1048 * __clk_recalc_rates
1049 * @core: first clk in the subtree
1050 * @msg: notification type (see include/linux/clk.h)
1051 *
1052 * Walks the subtree of clks starting with clk and recalculates rates as it
1053 * goes. Note that if a clk does not implement the .recalc_rate callback then
1054 * it is assumed that the clock will take on the rate of its parent.
1055 *
1056 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1057 * if necessary.
1058 */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1059 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1060 {
1061 unsigned long old_rate;
1062 unsigned long parent_rate = 0;
1063 struct clk_core *child;
1064
1065 lockdep_assert_held(&prepare_lock);
1066
1067 old_rate = core->rate;
1068
1069 if (core->parent)
1070 parent_rate = core->parent->rate;
1071
1072 core->rate = clk_recalc(core, parent_rate);
1073
1074 /*
1075 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1076 * & ABORT_RATE_CHANGE notifiers
1077 */
1078 if (core->notifier_count && msg)
1079 __clk_notify(core, msg, old_rate, core->rate);
1080
1081 hlist_for_each_entry(child, &core->children, child_node)
1082 __clk_recalc_rates(child, msg);
1083 }
1084
clk_core_get_rate(struct clk_core * core)1085 static unsigned long clk_core_get_rate(struct clk_core *core)
1086 {
1087 unsigned long rate;
1088
1089 clk_prepare_lock();
1090
1091 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1092 __clk_recalc_rates(core, 0);
1093
1094 rate = clk_core_get_rate_nolock(core);
1095 clk_prepare_unlock();
1096
1097 return rate;
1098 }
1099
1100 /**
1101 * clk_get_rate - return the rate of clk
1102 * @clk: the clk whose rate is being returned
1103 *
1104 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1105 * is set, which means a recalc_rate will be issued.
1106 * If clk is NULL then returns 0.
1107 */
clk_get_rate(struct clk * clk)1108 unsigned long clk_get_rate(struct clk *clk)
1109 {
1110 if (!clk)
1111 return 0;
1112
1113 return clk_core_get_rate(clk->core);
1114 }
1115 EXPORT_SYMBOL_GPL(clk_get_rate);
1116
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1117 static int clk_fetch_parent_index(struct clk_core *core,
1118 struct clk_core *parent)
1119 {
1120 int i;
1121
1122 if (!parent)
1123 return -EINVAL;
1124
1125 for (i = 0; i < core->num_parents; i++)
1126 if (clk_core_get_parent_by_index(core, i) == parent)
1127 return i;
1128
1129 return -EINVAL;
1130 }
1131
1132 /*
1133 * Update the orphan status of @core and all its children.
1134 */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1135 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1136 {
1137 struct clk_core *child;
1138
1139 core->orphan = is_orphan;
1140
1141 hlist_for_each_entry(child, &core->children, child_node)
1142 clk_core_update_orphan_status(child, is_orphan);
1143 }
1144
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1145 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1146 {
1147 bool was_orphan = core->orphan;
1148
1149 hlist_del(&core->child_node);
1150
1151 if (new_parent) {
1152 bool becomes_orphan = new_parent->orphan;
1153
1154 /* avoid duplicate POST_RATE_CHANGE notifications */
1155 if (new_parent->new_child == core)
1156 new_parent->new_child = NULL;
1157
1158 hlist_add_head(&core->child_node, &new_parent->children);
1159
1160 if (was_orphan != becomes_orphan)
1161 clk_core_update_orphan_status(core, becomes_orphan);
1162 } else {
1163 hlist_add_head(&core->child_node, &clk_orphan_list);
1164 if (!was_orphan)
1165 clk_core_update_orphan_status(core, true);
1166 }
1167
1168 core->parent = new_parent;
1169 }
1170
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1171 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1172 struct clk_core *parent)
1173 {
1174 unsigned long flags;
1175 struct clk_core *old_parent = core->parent;
1176
1177 /*
1178 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1179 *
1180 * 2. Migrate prepare state between parents and prevent race with
1181 * clk_enable().
1182 *
1183 * If the clock is not prepared, then a race with
1184 * clk_enable/disable() is impossible since we already have the
1185 * prepare lock (future calls to clk_enable() need to be preceded by
1186 * a clk_prepare()).
1187 *
1188 * If the clock is prepared, migrate the prepared state to the new
1189 * parent and also protect against a race with clk_enable() by
1190 * forcing the clock and the new parent on. This ensures that all
1191 * future calls to clk_enable() are practically NOPs with respect to
1192 * hardware and software states.
1193 *
1194 * See also: Comment for clk_set_parent() below.
1195 */
1196
1197 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1198 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1199 clk_core_prepare_enable(old_parent);
1200 clk_core_prepare_enable(parent);
1201 }
1202
1203 /* migrate prepare count if > 0 */
1204 if (core->prepare_count) {
1205 clk_core_prepare_enable(parent);
1206 clk_core_enable_lock(core);
1207 }
1208
1209 /* update the clk tree topology */
1210 flags = clk_enable_lock();
1211 clk_reparent(core, parent);
1212 clk_enable_unlock(flags);
1213
1214 return old_parent;
1215 }
1216
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1217 static void __clk_set_parent_after(struct clk_core *core,
1218 struct clk_core *parent,
1219 struct clk_core *old_parent)
1220 {
1221 /*
1222 * Finish the migration of prepare state and undo the changes done
1223 * for preventing a race with clk_enable().
1224 */
1225 if (core->prepare_count) {
1226 clk_core_disable_lock(core);
1227 clk_core_disable_unprepare(old_parent);
1228 }
1229
1230 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1231 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1232 clk_core_disable_unprepare(parent);
1233 clk_core_disable_unprepare(old_parent);
1234 }
1235 }
1236
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1237 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1238 u8 p_index)
1239 {
1240 unsigned long flags;
1241 int ret = 0;
1242 struct clk_core *old_parent;
1243
1244 old_parent = __clk_set_parent_before(core, parent);
1245
1246 trace_clk_set_parent(core, parent);
1247
1248 /* change clock input source */
1249 if (parent && core->ops->set_parent)
1250 ret = core->ops->set_parent(core->hw, p_index);
1251
1252 trace_clk_set_parent_complete(core, parent);
1253
1254 if (ret) {
1255 flags = clk_enable_lock();
1256 clk_reparent(core, old_parent);
1257 clk_enable_unlock(flags);
1258 __clk_set_parent_after(core, old_parent, parent);
1259
1260 return ret;
1261 }
1262
1263 __clk_set_parent_after(core, parent, old_parent);
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * __clk_speculate_rates
1270 * @core: first clk in the subtree
1271 * @parent_rate: the "future" rate of clk's parent
1272 *
1273 * Walks the subtree of clks starting with clk, speculating rates as it
1274 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1275 *
1276 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1277 * pre-rate change notifications and returns early if no clks in the
1278 * subtree have subscribed to the notifications. Note that if a clk does not
1279 * implement the .recalc_rate callback then it is assumed that the clock will
1280 * take on the rate of its parent.
1281 */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1282 static int __clk_speculate_rates(struct clk_core *core,
1283 unsigned long parent_rate)
1284 {
1285 struct clk_core *child;
1286 unsigned long new_rate;
1287 int ret = NOTIFY_DONE;
1288
1289 lockdep_assert_held(&prepare_lock);
1290
1291 new_rate = clk_recalc(core, parent_rate);
1292
1293 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1294 if (core->notifier_count)
1295 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1296
1297 if (ret & NOTIFY_STOP_MASK) {
1298 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1299 __func__, core->name, ret);
1300 goto out;
1301 }
1302
1303 hlist_for_each_entry(child, &core->children, child_node) {
1304 ret = __clk_speculate_rates(child, new_rate);
1305 if (ret & NOTIFY_STOP_MASK)
1306 break;
1307 }
1308
1309 out:
1310 return ret;
1311 }
1312
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1313 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1314 struct clk_core *new_parent, u8 p_index)
1315 {
1316 struct clk_core *child;
1317
1318 core->new_rate = new_rate;
1319 core->new_parent = new_parent;
1320 core->new_parent_index = p_index;
1321 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1322 core->new_child = NULL;
1323 if (new_parent && new_parent != core->parent)
1324 new_parent->new_child = core;
1325
1326 hlist_for_each_entry(child, &core->children, child_node) {
1327 child->new_rate = clk_recalc(child, new_rate);
1328 clk_calc_subtree(child, child->new_rate, NULL, 0);
1329 }
1330 }
1331
1332 /*
1333 * calculate the new rates returning the topmost clock that has to be
1334 * changed.
1335 */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1336 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1337 unsigned long rate)
1338 {
1339 struct clk_core *top = core;
1340 struct clk_core *old_parent, *parent;
1341 unsigned long best_parent_rate = 0;
1342 unsigned long new_rate;
1343 unsigned long min_rate;
1344 unsigned long max_rate;
1345 int p_index = 0;
1346 long ret;
1347
1348 /* sanity */
1349 if (IS_ERR_OR_NULL(core))
1350 return NULL;
1351
1352 /* save parent rate, if it exists */
1353 parent = old_parent = core->parent;
1354 if (parent)
1355 best_parent_rate = parent->rate;
1356
1357 clk_core_get_boundaries(core, &min_rate, &max_rate);
1358
1359 /* find the closest rate and parent clk/rate */
1360 if (core->ops->determine_rate) {
1361 struct clk_rate_request req;
1362
1363 req.rate = rate;
1364 req.min_rate = min_rate;
1365 req.max_rate = max_rate;
1366 if (parent) {
1367 req.best_parent_hw = parent->hw;
1368 req.best_parent_rate = parent->rate;
1369 } else {
1370 req.best_parent_hw = NULL;
1371 req.best_parent_rate = 0;
1372 }
1373
1374 ret = core->ops->determine_rate(core->hw, &req);
1375 if (ret < 0)
1376 return NULL;
1377
1378 best_parent_rate = req.best_parent_rate;
1379 new_rate = req.rate;
1380 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1381 } else if (core->ops->round_rate) {
1382 ret = core->ops->round_rate(core->hw, rate,
1383 &best_parent_rate);
1384 if (ret < 0)
1385 return NULL;
1386
1387 new_rate = ret;
1388 if (new_rate < min_rate || new_rate > max_rate)
1389 return NULL;
1390 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1391 /* pass-through clock without adjustable parent */
1392 core->new_rate = core->rate;
1393 return NULL;
1394 } else {
1395 /* pass-through clock with adjustable parent */
1396 top = clk_calc_new_rates(parent, rate);
1397 new_rate = parent->new_rate;
1398 goto out;
1399 }
1400
1401 /* some clocks must be gated to change parent */
1402 if (parent != old_parent &&
1403 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1404 pr_debug("%s: %s not gated but wants to reparent\n",
1405 __func__, core->name);
1406 return NULL;
1407 }
1408
1409 /* try finding the new parent index */
1410 if (parent && core->num_parents > 1) {
1411 p_index = clk_fetch_parent_index(core, parent);
1412 if (p_index < 0) {
1413 pr_debug("%s: clk %s can not be parent of clk %s\n",
1414 __func__, parent->name, core->name);
1415 return NULL;
1416 }
1417 }
1418
1419 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1420 best_parent_rate != parent->rate)
1421 top = clk_calc_new_rates(parent, best_parent_rate);
1422
1423 out:
1424 clk_calc_subtree(core, new_rate, parent, p_index);
1425
1426 return top;
1427 }
1428
1429 /*
1430 * Notify about rate changes in a subtree. Always walk down the whole tree
1431 * so that in case of an error we can walk down the whole tree again and
1432 * abort the change.
1433 */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)1434 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1435 unsigned long event)
1436 {
1437 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1438 int ret = NOTIFY_DONE;
1439
1440 if (core->rate == core->new_rate)
1441 return NULL;
1442
1443 if (core->notifier_count) {
1444 ret = __clk_notify(core, event, core->rate, core->new_rate);
1445 if (ret & NOTIFY_STOP_MASK)
1446 fail_clk = core;
1447 }
1448
1449 hlist_for_each_entry(child, &core->children, child_node) {
1450 /* Skip children who will be reparented to another clock */
1451 if (child->new_parent && child->new_parent != core)
1452 continue;
1453 tmp_clk = clk_propagate_rate_change(child, event);
1454 if (tmp_clk)
1455 fail_clk = tmp_clk;
1456 }
1457
1458 /* handle the new child who might not be in core->children yet */
1459 if (core->new_child) {
1460 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1461 if (tmp_clk)
1462 fail_clk = tmp_clk;
1463 }
1464
1465 return fail_clk;
1466 }
1467
1468 /*
1469 * walk down a subtree and set the new rates notifying the rate
1470 * change on the way
1471 */
clk_change_rate(struct clk_core * core)1472 static void clk_change_rate(struct clk_core *core)
1473 {
1474 struct clk_core *child;
1475 struct hlist_node *tmp;
1476 unsigned long old_rate;
1477 unsigned long best_parent_rate = 0;
1478 bool skip_set_rate = false;
1479 struct clk_core *old_parent;
1480 struct clk_core *parent = NULL;
1481
1482 old_rate = core->rate;
1483
1484 if (core->new_parent) {
1485 parent = core->new_parent;
1486 best_parent_rate = core->new_parent->rate;
1487 } else if (core->parent) {
1488 parent = core->parent;
1489 best_parent_rate = core->parent->rate;
1490 }
1491
1492 if (core->flags & CLK_SET_RATE_UNGATE) {
1493 unsigned long flags;
1494
1495 clk_core_prepare(core);
1496 flags = clk_enable_lock();
1497 clk_core_enable(core);
1498 clk_enable_unlock(flags);
1499 }
1500
1501 if (core->new_parent && core->new_parent != core->parent) {
1502 old_parent = __clk_set_parent_before(core, core->new_parent);
1503 trace_clk_set_parent(core, core->new_parent);
1504
1505 if (core->ops->set_rate_and_parent) {
1506 skip_set_rate = true;
1507 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1508 best_parent_rate,
1509 core->new_parent_index);
1510 } else if (core->ops->set_parent) {
1511 core->ops->set_parent(core->hw, core->new_parent_index);
1512 }
1513
1514 trace_clk_set_parent_complete(core, core->new_parent);
1515 __clk_set_parent_after(core, core->new_parent, old_parent);
1516 }
1517
1518 if (core->flags & CLK_OPS_PARENT_ENABLE)
1519 clk_core_prepare_enable(parent);
1520
1521 trace_clk_set_rate(core, core->new_rate);
1522
1523 if (!skip_set_rate && core->ops->set_rate)
1524 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1525
1526 trace_clk_set_rate_complete(core, core->new_rate);
1527
1528 core->rate = clk_recalc(core, best_parent_rate);
1529
1530 if (core->flags & CLK_SET_RATE_UNGATE) {
1531 unsigned long flags;
1532
1533 flags = clk_enable_lock();
1534 clk_core_disable(core);
1535 clk_enable_unlock(flags);
1536 clk_core_unprepare(core);
1537 }
1538
1539 if (core->flags & CLK_OPS_PARENT_ENABLE)
1540 clk_core_disable_unprepare(parent);
1541
1542 if (core->notifier_count && old_rate != core->rate)
1543 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1544
1545 if (core->flags & CLK_RECALC_NEW_RATES)
1546 (void)clk_calc_new_rates(core, core->new_rate);
1547
1548 /*
1549 * Use safe iteration, as change_rate can actually swap parents
1550 * for certain clock types.
1551 */
1552 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1553 /* Skip children who will be reparented to another clock */
1554 if (child->new_parent && child->new_parent != core)
1555 continue;
1556 clk_change_rate(child);
1557 }
1558
1559 /* handle the new child who might not be in core->children yet */
1560 if (core->new_child)
1561 clk_change_rate(core->new_child);
1562 }
1563
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)1564 static int clk_core_set_rate_nolock(struct clk_core *core,
1565 unsigned long req_rate)
1566 {
1567 struct clk_core *top, *fail_clk;
1568 unsigned long rate = req_rate;
1569
1570 if (!core)
1571 return 0;
1572
1573 /* bail early if nothing to do */
1574 if (rate == clk_core_get_rate_nolock(core))
1575 return 0;
1576
1577 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1578 return -EBUSY;
1579
1580 /* calculate new rates and get the topmost changed clock */
1581 top = clk_calc_new_rates(core, rate);
1582 if (!top)
1583 return -EINVAL;
1584
1585 /* notify that we are about to change rates */
1586 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1587 if (fail_clk) {
1588 pr_debug("%s: failed to set %s rate\n", __func__,
1589 fail_clk->name);
1590 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1591 return -EBUSY;
1592 }
1593
1594 /* change the rates */
1595 clk_change_rate(top);
1596
1597 core->req_rate = req_rate;
1598
1599 return 0;
1600 }
1601
1602 /**
1603 * clk_set_rate - specify a new rate for clk
1604 * @clk: the clk whose rate is being changed
1605 * @rate: the new rate for clk
1606 *
1607 * In the simplest case clk_set_rate will only adjust the rate of clk.
1608 *
1609 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1610 * propagate up to clk's parent; whether or not this happens depends on the
1611 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1612 * after calling .round_rate then upstream parent propagation is ignored. If
1613 * *parent_rate comes back with a new rate for clk's parent then we propagate
1614 * up to clk's parent and set its rate. Upward propagation will continue
1615 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1616 * .round_rate stops requesting changes to clk's parent_rate.
1617 *
1618 * Rate changes are accomplished via tree traversal that also recalculates the
1619 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1620 *
1621 * Returns 0 on success, -EERROR otherwise.
1622 */
clk_set_rate(struct clk * clk,unsigned long rate)1623 int clk_set_rate(struct clk *clk, unsigned long rate)
1624 {
1625 int ret;
1626
1627 if (!clk)
1628 return 0;
1629
1630 /* prevent racing with updates to the clock topology */
1631 clk_prepare_lock();
1632
1633 ret = clk_core_set_rate_nolock(clk->core, rate);
1634
1635 clk_prepare_unlock();
1636
1637 return ret;
1638 }
1639 EXPORT_SYMBOL_GPL(clk_set_rate);
1640
1641 /**
1642 * clk_set_rate_range - set a rate range for a clock source
1643 * @clk: clock source
1644 * @min: desired minimum clock rate in Hz, inclusive
1645 * @max: desired maximum clock rate in Hz, inclusive
1646 *
1647 * Returns success (0) or negative errno.
1648 */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)1649 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1650 {
1651 int ret = 0;
1652
1653 if (!clk)
1654 return 0;
1655
1656 if (min > max) {
1657 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1658 __func__, clk->core->name, clk->dev_id, clk->con_id,
1659 min, max);
1660 return -EINVAL;
1661 }
1662
1663 clk_prepare_lock();
1664
1665 if (min != clk->min_rate || max != clk->max_rate) {
1666 clk->min_rate = min;
1667 clk->max_rate = max;
1668 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1669 }
1670
1671 clk_prepare_unlock();
1672
1673 return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1676
1677 /**
1678 * clk_set_min_rate - set a minimum clock rate for a clock source
1679 * @clk: clock source
1680 * @rate: desired minimum clock rate in Hz, inclusive
1681 *
1682 * Returns success (0) or negative errno.
1683 */
clk_set_min_rate(struct clk * clk,unsigned long rate)1684 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1685 {
1686 if (!clk)
1687 return 0;
1688
1689 return clk_set_rate_range(clk, rate, clk->max_rate);
1690 }
1691 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1692
1693 /**
1694 * clk_set_max_rate - set a maximum clock rate for a clock source
1695 * @clk: clock source
1696 * @rate: desired maximum clock rate in Hz, inclusive
1697 *
1698 * Returns success (0) or negative errno.
1699 */
clk_set_max_rate(struct clk * clk,unsigned long rate)1700 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1701 {
1702 if (!clk)
1703 return 0;
1704
1705 return clk_set_rate_range(clk, clk->min_rate, rate);
1706 }
1707 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1708
1709 /**
1710 * clk_get_parent - return the parent of a clk
1711 * @clk: the clk whose parent gets returned
1712 *
1713 * Simply returns clk->parent. Returns NULL if clk is NULL.
1714 */
clk_get_parent(struct clk * clk)1715 struct clk *clk_get_parent(struct clk *clk)
1716 {
1717 struct clk *parent;
1718
1719 if (!clk)
1720 return NULL;
1721
1722 clk_prepare_lock();
1723 /* TODO: Create a per-user clk and change callers to call clk_put */
1724 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1725 clk_prepare_unlock();
1726
1727 return parent;
1728 }
1729 EXPORT_SYMBOL_GPL(clk_get_parent);
1730
__clk_init_parent(struct clk_core * core)1731 static struct clk_core *__clk_init_parent(struct clk_core *core)
1732 {
1733 u8 index = 0;
1734
1735 if (core->num_parents > 1 && core->ops->get_parent)
1736 index = core->ops->get_parent(core->hw);
1737
1738 return clk_core_get_parent_by_index(core, index);
1739 }
1740
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)1741 static void clk_core_reparent(struct clk_core *core,
1742 struct clk_core *new_parent)
1743 {
1744 clk_reparent(core, new_parent);
1745 __clk_recalc_accuracies(core);
1746 __clk_recalc_rates(core, POST_RATE_CHANGE);
1747 }
1748
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)1749 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1750 {
1751 if (!hw)
1752 return;
1753
1754 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1755 }
1756
1757 /**
1758 * clk_has_parent - check if a clock is a possible parent for another
1759 * @clk: clock source
1760 * @parent: parent clock source
1761 *
1762 * This function can be used in drivers that need to check that a clock can be
1763 * the parent of another without actually changing the parent.
1764 *
1765 * Returns true if @parent is a possible parent for @clk, false otherwise.
1766 */
clk_has_parent(struct clk * clk,struct clk * parent)1767 bool clk_has_parent(struct clk *clk, struct clk *parent)
1768 {
1769 struct clk_core *core, *parent_core;
1770 unsigned int i;
1771
1772 /* NULL clocks should be nops, so return success if either is NULL. */
1773 if (!clk || !parent)
1774 return true;
1775
1776 core = clk->core;
1777 parent_core = parent->core;
1778
1779 /* Optimize for the case where the parent is already the parent. */
1780 if (core->parent == parent_core)
1781 return true;
1782
1783 for (i = 0; i < core->num_parents; i++)
1784 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1785 return true;
1786
1787 return false;
1788 }
1789 EXPORT_SYMBOL_GPL(clk_has_parent);
1790
clk_core_set_parent(struct clk_core * core,struct clk_core * parent)1791 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1792 {
1793 int ret = 0;
1794 int p_index = 0;
1795 unsigned long p_rate = 0;
1796
1797 if (!core)
1798 return 0;
1799
1800 /* prevent racing with updates to the clock topology */
1801 clk_prepare_lock();
1802
1803 if (core->parent == parent)
1804 goto out;
1805
1806 /* verify ops for for multi-parent clks */
1807 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1808 ret = -ENOSYS;
1809 goto out;
1810 }
1811
1812 /* check that we are allowed to re-parent if the clock is in use */
1813 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1814 ret = -EBUSY;
1815 goto out;
1816 }
1817
1818 /* try finding the new parent index */
1819 if (parent) {
1820 p_index = clk_fetch_parent_index(core, parent);
1821 if (p_index < 0) {
1822 pr_debug("%s: clk %s can not be parent of clk %s\n",
1823 __func__, parent->name, core->name);
1824 ret = p_index;
1825 goto out;
1826 }
1827 p_rate = parent->rate;
1828 }
1829
1830 /* propagate PRE_RATE_CHANGE notifications */
1831 ret = __clk_speculate_rates(core, p_rate);
1832
1833 /* abort if a driver objects */
1834 if (ret & NOTIFY_STOP_MASK)
1835 goto out;
1836
1837 /* do the re-parent */
1838 ret = __clk_set_parent(core, parent, p_index);
1839
1840 /* propagate rate an accuracy recalculation accordingly */
1841 if (ret) {
1842 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1843 } else {
1844 __clk_recalc_rates(core, POST_RATE_CHANGE);
1845 __clk_recalc_accuracies(core);
1846 }
1847
1848 out:
1849 clk_prepare_unlock();
1850
1851 return ret;
1852 }
1853
1854 /**
1855 * clk_set_parent - switch the parent of a mux clk
1856 * @clk: the mux clk whose input we are switching
1857 * @parent: the new input to clk
1858 *
1859 * Re-parent clk to use parent as its new input source. If clk is in
1860 * prepared state, the clk will get enabled for the duration of this call. If
1861 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1862 * that, the reparenting is glitchy in hardware, etc), use the
1863 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1864 *
1865 * After successfully changing clk's parent clk_set_parent will update the
1866 * clk topology, sysfs topology and propagate rate recalculation via
1867 * __clk_recalc_rates.
1868 *
1869 * Returns 0 on success, -EERROR otherwise.
1870 */
clk_set_parent(struct clk * clk,struct clk * parent)1871 int clk_set_parent(struct clk *clk, struct clk *parent)
1872 {
1873 if (!clk)
1874 return 0;
1875
1876 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1877 }
1878 EXPORT_SYMBOL_GPL(clk_set_parent);
1879
1880 /**
1881 * clk_set_phase - adjust the phase shift of a clock signal
1882 * @clk: clock signal source
1883 * @degrees: number of degrees the signal is shifted
1884 *
1885 * Shifts the phase of a clock signal by the specified
1886 * degrees. Returns 0 on success, -EERROR otherwise.
1887 *
1888 * This function makes no distinction about the input or reference
1889 * signal that we adjust the clock signal phase against. For example
1890 * phase locked-loop clock signal generators we may shift phase with
1891 * respect to feedback clock signal input, but for other cases the
1892 * clock phase may be shifted with respect to some other, unspecified
1893 * signal.
1894 *
1895 * Additionally the concept of phase shift does not propagate through
1896 * the clock tree hierarchy, which sets it apart from clock rates and
1897 * clock accuracy. A parent clock phase attribute does not have an
1898 * impact on the phase attribute of a child clock.
1899 */
clk_set_phase(struct clk * clk,int degrees)1900 int clk_set_phase(struct clk *clk, int degrees)
1901 {
1902 int ret = -EINVAL;
1903
1904 if (!clk)
1905 return 0;
1906
1907 /* sanity check degrees */
1908 degrees %= 360;
1909 if (degrees < 0)
1910 degrees += 360;
1911
1912 clk_prepare_lock();
1913
1914 trace_clk_set_phase(clk->core, degrees);
1915
1916 if (clk->core->ops->set_phase)
1917 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1918
1919 trace_clk_set_phase_complete(clk->core, degrees);
1920
1921 if (!ret)
1922 clk->core->phase = degrees;
1923
1924 clk_prepare_unlock();
1925
1926 return ret;
1927 }
1928 EXPORT_SYMBOL_GPL(clk_set_phase);
1929
clk_core_get_phase(struct clk_core * core)1930 static int clk_core_get_phase(struct clk_core *core)
1931 {
1932 int ret;
1933
1934 clk_prepare_lock();
1935 /* Always try to update cached phase if possible */
1936 if (core->ops->get_phase)
1937 core->phase = core->ops->get_phase(core->hw);
1938 ret = core->phase;
1939 clk_prepare_unlock();
1940
1941 return ret;
1942 }
1943
1944 /**
1945 * clk_get_phase - return the phase shift of a clock signal
1946 * @clk: clock signal source
1947 *
1948 * Returns the phase shift of a clock node in degrees, otherwise returns
1949 * -EERROR.
1950 */
clk_get_phase(struct clk * clk)1951 int clk_get_phase(struct clk *clk)
1952 {
1953 if (!clk)
1954 return 0;
1955
1956 return clk_core_get_phase(clk->core);
1957 }
1958 EXPORT_SYMBOL_GPL(clk_get_phase);
1959
1960 /**
1961 * clk_is_match - check if two clk's point to the same hardware clock
1962 * @p: clk compared against q
1963 * @q: clk compared against p
1964 *
1965 * Returns true if the two struct clk pointers both point to the same hardware
1966 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1967 * share the same struct clk_core object.
1968 *
1969 * Returns false otherwise. Note that two NULL clks are treated as matching.
1970 */
clk_is_match(const struct clk * p,const struct clk * q)1971 bool clk_is_match(const struct clk *p, const struct clk *q)
1972 {
1973 /* trivial case: identical struct clk's or both NULL */
1974 if (p == q)
1975 return true;
1976
1977 /* true if clk->core pointers match. Avoid dereferencing garbage */
1978 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1979 if (p->core == q->core)
1980 return true;
1981
1982 return false;
1983 }
1984 EXPORT_SYMBOL_GPL(clk_is_match);
1985
1986 /*** debugfs support ***/
1987
1988 #ifdef CONFIG_DEBUG_FS
1989 #include <linux/debugfs.h>
1990
1991 static struct dentry *rootdir;
1992 static int inited = 0;
1993 static DEFINE_MUTEX(clk_debug_lock);
1994 static HLIST_HEAD(clk_debug_list);
1995
1996 static struct hlist_head *all_lists[] = {
1997 &clk_root_list,
1998 &clk_orphan_list,
1999 NULL,
2000 };
2001
2002 static struct hlist_head *orphan_list[] = {
2003 &clk_orphan_list,
2004 NULL,
2005 };
2006
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)2007 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2008 int level)
2009 {
2010 if (!c)
2011 return;
2012
2013 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2014 level * 3 + 1, "",
2015 30 - level * 3, c->name,
2016 c->enable_count, c->prepare_count, clk_core_get_rate(c),
2017 clk_core_get_accuracy(c), clk_core_get_phase(c));
2018 }
2019
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)2020 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2021 int level)
2022 {
2023 struct clk_core *child;
2024
2025 if (!c)
2026 return;
2027
2028 clk_summary_show_one(s, c, level);
2029
2030 hlist_for_each_entry(child, &c->children, child_node)
2031 clk_summary_show_subtree(s, child, level + 1);
2032 }
2033
clk_summary_show(struct seq_file * s,void * data)2034 static int clk_summary_show(struct seq_file *s, void *data)
2035 {
2036 struct clk_core *c;
2037 struct hlist_head **lists = (struct hlist_head **)s->private;
2038
2039 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
2040 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2041
2042 clk_prepare_lock();
2043
2044 for (; *lists; lists++)
2045 hlist_for_each_entry(c, *lists, child_node)
2046 clk_summary_show_subtree(s, c, 0);
2047
2048 clk_prepare_unlock();
2049
2050 return 0;
2051 }
2052
2053
clk_summary_open(struct inode * inode,struct file * file)2054 static int clk_summary_open(struct inode *inode, struct file *file)
2055 {
2056 return single_open(file, clk_summary_show, inode->i_private);
2057 }
2058
2059 static const struct file_operations clk_summary_fops = {
2060 .open = clk_summary_open,
2061 .read = seq_read,
2062 .llseek = seq_lseek,
2063 .release = single_release,
2064 };
2065
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)2066 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2067 {
2068 if (!c)
2069 return;
2070
2071 /* This should be JSON format, i.e. elements separated with a comma */
2072 seq_printf(s, "\"%s\": { ", c->name);
2073 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2074 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2075 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2076 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2077 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2078 }
2079
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)2080 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2081 {
2082 struct clk_core *child;
2083
2084 if (!c)
2085 return;
2086
2087 clk_dump_one(s, c, level);
2088
2089 hlist_for_each_entry(child, &c->children, child_node) {
2090 seq_putc(s, ',');
2091 clk_dump_subtree(s, child, level + 1);
2092 }
2093
2094 seq_putc(s, '}');
2095 }
2096
clk_dump(struct seq_file * s,void * data)2097 static int clk_dump(struct seq_file *s, void *data)
2098 {
2099 struct clk_core *c;
2100 bool first_node = true;
2101 struct hlist_head **lists = (struct hlist_head **)s->private;
2102
2103 seq_putc(s, '{');
2104 clk_prepare_lock();
2105
2106 for (; *lists; lists++) {
2107 hlist_for_each_entry(c, *lists, child_node) {
2108 if (!first_node)
2109 seq_putc(s, ',');
2110 first_node = false;
2111 clk_dump_subtree(s, c, 0);
2112 }
2113 }
2114
2115 clk_prepare_unlock();
2116
2117 seq_puts(s, "}\n");
2118 return 0;
2119 }
2120
2121
clk_dump_open(struct inode * inode,struct file * file)2122 static int clk_dump_open(struct inode *inode, struct file *file)
2123 {
2124 return single_open(file, clk_dump, inode->i_private);
2125 }
2126
2127 static const struct file_operations clk_dump_fops = {
2128 .open = clk_dump_open,
2129 .read = seq_read,
2130 .llseek = seq_lseek,
2131 .release = single_release,
2132 };
2133
possible_parents_dump(struct seq_file * s,void * data)2134 static int possible_parents_dump(struct seq_file *s, void *data)
2135 {
2136 struct clk_core *core = s->private;
2137 int i;
2138
2139 for (i = 0; i < core->num_parents - 1; i++)
2140 seq_printf(s, "%s ", core->parent_names[i]);
2141
2142 seq_printf(s, "%s\n", core->parent_names[i]);
2143
2144 return 0;
2145 }
2146
possible_parents_open(struct inode * inode,struct file * file)2147 static int possible_parents_open(struct inode *inode, struct file *file)
2148 {
2149 return single_open(file, possible_parents_dump, inode->i_private);
2150 }
2151
2152 static const struct file_operations possible_parents_fops = {
2153 .open = possible_parents_open,
2154 .read = seq_read,
2155 .llseek = seq_lseek,
2156 .release = single_release,
2157 };
2158
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)2159 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2160 {
2161 struct dentry *d;
2162 int ret = -ENOMEM;
2163
2164 if (!core || !pdentry) {
2165 ret = -EINVAL;
2166 goto out;
2167 }
2168
2169 d = debugfs_create_dir(core->name, pdentry);
2170 if (!d)
2171 goto out;
2172
2173 core->dentry = d;
2174
2175 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2176 (u32 *)&core->rate);
2177 if (!d)
2178 goto err_out;
2179
2180 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2181 (u32 *)&core->accuracy);
2182 if (!d)
2183 goto err_out;
2184
2185 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2186 (u32 *)&core->phase);
2187 if (!d)
2188 goto err_out;
2189
2190 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2191 (u32 *)&core->flags);
2192 if (!d)
2193 goto err_out;
2194
2195 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2196 (u32 *)&core->prepare_count);
2197 if (!d)
2198 goto err_out;
2199
2200 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2201 (u32 *)&core->enable_count);
2202 if (!d)
2203 goto err_out;
2204
2205 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2206 (u32 *)&core->notifier_count);
2207 if (!d)
2208 goto err_out;
2209
2210 if (core->num_parents > 1) {
2211 d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2212 core->dentry, core, &possible_parents_fops);
2213 if (!d)
2214 goto err_out;
2215 }
2216
2217 if (core->ops->debug_init) {
2218 ret = core->ops->debug_init(core->hw, core->dentry);
2219 if (ret)
2220 goto err_out;
2221 }
2222
2223 ret = 0;
2224 goto out;
2225
2226 err_out:
2227 debugfs_remove_recursive(core->dentry);
2228 core->dentry = NULL;
2229 out:
2230 return ret;
2231 }
2232
2233 /**
2234 * clk_debug_register - add a clk node to the debugfs clk directory
2235 * @core: the clk being added to the debugfs clk directory
2236 *
2237 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2238 * initialized. Otherwise it bails out early since the debugfs clk directory
2239 * will be created lazily by clk_debug_init as part of a late_initcall.
2240 */
clk_debug_register(struct clk_core * core)2241 static int clk_debug_register(struct clk_core *core)
2242 {
2243 int ret = 0;
2244
2245 mutex_lock(&clk_debug_lock);
2246 hlist_add_head(&core->debug_node, &clk_debug_list);
2247
2248 if (!inited)
2249 goto unlock;
2250
2251 ret = clk_debug_create_one(core, rootdir);
2252 unlock:
2253 mutex_unlock(&clk_debug_lock);
2254
2255 return ret;
2256 }
2257
2258 /**
2259 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2260 * @core: the clk being removed from the debugfs clk directory
2261 *
2262 * Dynamically removes a clk and all its child nodes from the
2263 * debugfs clk directory if clk->dentry points to debugfs created by
2264 * clk_debug_register in __clk_core_init.
2265 */
clk_debug_unregister(struct clk_core * core)2266 static void clk_debug_unregister(struct clk_core *core)
2267 {
2268 mutex_lock(&clk_debug_lock);
2269 hlist_del_init(&core->debug_node);
2270 debugfs_remove_recursive(core->dentry);
2271 core->dentry = NULL;
2272 mutex_unlock(&clk_debug_lock);
2273 }
2274
clk_debugfs_add_file(struct clk_hw * hw,char * name,umode_t mode,void * data,const struct file_operations * fops)2275 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2276 void *data, const struct file_operations *fops)
2277 {
2278 struct dentry *d = NULL;
2279
2280 if (hw->core->dentry)
2281 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2282 fops);
2283
2284 return d;
2285 }
2286 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2287
2288 /**
2289 * clk_debug_init - lazily populate the debugfs clk directory
2290 *
2291 * clks are often initialized very early during boot before memory can be
2292 * dynamically allocated and well before debugfs is setup. This function
2293 * populates the debugfs clk directory once at boot-time when we know that
2294 * debugfs is setup. It should only be called once at boot-time, all other clks
2295 * added dynamically will be done so with clk_debug_register.
2296 */
clk_debug_init(void)2297 static int __init clk_debug_init(void)
2298 {
2299 struct clk_core *core;
2300 struct dentry *d;
2301
2302 rootdir = debugfs_create_dir("clk", NULL);
2303
2304 if (!rootdir)
2305 return -ENOMEM;
2306
2307 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2308 &clk_summary_fops);
2309 if (!d)
2310 return -ENOMEM;
2311
2312 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2313 &clk_dump_fops);
2314 if (!d)
2315 return -ENOMEM;
2316
2317 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2318 &orphan_list, &clk_summary_fops);
2319 if (!d)
2320 return -ENOMEM;
2321
2322 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2323 &orphan_list, &clk_dump_fops);
2324 if (!d)
2325 return -ENOMEM;
2326
2327 mutex_lock(&clk_debug_lock);
2328 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2329 clk_debug_create_one(core, rootdir);
2330
2331 inited = 1;
2332 mutex_unlock(&clk_debug_lock);
2333
2334 return 0;
2335 }
2336 late_initcall(clk_debug_init);
2337 #else
clk_debug_register(struct clk_core * core)2338 static inline int clk_debug_register(struct clk_core *core) { return 0; }
clk_debug_reparent(struct clk_core * core,struct clk_core * new_parent)2339 static inline void clk_debug_reparent(struct clk_core *core,
2340 struct clk_core *new_parent)
2341 {
2342 }
clk_debug_unregister(struct clk_core * core)2343 static inline void clk_debug_unregister(struct clk_core *core)
2344 {
2345 }
2346 #endif
2347
2348 /**
2349 * __clk_core_init - initialize the data structures in a struct clk_core
2350 * @core: clk_core being initialized
2351 *
2352 * Initializes the lists in struct clk_core, queries the hardware for the
2353 * parent and rate and sets them both.
2354 */
__clk_core_init(struct clk_core * core)2355 static int __clk_core_init(struct clk_core *core)
2356 {
2357 int i, ret = 0;
2358 struct clk_core *orphan;
2359 struct hlist_node *tmp2;
2360 unsigned long rate;
2361
2362 if (!core)
2363 return -EINVAL;
2364
2365 clk_prepare_lock();
2366
2367 /* check to see if a clock with this name is already registered */
2368 if (clk_core_lookup(core->name)) {
2369 pr_debug("%s: clk %s already initialized\n",
2370 __func__, core->name);
2371 ret = -EEXIST;
2372 goto out;
2373 }
2374
2375 /* check that clk_ops are sane. See Documentation/clk.txt */
2376 if (core->ops->set_rate &&
2377 !((core->ops->round_rate || core->ops->determine_rate) &&
2378 core->ops->recalc_rate)) {
2379 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2380 __func__, core->name);
2381 ret = -EINVAL;
2382 goto out;
2383 }
2384
2385 if (core->ops->set_parent && !core->ops->get_parent) {
2386 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2387 __func__, core->name);
2388 ret = -EINVAL;
2389 goto out;
2390 }
2391
2392 if (core->num_parents > 1 && !core->ops->get_parent) {
2393 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2394 __func__, core->name);
2395 ret = -EINVAL;
2396 goto out;
2397 }
2398
2399 if (core->ops->set_rate_and_parent &&
2400 !(core->ops->set_parent && core->ops->set_rate)) {
2401 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2402 __func__, core->name);
2403 ret = -EINVAL;
2404 goto out;
2405 }
2406
2407 /* throw a WARN if any entries in parent_names are NULL */
2408 for (i = 0; i < core->num_parents; i++)
2409 WARN(!core->parent_names[i],
2410 "%s: invalid NULL in %s's .parent_names\n",
2411 __func__, core->name);
2412
2413 core->parent = __clk_init_parent(core);
2414
2415 /*
2416 * Populate core->parent if parent has already been clk_core_init'd. If
2417 * parent has not yet been clk_core_init'd then place clk in the orphan
2418 * list. If clk doesn't have any parents then place it in the root
2419 * clk list.
2420 *
2421 * Every time a new clk is clk_init'd then we walk the list of orphan
2422 * clocks and re-parent any that are children of the clock currently
2423 * being clk_init'd.
2424 */
2425 if (core->parent) {
2426 hlist_add_head(&core->child_node,
2427 &core->parent->children);
2428 core->orphan = core->parent->orphan;
2429 } else if (!core->num_parents) {
2430 hlist_add_head(&core->child_node, &clk_root_list);
2431 core->orphan = false;
2432 } else {
2433 hlist_add_head(&core->child_node, &clk_orphan_list);
2434 core->orphan = true;
2435 }
2436
2437 /*
2438 * Set clk's accuracy. The preferred method is to use
2439 * .recalc_accuracy. For simple clocks and lazy developers the default
2440 * fallback is to use the parent's accuracy. If a clock doesn't have a
2441 * parent (or is orphaned) then accuracy is set to zero (perfect
2442 * clock).
2443 */
2444 if (core->ops->recalc_accuracy)
2445 core->accuracy = core->ops->recalc_accuracy(core->hw,
2446 __clk_get_accuracy(core->parent));
2447 else if (core->parent)
2448 core->accuracy = core->parent->accuracy;
2449 else
2450 core->accuracy = 0;
2451
2452 /*
2453 * Set clk's phase.
2454 * Since a phase is by definition relative to its parent, just
2455 * query the current clock phase, or just assume it's in phase.
2456 */
2457 if (core->ops->get_phase)
2458 core->phase = core->ops->get_phase(core->hw);
2459 else
2460 core->phase = 0;
2461
2462 /*
2463 * Set clk's rate. The preferred method is to use .recalc_rate. For
2464 * simple clocks and lazy developers the default fallback is to use the
2465 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2466 * then rate is set to zero.
2467 */
2468 if (core->ops->recalc_rate)
2469 rate = core->ops->recalc_rate(core->hw,
2470 clk_core_get_rate_nolock(core->parent));
2471 else if (core->parent)
2472 rate = core->parent->rate;
2473 else
2474 rate = 0;
2475 core->rate = core->req_rate = rate;
2476
2477 /*
2478 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2479 * don't get accidentally disabled when walking the orphan tree and
2480 * reparenting clocks
2481 */
2482 if (core->flags & CLK_IS_CRITICAL) {
2483 unsigned long flags;
2484
2485 ret = clk_core_prepare(core);
2486 if (ret)
2487 goto out;
2488
2489 flags = clk_enable_lock();
2490 ret = clk_core_enable(core);
2491 clk_enable_unlock(flags);
2492 if (ret) {
2493 clk_core_unprepare(core);
2494 goto out;
2495 }
2496 }
2497
2498 /*
2499 * walk the list of orphan clocks and reparent any that newly finds a
2500 * parent.
2501 */
2502 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2503 struct clk_core *parent = __clk_init_parent(orphan);
2504
2505 /*
2506 * We need to use __clk_set_parent_before() and _after() to
2507 * to properly migrate any prepare/enable count of the orphan
2508 * clock. This is important for CLK_IS_CRITICAL clocks, which
2509 * are enabled during init but might not have a parent yet.
2510 */
2511 if (parent) {
2512 /* update the clk tree topology */
2513 __clk_set_parent_before(orphan, parent);
2514 __clk_set_parent_after(orphan, parent, NULL);
2515 __clk_recalc_accuracies(orphan);
2516 __clk_recalc_rates(orphan, 0);
2517 }
2518 }
2519
2520 /*
2521 * optional platform-specific magic
2522 *
2523 * The .init callback is not used by any of the basic clock types, but
2524 * exists for weird hardware that must perform initialization magic.
2525 * Please consider other ways of solving initialization problems before
2526 * using this callback, as its use is discouraged.
2527 */
2528 if (core->ops->init)
2529 core->ops->init(core->hw);
2530
2531 kref_init(&core->ref);
2532 out:
2533 clk_prepare_unlock();
2534
2535 if (!ret)
2536 clk_debug_register(core);
2537
2538 return ret;
2539 }
2540
__clk_create_clk(struct clk_hw * hw,const char * dev_id,const char * con_id)2541 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2542 const char *con_id)
2543 {
2544 struct clk *clk;
2545
2546 /* This is to allow this function to be chained to others */
2547 if (IS_ERR_OR_NULL(hw))
2548 return ERR_CAST(hw);
2549
2550 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2551 if (!clk)
2552 return ERR_PTR(-ENOMEM);
2553
2554 clk->core = hw->core;
2555 clk->dev_id = dev_id;
2556 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2557 clk->max_rate = ULONG_MAX;
2558
2559 clk_prepare_lock();
2560 hlist_add_head(&clk->clks_node, &hw->core->clks);
2561 clk_prepare_unlock();
2562
2563 return clk;
2564 }
2565
2566 /* keep in sync with __clk_put */
__clk_free_clk(struct clk * clk)2567 void __clk_free_clk(struct clk *clk)
2568 {
2569 clk_prepare_lock();
2570 hlist_del(&clk->clks_node);
2571 clk_prepare_unlock();
2572
2573 kfree_const(clk->con_id);
2574 kfree(clk);
2575 }
2576
2577 /**
2578 * clk_register - allocate a new clock, register it and return an opaque cookie
2579 * @dev: device that is registering this clock
2580 * @hw: link to hardware-specific clock data
2581 *
2582 * clk_register is the primary interface for populating the clock tree with new
2583 * clock nodes. It returns a pointer to the newly allocated struct clk which
2584 * cannot be dereferenced by driver code but may be used in conjunction with the
2585 * rest of the clock API. In the event of an error clk_register will return an
2586 * error code; drivers must test for an error code after calling clk_register.
2587 */
clk_register(struct device * dev,struct clk_hw * hw)2588 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2589 {
2590 int i, ret;
2591 struct clk_core *core;
2592
2593 core = kzalloc(sizeof(*core), GFP_KERNEL);
2594 if (!core) {
2595 ret = -ENOMEM;
2596 goto fail_out;
2597 }
2598
2599 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2600 if (!core->name) {
2601 ret = -ENOMEM;
2602 goto fail_name;
2603 }
2604 core->ops = hw->init->ops;
2605 if (dev && dev->driver)
2606 core->owner = dev->driver->owner;
2607 core->hw = hw;
2608 core->flags = hw->init->flags;
2609 core->num_parents = hw->init->num_parents;
2610 core->min_rate = 0;
2611 core->max_rate = ULONG_MAX;
2612 hw->core = core;
2613
2614 /* allocate local copy in case parent_names is __initdata */
2615 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2616 GFP_KERNEL);
2617
2618 if (!core->parent_names) {
2619 ret = -ENOMEM;
2620 goto fail_parent_names;
2621 }
2622
2623
2624 /* copy each string name in case parent_names is __initdata */
2625 for (i = 0; i < core->num_parents; i++) {
2626 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2627 GFP_KERNEL);
2628 if (!core->parent_names[i]) {
2629 ret = -ENOMEM;
2630 goto fail_parent_names_copy;
2631 }
2632 }
2633
2634 /* avoid unnecessary string look-ups of clk_core's possible parents. */
2635 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2636 GFP_KERNEL);
2637 if (!core->parents) {
2638 ret = -ENOMEM;
2639 goto fail_parents;
2640 };
2641
2642 INIT_HLIST_HEAD(&core->clks);
2643
2644 hw->clk = __clk_create_clk(hw, NULL, NULL);
2645 if (IS_ERR(hw->clk)) {
2646 ret = PTR_ERR(hw->clk);
2647 goto fail_parents;
2648 }
2649
2650 ret = __clk_core_init(core);
2651 if (!ret)
2652 return hw->clk;
2653
2654 __clk_free_clk(hw->clk);
2655 hw->clk = NULL;
2656
2657 fail_parents:
2658 kfree(core->parents);
2659 fail_parent_names_copy:
2660 while (--i >= 0)
2661 kfree_const(core->parent_names[i]);
2662 kfree(core->parent_names);
2663 fail_parent_names:
2664 kfree_const(core->name);
2665 fail_name:
2666 kfree(core);
2667 fail_out:
2668 return ERR_PTR(ret);
2669 }
2670 EXPORT_SYMBOL_GPL(clk_register);
2671
2672 /**
2673 * clk_hw_register - register a clk_hw and return an error code
2674 * @dev: device that is registering this clock
2675 * @hw: link to hardware-specific clock data
2676 *
2677 * clk_hw_register is the primary interface for populating the clock tree with
2678 * new clock nodes. It returns an integer equal to zero indicating success or
2679 * less than zero indicating failure. Drivers must test for an error code after
2680 * calling clk_hw_register().
2681 */
clk_hw_register(struct device * dev,struct clk_hw * hw)2682 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2683 {
2684 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2685 }
2686 EXPORT_SYMBOL_GPL(clk_hw_register);
2687
2688 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)2689 static void __clk_release(struct kref *ref)
2690 {
2691 struct clk_core *core = container_of(ref, struct clk_core, ref);
2692 int i = core->num_parents;
2693
2694 lockdep_assert_held(&prepare_lock);
2695
2696 kfree(core->parents);
2697 while (--i >= 0)
2698 kfree_const(core->parent_names[i]);
2699
2700 kfree(core->parent_names);
2701 kfree_const(core->name);
2702 kfree(core);
2703 }
2704
2705 /*
2706 * Empty clk_ops for unregistered clocks. These are used temporarily
2707 * after clk_unregister() was called on a clock and until last clock
2708 * consumer calls clk_put() and the struct clk object is freed.
2709 */
clk_nodrv_prepare_enable(struct clk_hw * hw)2710 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2711 {
2712 return -ENXIO;
2713 }
2714
clk_nodrv_disable_unprepare(struct clk_hw * hw)2715 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2716 {
2717 WARN_ON_ONCE(1);
2718 }
2719
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)2720 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2721 unsigned long parent_rate)
2722 {
2723 return -ENXIO;
2724 }
2725
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)2726 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2727 {
2728 return -ENXIO;
2729 }
2730
2731 static const struct clk_ops clk_nodrv_ops = {
2732 .enable = clk_nodrv_prepare_enable,
2733 .disable = clk_nodrv_disable_unprepare,
2734 .prepare = clk_nodrv_prepare_enable,
2735 .unprepare = clk_nodrv_disable_unprepare,
2736 .set_rate = clk_nodrv_set_rate,
2737 .set_parent = clk_nodrv_set_parent,
2738 };
2739
2740 /**
2741 * clk_unregister - unregister a currently registered clock
2742 * @clk: clock to unregister
2743 */
clk_unregister(struct clk * clk)2744 void clk_unregister(struct clk *clk)
2745 {
2746 unsigned long flags;
2747
2748 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2749 return;
2750
2751 clk_debug_unregister(clk->core);
2752
2753 clk_prepare_lock();
2754
2755 if (clk->core->ops == &clk_nodrv_ops) {
2756 pr_err("%s: unregistered clock: %s\n", __func__,
2757 clk->core->name);
2758 goto unlock;
2759 }
2760 /*
2761 * Assign empty clock ops for consumers that might still hold
2762 * a reference to this clock.
2763 */
2764 flags = clk_enable_lock();
2765 clk->core->ops = &clk_nodrv_ops;
2766 clk_enable_unlock(flags);
2767
2768 if (!hlist_empty(&clk->core->children)) {
2769 struct clk_core *child;
2770 struct hlist_node *t;
2771
2772 /* Reparent all children to the orphan list. */
2773 hlist_for_each_entry_safe(child, t, &clk->core->children,
2774 child_node)
2775 clk_core_set_parent(child, NULL);
2776 }
2777
2778 hlist_del_init(&clk->core->child_node);
2779
2780 if (clk->core->prepare_count)
2781 pr_warn("%s: unregistering prepared clock: %s\n",
2782 __func__, clk->core->name);
2783 kref_put(&clk->core->ref, __clk_release);
2784 unlock:
2785 clk_prepare_unlock();
2786 }
2787 EXPORT_SYMBOL_GPL(clk_unregister);
2788
2789 /**
2790 * clk_hw_unregister - unregister a currently registered clk_hw
2791 * @hw: hardware-specific clock data to unregister
2792 */
clk_hw_unregister(struct clk_hw * hw)2793 void clk_hw_unregister(struct clk_hw *hw)
2794 {
2795 clk_unregister(hw->clk);
2796 }
2797 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2798
devm_clk_release(struct device * dev,void * res)2799 static void devm_clk_release(struct device *dev, void *res)
2800 {
2801 clk_unregister(*(struct clk **)res);
2802 }
2803
devm_clk_hw_release(struct device * dev,void * res)2804 static void devm_clk_hw_release(struct device *dev, void *res)
2805 {
2806 clk_hw_unregister(*(struct clk_hw **)res);
2807 }
2808
2809 /**
2810 * devm_clk_register - resource managed clk_register()
2811 * @dev: device that is registering this clock
2812 * @hw: link to hardware-specific clock data
2813 *
2814 * Managed clk_register(). Clocks returned from this function are
2815 * automatically clk_unregister()ed on driver detach. See clk_register() for
2816 * more information.
2817 */
devm_clk_register(struct device * dev,struct clk_hw * hw)2818 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2819 {
2820 struct clk *clk;
2821 struct clk **clkp;
2822
2823 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2824 if (!clkp)
2825 return ERR_PTR(-ENOMEM);
2826
2827 clk = clk_register(dev, hw);
2828 if (!IS_ERR(clk)) {
2829 *clkp = clk;
2830 devres_add(dev, clkp);
2831 } else {
2832 devres_free(clkp);
2833 }
2834
2835 return clk;
2836 }
2837 EXPORT_SYMBOL_GPL(devm_clk_register);
2838
2839 /**
2840 * devm_clk_hw_register - resource managed clk_hw_register()
2841 * @dev: device that is registering this clock
2842 * @hw: link to hardware-specific clock data
2843 *
2844 * Managed clk_hw_register(). Clocks registered by this function are
2845 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2846 * for more information.
2847 */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)2848 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2849 {
2850 struct clk_hw **hwp;
2851 int ret;
2852
2853 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2854 if (!hwp)
2855 return -ENOMEM;
2856
2857 ret = clk_hw_register(dev, hw);
2858 if (!ret) {
2859 *hwp = hw;
2860 devres_add(dev, hwp);
2861 } else {
2862 devres_free(hwp);
2863 }
2864
2865 return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2868
devm_clk_match(struct device * dev,void * res,void * data)2869 static int devm_clk_match(struct device *dev, void *res, void *data)
2870 {
2871 struct clk *c = res;
2872 if (WARN_ON(!c))
2873 return 0;
2874 return c == data;
2875 }
2876
devm_clk_hw_match(struct device * dev,void * res,void * data)2877 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2878 {
2879 struct clk_hw *hw = res;
2880
2881 if (WARN_ON(!hw))
2882 return 0;
2883 return hw == data;
2884 }
2885
2886 /**
2887 * devm_clk_unregister - resource managed clk_unregister()
2888 * @clk: clock to unregister
2889 *
2890 * Deallocate a clock allocated with devm_clk_register(). Normally
2891 * this function will not need to be called and the resource management
2892 * code will ensure that the resource is freed.
2893 */
devm_clk_unregister(struct device * dev,struct clk * clk)2894 void devm_clk_unregister(struct device *dev, struct clk *clk)
2895 {
2896 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2897 }
2898 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2899
2900 /**
2901 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2902 * @dev: device that is unregistering the hardware-specific clock data
2903 * @hw: link to hardware-specific clock data
2904 *
2905 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2906 * this function will not need to be called and the resource management
2907 * code will ensure that the resource is freed.
2908 */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)2909 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2910 {
2911 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2912 hw));
2913 }
2914 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2915
2916 /*
2917 * clkdev helpers
2918 */
__clk_get(struct clk * clk)2919 int __clk_get(struct clk *clk)
2920 {
2921 struct clk_core *core = !clk ? NULL : clk->core;
2922
2923 if (core) {
2924 if (!try_module_get(core->owner))
2925 return 0;
2926
2927 kref_get(&core->ref);
2928 }
2929 return 1;
2930 }
2931
2932 /* keep in sync with __clk_free_clk */
__clk_put(struct clk * clk)2933 void __clk_put(struct clk *clk)
2934 {
2935 struct module *owner;
2936
2937 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2938 return;
2939
2940 clk_prepare_lock();
2941
2942 hlist_del(&clk->clks_node);
2943 if (clk->min_rate > clk->core->req_rate ||
2944 clk->max_rate < clk->core->req_rate)
2945 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2946
2947 owner = clk->core->owner;
2948 kref_put(&clk->core->ref, __clk_release);
2949
2950 clk_prepare_unlock();
2951
2952 module_put(owner);
2953
2954 kfree_const(clk->con_id);
2955 kfree(clk);
2956 }
2957
2958 /*** clk rate change notifiers ***/
2959
2960 /**
2961 * clk_notifier_register - add a clk rate change notifier
2962 * @clk: struct clk * to watch
2963 * @nb: struct notifier_block * with callback info
2964 *
2965 * Request notification when clk's rate changes. This uses an SRCU
2966 * notifier because we want it to block and notifier unregistrations are
2967 * uncommon. The callbacks associated with the notifier must not
2968 * re-enter into the clk framework by calling any top-level clk APIs;
2969 * this will cause a nested prepare_lock mutex.
2970 *
2971 * In all notification cases (pre, post and abort rate change) the original
2972 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2973 * and the new frequency is passed via struct clk_notifier_data.new_rate.
2974 *
2975 * clk_notifier_register() must be called from non-atomic context.
2976 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2977 * allocation failure; otherwise, passes along the return value of
2978 * srcu_notifier_chain_register().
2979 */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)2980 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2981 {
2982 struct clk_notifier *cn;
2983 int ret = -ENOMEM;
2984
2985 if (!clk || !nb)
2986 return -EINVAL;
2987
2988 clk_prepare_lock();
2989
2990 /* search the list of notifiers for this clk */
2991 list_for_each_entry(cn, &clk_notifier_list, node)
2992 if (cn->clk == clk)
2993 break;
2994
2995 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2996 if (cn->clk != clk) {
2997 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
2998 if (!cn)
2999 goto out;
3000
3001 cn->clk = clk;
3002 srcu_init_notifier_head(&cn->notifier_head);
3003
3004 list_add(&cn->node, &clk_notifier_list);
3005 }
3006
3007 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3008
3009 clk->core->notifier_count++;
3010
3011 out:
3012 clk_prepare_unlock();
3013
3014 return ret;
3015 }
3016 EXPORT_SYMBOL_GPL(clk_notifier_register);
3017
3018 /**
3019 * clk_notifier_unregister - remove a clk rate change notifier
3020 * @clk: struct clk *
3021 * @nb: struct notifier_block * with callback info
3022 *
3023 * Request no further notification for changes to 'clk' and frees memory
3024 * allocated in clk_notifier_register.
3025 *
3026 * Returns -EINVAL if called with null arguments; otherwise, passes
3027 * along the return value of srcu_notifier_chain_unregister().
3028 */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)3029 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3030 {
3031 struct clk_notifier *cn = NULL;
3032 int ret = -EINVAL;
3033
3034 if (!clk || !nb)
3035 return -EINVAL;
3036
3037 clk_prepare_lock();
3038
3039 list_for_each_entry(cn, &clk_notifier_list, node)
3040 if (cn->clk == clk)
3041 break;
3042
3043 if (cn->clk == clk) {
3044 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3045
3046 clk->core->notifier_count--;
3047
3048 /* XXX the notifier code should handle this better */
3049 if (!cn->notifier_head.head) {
3050 srcu_cleanup_notifier_head(&cn->notifier_head);
3051 list_del(&cn->node);
3052 kfree(cn);
3053 }
3054
3055 } else {
3056 ret = -ENOENT;
3057 }
3058
3059 clk_prepare_unlock();
3060
3061 return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3064
3065 #ifdef CONFIG_OF
3066 /**
3067 * struct of_clk_provider - Clock provider registration structure
3068 * @link: Entry in global list of clock providers
3069 * @node: Pointer to device tree node of clock provider
3070 * @get: Get clock callback. Returns NULL or a struct clk for the
3071 * given clock specifier
3072 * @data: context pointer to be passed into @get callback
3073 */
3074 struct of_clk_provider {
3075 struct list_head link;
3076
3077 struct device_node *node;
3078 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3079 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3080 void *data;
3081 };
3082
3083 static const struct of_device_id __clk_of_table_sentinel
3084 __used __section(__clk_of_table_end);
3085
3086 static LIST_HEAD(of_clk_providers);
3087 static DEFINE_MUTEX(of_clk_mutex);
3088
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)3089 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3090 void *data)
3091 {
3092 return data;
3093 }
3094 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3095
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)3096 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3097 {
3098 return data;
3099 }
3100 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3101
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)3102 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3103 {
3104 struct clk_onecell_data *clk_data = data;
3105 unsigned int idx = clkspec->args[0];
3106
3107 if (idx >= clk_data->clk_num) {
3108 pr_err("%s: invalid clock index %u\n", __func__, idx);
3109 return ERR_PTR(-EINVAL);
3110 }
3111
3112 return clk_data->clks[idx];
3113 }
3114 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3115
3116 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)3117 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3118 {
3119 struct clk_hw_onecell_data *hw_data = data;
3120 unsigned int idx = clkspec->args[0];
3121
3122 if (idx >= hw_data->num) {
3123 pr_err("%s: invalid index %u\n", __func__, idx);
3124 return ERR_PTR(-EINVAL);
3125 }
3126
3127 return hw_data->hws[idx];
3128 }
3129 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3130
3131 /**
3132 * of_clk_add_provider() - Register a clock provider for a node
3133 * @np: Device node pointer associated with clock provider
3134 * @clk_src_get: callback for decoding clock
3135 * @data: context pointer for @clk_src_get callback.
3136 */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)3137 int of_clk_add_provider(struct device_node *np,
3138 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3139 void *data),
3140 void *data)
3141 {
3142 struct of_clk_provider *cp;
3143 int ret;
3144
3145 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3146 if (!cp)
3147 return -ENOMEM;
3148
3149 cp->node = of_node_get(np);
3150 cp->data = data;
3151 cp->get = clk_src_get;
3152
3153 mutex_lock(&of_clk_mutex);
3154 list_add(&cp->link, &of_clk_providers);
3155 mutex_unlock(&of_clk_mutex);
3156 pr_debug("Added clock from %pOF\n", np);
3157
3158 ret = of_clk_set_defaults(np, true);
3159 if (ret < 0)
3160 of_clk_del_provider(np);
3161
3162 return ret;
3163 }
3164 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3165
3166 /**
3167 * of_clk_add_hw_provider() - Register a clock provider for a node
3168 * @np: Device node pointer associated with clock provider
3169 * @get: callback for decoding clk_hw
3170 * @data: context pointer for @get callback.
3171 */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)3172 int of_clk_add_hw_provider(struct device_node *np,
3173 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3174 void *data),
3175 void *data)
3176 {
3177 struct of_clk_provider *cp;
3178 int ret;
3179
3180 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3181 if (!cp)
3182 return -ENOMEM;
3183
3184 cp->node = of_node_get(np);
3185 cp->data = data;
3186 cp->get_hw = get;
3187
3188 mutex_lock(&of_clk_mutex);
3189 list_add(&cp->link, &of_clk_providers);
3190 mutex_unlock(&of_clk_mutex);
3191 pr_debug("Added clk_hw provider from %pOF\n", np);
3192
3193 ret = of_clk_set_defaults(np, true);
3194 if (ret < 0)
3195 of_clk_del_provider(np);
3196
3197 return ret;
3198 }
3199 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3200
3201 /**
3202 * of_clk_del_provider() - Remove a previously registered clock provider
3203 * @np: Device node pointer associated with clock provider
3204 */
of_clk_del_provider(struct device_node * np)3205 void of_clk_del_provider(struct device_node *np)
3206 {
3207 struct of_clk_provider *cp;
3208
3209 mutex_lock(&of_clk_mutex);
3210 list_for_each_entry(cp, &of_clk_providers, link) {
3211 if (cp->node == np) {
3212 list_del(&cp->link);
3213 of_node_put(cp->node);
3214 kfree(cp);
3215 break;
3216 }
3217 }
3218 mutex_unlock(&of_clk_mutex);
3219 }
3220 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3221
3222 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)3223 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3224 struct of_phandle_args *clkspec)
3225 {
3226 struct clk *clk;
3227
3228 if (provider->get_hw)
3229 return provider->get_hw(clkspec, provider->data);
3230
3231 clk = provider->get(clkspec, provider->data);
3232 if (IS_ERR(clk))
3233 return ERR_CAST(clk);
3234 return __clk_get_hw(clk);
3235 }
3236
__of_clk_get_from_provider(struct of_phandle_args * clkspec,const char * dev_id,const char * con_id)3237 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3238 const char *dev_id, const char *con_id)
3239 {
3240 struct of_clk_provider *provider;
3241 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3242 struct clk_hw *hw;
3243
3244 if (!clkspec)
3245 return ERR_PTR(-EINVAL);
3246
3247 /* Check if we have such a provider in our array */
3248 mutex_lock(&of_clk_mutex);
3249 list_for_each_entry(provider, &of_clk_providers, link) {
3250 if (provider->node == clkspec->np) {
3251 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3252 clk = __clk_create_clk(hw, dev_id, con_id);
3253 }
3254
3255 if (!IS_ERR(clk)) {
3256 if (!__clk_get(clk)) {
3257 __clk_free_clk(clk);
3258 clk = ERR_PTR(-ENOENT);
3259 }
3260
3261 break;
3262 }
3263 }
3264 mutex_unlock(&of_clk_mutex);
3265
3266 return clk;
3267 }
3268
3269 /**
3270 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3271 * @clkspec: pointer to a clock specifier data structure
3272 *
3273 * This function looks up a struct clk from the registered list of clock
3274 * providers, an input is a clock specifier data structure as returned
3275 * from the of_parse_phandle_with_args() function call.
3276 */
of_clk_get_from_provider(struct of_phandle_args * clkspec)3277 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3278 {
3279 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3280 }
3281 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3282
3283 /**
3284 * of_clk_get_parent_count() - Count the number of clocks a device node has
3285 * @np: device node to count
3286 *
3287 * Returns: The number of clocks that are possible parents of this node
3288 */
of_clk_get_parent_count(struct device_node * np)3289 unsigned int of_clk_get_parent_count(struct device_node *np)
3290 {
3291 int count;
3292
3293 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3294 if (count < 0)
3295 return 0;
3296
3297 return count;
3298 }
3299 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3300
of_clk_get_parent_name(struct device_node * np,int index)3301 const char *of_clk_get_parent_name(struct device_node *np, int index)
3302 {
3303 struct of_phandle_args clkspec;
3304 struct property *prop;
3305 const char *clk_name;
3306 const __be32 *vp;
3307 u32 pv;
3308 int rc;
3309 int count;
3310 struct clk *clk;
3311
3312 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3313 &clkspec);
3314 if (rc)
3315 return NULL;
3316
3317 index = clkspec.args_count ? clkspec.args[0] : 0;
3318 count = 0;
3319
3320 /* if there is an indices property, use it to transfer the index
3321 * specified into an array offset for the clock-output-names property.
3322 */
3323 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3324 if (index == pv) {
3325 index = count;
3326 break;
3327 }
3328 count++;
3329 }
3330 /* We went off the end of 'clock-indices' without finding it */
3331 if (prop && !vp)
3332 return NULL;
3333
3334 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3335 index,
3336 &clk_name) < 0) {
3337 /*
3338 * Best effort to get the name if the clock has been
3339 * registered with the framework. If the clock isn't
3340 * registered, we return the node name as the name of
3341 * the clock as long as #clock-cells = 0.
3342 */
3343 clk = of_clk_get_from_provider(&clkspec);
3344 if (IS_ERR(clk)) {
3345 if (clkspec.args_count == 0)
3346 clk_name = clkspec.np->name;
3347 else
3348 clk_name = NULL;
3349 } else {
3350 clk_name = __clk_get_name(clk);
3351 clk_put(clk);
3352 }
3353 }
3354
3355
3356 of_node_put(clkspec.np);
3357 return clk_name;
3358 }
3359 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3360
3361 /**
3362 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3363 * number of parents
3364 * @np: Device node pointer associated with clock provider
3365 * @parents: pointer to char array that hold the parents' names
3366 * @size: size of the @parents array
3367 *
3368 * Return: number of parents for the clock node.
3369 */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)3370 int of_clk_parent_fill(struct device_node *np, const char **parents,
3371 unsigned int size)
3372 {
3373 unsigned int i = 0;
3374
3375 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3376 i++;
3377
3378 return i;
3379 }
3380 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3381
3382 struct clock_provider {
3383 of_clk_init_cb_t clk_init_cb;
3384 struct device_node *np;
3385 struct list_head node;
3386 };
3387
3388 /*
3389 * This function looks for a parent clock. If there is one, then it
3390 * checks that the provider for this parent clock was initialized, in
3391 * this case the parent clock will be ready.
3392 */
parent_ready(struct device_node * np)3393 static int parent_ready(struct device_node *np)
3394 {
3395 int i = 0;
3396
3397 while (true) {
3398 struct clk *clk = of_clk_get(np, i);
3399
3400 /* this parent is ready we can check the next one */
3401 if (!IS_ERR(clk)) {
3402 clk_put(clk);
3403 i++;
3404 continue;
3405 }
3406
3407 /* at least one parent is not ready, we exit now */
3408 if (PTR_ERR(clk) == -EPROBE_DEFER)
3409 return 0;
3410
3411 /*
3412 * Here we make assumption that the device tree is
3413 * written correctly. So an error means that there is
3414 * no more parent. As we didn't exit yet, then the
3415 * previous parent are ready. If there is no clock
3416 * parent, no need to wait for them, then we can
3417 * consider their absence as being ready
3418 */
3419 return 1;
3420 }
3421 }
3422
3423 /**
3424 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3425 * @np: Device node pointer associated with clock provider
3426 * @index: clock index
3427 * @flags: pointer to clk_core->flags
3428 *
3429 * Detects if the clock-critical property exists and, if so, sets the
3430 * corresponding CLK_IS_CRITICAL flag.
3431 *
3432 * Do not use this function. It exists only for legacy Device Tree
3433 * bindings, such as the one-clock-per-node style that are outdated.
3434 * Those bindings typically put all clock data into .dts and the Linux
3435 * driver has no clock data, thus making it impossible to set this flag
3436 * correctly from the driver. Only those drivers may call
3437 * of_clk_detect_critical from their setup functions.
3438 *
3439 * Return: error code or zero on success
3440 */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)3441 int of_clk_detect_critical(struct device_node *np,
3442 int index, unsigned long *flags)
3443 {
3444 struct property *prop;
3445 const __be32 *cur;
3446 uint32_t idx;
3447
3448 if (!np || !flags)
3449 return -EINVAL;
3450
3451 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3452 if (index == idx)
3453 *flags |= CLK_IS_CRITICAL;
3454
3455 return 0;
3456 }
3457
3458 /**
3459 * of_clk_init() - Scan and init clock providers from the DT
3460 * @matches: array of compatible values and init functions for providers.
3461 *
3462 * This function scans the device tree for matching clock providers
3463 * and calls their initialization functions. It also does it by trying
3464 * to follow the dependencies.
3465 */
of_clk_init(const struct of_device_id * matches)3466 void __init of_clk_init(const struct of_device_id *matches)
3467 {
3468 const struct of_device_id *match;
3469 struct device_node *np;
3470 struct clock_provider *clk_provider, *next;
3471 bool is_init_done;
3472 bool force = false;
3473 LIST_HEAD(clk_provider_list);
3474
3475 if (!matches)
3476 matches = &__clk_of_table;
3477
3478 /* First prepare the list of the clocks providers */
3479 for_each_matching_node_and_match(np, matches, &match) {
3480 struct clock_provider *parent;
3481
3482 if (!of_device_is_available(np))
3483 continue;
3484
3485 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3486 if (!parent) {
3487 list_for_each_entry_safe(clk_provider, next,
3488 &clk_provider_list, node) {
3489 list_del(&clk_provider->node);
3490 of_node_put(clk_provider->np);
3491 kfree(clk_provider);
3492 }
3493 of_node_put(np);
3494 return;
3495 }
3496
3497 parent->clk_init_cb = match->data;
3498 parent->np = of_node_get(np);
3499 list_add_tail(&parent->node, &clk_provider_list);
3500 }
3501
3502 while (!list_empty(&clk_provider_list)) {
3503 is_init_done = false;
3504 list_for_each_entry_safe(clk_provider, next,
3505 &clk_provider_list, node) {
3506 if (force || parent_ready(clk_provider->np)) {
3507
3508 /* Don't populate platform devices */
3509 of_node_set_flag(clk_provider->np,
3510 OF_POPULATED);
3511
3512 clk_provider->clk_init_cb(clk_provider->np);
3513 of_clk_set_defaults(clk_provider->np, true);
3514
3515 list_del(&clk_provider->node);
3516 of_node_put(clk_provider->np);
3517 kfree(clk_provider);
3518 is_init_done = true;
3519 }
3520 }
3521
3522 /*
3523 * We didn't manage to initialize any of the
3524 * remaining providers during the last loop, so now we
3525 * initialize all the remaining ones unconditionally
3526 * in case the clock parent was not mandatory
3527 */
3528 if (!is_init_done)
3529 force = true;
3530 }
3531 }
3532 #endif
3533