• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64 
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67 
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74 
kprobe_lookup_name(const char * name,unsigned int __unused)75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 					unsigned int __unused)
77 {
78 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80 
kretprobe_table_lock_ptr(unsigned long hash)81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 	return &(kretprobe_table_locks[hash].lock);
84 }
85 
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88 
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97 	struct list_head list;
98 	kprobe_opcode_t *insns;		/* Page of instruction slots */
99 	struct kprobe_insn_cache *cache;
100 	int nused;
101 	int ngarbage;
102 	char slot_used[];
103 };
104 
105 #define KPROBE_INSN_PAGE_SIZE(slots)			\
106 	(offsetof(struct kprobe_insn_page, slot_used) +	\
107 	 (sizeof(char) * (slots)))
108 
slots_per_page(struct kprobe_insn_cache * c)109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113 
114 enum kprobe_slot_state {
115 	SLOT_CLEAN = 0,
116 	SLOT_DIRTY = 1,
117 	SLOT_USED = 2,
118 };
119 
alloc_insn_page(void)120 static void *alloc_insn_page(void)
121 {
122 	return module_alloc(PAGE_SIZE);
123 }
124 
free_insn_page(void * page)125 void __weak free_insn_page(void *page)
126 {
127 	module_memfree(page);
128 }
129 
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 	.alloc = alloc_insn_page,
133 	.free = free_insn_page,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
__get_insn_slot(struct kprobe_insn_cache * c)144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 			for (i = 0; i < slots_per_page(c); i++) {
157 				if (kip->slot_used[i] == SLOT_CLEAN) {
158 					kip->slot_used[i] = SLOT_USED;
159 					kip->nused++;
160 					slot = kip->insns + (i * c->insn_size);
161 					rcu_read_unlock();
162 					goto out;
163 				}
164 			}
165 			/* kip->nused is broken. Fix it. */
166 			kip->nused = slots_per_page(c);
167 			WARN_ON(1);
168 		}
169 	}
170 	rcu_read_unlock();
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		goto out;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = c->alloc();
187 	if (!kip->insns) {
188 		kfree(kip);
189 		goto out;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	kip->cache = c;
197 	list_add_rcu(&kip->list, &c->pages);
198 	slot = kip->insns;
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
collect_garbage_slots(struct kprobe_insn_cache * c)227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_sched();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 	.alloc = alloc_insn_page,
311 	.free = free_insn_page,
312 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 	/* .insn_size is initialized later */
314 	.nr_garbage = 0,
315 };
316 #endif
317 #endif
318 
319 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 	__this_cpu_write(kprobe_instance, kp);
323 }
324 
reset_kprobe_instance(void)325 static inline void reset_kprobe_instance(void)
326 {
327 	__this_cpu_write(kprobe_instance, NULL);
328 }
329 
330 /*
331  * This routine is called either:
332  * 	- under the kprobe_mutex - during kprobe_[un]register()
333  * 				OR
334  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
get_kprobe(void * addr)336 struct kprobe *get_kprobe(void *addr)
337 {
338 	struct hlist_head *head;
339 	struct kprobe *p;
340 
341 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 	hlist_for_each_entry_rcu(p, head, hlist) {
343 		if (p->addr == addr)
344 			return p;
345 	}
346 
347 	return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350 
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352 
353 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 	return p->pre_handler == aggr_pre_handler;
357 }
358 
359 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 	       list_empty(&p->list);
364 }
365 
366 /*
367  * Keep all fields in the kprobe consistent
368  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374 
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378 
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *kp;
386 
387 	list_for_each_entry_rcu(kp, &p->list, list) {
388 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 			set_kprobe_instance(kp);
390 			kp->pre_handler(kp, regs);
391 		}
392 		reset_kprobe_instance();
393 	}
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396 
397 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 	struct optimized_kprobe *op;
401 
402 	op = container_of(p, struct optimized_kprobe, kp);
403 	arch_remove_optimized_kprobe(op);
404 	arch_remove_kprobe(p);
405 	kfree(op);
406 }
407 
408 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	if (kprobe_aggrprobe(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		return arch_prepared_optinsn(&op->optinsn);
416 	}
417 
418 	return 0;
419 }
420 
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 	struct optimized_kprobe *op;
425 
426 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 	if (!kprobe_aggrprobe(p))
428 		return kprobe_disabled(p);
429 
430 	op = container_of(p, struct optimized_kprobe, kp);
431 
432 	return kprobe_disabled(p) && list_empty(&op->list);
433 }
434 
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)436 static int kprobe_queued(struct kprobe *p)
437 {
438 	struct optimized_kprobe *op;
439 
440 	if (kprobe_aggrprobe(p)) {
441 		op = container_of(p, struct optimized_kprobe, kp);
442 		if (!list_empty(&op->list))
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
get_optimized_kprobe(unsigned long addr)452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 	int i;
455 	struct kprobe *p = NULL;
456 	struct optimized_kprobe *op;
457 
458 	/* Don't check i == 0, since that is a breakpoint case. */
459 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 		p = get_kprobe((void *)(addr - i));
461 
462 	if (p && kprobe_optready(p)) {
463 		op = container_of(p, struct optimized_kprobe, kp);
464 		if (arch_within_optimized_kprobe(op, addr))
465 			return p;
466 	}
467 
468 	return NULL;
469 }
470 
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475 
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479 
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
do_optimize_kprobes(void)484 static void do_optimize_kprobes(void)
485 {
486 	lockdep_assert_held(&text_mutex);
487 	/*
488 	 * The optimization/unoptimization refers online_cpus via
489 	 * stop_machine() and cpu-hotplug modifies online_cpus.
490 	 * And same time, text_mutex will be held in cpu-hotplug and here.
491 	 * This combination can cause a deadlock (cpu-hotplug try to lock
492 	 * text_mutex but stop_machine can not be done because online_cpus
493 	 * has been changed)
494 	 * To avoid this deadlock, caller must have locked cpu hotplug
495 	 * for preventing cpu-hotplug outside of text_mutex locking.
496 	 */
497 	lockdep_assert_cpus_held();
498 
499 	/* Optimization never be done when disarmed */
500 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 	    list_empty(&optimizing_list))
502 		return;
503 
504 	arch_optimize_kprobes(&optimizing_list);
505 }
506 
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
do_unoptimize_kprobes(void)511 static void do_unoptimize_kprobes(void)
512 {
513 	struct optimized_kprobe *op, *tmp;
514 
515 	lockdep_assert_held(&text_mutex);
516 	/* See comment in do_optimize_kprobes() */
517 	lockdep_assert_cpus_held();
518 
519 	/* Unoptimization must be done anytime */
520 	if (list_empty(&unoptimizing_list))
521 		return;
522 
523 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 	/* Loop free_list for disarming */
525 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 		/* Switching from detour code to origin */
527 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528 		/* Disarm probes if marked disabled */
529 		if (kprobe_disabled(&op->kp))
530 			arch_disarm_kprobe(&op->kp);
531 		if (kprobe_unused(&op->kp)) {
532 			/*
533 			 * Remove unused probes from hash list. After waiting
534 			 * for synchronization, these probes are reclaimed.
535 			 * (reclaiming is done by do_free_cleaned_kprobes.)
536 			 */
537 			hlist_del_rcu(&op->kp.hlist);
538 		} else
539 			list_del_init(&op->list);
540 	}
541 }
542 
543 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)544 static void do_free_cleaned_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 		list_del_init(&op->list);
550 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551 			/*
552 			 * This must not happen, but if there is a kprobe
553 			 * still in use, keep it on kprobes hash list.
554 			 */
555 			continue;
556 		}
557 		free_aggr_kprobe(&op->kp);
558 	}
559 }
560 
561 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)562 static void kick_kprobe_optimizer(void)
563 {
564 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566 
567 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)568 static void kprobe_optimizer(struct work_struct *work)
569 {
570 	mutex_lock(&kprobe_mutex);
571 	cpus_read_lock();
572 	mutex_lock(&text_mutex);
573 	/* Lock modules while optimizing kprobes */
574 	mutex_lock(&module_mutex);
575 
576 	/*
577 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578 	 * kprobes before waiting for quiesence period.
579 	 */
580 	do_unoptimize_kprobes();
581 
582 	/*
583 	 * Step 2: Wait for quiesence period to ensure all potentially
584 	 * preempted tasks to have normally scheduled. Because optprobe
585 	 * may modify multiple instructions, there is a chance that Nth
586 	 * instruction is preempted. In that case, such tasks can return
587 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588 	 * Note that on non-preemptive kernel, this is transparently converted
589 	 * to synchronoze_sched() to wait for all interrupts to have completed.
590 	 */
591 	synchronize_rcu_tasks();
592 
593 	/* Step 3: Optimize kprobes after quiesence period */
594 	do_optimize_kprobes();
595 
596 	/* Step 4: Free cleaned kprobes after quiesence period */
597 	do_free_cleaned_kprobes();
598 
599 	mutex_unlock(&module_mutex);
600 	mutex_unlock(&text_mutex);
601 	cpus_read_unlock();
602 	mutex_unlock(&kprobe_mutex);
603 
604 	/* Step 5: Kick optimizer again if needed */
605 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
606 		kick_kprobe_optimizer();
607 }
608 
609 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)610 void wait_for_kprobe_optimizer(void)
611 {
612 	mutex_lock(&kprobe_mutex);
613 
614 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
615 		mutex_unlock(&kprobe_mutex);
616 
617 		/* this will also make optimizing_work execute immmediately */
618 		flush_delayed_work(&optimizing_work);
619 		/* @optimizing_work might not have been queued yet, relax */
620 		cpu_relax();
621 
622 		mutex_lock(&kprobe_mutex);
623 	}
624 
625 	mutex_unlock(&kprobe_mutex);
626 }
627 
optprobe_queued_unopt(struct optimized_kprobe * op)628 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
629 {
630 	struct optimized_kprobe *_op;
631 
632 	list_for_each_entry(_op, &unoptimizing_list, list) {
633 		if (op == _op)
634 			return true;
635 	}
636 
637 	return false;
638 }
639 
640 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)641 static void optimize_kprobe(struct kprobe *p)
642 {
643 	struct optimized_kprobe *op;
644 
645 	/* Check if the kprobe is disabled or not ready for optimization. */
646 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
647 	    (kprobe_disabled(p) || kprobes_all_disarmed))
648 		return;
649 
650 	/* Both of break_handler and post_handler are not supported. */
651 	if (p->break_handler || p->post_handler)
652 		return;
653 
654 	op = container_of(p, struct optimized_kprobe, kp);
655 
656 	/* Check there is no other kprobes at the optimized instructions */
657 	if (arch_check_optimized_kprobe(op) < 0)
658 		return;
659 
660 	/* Check if it is already optimized. */
661 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
662 		if (optprobe_queued_unopt(op)) {
663 			/* This is under unoptimizing. Just dequeue the probe */
664 			list_del_init(&op->list);
665 		}
666 		return;
667 	}
668 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
669 
670 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
671 	if (WARN_ON_ONCE(!list_empty(&op->list)))
672 		return;
673 
674 	list_add(&op->list, &optimizing_list);
675 	kick_kprobe_optimizer();
676 }
677 
678 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)679 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
680 {
681 	lockdep_assert_cpus_held();
682 	arch_unoptimize_kprobe(op);
683 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684 	if (kprobe_disabled(&op->kp))
685 		arch_disarm_kprobe(&op->kp);
686 }
687 
688 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)689 static void unoptimize_kprobe(struct kprobe *p, bool force)
690 {
691 	struct optimized_kprobe *op;
692 
693 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
694 		return; /* This is not an optprobe nor optimized */
695 
696 	op = container_of(p, struct optimized_kprobe, kp);
697 	if (!kprobe_optimized(p))
698 		return;
699 
700 	if (!list_empty(&op->list)) {
701 		if (optprobe_queued_unopt(op)) {
702 			/* Queued in unoptimizing queue */
703 			if (force) {
704 				/*
705 				 * Forcibly unoptimize the kprobe here, and queue it
706 				 * in the freeing list for release afterwards.
707 				 */
708 				force_unoptimize_kprobe(op);
709 				list_move(&op->list, &freeing_list);
710 			}
711 		} else {
712 			/* Dequeue from the optimizing queue */
713 			list_del_init(&op->list);
714 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
715 		}
716 		return;
717 	}
718 
719 	/* Optimized kprobe case */
720 	if (force) {
721 		/* Forcibly update the code: this is a special case */
722 		force_unoptimize_kprobe(op);
723 	} else {
724 		list_add(&op->list, &unoptimizing_list);
725 		kick_kprobe_optimizer();
726 	}
727 }
728 
729 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)730 static int reuse_unused_kprobe(struct kprobe *ap)
731 {
732 	struct optimized_kprobe *op;
733 
734 	BUG_ON(!kprobe_unused(ap));
735 	/*
736 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
737 	 * there is still a relative jump) and disabled.
738 	 */
739 	op = container_of(ap, struct optimized_kprobe, kp);
740 	if (unlikely(list_empty(&op->list)))
741 		printk(KERN_WARNING "Warning: found a stray unused "
742 			"aggrprobe@%p\n", ap->addr);
743 	/* Enable the probe again */
744 	ap->flags &= ~KPROBE_FLAG_DISABLED;
745 	/* Optimize it again (remove from op->list) */
746 	if (!kprobe_optready(ap))
747 		return -EINVAL;
748 
749 	optimize_kprobe(ap);
750 	return 0;
751 }
752 
753 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)754 static void kill_optimized_kprobe(struct kprobe *p)
755 {
756 	struct optimized_kprobe *op;
757 
758 	op = container_of(p, struct optimized_kprobe, kp);
759 	if (!list_empty(&op->list))
760 		/* Dequeue from the (un)optimization queue */
761 		list_del_init(&op->list);
762 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
763 
764 	if (kprobe_unused(p)) {
765 		/* Enqueue if it is unused */
766 		list_add(&op->list, &freeing_list);
767 		/*
768 		 * Remove unused probes from the hash list. After waiting
769 		 * for synchronization, this probe is reclaimed.
770 		 * (reclaiming is done by do_free_cleaned_kprobes().)
771 		 */
772 		hlist_del_rcu(&op->kp.hlist);
773 	}
774 
775 	/* Don't touch the code, because it is already freed. */
776 	arch_remove_optimized_kprobe(op);
777 }
778 
779 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)780 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
781 {
782 	if (!kprobe_ftrace(p))
783 		arch_prepare_optimized_kprobe(op, p);
784 }
785 
786 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)787 static void prepare_optimized_kprobe(struct kprobe *p)
788 {
789 	struct optimized_kprobe *op;
790 
791 	op = container_of(p, struct optimized_kprobe, kp);
792 	__prepare_optimized_kprobe(op, p);
793 }
794 
795 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)796 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
797 {
798 	struct optimized_kprobe *op;
799 
800 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
801 	if (!op)
802 		return NULL;
803 
804 	INIT_LIST_HEAD(&op->list);
805 	op->kp.addr = p->addr;
806 	__prepare_optimized_kprobe(op, p);
807 
808 	return &op->kp;
809 }
810 
811 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
812 
813 /*
814  * Prepare an optimized_kprobe and optimize it
815  * NOTE: p must be a normal registered kprobe
816  */
try_to_optimize_kprobe(struct kprobe * p)817 static void try_to_optimize_kprobe(struct kprobe *p)
818 {
819 	struct kprobe *ap;
820 	struct optimized_kprobe *op;
821 
822 	/* Impossible to optimize ftrace-based kprobe */
823 	if (kprobe_ftrace(p))
824 		return;
825 
826 	/* For preparing optimization, jump_label_text_reserved() is called */
827 	cpus_read_lock();
828 	jump_label_lock();
829 	mutex_lock(&text_mutex);
830 
831 	ap = alloc_aggr_kprobe(p);
832 	if (!ap)
833 		goto out;
834 
835 	op = container_of(ap, struct optimized_kprobe, kp);
836 	if (!arch_prepared_optinsn(&op->optinsn)) {
837 		/* If failed to setup optimizing, fallback to kprobe */
838 		arch_remove_optimized_kprobe(op);
839 		kfree(op);
840 		goto out;
841 	}
842 
843 	init_aggr_kprobe(ap, p);
844 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
845 
846 out:
847 	mutex_unlock(&text_mutex);
848 	jump_label_unlock();
849 	cpus_read_unlock();
850 }
851 
852 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)853 static void optimize_all_kprobes(void)
854 {
855 	struct hlist_head *head;
856 	struct kprobe *p;
857 	unsigned int i;
858 
859 	mutex_lock(&kprobe_mutex);
860 	/* If optimization is already allowed, just return */
861 	if (kprobes_allow_optimization)
862 		goto out;
863 
864 	cpus_read_lock();
865 	kprobes_allow_optimization = true;
866 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
867 		head = &kprobe_table[i];
868 		hlist_for_each_entry_rcu(p, head, hlist)
869 			if (!kprobe_disabled(p))
870 				optimize_kprobe(p);
871 	}
872 	cpus_read_unlock();
873 	printk(KERN_INFO "Kprobes globally optimized\n");
874 out:
875 	mutex_unlock(&kprobe_mutex);
876 }
877 
unoptimize_all_kprobes(void)878 static void unoptimize_all_kprobes(void)
879 {
880 	struct hlist_head *head;
881 	struct kprobe *p;
882 	unsigned int i;
883 
884 	mutex_lock(&kprobe_mutex);
885 	/* If optimization is already prohibited, just return */
886 	if (!kprobes_allow_optimization) {
887 		mutex_unlock(&kprobe_mutex);
888 		return;
889 	}
890 
891 	cpus_read_lock();
892 	kprobes_allow_optimization = false;
893 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
894 		head = &kprobe_table[i];
895 		hlist_for_each_entry_rcu(p, head, hlist) {
896 			if (!kprobe_disabled(p))
897 				unoptimize_kprobe(p, false);
898 		}
899 	}
900 	cpus_read_unlock();
901 	mutex_unlock(&kprobe_mutex);
902 
903 	/* Wait for unoptimizing completion */
904 	wait_for_kprobe_optimizer();
905 	printk(KERN_INFO "Kprobes globally unoptimized\n");
906 }
907 
908 static DEFINE_MUTEX(kprobe_sysctl_mutex);
909 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)910 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
911 				      void __user *buffer, size_t *length,
912 				      loff_t *ppos)
913 {
914 	int ret;
915 
916 	mutex_lock(&kprobe_sysctl_mutex);
917 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
918 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
919 
920 	if (sysctl_kprobes_optimization)
921 		optimize_all_kprobes();
922 	else
923 		unoptimize_all_kprobes();
924 	mutex_unlock(&kprobe_sysctl_mutex);
925 
926 	return ret;
927 }
928 #endif /* CONFIG_SYSCTL */
929 
930 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)931 static void __arm_kprobe(struct kprobe *p)
932 {
933 	struct kprobe *_p;
934 
935 	/* Check collision with other optimized kprobes */
936 	_p = get_optimized_kprobe((unsigned long)p->addr);
937 	if (unlikely(_p))
938 		/* Fallback to unoptimized kprobe */
939 		unoptimize_kprobe(_p, true);
940 
941 	arch_arm_kprobe(p);
942 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
943 }
944 
945 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)946 static void __disarm_kprobe(struct kprobe *p, bool reopt)
947 {
948 	struct kprobe *_p;
949 
950 	/* Try to unoptimize */
951 	unoptimize_kprobe(p, kprobes_all_disarmed);
952 
953 	if (!kprobe_queued(p)) {
954 		arch_disarm_kprobe(p);
955 		/* If another kprobe was blocked, optimize it. */
956 		_p = get_optimized_kprobe((unsigned long)p->addr);
957 		if (unlikely(_p) && reopt)
958 			optimize_kprobe(_p);
959 	}
960 	/* TODO: reoptimize others after unoptimized this probe */
961 }
962 
963 #else /* !CONFIG_OPTPROBES */
964 
965 #define optimize_kprobe(p)			do {} while (0)
966 #define unoptimize_kprobe(p, f)			do {} while (0)
967 #define kill_optimized_kprobe(p)		do {} while (0)
968 #define prepare_optimized_kprobe(p)		do {} while (0)
969 #define try_to_optimize_kprobe(p)		do {} while (0)
970 #define __arm_kprobe(p)				arch_arm_kprobe(p)
971 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
972 #define kprobe_disarmed(p)			kprobe_disabled(p)
973 #define wait_for_kprobe_optimizer()		do {} while (0)
974 
reuse_unused_kprobe(struct kprobe * ap)975 static int reuse_unused_kprobe(struct kprobe *ap)
976 {
977 	/*
978 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
979 	 * released at the same time that the last aggregated kprobe is
980 	 * unregistered.
981 	 * Thus there should be no chance to reuse unused kprobe.
982 	 */
983 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
984 	return -EINVAL;
985 }
986 
free_aggr_kprobe(struct kprobe * p)987 static void free_aggr_kprobe(struct kprobe *p)
988 {
989 	arch_remove_kprobe(p);
990 	kfree(p);
991 }
992 
alloc_aggr_kprobe(struct kprobe * p)993 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
994 {
995 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
996 }
997 #endif /* CONFIG_OPTPROBES */
998 
999 #ifdef CONFIG_KPROBES_ON_FTRACE
1000 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1001 	.func = kprobe_ftrace_handler,
1002 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1003 };
1004 static int kprobe_ftrace_enabled;
1005 
1006 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1007 static int prepare_kprobe(struct kprobe *p)
1008 {
1009 	if (!kprobe_ftrace(p))
1010 		return arch_prepare_kprobe(p);
1011 
1012 	return arch_prepare_kprobe_ftrace(p);
1013 }
1014 
1015 /* Caller must lock kprobe_mutex */
arm_kprobe_ftrace(struct kprobe * p)1016 static void arm_kprobe_ftrace(struct kprobe *p)
1017 {
1018 	int ret;
1019 
1020 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1021 				   (unsigned long)p->addr, 0, 0);
1022 	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1023 	kprobe_ftrace_enabled++;
1024 	if (kprobe_ftrace_enabled == 1) {
1025 		ret = register_ftrace_function(&kprobe_ftrace_ops);
1026 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1027 	}
1028 }
1029 
1030 /* Caller must lock kprobe_mutex */
disarm_kprobe_ftrace(struct kprobe * p)1031 static void disarm_kprobe_ftrace(struct kprobe *p)
1032 {
1033 	int ret;
1034 
1035 	kprobe_ftrace_enabled--;
1036 	if (kprobe_ftrace_enabled == 0) {
1037 		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1038 		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1039 	}
1040 	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1041 			   (unsigned long)p->addr, 1, 0);
1042 	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1043 }
1044 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1045 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1046 #define arm_kprobe_ftrace(p)	do {} while (0)
1047 #define disarm_kprobe_ftrace(p)	do {} while (0)
1048 #endif
1049 
1050 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1051 static void arm_kprobe(struct kprobe *kp)
1052 {
1053 	if (unlikely(kprobe_ftrace(kp))) {
1054 		arm_kprobe_ftrace(kp);
1055 		return;
1056 	}
1057 	cpus_read_lock();
1058 	mutex_lock(&text_mutex);
1059 	__arm_kprobe(kp);
1060 	mutex_unlock(&text_mutex);
1061 	cpus_read_unlock();
1062 }
1063 
1064 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1065 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1066 {
1067 	if (unlikely(kprobe_ftrace(kp))) {
1068 		disarm_kprobe_ftrace(kp);
1069 		return;
1070 	}
1071 
1072 	cpus_read_lock();
1073 	mutex_lock(&text_mutex);
1074 	__disarm_kprobe(kp, reopt);
1075 	mutex_unlock(&text_mutex);
1076 	cpus_read_unlock();
1077 }
1078 
1079 /*
1080  * Aggregate handlers for multiple kprobes support - these handlers
1081  * take care of invoking the individual kprobe handlers on p->list
1082  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1083 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1084 {
1085 	struct kprobe *kp;
1086 
1087 	list_for_each_entry_rcu(kp, &p->list, list) {
1088 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1089 			set_kprobe_instance(kp);
1090 			if (kp->pre_handler(kp, regs))
1091 				return 1;
1092 		}
1093 		reset_kprobe_instance();
1094 	}
1095 	return 0;
1096 }
1097 NOKPROBE_SYMBOL(aggr_pre_handler);
1098 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1099 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1100 			      unsigned long flags)
1101 {
1102 	struct kprobe *kp;
1103 
1104 	list_for_each_entry_rcu(kp, &p->list, list) {
1105 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1106 			set_kprobe_instance(kp);
1107 			kp->post_handler(kp, regs, flags);
1108 			reset_kprobe_instance();
1109 		}
1110 	}
1111 }
1112 NOKPROBE_SYMBOL(aggr_post_handler);
1113 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1114 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1115 			      int trapnr)
1116 {
1117 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1118 
1119 	/*
1120 	 * if we faulted "during" the execution of a user specified
1121 	 * probe handler, invoke just that probe's fault handler
1122 	 */
1123 	if (cur && cur->fault_handler) {
1124 		if (cur->fault_handler(cur, regs, trapnr))
1125 			return 1;
1126 	}
1127 	return 0;
1128 }
1129 NOKPROBE_SYMBOL(aggr_fault_handler);
1130 
aggr_break_handler(struct kprobe * p,struct pt_regs * regs)1131 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1132 {
1133 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1134 	int ret = 0;
1135 
1136 	if (cur && cur->break_handler) {
1137 		if (cur->break_handler(cur, regs))
1138 			ret = 1;
1139 	}
1140 	reset_kprobe_instance();
1141 	return ret;
1142 }
1143 NOKPROBE_SYMBOL(aggr_break_handler);
1144 
1145 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1146 void kprobes_inc_nmissed_count(struct kprobe *p)
1147 {
1148 	struct kprobe *kp;
1149 	if (!kprobe_aggrprobe(p)) {
1150 		p->nmissed++;
1151 	} else {
1152 		list_for_each_entry_rcu(kp, &p->list, list)
1153 			kp->nmissed++;
1154 	}
1155 	return;
1156 }
1157 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1158 
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1159 void recycle_rp_inst(struct kretprobe_instance *ri,
1160 		     struct hlist_head *head)
1161 {
1162 	struct kretprobe *rp = ri->rp;
1163 
1164 	/* remove rp inst off the rprobe_inst_table */
1165 	hlist_del(&ri->hlist);
1166 	INIT_HLIST_NODE(&ri->hlist);
1167 	if (likely(rp)) {
1168 		raw_spin_lock(&rp->lock);
1169 		hlist_add_head(&ri->hlist, &rp->free_instances);
1170 		raw_spin_unlock(&rp->lock);
1171 	} else
1172 		/* Unregistering */
1173 		hlist_add_head(&ri->hlist, head);
1174 }
1175 NOKPROBE_SYMBOL(recycle_rp_inst);
1176 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1177 void kretprobe_hash_lock(struct task_struct *tsk,
1178 			 struct hlist_head **head, unsigned long *flags)
1179 __acquires(hlist_lock)
1180 {
1181 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1182 	raw_spinlock_t *hlist_lock;
1183 
1184 	*head = &kretprobe_inst_table[hash];
1185 	hlist_lock = kretprobe_table_lock_ptr(hash);
1186 	raw_spin_lock_irqsave(hlist_lock, *flags);
1187 }
1188 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1189 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1190 static void kretprobe_table_lock(unsigned long hash,
1191 				 unsigned long *flags)
1192 __acquires(hlist_lock)
1193 {
1194 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1195 	raw_spin_lock_irqsave(hlist_lock, *flags);
1196 }
1197 NOKPROBE_SYMBOL(kretprobe_table_lock);
1198 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1199 void kretprobe_hash_unlock(struct task_struct *tsk,
1200 			   unsigned long *flags)
1201 __releases(hlist_lock)
1202 {
1203 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1204 	raw_spinlock_t *hlist_lock;
1205 
1206 	hlist_lock = kretprobe_table_lock_ptr(hash);
1207 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1208 }
1209 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1210 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1211 static void kretprobe_table_unlock(unsigned long hash,
1212 				   unsigned long *flags)
1213 __releases(hlist_lock)
1214 {
1215 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1217 }
1218 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1219 
1220 /*
1221  * This function is called from finish_task_switch when task tk becomes dead,
1222  * so that we can recycle any function-return probe instances associated
1223  * with this task. These left over instances represent probed functions
1224  * that have been called but will never return.
1225  */
kprobe_flush_task(struct task_struct * tk)1226 void kprobe_flush_task(struct task_struct *tk)
1227 {
1228 	struct kretprobe_instance *ri;
1229 	struct hlist_head *head, empty_rp;
1230 	struct hlist_node *tmp;
1231 	unsigned long hash, flags = 0;
1232 
1233 	if (unlikely(!kprobes_initialized))
1234 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1235 		return;
1236 
1237 	INIT_HLIST_HEAD(&empty_rp);
1238 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1239 	head = &kretprobe_inst_table[hash];
1240 	kretprobe_table_lock(hash, &flags);
1241 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1242 		if (ri->task == tk)
1243 			recycle_rp_inst(ri, &empty_rp);
1244 	}
1245 	kretprobe_table_unlock(hash, &flags);
1246 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1247 		hlist_del(&ri->hlist);
1248 		kfree(ri);
1249 	}
1250 }
1251 NOKPROBE_SYMBOL(kprobe_flush_task);
1252 
free_rp_inst(struct kretprobe * rp)1253 static inline void free_rp_inst(struct kretprobe *rp)
1254 {
1255 	struct kretprobe_instance *ri;
1256 	struct hlist_node *next;
1257 
1258 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1259 		hlist_del(&ri->hlist);
1260 		kfree(ri);
1261 	}
1262 }
1263 
cleanup_rp_inst(struct kretprobe * rp)1264 static void cleanup_rp_inst(struct kretprobe *rp)
1265 {
1266 	unsigned long flags, hash;
1267 	struct kretprobe_instance *ri;
1268 	struct hlist_node *next;
1269 	struct hlist_head *head;
1270 
1271 	/* No race here */
1272 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1273 		kretprobe_table_lock(hash, &flags);
1274 		head = &kretprobe_inst_table[hash];
1275 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1276 			if (ri->rp == rp)
1277 				ri->rp = NULL;
1278 		}
1279 		kretprobe_table_unlock(hash, &flags);
1280 	}
1281 	free_rp_inst(rp);
1282 }
1283 NOKPROBE_SYMBOL(cleanup_rp_inst);
1284 
1285 /*
1286 * Add the new probe to ap->list. Fail if this is the
1287 * second jprobe at the address - two jprobes can't coexist
1288 */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1289 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1290 {
1291 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1292 
1293 	if (p->break_handler || p->post_handler)
1294 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1295 
1296 	if (p->break_handler) {
1297 		if (ap->break_handler)
1298 			return -EEXIST;
1299 		list_add_tail_rcu(&p->list, &ap->list);
1300 		ap->break_handler = aggr_break_handler;
1301 	} else
1302 		list_add_rcu(&p->list, &ap->list);
1303 	if (p->post_handler && !ap->post_handler)
1304 		ap->post_handler = aggr_post_handler;
1305 
1306 	return 0;
1307 }
1308 
1309 /*
1310  * Fill in the required fields of the "manager kprobe". Replace the
1311  * earlier kprobe in the hlist with the manager kprobe
1312  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1313 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1314 {
1315 	/* Copy p's insn slot to ap */
1316 	copy_kprobe(p, ap);
1317 	flush_insn_slot(ap);
1318 	ap->addr = p->addr;
1319 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1320 	ap->pre_handler = aggr_pre_handler;
1321 	ap->fault_handler = aggr_fault_handler;
1322 	/* We don't care the kprobe which has gone. */
1323 	if (p->post_handler && !kprobe_gone(p))
1324 		ap->post_handler = aggr_post_handler;
1325 	if (p->break_handler && !kprobe_gone(p))
1326 		ap->break_handler = aggr_break_handler;
1327 
1328 	INIT_LIST_HEAD(&ap->list);
1329 	INIT_HLIST_NODE(&ap->hlist);
1330 
1331 	list_add_rcu(&p->list, &ap->list);
1332 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1333 }
1334 
1335 /*
1336  * This is the second or subsequent kprobe at the address - handle
1337  * the intricacies
1338  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1339 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1340 {
1341 	int ret = 0;
1342 	struct kprobe *ap = orig_p;
1343 
1344 	cpus_read_lock();
1345 
1346 	/* For preparing optimization, jump_label_text_reserved() is called */
1347 	jump_label_lock();
1348 	mutex_lock(&text_mutex);
1349 
1350 	if (!kprobe_aggrprobe(orig_p)) {
1351 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1352 		ap = alloc_aggr_kprobe(orig_p);
1353 		if (!ap) {
1354 			ret = -ENOMEM;
1355 			goto out;
1356 		}
1357 		init_aggr_kprobe(ap, orig_p);
1358 	} else if (kprobe_unused(ap)) {
1359 		/* This probe is going to die. Rescue it */
1360 		ret = reuse_unused_kprobe(ap);
1361 		if (ret)
1362 			goto out;
1363 	}
1364 
1365 	if (kprobe_gone(ap)) {
1366 		/*
1367 		 * Attempting to insert new probe at the same location that
1368 		 * had a probe in the module vaddr area which already
1369 		 * freed. So, the instruction slot has already been
1370 		 * released. We need a new slot for the new probe.
1371 		 */
1372 		ret = arch_prepare_kprobe(ap);
1373 		if (ret)
1374 			/*
1375 			 * Even if fail to allocate new slot, don't need to
1376 			 * free aggr_probe. It will be used next time, or
1377 			 * freed by unregister_kprobe.
1378 			 */
1379 			goto out;
1380 
1381 		/* Prepare optimized instructions if possible. */
1382 		prepare_optimized_kprobe(ap);
1383 
1384 		/*
1385 		 * Clear gone flag to prevent allocating new slot again, and
1386 		 * set disabled flag because it is not armed yet.
1387 		 */
1388 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1389 			    | KPROBE_FLAG_DISABLED;
1390 	}
1391 
1392 	/* Copy ap's insn slot to p */
1393 	copy_kprobe(ap, p);
1394 	ret = add_new_kprobe(ap, p);
1395 
1396 out:
1397 	mutex_unlock(&text_mutex);
1398 	jump_label_unlock();
1399 	cpus_read_unlock();
1400 
1401 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1402 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1403 		if (!kprobes_all_disarmed)
1404 			/* Arm the breakpoint again. */
1405 			arm_kprobe(ap);
1406 	}
1407 	return ret;
1408 }
1409 
arch_within_kprobe_blacklist(unsigned long addr)1410 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1411 {
1412 	/* The __kprobes marked functions and entry code must not be probed */
1413 	return addr >= (unsigned long)__kprobes_text_start &&
1414 	       addr < (unsigned long)__kprobes_text_end;
1415 }
1416 
within_kprobe_blacklist(unsigned long addr)1417 bool within_kprobe_blacklist(unsigned long addr)
1418 {
1419 	struct kprobe_blacklist_entry *ent;
1420 
1421 	if (arch_within_kprobe_blacklist(addr))
1422 		return true;
1423 	/*
1424 	 * If there exists a kprobe_blacklist, verify and
1425 	 * fail any probe registration in the prohibited area
1426 	 */
1427 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1428 		if (addr >= ent->start_addr && addr < ent->end_addr)
1429 			return true;
1430 	}
1431 
1432 	return false;
1433 }
1434 
1435 /*
1436  * If we have a symbol_name argument, look it up and add the offset field
1437  * to it. This way, we can specify a relative address to a symbol.
1438  * This returns encoded errors if it fails to look up symbol or invalid
1439  * combination of parameters.
1440  */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1441 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1442 			const char *symbol_name, unsigned int offset)
1443 {
1444 	if ((symbol_name && addr) || (!symbol_name && !addr))
1445 		goto invalid;
1446 
1447 	if (symbol_name) {
1448 		addr = kprobe_lookup_name(symbol_name, offset);
1449 		if (!addr)
1450 			return ERR_PTR(-ENOENT);
1451 	}
1452 
1453 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1454 	if (addr)
1455 		return addr;
1456 
1457 invalid:
1458 	return ERR_PTR(-EINVAL);
1459 }
1460 
kprobe_addr(struct kprobe * p)1461 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1462 {
1463 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1464 }
1465 
1466 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1467 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1468 {
1469 	struct kprobe *ap, *list_p;
1470 
1471 	ap = get_kprobe(p->addr);
1472 	if (unlikely(!ap))
1473 		return NULL;
1474 
1475 	if (p != ap) {
1476 		list_for_each_entry_rcu(list_p, &ap->list, list)
1477 			if (list_p == p)
1478 			/* kprobe p is a valid probe */
1479 				goto valid;
1480 		return NULL;
1481 	}
1482 valid:
1483 	return ap;
1484 }
1485 
1486 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1487 static inline int check_kprobe_rereg(struct kprobe *p)
1488 {
1489 	int ret = 0;
1490 
1491 	mutex_lock(&kprobe_mutex);
1492 	if (__get_valid_kprobe(p))
1493 		ret = -EINVAL;
1494 	mutex_unlock(&kprobe_mutex);
1495 
1496 	return ret;
1497 }
1498 
arch_check_ftrace_location(struct kprobe * p)1499 int __weak arch_check_ftrace_location(struct kprobe *p)
1500 {
1501 	unsigned long ftrace_addr;
1502 
1503 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1504 	if (ftrace_addr) {
1505 #ifdef CONFIG_KPROBES_ON_FTRACE
1506 		/* Given address is not on the instruction boundary */
1507 		if ((unsigned long)p->addr != ftrace_addr)
1508 			return -EILSEQ;
1509 		p->flags |= KPROBE_FLAG_FTRACE;
1510 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1511 		return -EINVAL;
1512 #endif
1513 	}
1514 	return 0;
1515 }
1516 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1517 static int check_kprobe_address_safe(struct kprobe *p,
1518 				     struct module **probed_mod)
1519 {
1520 	int ret;
1521 
1522 	ret = arch_check_ftrace_location(p);
1523 	if (ret)
1524 		return ret;
1525 	jump_label_lock();
1526 	preempt_disable();
1527 
1528 	/* Ensure it is not in reserved area nor out of text */
1529 	if (!kernel_text_address((unsigned long) p->addr) ||
1530 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1531 	    jump_label_text_reserved(p->addr, p->addr) ||
1532 	    find_bug((unsigned long)p->addr)) {
1533 		ret = -EINVAL;
1534 		goto out;
1535 	}
1536 
1537 	/* Check if are we probing a module */
1538 	*probed_mod = __module_text_address((unsigned long) p->addr);
1539 	if (*probed_mod) {
1540 		/*
1541 		 * We must hold a refcount of the probed module while updating
1542 		 * its code to prohibit unexpected unloading.
1543 		 */
1544 		if (unlikely(!try_module_get(*probed_mod))) {
1545 			ret = -ENOENT;
1546 			goto out;
1547 		}
1548 
1549 		/*
1550 		 * If the module freed .init.text, we couldn't insert
1551 		 * kprobes in there.
1552 		 */
1553 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1554 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1555 			module_put(*probed_mod);
1556 			*probed_mod = NULL;
1557 			ret = -ENOENT;
1558 		}
1559 	}
1560 out:
1561 	preempt_enable();
1562 	jump_label_unlock();
1563 
1564 	return ret;
1565 }
1566 
register_kprobe(struct kprobe * p)1567 int register_kprobe(struct kprobe *p)
1568 {
1569 	int ret;
1570 	struct kprobe *old_p;
1571 	struct module *probed_mod;
1572 	kprobe_opcode_t *addr;
1573 
1574 	/* Adjust probe address from symbol */
1575 	addr = kprobe_addr(p);
1576 	if (IS_ERR(addr))
1577 		return PTR_ERR(addr);
1578 	p->addr = addr;
1579 
1580 	ret = check_kprobe_rereg(p);
1581 	if (ret)
1582 		return ret;
1583 
1584 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1585 	p->flags &= KPROBE_FLAG_DISABLED;
1586 	p->nmissed = 0;
1587 	INIT_LIST_HEAD(&p->list);
1588 
1589 	ret = check_kprobe_address_safe(p, &probed_mod);
1590 	if (ret)
1591 		return ret;
1592 
1593 	mutex_lock(&kprobe_mutex);
1594 
1595 	old_p = get_kprobe(p->addr);
1596 	if (old_p) {
1597 		/* Since this may unoptimize old_p, locking text_mutex. */
1598 		ret = register_aggr_kprobe(old_p, p);
1599 		goto out;
1600 	}
1601 
1602 	cpus_read_lock();
1603 	/* Prevent text modification */
1604 	mutex_lock(&text_mutex);
1605 	ret = prepare_kprobe(p);
1606 	mutex_unlock(&text_mutex);
1607 	cpus_read_unlock();
1608 	if (ret)
1609 		goto out;
1610 
1611 	INIT_HLIST_NODE(&p->hlist);
1612 	hlist_add_head_rcu(&p->hlist,
1613 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1614 
1615 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1616 		arm_kprobe(p);
1617 
1618 	/* Try to optimize kprobe */
1619 	try_to_optimize_kprobe(p);
1620 out:
1621 	mutex_unlock(&kprobe_mutex);
1622 
1623 	if (probed_mod)
1624 		module_put(probed_mod);
1625 
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(register_kprobe);
1629 
1630 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1631 static int aggr_kprobe_disabled(struct kprobe *ap)
1632 {
1633 	struct kprobe *kp;
1634 
1635 	list_for_each_entry_rcu(kp, &ap->list, list)
1636 		if (!kprobe_disabled(kp))
1637 			/*
1638 			 * There is an active probe on the list.
1639 			 * We can't disable this ap.
1640 			 */
1641 			return 0;
1642 
1643 	return 1;
1644 }
1645 
1646 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1647 static struct kprobe *__disable_kprobe(struct kprobe *p)
1648 {
1649 	struct kprobe *orig_p;
1650 
1651 	/* Get an original kprobe for return */
1652 	orig_p = __get_valid_kprobe(p);
1653 	if (unlikely(orig_p == NULL))
1654 		return NULL;
1655 
1656 	if (!kprobe_disabled(p)) {
1657 		/* Disable probe if it is a child probe */
1658 		if (p != orig_p)
1659 			p->flags |= KPROBE_FLAG_DISABLED;
1660 
1661 		/* Try to disarm and disable this/parent probe */
1662 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1663 			/*
1664 			 * If kprobes_all_disarmed is set, orig_p
1665 			 * should have already been disarmed, so
1666 			 * skip unneed disarming process.
1667 			 */
1668 			if (!kprobes_all_disarmed)
1669 				disarm_kprobe(orig_p, true);
1670 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1671 		}
1672 	}
1673 
1674 	return orig_p;
1675 }
1676 
1677 /*
1678  * Unregister a kprobe without a scheduler synchronization.
1679  */
__unregister_kprobe_top(struct kprobe * p)1680 static int __unregister_kprobe_top(struct kprobe *p)
1681 {
1682 	struct kprobe *ap, *list_p;
1683 
1684 	/* Disable kprobe. This will disarm it if needed. */
1685 	ap = __disable_kprobe(p);
1686 	if (ap == NULL)
1687 		return -EINVAL;
1688 
1689 	if (ap == p)
1690 		/*
1691 		 * This probe is an independent(and non-optimized) kprobe
1692 		 * (not an aggrprobe). Remove from the hash list.
1693 		 */
1694 		goto disarmed;
1695 
1696 	/* Following process expects this probe is an aggrprobe */
1697 	WARN_ON(!kprobe_aggrprobe(ap));
1698 
1699 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1700 		/*
1701 		 * !disarmed could be happen if the probe is under delayed
1702 		 * unoptimizing.
1703 		 */
1704 		goto disarmed;
1705 	else {
1706 		/* If disabling probe has special handlers, update aggrprobe */
1707 		if (p->break_handler && !kprobe_gone(p))
1708 			ap->break_handler = NULL;
1709 		if (p->post_handler && !kprobe_gone(p)) {
1710 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1711 				if ((list_p != p) && (list_p->post_handler))
1712 					goto noclean;
1713 			}
1714 			ap->post_handler = NULL;
1715 		}
1716 noclean:
1717 		/*
1718 		 * Remove from the aggrprobe: this path will do nothing in
1719 		 * __unregister_kprobe_bottom().
1720 		 */
1721 		list_del_rcu(&p->list);
1722 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1723 			/*
1724 			 * Try to optimize this probe again, because post
1725 			 * handler may have been changed.
1726 			 */
1727 			optimize_kprobe(ap);
1728 	}
1729 	return 0;
1730 
1731 disarmed:
1732 	BUG_ON(!kprobe_disarmed(ap));
1733 	hlist_del_rcu(&ap->hlist);
1734 	return 0;
1735 }
1736 
__unregister_kprobe_bottom(struct kprobe * p)1737 static void __unregister_kprobe_bottom(struct kprobe *p)
1738 {
1739 	struct kprobe *ap;
1740 
1741 	if (list_empty(&p->list))
1742 		/* This is an independent kprobe */
1743 		arch_remove_kprobe(p);
1744 	else if (list_is_singular(&p->list)) {
1745 		/* This is the last child of an aggrprobe */
1746 		ap = list_entry(p->list.next, struct kprobe, list);
1747 		list_del(&p->list);
1748 		free_aggr_kprobe(ap);
1749 	}
1750 	/* Otherwise, do nothing. */
1751 }
1752 
register_kprobes(struct kprobe ** kps,int num)1753 int register_kprobes(struct kprobe **kps, int num)
1754 {
1755 	int i, ret = 0;
1756 
1757 	if (num <= 0)
1758 		return -EINVAL;
1759 	for (i = 0; i < num; i++) {
1760 		ret = register_kprobe(kps[i]);
1761 		if (ret < 0) {
1762 			if (i > 0)
1763 				unregister_kprobes(kps, i);
1764 			break;
1765 		}
1766 	}
1767 	return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(register_kprobes);
1770 
unregister_kprobe(struct kprobe * p)1771 void unregister_kprobe(struct kprobe *p)
1772 {
1773 	unregister_kprobes(&p, 1);
1774 }
1775 EXPORT_SYMBOL_GPL(unregister_kprobe);
1776 
unregister_kprobes(struct kprobe ** kps,int num)1777 void unregister_kprobes(struct kprobe **kps, int num)
1778 {
1779 	int i;
1780 
1781 	if (num <= 0)
1782 		return;
1783 	mutex_lock(&kprobe_mutex);
1784 	for (i = 0; i < num; i++)
1785 		if (__unregister_kprobe_top(kps[i]) < 0)
1786 			kps[i]->addr = NULL;
1787 	mutex_unlock(&kprobe_mutex);
1788 
1789 	synchronize_sched();
1790 	for (i = 0; i < num; i++)
1791 		if (kps[i]->addr)
1792 			__unregister_kprobe_bottom(kps[i]);
1793 }
1794 EXPORT_SYMBOL_GPL(unregister_kprobes);
1795 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1796 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1797 					unsigned long val, void *data)
1798 {
1799 	return NOTIFY_DONE;
1800 }
1801 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1802 
1803 static struct notifier_block kprobe_exceptions_nb = {
1804 	.notifier_call = kprobe_exceptions_notify,
1805 	.priority = 0x7fffffff /* we need to be notified first */
1806 };
1807 
arch_deref_entry_point(void * entry)1808 unsigned long __weak arch_deref_entry_point(void *entry)
1809 {
1810 	return (unsigned long)entry;
1811 }
1812 
register_jprobes(struct jprobe ** jps,int num)1813 int register_jprobes(struct jprobe **jps, int num)
1814 {
1815 	int ret = 0, i;
1816 
1817 	if (num <= 0)
1818 		return -EINVAL;
1819 
1820 	for (i = 0; i < num; i++) {
1821 		ret = register_jprobe(jps[i]);
1822 
1823 		if (ret < 0) {
1824 			if (i > 0)
1825 				unregister_jprobes(jps, i);
1826 			break;
1827 		}
1828 	}
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(register_jprobes);
1833 
register_jprobe(struct jprobe * jp)1834 int register_jprobe(struct jprobe *jp)
1835 {
1836 	unsigned long addr, offset;
1837 	struct kprobe *kp = &jp->kp;
1838 
1839 	/*
1840 	 * Verify probepoint as well as the jprobe handler are
1841 	 * valid function entry points.
1842 	 */
1843 	addr = arch_deref_entry_point(jp->entry);
1844 
1845 	if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1846 	    kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1847 		kp->pre_handler = setjmp_pre_handler;
1848 		kp->break_handler = longjmp_break_handler;
1849 		return register_kprobe(kp);
1850 	}
1851 
1852 	return -EINVAL;
1853 }
1854 EXPORT_SYMBOL_GPL(register_jprobe);
1855 
unregister_jprobe(struct jprobe * jp)1856 void unregister_jprobe(struct jprobe *jp)
1857 {
1858 	unregister_jprobes(&jp, 1);
1859 }
1860 EXPORT_SYMBOL_GPL(unregister_jprobe);
1861 
unregister_jprobes(struct jprobe ** jps,int num)1862 void unregister_jprobes(struct jprobe **jps, int num)
1863 {
1864 	int i;
1865 
1866 	if (num <= 0)
1867 		return;
1868 	mutex_lock(&kprobe_mutex);
1869 	for (i = 0; i < num; i++)
1870 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1871 			jps[i]->kp.addr = NULL;
1872 	mutex_unlock(&kprobe_mutex);
1873 
1874 	synchronize_sched();
1875 	for (i = 0; i < num; i++) {
1876 		if (jps[i]->kp.addr)
1877 			__unregister_kprobe_bottom(&jps[i]->kp);
1878 	}
1879 }
1880 EXPORT_SYMBOL_GPL(unregister_jprobes);
1881 
1882 #ifdef CONFIG_KRETPROBES
1883 /*
1884  * This kprobe pre_handler is registered with every kretprobe. When probe
1885  * hits it will set up the return probe.
1886  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1887 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1888 {
1889 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1890 	unsigned long hash, flags = 0;
1891 	struct kretprobe_instance *ri;
1892 
1893 	/*
1894 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1895 	 * just skip the probe and increase the (inexact) 'nmissed'
1896 	 * statistical counter, so that the user is informed that
1897 	 * something happened:
1898 	 */
1899 	if (unlikely(in_nmi())) {
1900 		rp->nmissed++;
1901 		return 0;
1902 	}
1903 
1904 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1905 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1906 	raw_spin_lock_irqsave(&rp->lock, flags);
1907 	if (!hlist_empty(&rp->free_instances)) {
1908 		ri = hlist_entry(rp->free_instances.first,
1909 				struct kretprobe_instance, hlist);
1910 		hlist_del(&ri->hlist);
1911 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1912 
1913 		ri->rp = rp;
1914 		ri->task = current;
1915 
1916 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1917 			raw_spin_lock_irqsave(&rp->lock, flags);
1918 			hlist_add_head(&ri->hlist, &rp->free_instances);
1919 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1920 			return 0;
1921 		}
1922 
1923 		arch_prepare_kretprobe(ri, regs);
1924 
1925 		/* XXX(hch): why is there no hlist_move_head? */
1926 		INIT_HLIST_NODE(&ri->hlist);
1927 		kretprobe_table_lock(hash, &flags);
1928 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1929 		kretprobe_table_unlock(hash, &flags);
1930 	} else {
1931 		rp->nmissed++;
1932 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1933 	}
1934 	return 0;
1935 }
1936 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1937 
arch_kprobe_on_func_entry(unsigned long offset)1938 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1939 {
1940 	return !offset;
1941 }
1942 
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)1943 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1944 {
1945 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1946 
1947 	if (IS_ERR(kp_addr))
1948 		return false;
1949 
1950 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1951 						!arch_kprobe_on_func_entry(offset))
1952 		return false;
1953 
1954 	return true;
1955 }
1956 
register_kretprobe(struct kretprobe * rp)1957 int register_kretprobe(struct kretprobe *rp)
1958 {
1959 	int ret = 0;
1960 	struct kretprobe_instance *inst;
1961 	int i;
1962 	void *addr;
1963 
1964 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1965 		return -EINVAL;
1966 
1967 	if (kretprobe_blacklist_size) {
1968 		addr = kprobe_addr(&rp->kp);
1969 		if (IS_ERR(addr))
1970 			return PTR_ERR(addr);
1971 
1972 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1973 			if (kretprobe_blacklist[i].addr == addr)
1974 				return -EINVAL;
1975 		}
1976 	}
1977 
1978 	rp->kp.pre_handler = pre_handler_kretprobe;
1979 	rp->kp.post_handler = NULL;
1980 	rp->kp.fault_handler = NULL;
1981 	rp->kp.break_handler = NULL;
1982 
1983 	/* Pre-allocate memory for max kretprobe instances */
1984 	if (rp->maxactive <= 0) {
1985 #ifdef CONFIG_PREEMPT
1986 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1987 #else
1988 		rp->maxactive = num_possible_cpus();
1989 #endif
1990 	}
1991 	raw_spin_lock_init(&rp->lock);
1992 	INIT_HLIST_HEAD(&rp->free_instances);
1993 	for (i = 0; i < rp->maxactive; i++) {
1994 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1995 			       rp->data_size, GFP_KERNEL);
1996 		if (inst == NULL) {
1997 			free_rp_inst(rp);
1998 			return -ENOMEM;
1999 		}
2000 		INIT_HLIST_NODE(&inst->hlist);
2001 		hlist_add_head(&inst->hlist, &rp->free_instances);
2002 	}
2003 
2004 	rp->nmissed = 0;
2005 	/* Establish function entry probe point */
2006 	ret = register_kprobe(&rp->kp);
2007 	if (ret != 0)
2008 		free_rp_inst(rp);
2009 	return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(register_kretprobe);
2012 
register_kretprobes(struct kretprobe ** rps,int num)2013 int register_kretprobes(struct kretprobe **rps, int num)
2014 {
2015 	int ret = 0, i;
2016 
2017 	if (num <= 0)
2018 		return -EINVAL;
2019 	for (i = 0; i < num; i++) {
2020 		ret = register_kretprobe(rps[i]);
2021 		if (ret < 0) {
2022 			if (i > 0)
2023 				unregister_kretprobes(rps, i);
2024 			break;
2025 		}
2026 	}
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(register_kretprobes);
2030 
unregister_kretprobe(struct kretprobe * rp)2031 void unregister_kretprobe(struct kretprobe *rp)
2032 {
2033 	unregister_kretprobes(&rp, 1);
2034 }
2035 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2036 
unregister_kretprobes(struct kretprobe ** rps,int num)2037 void unregister_kretprobes(struct kretprobe **rps, int num)
2038 {
2039 	int i;
2040 
2041 	if (num <= 0)
2042 		return;
2043 	mutex_lock(&kprobe_mutex);
2044 	for (i = 0; i < num; i++)
2045 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2046 			rps[i]->kp.addr = NULL;
2047 	mutex_unlock(&kprobe_mutex);
2048 
2049 	synchronize_sched();
2050 	for (i = 0; i < num; i++) {
2051 		if (rps[i]->kp.addr) {
2052 			__unregister_kprobe_bottom(&rps[i]->kp);
2053 			cleanup_rp_inst(rps[i]);
2054 		}
2055 	}
2056 }
2057 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2058 
2059 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2060 int register_kretprobe(struct kretprobe *rp)
2061 {
2062 	return -ENOSYS;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobe);
2065 
register_kretprobes(struct kretprobe ** rps,int num)2066 int register_kretprobes(struct kretprobe **rps, int num)
2067 {
2068 	return -ENOSYS;
2069 }
2070 EXPORT_SYMBOL_GPL(register_kretprobes);
2071 
unregister_kretprobe(struct kretprobe * rp)2072 void unregister_kretprobe(struct kretprobe *rp)
2073 {
2074 }
2075 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2076 
unregister_kretprobes(struct kretprobe ** rps,int num)2077 void unregister_kretprobes(struct kretprobe **rps, int num)
2078 {
2079 }
2080 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2081 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2082 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2083 {
2084 	return 0;
2085 }
2086 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2087 
2088 #endif /* CONFIG_KRETPROBES */
2089 
2090 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2091 static void kill_kprobe(struct kprobe *p)
2092 {
2093 	struct kprobe *kp;
2094 
2095 	p->flags |= KPROBE_FLAG_GONE;
2096 	if (kprobe_aggrprobe(p)) {
2097 		/*
2098 		 * If this is an aggr_kprobe, we have to list all the
2099 		 * chained probes and mark them GONE.
2100 		 */
2101 		list_for_each_entry_rcu(kp, &p->list, list)
2102 			kp->flags |= KPROBE_FLAG_GONE;
2103 		p->post_handler = NULL;
2104 		p->break_handler = NULL;
2105 		kill_optimized_kprobe(p);
2106 	}
2107 	/*
2108 	 * Here, we can remove insn_slot safely, because no thread calls
2109 	 * the original probed function (which will be freed soon) any more.
2110 	 */
2111 	arch_remove_kprobe(p);
2112 }
2113 
2114 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2115 int disable_kprobe(struct kprobe *kp)
2116 {
2117 	int ret = 0;
2118 
2119 	mutex_lock(&kprobe_mutex);
2120 
2121 	/* Disable this kprobe */
2122 	if (__disable_kprobe(kp) == NULL)
2123 		ret = -EINVAL;
2124 
2125 	mutex_unlock(&kprobe_mutex);
2126 	return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(disable_kprobe);
2129 
2130 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2131 int enable_kprobe(struct kprobe *kp)
2132 {
2133 	int ret = 0;
2134 	struct kprobe *p;
2135 
2136 	mutex_lock(&kprobe_mutex);
2137 
2138 	/* Check whether specified probe is valid. */
2139 	p = __get_valid_kprobe(kp);
2140 	if (unlikely(p == NULL)) {
2141 		ret = -EINVAL;
2142 		goto out;
2143 	}
2144 
2145 	if (kprobe_gone(kp)) {
2146 		/* This kprobe has gone, we couldn't enable it. */
2147 		ret = -EINVAL;
2148 		goto out;
2149 	}
2150 
2151 	if (p != kp)
2152 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2153 
2154 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2155 		p->flags &= ~KPROBE_FLAG_DISABLED;
2156 		arm_kprobe(p);
2157 	}
2158 out:
2159 	mutex_unlock(&kprobe_mutex);
2160 	return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(enable_kprobe);
2163 
dump_kprobe(struct kprobe * kp)2164 void dump_kprobe(struct kprobe *kp)
2165 {
2166 	printk(KERN_WARNING "Dumping kprobe:\n");
2167 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2168 	       kp->symbol_name, kp->addr, kp->offset);
2169 }
2170 NOKPROBE_SYMBOL(dump_kprobe);
2171 
2172 /*
2173  * Lookup and populate the kprobe_blacklist.
2174  *
2175  * Unlike the kretprobe blacklist, we'll need to determine
2176  * the range of addresses that belong to the said functions,
2177  * since a kprobe need not necessarily be at the beginning
2178  * of a function.
2179  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2180 static int __init populate_kprobe_blacklist(unsigned long *start,
2181 					     unsigned long *end)
2182 {
2183 	unsigned long *iter;
2184 	struct kprobe_blacklist_entry *ent;
2185 	unsigned long entry, offset = 0, size = 0;
2186 
2187 	for (iter = start; iter < end; iter++) {
2188 		entry = arch_deref_entry_point((void *)*iter);
2189 
2190 		if (!kernel_text_address(entry) ||
2191 		    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2192 			pr_err("Failed to find blacklist at %p\n",
2193 				(void *)entry);
2194 			continue;
2195 		}
2196 
2197 		ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2198 		if (!ent)
2199 			return -ENOMEM;
2200 		ent->start_addr = entry;
2201 		ent->end_addr = entry + size;
2202 		INIT_LIST_HEAD(&ent->list);
2203 		list_add_tail(&ent->list, &kprobe_blacklist);
2204 	}
2205 	return 0;
2206 }
2207 
2208 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2209 static int kprobes_module_callback(struct notifier_block *nb,
2210 				   unsigned long val, void *data)
2211 {
2212 	struct module *mod = data;
2213 	struct hlist_head *head;
2214 	struct kprobe *p;
2215 	unsigned int i;
2216 	int checkcore = (val == MODULE_STATE_GOING);
2217 
2218 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2219 		return NOTIFY_DONE;
2220 
2221 	/*
2222 	 * When MODULE_STATE_GOING was notified, both of module .text and
2223 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2224 	 * notified, only .init.text section would be freed. We need to
2225 	 * disable kprobes which have been inserted in the sections.
2226 	 */
2227 	mutex_lock(&kprobe_mutex);
2228 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2229 		head = &kprobe_table[i];
2230 		hlist_for_each_entry_rcu(p, head, hlist)
2231 			if (within_module_init((unsigned long)p->addr, mod) ||
2232 			    (checkcore &&
2233 			     within_module_core((unsigned long)p->addr, mod))) {
2234 				/*
2235 				 * The vaddr this probe is installed will soon
2236 				 * be vfreed buy not synced to disk. Hence,
2237 				 * disarming the breakpoint isn't needed.
2238 				 *
2239 				 * Note, this will also move any optimized probes
2240 				 * that are pending to be removed from their
2241 				 * corresponding lists to the freeing_list and
2242 				 * will not be touched by the delayed
2243 				 * kprobe_optimizer work handler.
2244 				 */
2245 				kill_kprobe(p);
2246 			}
2247 	}
2248 	mutex_unlock(&kprobe_mutex);
2249 	return NOTIFY_DONE;
2250 }
2251 
2252 static struct notifier_block kprobe_module_nb = {
2253 	.notifier_call = kprobes_module_callback,
2254 	.priority = 0
2255 };
2256 
2257 /* Markers of _kprobe_blacklist section */
2258 extern unsigned long __start_kprobe_blacklist[];
2259 extern unsigned long __stop_kprobe_blacklist[];
2260 
init_kprobes(void)2261 static int __init init_kprobes(void)
2262 {
2263 	int i, err = 0;
2264 
2265 	/* FIXME allocate the probe table, currently defined statically */
2266 	/* initialize all list heads */
2267 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2268 		INIT_HLIST_HEAD(&kprobe_table[i]);
2269 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2270 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2271 	}
2272 
2273 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2274 					__stop_kprobe_blacklist);
2275 	if (err) {
2276 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2277 		pr_err("Please take care of using kprobes.\n");
2278 	}
2279 
2280 	if (kretprobe_blacklist_size) {
2281 		/* lookup the function address from its name */
2282 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2283 			kretprobe_blacklist[i].addr =
2284 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2285 			if (!kretprobe_blacklist[i].addr)
2286 				printk("kretprobe: lookup failed: %s\n",
2287 				       kretprobe_blacklist[i].name);
2288 		}
2289 	}
2290 
2291 #if defined(CONFIG_OPTPROBES)
2292 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2293 	/* Init kprobe_optinsn_slots */
2294 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2295 #endif
2296 	/* By default, kprobes can be optimized */
2297 	kprobes_allow_optimization = true;
2298 #endif
2299 
2300 	/* By default, kprobes are armed */
2301 	kprobes_all_disarmed = false;
2302 
2303 	err = arch_init_kprobes();
2304 	if (!err)
2305 		err = register_die_notifier(&kprobe_exceptions_nb);
2306 	if (!err)
2307 		err = register_module_notifier(&kprobe_module_nb);
2308 
2309 	kprobes_initialized = (err == 0);
2310 
2311 	if (!err)
2312 		init_test_probes();
2313 	return err;
2314 }
2315 
2316 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2317 static void report_probe(struct seq_file *pi, struct kprobe *p,
2318 		const char *sym, int offset, char *modname, struct kprobe *pp)
2319 {
2320 	char *kprobe_type;
2321 
2322 	if (p->pre_handler == pre_handler_kretprobe)
2323 		kprobe_type = "r";
2324 	else if (p->pre_handler == setjmp_pre_handler)
2325 		kprobe_type = "j";
2326 	else
2327 		kprobe_type = "k";
2328 
2329 	if (sym)
2330 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2331 			p->addr, kprobe_type, sym, offset,
2332 			(modname ? modname : " "));
2333 	else
2334 		seq_printf(pi, "%p  %s  %p ",
2335 			p->addr, kprobe_type, p->addr);
2336 
2337 	if (!pp)
2338 		pp = p;
2339 	seq_printf(pi, "%s%s%s%s\n",
2340 		(kprobe_gone(p) ? "[GONE]" : ""),
2341 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2342 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2343 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2344 }
2345 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2346 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2347 {
2348 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2349 }
2350 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2351 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2352 {
2353 	(*pos)++;
2354 	if (*pos >= KPROBE_TABLE_SIZE)
2355 		return NULL;
2356 	return pos;
2357 }
2358 
kprobe_seq_stop(struct seq_file * f,void * v)2359 static void kprobe_seq_stop(struct seq_file *f, void *v)
2360 {
2361 	/* Nothing to do */
2362 }
2363 
show_kprobe_addr(struct seq_file * pi,void * v)2364 static int show_kprobe_addr(struct seq_file *pi, void *v)
2365 {
2366 	struct hlist_head *head;
2367 	struct kprobe *p, *kp;
2368 	const char *sym = NULL;
2369 	unsigned int i = *(loff_t *) v;
2370 	unsigned long offset = 0;
2371 	char *modname, namebuf[KSYM_NAME_LEN];
2372 
2373 	head = &kprobe_table[i];
2374 	preempt_disable();
2375 	hlist_for_each_entry_rcu(p, head, hlist) {
2376 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2377 					&offset, &modname, namebuf);
2378 		if (kprobe_aggrprobe(p)) {
2379 			list_for_each_entry_rcu(kp, &p->list, list)
2380 				report_probe(pi, kp, sym, offset, modname, p);
2381 		} else
2382 			report_probe(pi, p, sym, offset, modname, NULL);
2383 	}
2384 	preempt_enable();
2385 	return 0;
2386 }
2387 
2388 static const struct seq_operations kprobes_seq_ops = {
2389 	.start = kprobe_seq_start,
2390 	.next  = kprobe_seq_next,
2391 	.stop  = kprobe_seq_stop,
2392 	.show  = show_kprobe_addr
2393 };
2394 
kprobes_open(struct inode * inode,struct file * filp)2395 static int kprobes_open(struct inode *inode, struct file *filp)
2396 {
2397 	return seq_open(filp, &kprobes_seq_ops);
2398 }
2399 
2400 static const struct file_operations debugfs_kprobes_operations = {
2401 	.open           = kprobes_open,
2402 	.read           = seq_read,
2403 	.llseek         = seq_lseek,
2404 	.release        = seq_release,
2405 };
2406 
2407 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2408 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2409 {
2410 	return seq_list_start(&kprobe_blacklist, *pos);
2411 }
2412 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2413 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2414 {
2415 	return seq_list_next(v, &kprobe_blacklist, pos);
2416 }
2417 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2418 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2419 {
2420 	struct kprobe_blacklist_entry *ent =
2421 		list_entry(v, struct kprobe_blacklist_entry, list);
2422 
2423 	seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2424 		   (void *)ent->end_addr, (void *)ent->start_addr);
2425 	return 0;
2426 }
2427 
2428 static const struct seq_operations kprobe_blacklist_seq_ops = {
2429 	.start = kprobe_blacklist_seq_start,
2430 	.next  = kprobe_blacklist_seq_next,
2431 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2432 	.show  = kprobe_blacklist_seq_show,
2433 };
2434 
kprobe_blacklist_open(struct inode * inode,struct file * filp)2435 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2436 {
2437 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2438 }
2439 
2440 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2441 	.open           = kprobe_blacklist_open,
2442 	.read           = seq_read,
2443 	.llseek         = seq_lseek,
2444 	.release        = seq_release,
2445 };
2446 
arm_all_kprobes(void)2447 static void arm_all_kprobes(void)
2448 {
2449 	struct hlist_head *head;
2450 	struct kprobe *p;
2451 	unsigned int i;
2452 
2453 	mutex_lock(&kprobe_mutex);
2454 
2455 	/* If kprobes are armed, just return */
2456 	if (!kprobes_all_disarmed)
2457 		goto already_enabled;
2458 
2459 	/*
2460 	 * optimize_kprobe() called by arm_kprobe() checks
2461 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2462 	 * arm_kprobe.
2463 	 */
2464 	kprobes_all_disarmed = false;
2465 	/* Arming kprobes doesn't optimize kprobe itself */
2466 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2467 		head = &kprobe_table[i];
2468 		hlist_for_each_entry_rcu(p, head, hlist)
2469 			if (!kprobe_disabled(p))
2470 				arm_kprobe(p);
2471 	}
2472 
2473 	printk(KERN_INFO "Kprobes globally enabled\n");
2474 
2475 already_enabled:
2476 	mutex_unlock(&kprobe_mutex);
2477 	return;
2478 }
2479 
disarm_all_kprobes(void)2480 static void disarm_all_kprobes(void)
2481 {
2482 	struct hlist_head *head;
2483 	struct kprobe *p;
2484 	unsigned int i;
2485 
2486 	mutex_lock(&kprobe_mutex);
2487 
2488 	/* If kprobes are already disarmed, just return */
2489 	if (kprobes_all_disarmed) {
2490 		mutex_unlock(&kprobe_mutex);
2491 		return;
2492 	}
2493 
2494 	kprobes_all_disarmed = true;
2495 	printk(KERN_INFO "Kprobes globally disabled\n");
2496 
2497 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2498 		head = &kprobe_table[i];
2499 		hlist_for_each_entry_rcu(p, head, hlist) {
2500 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2501 				disarm_kprobe(p, false);
2502 		}
2503 	}
2504 	mutex_unlock(&kprobe_mutex);
2505 
2506 	/* Wait for disarming all kprobes by optimizer */
2507 	wait_for_kprobe_optimizer();
2508 }
2509 
2510 /*
2511  * XXX: The debugfs bool file interface doesn't allow for callbacks
2512  * when the bool state is switched. We can reuse that facility when
2513  * available
2514  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2515 static ssize_t read_enabled_file_bool(struct file *file,
2516 	       char __user *user_buf, size_t count, loff_t *ppos)
2517 {
2518 	char buf[3];
2519 
2520 	if (!kprobes_all_disarmed)
2521 		buf[0] = '1';
2522 	else
2523 		buf[0] = '0';
2524 	buf[1] = '\n';
2525 	buf[2] = 0x00;
2526 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2527 }
2528 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2529 static ssize_t write_enabled_file_bool(struct file *file,
2530 	       const char __user *user_buf, size_t count, loff_t *ppos)
2531 {
2532 	char buf[32];
2533 	size_t buf_size;
2534 
2535 	buf_size = min(count, (sizeof(buf)-1));
2536 	if (copy_from_user(buf, user_buf, buf_size))
2537 		return -EFAULT;
2538 
2539 	buf[buf_size] = '\0';
2540 	switch (buf[0]) {
2541 	case 'y':
2542 	case 'Y':
2543 	case '1':
2544 		arm_all_kprobes();
2545 		break;
2546 	case 'n':
2547 	case 'N':
2548 	case '0':
2549 		disarm_all_kprobes();
2550 		break;
2551 	default:
2552 		return -EINVAL;
2553 	}
2554 
2555 	return count;
2556 }
2557 
2558 static const struct file_operations fops_kp = {
2559 	.read =         read_enabled_file_bool,
2560 	.write =        write_enabled_file_bool,
2561 	.llseek =	default_llseek,
2562 };
2563 
debugfs_kprobe_init(void)2564 static int __init debugfs_kprobe_init(void)
2565 {
2566 	struct dentry *dir, *file;
2567 	unsigned int value = 1;
2568 
2569 	dir = debugfs_create_dir("kprobes", NULL);
2570 	if (!dir)
2571 		return -ENOMEM;
2572 
2573 	file = debugfs_create_file("list", 0400, dir, NULL,
2574 				&debugfs_kprobes_operations);
2575 	if (!file)
2576 		goto error;
2577 
2578 	file = debugfs_create_file("enabled", 0600, dir,
2579 					&value, &fops_kp);
2580 	if (!file)
2581 		goto error;
2582 
2583 	file = debugfs_create_file("blacklist", 0400, dir, NULL,
2584 				&debugfs_kprobe_blacklist_ops);
2585 	if (!file)
2586 		goto error;
2587 
2588 	return 0;
2589 
2590 error:
2591 	debugfs_remove(dir);
2592 	return -ENOMEM;
2593 }
2594 
2595 late_initcall(debugfs_kprobe_init);
2596 #endif /* CONFIG_DEBUG_FS */
2597 
2598 module_init(init_kprobes);
2599 
2600 /* defined in arch/.../kernel/kprobes.c */
2601 EXPORT_SYMBOL_GPL(jprobe_return);
2602