• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
part_inc_in_flight(struct request_queue * q,struct hd_struct * part,int rw)48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
part_dec_in_flight(struct request_queue * q,struct hd_struct * part,int rw)58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
part_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
part_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 		       unsigned int inflight[2])
87 {
88 	if (q->mq_ops) {
89 		blk_mq_in_flight_rw(q, part, inflight);
90 		return;
91 	}
92 
93 	inflight[0] = atomic_read(&part->in_flight[0]);
94 	inflight[1] = atomic_read(&part->in_flight[1]);
95 }
96 
__disk_get_part(struct gendisk * disk,int partno)97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98 {
99 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100 
101 	if (unlikely(partno < 0 || partno >= ptbl->len))
102 		return NULL;
103 	return rcu_dereference(ptbl->part[partno]);
104 }
105 
106 /**
107  * disk_get_part - get partition
108  * @disk: disk to look partition from
109  * @partno: partition number
110  *
111  * Look for partition @partno from @disk.  If found, increment
112  * reference count and return it.
113  *
114  * CONTEXT:
115  * Don't care.
116  *
117  * RETURNS:
118  * Pointer to the found partition on success, NULL if not found.
119  */
disk_get_part(struct gendisk * disk,int partno)120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121 {
122 	struct hd_struct *part;
123 
124 	rcu_read_lock();
125 	part = __disk_get_part(disk, partno);
126 	if (part)
127 		get_device(part_to_dev(part));
128 	rcu_read_unlock();
129 
130 	return part;
131 }
132 EXPORT_SYMBOL_GPL(disk_get_part);
133 
134 /**
135  * disk_part_iter_init - initialize partition iterator
136  * @piter: iterator to initialize
137  * @disk: disk to iterate over
138  * @flags: DISK_PITER_* flags
139  *
140  * Initialize @piter so that it iterates over partitions of @disk.
141  *
142  * CONTEXT:
143  * Don't care.
144  */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 			  unsigned int flags)
147 {
148 	struct disk_part_tbl *ptbl;
149 
150 	rcu_read_lock();
151 	ptbl = rcu_dereference(disk->part_tbl);
152 
153 	piter->disk = disk;
154 	piter->part = NULL;
155 
156 	if (flags & DISK_PITER_REVERSE)
157 		piter->idx = ptbl->len - 1;
158 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 		piter->idx = 0;
160 	else
161 		piter->idx = 1;
162 
163 	piter->flags = flags;
164 
165 	rcu_read_unlock();
166 }
167 EXPORT_SYMBOL_GPL(disk_part_iter_init);
168 
169 /**
170  * disk_part_iter_next - proceed iterator to the next partition and return it
171  * @piter: iterator of interest
172  *
173  * Proceed @piter to the next partition and return it.
174  *
175  * CONTEXT:
176  * Don't care.
177  */
disk_part_iter_next(struct disk_part_iter * piter)178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179 {
180 	struct disk_part_tbl *ptbl;
181 	int inc, end;
182 
183 	/* put the last partition */
184 	disk_put_part(piter->part);
185 	piter->part = NULL;
186 
187 	/* get part_tbl */
188 	rcu_read_lock();
189 	ptbl = rcu_dereference(piter->disk->part_tbl);
190 
191 	/* determine iteration parameters */
192 	if (piter->flags & DISK_PITER_REVERSE) {
193 		inc = -1;
194 		if (piter->flags & (DISK_PITER_INCL_PART0 |
195 				    DISK_PITER_INCL_EMPTY_PART0))
196 			end = -1;
197 		else
198 			end = 0;
199 	} else {
200 		inc = 1;
201 		end = ptbl->len;
202 	}
203 
204 	/* iterate to the next partition */
205 	for (; piter->idx != end; piter->idx += inc) {
206 		struct hd_struct *part;
207 
208 		part = rcu_dereference(ptbl->part[piter->idx]);
209 		if (!part)
210 			continue;
211 		if (!part_nr_sects_read(part) &&
212 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
213 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
214 		      piter->idx == 0))
215 			continue;
216 
217 		get_device(part_to_dev(part));
218 		piter->part = part;
219 		piter->idx += inc;
220 		break;
221 	}
222 
223 	rcu_read_unlock();
224 
225 	return piter->part;
226 }
227 EXPORT_SYMBOL_GPL(disk_part_iter_next);
228 
229 /**
230  * disk_part_iter_exit - finish up partition iteration
231  * @piter: iter of interest
232  *
233  * Called when iteration is over.  Cleans up @piter.
234  *
235  * CONTEXT:
236  * Don't care.
237  */
disk_part_iter_exit(struct disk_part_iter * piter)238 void disk_part_iter_exit(struct disk_part_iter *piter)
239 {
240 	disk_put_part(piter->part);
241 	piter->part = NULL;
242 }
243 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
244 
sector_in_part(struct hd_struct * part,sector_t sector)245 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
246 {
247 	return part->start_sect <= sector &&
248 		sector < part->start_sect + part_nr_sects_read(part);
249 }
250 
251 /**
252  * disk_map_sector_rcu - map sector to partition
253  * @disk: gendisk of interest
254  * @sector: sector to map
255  *
256  * Find out which partition @sector maps to on @disk.  This is
257  * primarily used for stats accounting.
258  *
259  * CONTEXT:
260  * RCU read locked.  The returned partition pointer is valid only
261  * while preemption is disabled.
262  *
263  * RETURNS:
264  * Found partition on success, part0 is returned if no partition matches
265  */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)266 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
267 {
268 	struct disk_part_tbl *ptbl;
269 	struct hd_struct *part;
270 	int i;
271 
272 	ptbl = rcu_dereference(disk->part_tbl);
273 
274 	part = rcu_dereference(ptbl->last_lookup);
275 	if (part && sector_in_part(part, sector))
276 		return part;
277 
278 	for (i = 1; i < ptbl->len; i++) {
279 		part = rcu_dereference(ptbl->part[i]);
280 
281 		if (part && sector_in_part(part, sector)) {
282 			rcu_assign_pointer(ptbl->last_lookup, part);
283 			return part;
284 		}
285 	}
286 	return &disk->part0;
287 }
288 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
289 
290 /*
291  * Can be deleted altogether. Later.
292  *
293  */
294 #define BLKDEV_MAJOR_HASH_SIZE 255
295 static struct blk_major_name {
296 	struct blk_major_name *next;
297 	int major;
298 	char name[16];
299 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
300 
301 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)302 static inline int major_to_index(unsigned major)
303 {
304 	return major % BLKDEV_MAJOR_HASH_SIZE;
305 }
306 
307 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)308 void blkdev_show(struct seq_file *seqf, off_t offset)
309 {
310 	struct blk_major_name *dp;
311 
312 	mutex_lock(&block_class_lock);
313 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
314 		if (dp->major == offset)
315 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
316 	mutex_unlock(&block_class_lock);
317 }
318 #endif /* CONFIG_PROC_FS */
319 
320 /**
321  * register_blkdev - register a new block device
322  *
323  * @major: the requested major device number [1..255]. If @major = 0, try to
324  *         allocate any unused major number.
325  * @name: the name of the new block device as a zero terminated string
326  *
327  * The @name must be unique within the system.
328  *
329  * The return value depends on the @major input parameter:
330  *
331  *  - if a major device number was requested in range [1..255] then the
332  *    function returns zero on success, or a negative error code
333  *  - if any unused major number was requested with @major = 0 parameter
334  *    then the return value is the allocated major number in range
335  *    [1..255] or a negative error code otherwise
336  */
register_blkdev(unsigned int major,const char * name)337 int register_blkdev(unsigned int major, const char *name)
338 {
339 	struct blk_major_name **n, *p;
340 	int index, ret = 0;
341 
342 	mutex_lock(&block_class_lock);
343 
344 	/* temporary */
345 	if (major == 0) {
346 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
347 			if (major_names[index] == NULL)
348 				break;
349 		}
350 
351 		if (index == 0) {
352 			printk("register_blkdev: failed to get major for %s\n",
353 			       name);
354 			ret = -EBUSY;
355 			goto out;
356 		}
357 		major = index;
358 		ret = major;
359 	}
360 
361 	if (major >= BLKDEV_MAJOR_MAX) {
362 		pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
363 		       major, BLKDEV_MAJOR_MAX, name);
364 
365 		ret = -EINVAL;
366 		goto out;
367 	}
368 
369 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
370 	if (p == NULL) {
371 		ret = -ENOMEM;
372 		goto out;
373 	}
374 
375 	p->major = major;
376 	strlcpy(p->name, name, sizeof(p->name));
377 	p->next = NULL;
378 	index = major_to_index(major);
379 
380 	for (n = &major_names[index]; *n; n = &(*n)->next) {
381 		if ((*n)->major == major)
382 			break;
383 	}
384 	if (!*n)
385 		*n = p;
386 	else
387 		ret = -EBUSY;
388 
389 	if (ret < 0) {
390 		printk("register_blkdev: cannot get major %d for %s\n",
391 		       major, name);
392 		kfree(p);
393 	}
394 out:
395 	mutex_unlock(&block_class_lock);
396 	return ret;
397 }
398 
399 EXPORT_SYMBOL(register_blkdev);
400 
unregister_blkdev(unsigned int major,const char * name)401 void unregister_blkdev(unsigned int major, const char *name)
402 {
403 	struct blk_major_name **n;
404 	struct blk_major_name *p = NULL;
405 	int index = major_to_index(major);
406 
407 	mutex_lock(&block_class_lock);
408 	for (n = &major_names[index]; *n; n = &(*n)->next)
409 		if ((*n)->major == major)
410 			break;
411 	if (!*n || strcmp((*n)->name, name)) {
412 		WARN_ON(1);
413 	} else {
414 		p = *n;
415 		*n = p->next;
416 	}
417 	mutex_unlock(&block_class_lock);
418 	kfree(p);
419 }
420 
421 EXPORT_SYMBOL(unregister_blkdev);
422 
423 static struct kobj_map *bdev_map;
424 
425 /**
426  * blk_mangle_minor - scatter minor numbers apart
427  * @minor: minor number to mangle
428  *
429  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
430  * is enabled.  Mangling twice gives the original value.
431  *
432  * RETURNS:
433  * Mangled value.
434  *
435  * CONTEXT:
436  * Don't care.
437  */
blk_mangle_minor(int minor)438 static int blk_mangle_minor(int minor)
439 {
440 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
441 	int i;
442 
443 	for (i = 0; i < MINORBITS / 2; i++) {
444 		int low = minor & (1 << i);
445 		int high = minor & (1 << (MINORBITS - 1 - i));
446 		int distance = MINORBITS - 1 - 2 * i;
447 
448 		minor ^= low | high;	/* clear both bits */
449 		low <<= distance;	/* swap the positions */
450 		high >>= distance;
451 		minor |= low | high;	/* and set */
452 	}
453 #endif
454 	return minor;
455 }
456 
457 /**
458  * blk_alloc_devt - allocate a dev_t for a partition
459  * @part: partition to allocate dev_t for
460  * @devt: out parameter for resulting dev_t
461  *
462  * Allocate a dev_t for block device.
463  *
464  * RETURNS:
465  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
466  * failure.
467  *
468  * CONTEXT:
469  * Might sleep.
470  */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)471 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
472 {
473 	struct gendisk *disk = part_to_disk(part);
474 	int idx;
475 
476 	/* in consecutive minor range? */
477 	if (part->partno < disk->minors) {
478 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
479 		return 0;
480 	}
481 
482 	/* allocate ext devt */
483 	idr_preload(GFP_KERNEL);
484 
485 	spin_lock_bh(&ext_devt_lock);
486 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
487 	spin_unlock_bh(&ext_devt_lock);
488 
489 	idr_preload_end();
490 	if (idx < 0)
491 		return idx == -ENOSPC ? -EBUSY : idx;
492 
493 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
494 	return 0;
495 }
496 
497 /**
498  * blk_free_devt - free a dev_t
499  * @devt: dev_t to free
500  *
501  * Free @devt which was allocated using blk_alloc_devt().
502  *
503  * CONTEXT:
504  * Might sleep.
505  */
blk_free_devt(dev_t devt)506 void blk_free_devt(dev_t devt)
507 {
508 	if (devt == MKDEV(0, 0))
509 		return;
510 
511 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
512 		spin_lock_bh(&ext_devt_lock);
513 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
514 		spin_unlock_bh(&ext_devt_lock);
515 	}
516 }
517 
bdevt_str(dev_t devt,char * buf)518 static char *bdevt_str(dev_t devt, char *buf)
519 {
520 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
521 		char tbuf[BDEVT_SIZE];
522 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
523 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
524 	} else
525 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
526 
527 	return buf;
528 }
529 
530 /*
531  * Register device numbers dev..(dev+range-1)
532  * range must be nonzero
533  * The hash chain is sorted on range, so that subranges can override.
534  */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)535 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
536 			 struct kobject *(*probe)(dev_t, int *, void *),
537 			 int (*lock)(dev_t, void *), void *data)
538 {
539 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
540 }
541 
542 EXPORT_SYMBOL(blk_register_region);
543 
blk_unregister_region(dev_t devt,unsigned long range)544 void blk_unregister_region(dev_t devt, unsigned long range)
545 {
546 	kobj_unmap(bdev_map, devt, range);
547 }
548 
549 EXPORT_SYMBOL(blk_unregister_region);
550 
exact_match(dev_t devt,int * partno,void * data)551 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
552 {
553 	struct gendisk *p = data;
554 
555 	return &disk_to_dev(p)->kobj;
556 }
557 
exact_lock(dev_t devt,void * data)558 static int exact_lock(dev_t devt, void *data)
559 {
560 	struct gendisk *p = data;
561 
562 	if (!get_disk(p))
563 		return -1;
564 	return 0;
565 }
566 
register_disk(struct device * parent,struct gendisk * disk)567 static void register_disk(struct device *parent, struct gendisk *disk)
568 {
569 	struct device *ddev = disk_to_dev(disk);
570 	struct block_device *bdev;
571 	struct disk_part_iter piter;
572 	struct hd_struct *part;
573 	int err;
574 
575 	ddev->parent = parent;
576 
577 	dev_set_name(ddev, "%s", disk->disk_name);
578 
579 	/* delay uevents, until we scanned partition table */
580 	dev_set_uevent_suppress(ddev, 1);
581 
582 	if (device_add(ddev))
583 		return;
584 	if (!sysfs_deprecated) {
585 		err = sysfs_create_link(block_depr, &ddev->kobj,
586 					kobject_name(&ddev->kobj));
587 		if (err) {
588 			device_del(ddev);
589 			return;
590 		}
591 	}
592 
593 	/*
594 	 * avoid probable deadlock caused by allocating memory with
595 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
596 	 * devices
597 	 */
598 	pm_runtime_set_memalloc_noio(ddev, true);
599 
600 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
601 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
602 
603 	/* No minors to use for partitions */
604 	if (!disk_part_scan_enabled(disk))
605 		goto exit;
606 
607 	/* No such device (e.g., media were just removed) */
608 	if (!get_capacity(disk))
609 		goto exit;
610 
611 	bdev = bdget_disk(disk, 0);
612 	if (!bdev)
613 		goto exit;
614 
615 	bdev->bd_invalidated = 1;
616 	err = blkdev_get(bdev, FMODE_READ, NULL);
617 	if (err < 0)
618 		goto exit;
619 	blkdev_put(bdev, FMODE_READ);
620 
621 exit:
622 	/* announce disk after possible partitions are created */
623 	dev_set_uevent_suppress(ddev, 0);
624 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
625 
626 	/* announce possible partitions */
627 	disk_part_iter_init(&piter, disk, 0);
628 	while ((part = disk_part_iter_next(&piter)))
629 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
630 	disk_part_iter_exit(&piter);
631 }
632 
633 /**
634  * device_add_disk - add partitioning information to kernel list
635  * @parent: parent device for the disk
636  * @disk: per-device partitioning information
637  *
638  * This function registers the partitioning information in @disk
639  * with the kernel.
640  *
641  * FIXME: error handling
642  */
device_add_disk(struct device * parent,struct gendisk * disk)643 void device_add_disk(struct device *parent, struct gendisk *disk)
644 {
645 	struct backing_dev_info *bdi;
646 	dev_t devt;
647 	int retval;
648 
649 	/* minors == 0 indicates to use ext devt from part0 and should
650 	 * be accompanied with EXT_DEVT flag.  Make sure all
651 	 * parameters make sense.
652 	 */
653 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
654 	WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
655 
656 	disk->flags |= GENHD_FL_UP;
657 
658 	retval = blk_alloc_devt(&disk->part0, &devt);
659 	if (retval) {
660 		WARN_ON(1);
661 		return;
662 	}
663 	disk_to_dev(disk)->devt = devt;
664 
665 	/* ->major and ->first_minor aren't supposed to be
666 	 * dereferenced from here on, but set them just in case.
667 	 */
668 	disk->major = MAJOR(devt);
669 	disk->first_minor = MINOR(devt);
670 
671 	disk_alloc_events(disk);
672 
673 	/* Register BDI before referencing it from bdev */
674 	bdi = disk->queue->backing_dev_info;
675 	bdi_register_owner(bdi, disk_to_dev(disk));
676 
677 	blk_register_region(disk_devt(disk), disk->minors, NULL,
678 			    exact_match, exact_lock, disk);
679 	register_disk(parent, disk);
680 	blk_register_queue(disk);
681 
682 	/*
683 	 * Take an extra ref on queue which will be put on disk_release()
684 	 * so that it sticks around as long as @disk is there.
685 	 */
686 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
687 
688 	retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
689 				   "bdi");
690 	WARN_ON(retval);
691 
692 	disk_add_events(disk);
693 	blk_integrity_add(disk);
694 }
695 EXPORT_SYMBOL(device_add_disk);
696 
del_gendisk(struct gendisk * disk)697 void del_gendisk(struct gendisk *disk)
698 {
699 	struct disk_part_iter piter;
700 	struct hd_struct *part;
701 
702 	blk_integrity_del(disk);
703 	disk_del_events(disk);
704 
705 	/* invalidate stuff */
706 	disk_part_iter_init(&piter, disk,
707 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
708 	while ((part = disk_part_iter_next(&piter))) {
709 		invalidate_partition(disk, part->partno);
710 		bdev_unhash_inode(part_devt(part));
711 		delete_partition(disk, part->partno);
712 	}
713 	disk_part_iter_exit(&piter);
714 
715 	invalidate_partition(disk, 0);
716 	bdev_unhash_inode(disk_devt(disk));
717 	set_capacity(disk, 0);
718 	disk->flags &= ~GENHD_FL_UP;
719 
720 	sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
721 	if (disk->queue) {
722 		/*
723 		 * Unregister bdi before releasing device numbers (as they can
724 		 * get reused and we'd get clashes in sysfs).
725 		 */
726 		bdi_unregister(disk->queue->backing_dev_info);
727 		blk_unregister_queue(disk);
728 	} else {
729 		WARN_ON(1);
730 	}
731 	blk_unregister_region(disk_devt(disk), disk->minors);
732 
733 	part_stat_set_all(&disk->part0, 0);
734 	disk->part0.stamp = 0;
735 
736 	kobject_put(disk->part0.holder_dir);
737 	kobject_put(disk->slave_dir);
738 	if (!sysfs_deprecated)
739 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
740 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
741 	device_del(disk_to_dev(disk));
742 }
743 EXPORT_SYMBOL(del_gendisk);
744 
745 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)746 static ssize_t disk_badblocks_show(struct device *dev,
747 					struct device_attribute *attr,
748 					char *page)
749 {
750 	struct gendisk *disk = dev_to_disk(dev);
751 
752 	if (!disk->bb)
753 		return sprintf(page, "\n");
754 
755 	return badblocks_show(disk->bb, page, 0);
756 }
757 
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)758 static ssize_t disk_badblocks_store(struct device *dev,
759 					struct device_attribute *attr,
760 					const char *page, size_t len)
761 {
762 	struct gendisk *disk = dev_to_disk(dev);
763 
764 	if (!disk->bb)
765 		return -ENXIO;
766 
767 	return badblocks_store(disk->bb, page, len, 0);
768 }
769 
770 /**
771  * get_gendisk - get partitioning information for a given device
772  * @devt: device to get partitioning information for
773  * @partno: returned partition index
774  *
775  * This function gets the structure containing partitioning
776  * information for the given device @devt.
777  */
get_gendisk(dev_t devt,int * partno)778 struct gendisk *get_gendisk(dev_t devt, int *partno)
779 {
780 	struct gendisk *disk = NULL;
781 
782 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
783 		struct kobject *kobj;
784 
785 		kobj = kobj_lookup(bdev_map, devt, partno);
786 		if (kobj)
787 			disk = dev_to_disk(kobj_to_dev(kobj));
788 	} else {
789 		struct hd_struct *part;
790 
791 		spin_lock_bh(&ext_devt_lock);
792 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
793 		if (part && get_disk(part_to_disk(part))) {
794 			*partno = part->partno;
795 			disk = part_to_disk(part);
796 		}
797 		spin_unlock_bh(&ext_devt_lock);
798 	}
799 
800 	return disk;
801 }
802 EXPORT_SYMBOL(get_gendisk);
803 
804 /**
805  * bdget_disk - do bdget() by gendisk and partition number
806  * @disk: gendisk of interest
807  * @partno: partition number
808  *
809  * Find partition @partno from @disk, do bdget() on it.
810  *
811  * CONTEXT:
812  * Don't care.
813  *
814  * RETURNS:
815  * Resulting block_device on success, NULL on failure.
816  */
bdget_disk(struct gendisk * disk,int partno)817 struct block_device *bdget_disk(struct gendisk *disk, int partno)
818 {
819 	struct hd_struct *part;
820 	struct block_device *bdev = NULL;
821 
822 	part = disk_get_part(disk, partno);
823 	if (part)
824 		bdev = bdget(part_devt(part));
825 	disk_put_part(part);
826 
827 	return bdev;
828 }
829 EXPORT_SYMBOL(bdget_disk);
830 
831 /*
832  * print a full list of all partitions - intended for places where the root
833  * filesystem can't be mounted and thus to give the victim some idea of what
834  * went wrong
835  */
printk_all_partitions(void)836 void __init printk_all_partitions(void)
837 {
838 	struct class_dev_iter iter;
839 	struct device *dev;
840 
841 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
842 	while ((dev = class_dev_iter_next(&iter))) {
843 		struct gendisk *disk = dev_to_disk(dev);
844 		struct disk_part_iter piter;
845 		struct hd_struct *part;
846 		char name_buf[BDEVNAME_SIZE];
847 		char devt_buf[BDEVT_SIZE];
848 
849 		/*
850 		 * Don't show empty devices or things that have been
851 		 * suppressed
852 		 */
853 		if (get_capacity(disk) == 0 ||
854 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
855 			continue;
856 
857 		/*
858 		 * Note, unlike /proc/partitions, I am showing the
859 		 * numbers in hex - the same format as the root=
860 		 * option takes.
861 		 */
862 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
863 		while ((part = disk_part_iter_next(&piter))) {
864 			bool is_part0 = part == &disk->part0;
865 
866 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
867 			       bdevt_str(part_devt(part), devt_buf),
868 			       (unsigned long long)part_nr_sects_read(part) >> 1
869 			       , disk_name(disk, part->partno, name_buf),
870 			       part->info ? part->info->uuid : "");
871 			if (is_part0) {
872 				if (dev->parent && dev->parent->driver)
873 					printk(" driver: %s\n",
874 					      dev->parent->driver->name);
875 				else
876 					printk(" (driver?)\n");
877 			} else
878 				printk("\n");
879 		}
880 		disk_part_iter_exit(&piter);
881 	}
882 	class_dev_iter_exit(&iter);
883 }
884 
885 #ifdef CONFIG_PROC_FS
886 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)887 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
888 {
889 	loff_t skip = *pos;
890 	struct class_dev_iter *iter;
891 	struct device *dev;
892 
893 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
894 	if (!iter)
895 		return ERR_PTR(-ENOMEM);
896 
897 	seqf->private = iter;
898 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
899 	do {
900 		dev = class_dev_iter_next(iter);
901 		if (!dev)
902 			return NULL;
903 	} while (skip--);
904 
905 	return dev_to_disk(dev);
906 }
907 
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)908 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
909 {
910 	struct device *dev;
911 
912 	(*pos)++;
913 	dev = class_dev_iter_next(seqf->private);
914 	if (dev)
915 		return dev_to_disk(dev);
916 
917 	return NULL;
918 }
919 
disk_seqf_stop(struct seq_file * seqf,void * v)920 static void disk_seqf_stop(struct seq_file *seqf, void *v)
921 {
922 	struct class_dev_iter *iter = seqf->private;
923 
924 	/* stop is called even after start failed :-( */
925 	if (iter) {
926 		class_dev_iter_exit(iter);
927 		kfree(iter);
928 		seqf->private = NULL;
929 	}
930 }
931 
show_partition_start(struct seq_file * seqf,loff_t * pos)932 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
933 {
934 	void *p;
935 
936 	p = disk_seqf_start(seqf, pos);
937 	if (!IS_ERR_OR_NULL(p) && !*pos)
938 		seq_puts(seqf, "major minor  #blocks  name\n\n");
939 	return p;
940 }
941 
show_partition(struct seq_file * seqf,void * v)942 static int show_partition(struct seq_file *seqf, void *v)
943 {
944 	struct gendisk *sgp = v;
945 	struct disk_part_iter piter;
946 	struct hd_struct *part;
947 	char buf[BDEVNAME_SIZE];
948 
949 	/* Don't show non-partitionable removeable devices or empty devices */
950 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
951 				   (sgp->flags & GENHD_FL_REMOVABLE)))
952 		return 0;
953 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
954 		return 0;
955 
956 	/* show the full disk and all non-0 size partitions of it */
957 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
958 	while ((part = disk_part_iter_next(&piter)))
959 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
960 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
961 			   (unsigned long long)part_nr_sects_read(part) >> 1,
962 			   disk_name(sgp, part->partno, buf));
963 	disk_part_iter_exit(&piter);
964 
965 	return 0;
966 }
967 
968 static const struct seq_operations partitions_op = {
969 	.start	= show_partition_start,
970 	.next	= disk_seqf_next,
971 	.stop	= disk_seqf_stop,
972 	.show	= show_partition
973 };
974 
partitions_open(struct inode * inode,struct file * file)975 static int partitions_open(struct inode *inode, struct file *file)
976 {
977 	return seq_open(file, &partitions_op);
978 }
979 
980 static const struct file_operations proc_partitions_operations = {
981 	.open		= partitions_open,
982 	.read		= seq_read,
983 	.llseek		= seq_lseek,
984 	.release	= seq_release,
985 };
986 #endif
987 
988 
base_probe(dev_t devt,int * partno,void * data)989 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
990 {
991 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
992 		/* Make old-style 2.4 aliases work */
993 		request_module("block-major-%d", MAJOR(devt));
994 	return NULL;
995 }
996 
genhd_device_init(void)997 static int __init genhd_device_init(void)
998 {
999 	int error;
1000 
1001 	block_class.dev_kobj = sysfs_dev_block_kobj;
1002 	error = class_register(&block_class);
1003 	if (unlikely(error))
1004 		return error;
1005 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1006 	blk_dev_init();
1007 
1008 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1009 
1010 	/* create top-level block dir */
1011 	if (!sysfs_deprecated)
1012 		block_depr = kobject_create_and_add("block", NULL);
1013 	return 0;
1014 }
1015 
1016 subsys_initcall(genhd_device_init);
1017 
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1018 static ssize_t disk_range_show(struct device *dev,
1019 			       struct device_attribute *attr, char *buf)
1020 {
1021 	struct gendisk *disk = dev_to_disk(dev);
1022 
1023 	return sprintf(buf, "%d\n", disk->minors);
1024 }
1025 
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1026 static ssize_t disk_ext_range_show(struct device *dev,
1027 				   struct device_attribute *attr, char *buf)
1028 {
1029 	struct gendisk *disk = dev_to_disk(dev);
1030 
1031 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1032 }
1033 
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1034 static ssize_t disk_removable_show(struct device *dev,
1035 				   struct device_attribute *attr, char *buf)
1036 {
1037 	struct gendisk *disk = dev_to_disk(dev);
1038 
1039 	return sprintf(buf, "%d\n",
1040 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1041 }
1042 
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1043 static ssize_t disk_ro_show(struct device *dev,
1044 				   struct device_attribute *attr, char *buf)
1045 {
1046 	struct gendisk *disk = dev_to_disk(dev);
1047 
1048 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1049 }
1050 
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1051 static ssize_t disk_capability_show(struct device *dev,
1052 				    struct device_attribute *attr, char *buf)
1053 {
1054 	struct gendisk *disk = dev_to_disk(dev);
1055 
1056 	return sprintf(buf, "%x\n", disk->flags);
1057 }
1058 
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1059 static ssize_t disk_alignment_offset_show(struct device *dev,
1060 					  struct device_attribute *attr,
1061 					  char *buf)
1062 {
1063 	struct gendisk *disk = dev_to_disk(dev);
1064 
1065 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1066 }
1067 
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1068 static ssize_t disk_discard_alignment_show(struct device *dev,
1069 					   struct device_attribute *attr,
1070 					   char *buf)
1071 {
1072 	struct gendisk *disk = dev_to_disk(dev);
1073 
1074 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1075 }
1076 
1077 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1078 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1079 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1080 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1081 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1082 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1083 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1084 		   NULL);
1085 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1086 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1087 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1088 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1089 		disk_badblocks_store);
1090 #ifdef CONFIG_FAIL_MAKE_REQUEST
1091 static struct device_attribute dev_attr_fail =
1092 	__ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1093 #endif
1094 #ifdef CONFIG_FAIL_IO_TIMEOUT
1095 static struct device_attribute dev_attr_fail_timeout =
1096 	__ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1097 		part_timeout_store);
1098 #endif
1099 
1100 static struct attribute *disk_attrs[] = {
1101 	&dev_attr_range.attr,
1102 	&dev_attr_ext_range.attr,
1103 	&dev_attr_removable.attr,
1104 	&dev_attr_ro.attr,
1105 	&dev_attr_size.attr,
1106 	&dev_attr_alignment_offset.attr,
1107 	&dev_attr_discard_alignment.attr,
1108 	&dev_attr_capability.attr,
1109 	&dev_attr_stat.attr,
1110 	&dev_attr_inflight.attr,
1111 	&dev_attr_badblocks.attr,
1112 #ifdef CONFIG_FAIL_MAKE_REQUEST
1113 	&dev_attr_fail.attr,
1114 #endif
1115 #ifdef CONFIG_FAIL_IO_TIMEOUT
1116 	&dev_attr_fail_timeout.attr,
1117 #endif
1118 	NULL
1119 };
1120 
disk_visible(struct kobject * kobj,struct attribute * a,int n)1121 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1122 {
1123 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1124 	struct gendisk *disk = dev_to_disk(dev);
1125 
1126 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1127 		return 0;
1128 	return a->mode;
1129 }
1130 
1131 static struct attribute_group disk_attr_group = {
1132 	.attrs = disk_attrs,
1133 	.is_visible = disk_visible,
1134 };
1135 
1136 static const struct attribute_group *disk_attr_groups[] = {
1137 	&disk_attr_group,
1138 	NULL
1139 };
1140 
1141 /**
1142  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1143  * @disk: disk to replace part_tbl for
1144  * @new_ptbl: new part_tbl to install
1145  *
1146  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1147  * original ptbl is freed using RCU callback.
1148  *
1149  * LOCKING:
1150  * Matching bd_mutex locked or the caller is the only user of @disk.
1151  */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1152 static void disk_replace_part_tbl(struct gendisk *disk,
1153 				  struct disk_part_tbl *new_ptbl)
1154 {
1155 	struct disk_part_tbl *old_ptbl =
1156 		rcu_dereference_protected(disk->part_tbl, 1);
1157 
1158 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1159 
1160 	if (old_ptbl) {
1161 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1162 		kfree_rcu(old_ptbl, rcu_head);
1163 	}
1164 }
1165 
1166 /**
1167  * disk_expand_part_tbl - expand disk->part_tbl
1168  * @disk: disk to expand part_tbl for
1169  * @partno: expand such that this partno can fit in
1170  *
1171  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1172  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1173  *
1174  * LOCKING:
1175  * Matching bd_mutex locked or the caller is the only user of @disk.
1176  * Might sleep.
1177  *
1178  * RETURNS:
1179  * 0 on success, -errno on failure.
1180  */
disk_expand_part_tbl(struct gendisk * disk,int partno)1181 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1182 {
1183 	struct disk_part_tbl *old_ptbl =
1184 		rcu_dereference_protected(disk->part_tbl, 1);
1185 	struct disk_part_tbl *new_ptbl;
1186 	int len = old_ptbl ? old_ptbl->len : 0;
1187 	int i, target;
1188 	size_t size;
1189 
1190 	/*
1191 	 * check for int overflow, since we can get here from blkpg_ioctl()
1192 	 * with a user passed 'partno'.
1193 	 */
1194 	target = partno + 1;
1195 	if (target < 0)
1196 		return -EINVAL;
1197 
1198 	/* disk_max_parts() is zero during initialization, ignore if so */
1199 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1200 		return -EINVAL;
1201 
1202 	if (target <= len)
1203 		return 0;
1204 
1205 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1206 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1207 	if (!new_ptbl)
1208 		return -ENOMEM;
1209 
1210 	new_ptbl->len = target;
1211 
1212 	for (i = 0; i < len; i++)
1213 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1214 
1215 	disk_replace_part_tbl(disk, new_ptbl);
1216 	return 0;
1217 }
1218 
disk_release(struct device * dev)1219 static void disk_release(struct device *dev)
1220 {
1221 	struct gendisk *disk = dev_to_disk(dev);
1222 
1223 	blk_free_devt(dev->devt);
1224 	disk_release_events(disk);
1225 	kfree(disk->random);
1226 	disk_replace_part_tbl(disk, NULL);
1227 	hd_free_part(&disk->part0);
1228 	if (disk->queue)
1229 		blk_put_queue(disk->queue);
1230 	kfree(disk);
1231 }
1232 struct class block_class = {
1233 	.name		= "block",
1234 };
1235 
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1236 static char *block_devnode(struct device *dev, umode_t *mode,
1237 			   kuid_t *uid, kgid_t *gid)
1238 {
1239 	struct gendisk *disk = dev_to_disk(dev);
1240 
1241 	if (disk->devnode)
1242 		return disk->devnode(disk, mode);
1243 	return NULL;
1244 }
1245 
1246 static const struct device_type disk_type = {
1247 	.name		= "disk",
1248 	.groups		= disk_attr_groups,
1249 	.release	= disk_release,
1250 	.devnode	= block_devnode,
1251 };
1252 
1253 #ifdef CONFIG_PROC_FS
1254 /*
1255  * aggregate disk stat collector.  Uses the same stats that the sysfs
1256  * entries do, above, but makes them available through one seq_file.
1257  *
1258  * The output looks suspiciously like /proc/partitions with a bunch of
1259  * extra fields.
1260  */
diskstats_show(struct seq_file * seqf,void * v)1261 static int diskstats_show(struct seq_file *seqf, void *v)
1262 {
1263 	struct gendisk *gp = v;
1264 	struct disk_part_iter piter;
1265 	struct hd_struct *hd;
1266 	char buf[BDEVNAME_SIZE];
1267 	unsigned int inflight[2];
1268 	int cpu;
1269 
1270 	/*
1271 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1272 		seq_puts(seqf,	"major minor name"
1273 				"     rio rmerge rsect ruse wio wmerge "
1274 				"wsect wuse running use aveq"
1275 				"\n\n");
1276 	*/
1277 
1278 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1279 	while ((hd = disk_part_iter_next(&piter))) {
1280 		cpu = part_stat_lock();
1281 		part_round_stats(gp->queue, cpu, hd);
1282 		part_stat_unlock();
1283 		part_in_flight(gp->queue, hd, inflight);
1284 		seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1285 			   "%u %lu %lu %lu %u %u %u %u\n",
1286 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1287 			   disk_name(gp, hd->partno, buf),
1288 			   part_stat_read(hd, ios[READ]),
1289 			   part_stat_read(hd, merges[READ]),
1290 			   part_stat_read(hd, sectors[READ]),
1291 			   jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1292 			   part_stat_read(hd, ios[WRITE]),
1293 			   part_stat_read(hd, merges[WRITE]),
1294 			   part_stat_read(hd, sectors[WRITE]),
1295 			   jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1296 			   inflight[0],
1297 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1298 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1299 			);
1300 	}
1301 	disk_part_iter_exit(&piter);
1302 
1303 	return 0;
1304 }
1305 
1306 static const struct seq_operations diskstats_op = {
1307 	.start	= disk_seqf_start,
1308 	.next	= disk_seqf_next,
1309 	.stop	= disk_seqf_stop,
1310 	.show	= diskstats_show
1311 };
1312 
diskstats_open(struct inode * inode,struct file * file)1313 static int diskstats_open(struct inode *inode, struct file *file)
1314 {
1315 	return seq_open(file, &diskstats_op);
1316 }
1317 
1318 static const struct file_operations proc_diskstats_operations = {
1319 	.open		= diskstats_open,
1320 	.read		= seq_read,
1321 	.llseek		= seq_lseek,
1322 	.release	= seq_release,
1323 };
1324 
proc_genhd_init(void)1325 static int __init proc_genhd_init(void)
1326 {
1327 	proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1328 	proc_create("partitions", 0, NULL, &proc_partitions_operations);
1329 	return 0;
1330 }
1331 module_init(proc_genhd_init);
1332 #endif /* CONFIG_PROC_FS */
1333 
blk_lookup_devt(const char * name,int partno)1334 dev_t blk_lookup_devt(const char *name, int partno)
1335 {
1336 	dev_t devt = MKDEV(0, 0);
1337 	struct class_dev_iter iter;
1338 	struct device *dev;
1339 
1340 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1341 	while ((dev = class_dev_iter_next(&iter))) {
1342 		struct gendisk *disk = dev_to_disk(dev);
1343 		struct hd_struct *part;
1344 
1345 		if (strcmp(dev_name(dev), name))
1346 			continue;
1347 
1348 		if (partno < disk->minors) {
1349 			/* We need to return the right devno, even
1350 			 * if the partition doesn't exist yet.
1351 			 */
1352 			devt = MKDEV(MAJOR(dev->devt),
1353 				     MINOR(dev->devt) + partno);
1354 			break;
1355 		}
1356 		part = disk_get_part(disk, partno);
1357 		if (part) {
1358 			devt = part_devt(part);
1359 			disk_put_part(part);
1360 			break;
1361 		}
1362 		disk_put_part(part);
1363 	}
1364 	class_dev_iter_exit(&iter);
1365 	return devt;
1366 }
1367 EXPORT_SYMBOL(blk_lookup_devt);
1368 
alloc_disk(int minors)1369 struct gendisk *alloc_disk(int minors)
1370 {
1371 	return alloc_disk_node(minors, NUMA_NO_NODE);
1372 }
1373 EXPORT_SYMBOL(alloc_disk);
1374 
alloc_disk_node(int minors,int node_id)1375 struct gendisk *alloc_disk_node(int minors, int node_id)
1376 {
1377 	struct gendisk *disk;
1378 	struct disk_part_tbl *ptbl;
1379 
1380 	if (minors > DISK_MAX_PARTS) {
1381 		printk(KERN_ERR
1382 			"block: can't allocated more than %d partitions\n",
1383 			DISK_MAX_PARTS);
1384 		minors = DISK_MAX_PARTS;
1385 	}
1386 
1387 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1388 	if (disk) {
1389 		if (!init_part_stats(&disk->part0)) {
1390 			kfree(disk);
1391 			return NULL;
1392 		}
1393 		disk->node_id = node_id;
1394 		if (disk_expand_part_tbl(disk, 0)) {
1395 			free_part_stats(&disk->part0);
1396 			kfree(disk);
1397 			return NULL;
1398 		}
1399 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1400 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1401 
1402 		/*
1403 		 * set_capacity() and get_capacity() currently don't use
1404 		 * seqcounter to read/update the part0->nr_sects. Still init
1405 		 * the counter as we can read the sectors in IO submission
1406 		 * patch using seqence counters.
1407 		 *
1408 		 * TODO: Ideally set_capacity() and get_capacity() should be
1409 		 * converted to make use of bd_mutex and sequence counters.
1410 		 */
1411 		seqcount_init(&disk->part0.nr_sects_seq);
1412 		if (hd_ref_init(&disk->part0)) {
1413 			hd_free_part(&disk->part0);
1414 			kfree(disk);
1415 			return NULL;
1416 		}
1417 
1418 		disk->minors = minors;
1419 		rand_initialize_disk(disk);
1420 		disk_to_dev(disk)->class = &block_class;
1421 		disk_to_dev(disk)->type = &disk_type;
1422 		device_initialize(disk_to_dev(disk));
1423 	}
1424 	return disk;
1425 }
1426 EXPORT_SYMBOL(alloc_disk_node);
1427 
get_disk(struct gendisk * disk)1428 struct kobject *get_disk(struct gendisk *disk)
1429 {
1430 	struct module *owner;
1431 	struct kobject *kobj;
1432 
1433 	if (!disk->fops)
1434 		return NULL;
1435 	owner = disk->fops->owner;
1436 	if (owner && !try_module_get(owner))
1437 		return NULL;
1438 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1439 	if (kobj == NULL) {
1440 		module_put(owner);
1441 		return NULL;
1442 	}
1443 	return kobj;
1444 
1445 }
1446 
1447 EXPORT_SYMBOL(get_disk);
1448 
put_disk(struct gendisk * disk)1449 void put_disk(struct gendisk *disk)
1450 {
1451 	if (disk)
1452 		kobject_put(&disk_to_dev(disk)->kobj);
1453 }
1454 
1455 EXPORT_SYMBOL(put_disk);
1456 
set_disk_ro_uevent(struct gendisk * gd,int ro)1457 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1458 {
1459 	char event[] = "DISK_RO=1";
1460 	char *envp[] = { event, NULL };
1461 
1462 	if (!ro)
1463 		event[8] = '0';
1464 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1465 }
1466 
set_device_ro(struct block_device * bdev,int flag)1467 void set_device_ro(struct block_device *bdev, int flag)
1468 {
1469 	bdev->bd_part->policy = flag;
1470 }
1471 
1472 EXPORT_SYMBOL(set_device_ro);
1473 
set_disk_ro(struct gendisk * disk,int flag)1474 void set_disk_ro(struct gendisk *disk, int flag)
1475 {
1476 	struct disk_part_iter piter;
1477 	struct hd_struct *part;
1478 
1479 	if (disk->part0.policy != flag) {
1480 		set_disk_ro_uevent(disk, flag);
1481 		disk->part0.policy = flag;
1482 	}
1483 
1484 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1485 	while ((part = disk_part_iter_next(&piter)))
1486 		part->policy = flag;
1487 	disk_part_iter_exit(&piter);
1488 }
1489 
1490 EXPORT_SYMBOL(set_disk_ro);
1491 
bdev_read_only(struct block_device * bdev)1492 int bdev_read_only(struct block_device *bdev)
1493 {
1494 	if (!bdev)
1495 		return 0;
1496 	return bdev->bd_part->policy;
1497 }
1498 
1499 EXPORT_SYMBOL(bdev_read_only);
1500 
invalidate_partition(struct gendisk * disk,int partno)1501 int invalidate_partition(struct gendisk *disk, int partno)
1502 {
1503 	int res = 0;
1504 	struct block_device *bdev = bdget_disk(disk, partno);
1505 	if (bdev) {
1506 		fsync_bdev(bdev);
1507 		res = __invalidate_device(bdev, true);
1508 		bdput(bdev);
1509 	}
1510 	return res;
1511 }
1512 
1513 EXPORT_SYMBOL(invalidate_partition);
1514 
1515 /*
1516  * Disk events - monitor disk events like media change and eject request.
1517  */
1518 struct disk_events {
1519 	struct list_head	node;		/* all disk_event's */
1520 	struct gendisk		*disk;		/* the associated disk */
1521 	spinlock_t		lock;
1522 
1523 	struct mutex		block_mutex;	/* protects blocking */
1524 	int			block;		/* event blocking depth */
1525 	unsigned int		pending;	/* events already sent out */
1526 	unsigned int		clearing;	/* events being cleared */
1527 
1528 	long			poll_msecs;	/* interval, -1 for default */
1529 	struct delayed_work	dwork;
1530 };
1531 
1532 static const char *disk_events_strs[] = {
1533 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1534 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1535 };
1536 
1537 static char *disk_uevents[] = {
1538 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1539 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1540 };
1541 
1542 /* list of all disk_events */
1543 static DEFINE_MUTEX(disk_events_mutex);
1544 static LIST_HEAD(disk_events);
1545 
1546 /* disable in-kernel polling by default */
1547 static unsigned long disk_events_dfl_poll_msecs;
1548 
disk_events_poll_jiffies(struct gendisk * disk)1549 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1550 {
1551 	struct disk_events *ev = disk->ev;
1552 	long intv_msecs = 0;
1553 
1554 	/*
1555 	 * If device-specific poll interval is set, always use it.  If
1556 	 * the default is being used, poll iff there are events which
1557 	 * can't be monitored asynchronously.
1558 	 */
1559 	if (ev->poll_msecs >= 0)
1560 		intv_msecs = ev->poll_msecs;
1561 	else if (disk->events & ~disk->async_events)
1562 		intv_msecs = disk_events_dfl_poll_msecs;
1563 
1564 	return msecs_to_jiffies(intv_msecs);
1565 }
1566 
1567 /**
1568  * disk_block_events - block and flush disk event checking
1569  * @disk: disk to block events for
1570  *
1571  * On return from this function, it is guaranteed that event checking
1572  * isn't in progress and won't happen until unblocked by
1573  * disk_unblock_events().  Events blocking is counted and the actual
1574  * unblocking happens after the matching number of unblocks are done.
1575  *
1576  * Note that this intentionally does not block event checking from
1577  * disk_clear_events().
1578  *
1579  * CONTEXT:
1580  * Might sleep.
1581  */
disk_block_events(struct gendisk * disk)1582 void disk_block_events(struct gendisk *disk)
1583 {
1584 	struct disk_events *ev = disk->ev;
1585 	unsigned long flags;
1586 	bool cancel;
1587 
1588 	if (!ev)
1589 		return;
1590 
1591 	/*
1592 	 * Outer mutex ensures that the first blocker completes canceling
1593 	 * the event work before further blockers are allowed to finish.
1594 	 */
1595 	mutex_lock(&ev->block_mutex);
1596 
1597 	spin_lock_irqsave(&ev->lock, flags);
1598 	cancel = !ev->block++;
1599 	spin_unlock_irqrestore(&ev->lock, flags);
1600 
1601 	if (cancel)
1602 		cancel_delayed_work_sync(&disk->ev->dwork);
1603 
1604 	mutex_unlock(&ev->block_mutex);
1605 }
1606 
__disk_unblock_events(struct gendisk * disk,bool check_now)1607 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1608 {
1609 	struct disk_events *ev = disk->ev;
1610 	unsigned long intv;
1611 	unsigned long flags;
1612 
1613 	spin_lock_irqsave(&ev->lock, flags);
1614 
1615 	if (WARN_ON_ONCE(ev->block <= 0))
1616 		goto out_unlock;
1617 
1618 	if (--ev->block)
1619 		goto out_unlock;
1620 
1621 	intv = disk_events_poll_jiffies(disk);
1622 	if (check_now)
1623 		queue_delayed_work(system_freezable_power_efficient_wq,
1624 				&ev->dwork, 0);
1625 	else if (intv)
1626 		queue_delayed_work(system_freezable_power_efficient_wq,
1627 				&ev->dwork, intv);
1628 out_unlock:
1629 	spin_unlock_irqrestore(&ev->lock, flags);
1630 }
1631 
1632 /**
1633  * disk_unblock_events - unblock disk event checking
1634  * @disk: disk to unblock events for
1635  *
1636  * Undo disk_block_events().  When the block count reaches zero, it
1637  * starts events polling if configured.
1638  *
1639  * CONTEXT:
1640  * Don't care.  Safe to call from irq context.
1641  */
disk_unblock_events(struct gendisk * disk)1642 void disk_unblock_events(struct gendisk *disk)
1643 {
1644 	if (disk->ev)
1645 		__disk_unblock_events(disk, false);
1646 }
1647 
1648 /**
1649  * disk_flush_events - schedule immediate event checking and flushing
1650  * @disk: disk to check and flush events for
1651  * @mask: events to flush
1652  *
1653  * Schedule immediate event checking on @disk if not blocked.  Events in
1654  * @mask are scheduled to be cleared from the driver.  Note that this
1655  * doesn't clear the events from @disk->ev.
1656  *
1657  * CONTEXT:
1658  * If @mask is non-zero must be called with bdev->bd_mutex held.
1659  */
disk_flush_events(struct gendisk * disk,unsigned int mask)1660 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1661 {
1662 	struct disk_events *ev = disk->ev;
1663 
1664 	if (!ev)
1665 		return;
1666 
1667 	spin_lock_irq(&ev->lock);
1668 	ev->clearing |= mask;
1669 	if (!ev->block)
1670 		mod_delayed_work(system_freezable_power_efficient_wq,
1671 				&ev->dwork, 0);
1672 	spin_unlock_irq(&ev->lock);
1673 }
1674 
1675 /**
1676  * disk_clear_events - synchronously check, clear and return pending events
1677  * @disk: disk to fetch and clear events from
1678  * @mask: mask of events to be fetched and cleared
1679  *
1680  * Disk events are synchronously checked and pending events in @mask
1681  * are cleared and returned.  This ignores the block count.
1682  *
1683  * CONTEXT:
1684  * Might sleep.
1685  */
disk_clear_events(struct gendisk * disk,unsigned int mask)1686 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1687 {
1688 	const struct block_device_operations *bdops = disk->fops;
1689 	struct disk_events *ev = disk->ev;
1690 	unsigned int pending;
1691 	unsigned int clearing = mask;
1692 
1693 	if (!ev) {
1694 		/* for drivers still using the old ->media_changed method */
1695 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1696 		    bdops->media_changed && bdops->media_changed(disk))
1697 			return DISK_EVENT_MEDIA_CHANGE;
1698 		return 0;
1699 	}
1700 
1701 	disk_block_events(disk);
1702 
1703 	/*
1704 	 * store the union of mask and ev->clearing on the stack so that the
1705 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1706 	 * can still be modified even if events are blocked).
1707 	 */
1708 	spin_lock_irq(&ev->lock);
1709 	clearing |= ev->clearing;
1710 	ev->clearing = 0;
1711 	spin_unlock_irq(&ev->lock);
1712 
1713 	disk_check_events(ev, &clearing);
1714 	/*
1715 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1716 	 * middle of this function, so we want to run the workfn without delay.
1717 	 */
1718 	__disk_unblock_events(disk, ev->clearing ? true : false);
1719 
1720 	/* then, fetch and clear pending events */
1721 	spin_lock_irq(&ev->lock);
1722 	pending = ev->pending & mask;
1723 	ev->pending &= ~mask;
1724 	spin_unlock_irq(&ev->lock);
1725 	WARN_ON_ONCE(clearing & mask);
1726 
1727 	return pending;
1728 }
1729 
1730 /*
1731  * Separate this part out so that a different pointer for clearing_ptr can be
1732  * passed in for disk_clear_events.
1733  */
disk_events_workfn(struct work_struct * work)1734 static void disk_events_workfn(struct work_struct *work)
1735 {
1736 	struct delayed_work *dwork = to_delayed_work(work);
1737 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1738 
1739 	disk_check_events(ev, &ev->clearing);
1740 }
1741 
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1742 static void disk_check_events(struct disk_events *ev,
1743 			      unsigned int *clearing_ptr)
1744 {
1745 	struct gendisk *disk = ev->disk;
1746 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1747 	unsigned int clearing = *clearing_ptr;
1748 	unsigned int events;
1749 	unsigned long intv;
1750 	int nr_events = 0, i;
1751 
1752 	/* check events */
1753 	events = disk->fops->check_events(disk, clearing);
1754 
1755 	/* accumulate pending events and schedule next poll if necessary */
1756 	spin_lock_irq(&ev->lock);
1757 
1758 	events &= ~ev->pending;
1759 	ev->pending |= events;
1760 	*clearing_ptr &= ~clearing;
1761 
1762 	intv = disk_events_poll_jiffies(disk);
1763 	if (!ev->block && intv)
1764 		queue_delayed_work(system_freezable_power_efficient_wq,
1765 				&ev->dwork, intv);
1766 
1767 	spin_unlock_irq(&ev->lock);
1768 
1769 	/*
1770 	 * Tell userland about new events.  Only the events listed in
1771 	 * @disk->events are reported.  Unlisted events are processed the
1772 	 * same internally but never get reported to userland.
1773 	 */
1774 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1775 		if (events & disk->events & (1 << i))
1776 			envp[nr_events++] = disk_uevents[i];
1777 
1778 	if (nr_events)
1779 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1780 }
1781 
1782 /*
1783  * A disk events enabled device has the following sysfs nodes under
1784  * its /sys/block/X/ directory.
1785  *
1786  * events		: list of all supported events
1787  * events_async		: list of events which can be detected w/o polling
1788  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1789  */
__disk_events_show(unsigned int events,char * buf)1790 static ssize_t __disk_events_show(unsigned int events, char *buf)
1791 {
1792 	const char *delim = "";
1793 	ssize_t pos = 0;
1794 	int i;
1795 
1796 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1797 		if (events & (1 << i)) {
1798 			pos += sprintf(buf + pos, "%s%s",
1799 				       delim, disk_events_strs[i]);
1800 			delim = " ";
1801 		}
1802 	if (pos)
1803 		pos += sprintf(buf + pos, "\n");
1804 	return pos;
1805 }
1806 
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1807 static ssize_t disk_events_show(struct device *dev,
1808 				struct device_attribute *attr, char *buf)
1809 {
1810 	struct gendisk *disk = dev_to_disk(dev);
1811 
1812 	return __disk_events_show(disk->events, buf);
1813 }
1814 
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1815 static ssize_t disk_events_async_show(struct device *dev,
1816 				      struct device_attribute *attr, char *buf)
1817 {
1818 	struct gendisk *disk = dev_to_disk(dev);
1819 
1820 	return __disk_events_show(disk->async_events, buf);
1821 }
1822 
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1823 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1824 					   struct device_attribute *attr,
1825 					   char *buf)
1826 {
1827 	struct gendisk *disk = dev_to_disk(dev);
1828 
1829 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1830 }
1831 
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1832 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1833 					    struct device_attribute *attr,
1834 					    const char *buf, size_t count)
1835 {
1836 	struct gendisk *disk = dev_to_disk(dev);
1837 	long intv;
1838 
1839 	if (!count || !sscanf(buf, "%ld", &intv))
1840 		return -EINVAL;
1841 
1842 	if (intv < 0 && intv != -1)
1843 		return -EINVAL;
1844 
1845 	disk_block_events(disk);
1846 	disk->ev->poll_msecs = intv;
1847 	__disk_unblock_events(disk, true);
1848 
1849 	return count;
1850 }
1851 
1852 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1853 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1854 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1855 			 disk_events_poll_msecs_show,
1856 			 disk_events_poll_msecs_store);
1857 
1858 static const struct attribute *disk_events_attrs[] = {
1859 	&dev_attr_events.attr,
1860 	&dev_attr_events_async.attr,
1861 	&dev_attr_events_poll_msecs.attr,
1862 	NULL,
1863 };
1864 
1865 /*
1866  * The default polling interval can be specified by the kernel
1867  * parameter block.events_dfl_poll_msecs which defaults to 0
1868  * (disable).  This can also be modified runtime by writing to
1869  * /sys/module/block/events_dfl_poll_msecs.
1870  */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1871 static int disk_events_set_dfl_poll_msecs(const char *val,
1872 					  const struct kernel_param *kp)
1873 {
1874 	struct disk_events *ev;
1875 	int ret;
1876 
1877 	ret = param_set_ulong(val, kp);
1878 	if (ret < 0)
1879 		return ret;
1880 
1881 	mutex_lock(&disk_events_mutex);
1882 
1883 	list_for_each_entry(ev, &disk_events, node)
1884 		disk_flush_events(ev->disk, 0);
1885 
1886 	mutex_unlock(&disk_events_mutex);
1887 
1888 	return 0;
1889 }
1890 
1891 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1892 	.set	= disk_events_set_dfl_poll_msecs,
1893 	.get	= param_get_ulong,
1894 };
1895 
1896 #undef MODULE_PARAM_PREFIX
1897 #define MODULE_PARAM_PREFIX	"block."
1898 
1899 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1900 		&disk_events_dfl_poll_msecs, 0644);
1901 
1902 /*
1903  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1904  */
disk_alloc_events(struct gendisk * disk)1905 static void disk_alloc_events(struct gendisk *disk)
1906 {
1907 	struct disk_events *ev;
1908 
1909 	if (!disk->fops->check_events)
1910 		return;
1911 
1912 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1913 	if (!ev) {
1914 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
1915 		return;
1916 	}
1917 
1918 	INIT_LIST_HEAD(&ev->node);
1919 	ev->disk = disk;
1920 	spin_lock_init(&ev->lock);
1921 	mutex_init(&ev->block_mutex);
1922 	ev->block = 1;
1923 	ev->poll_msecs = -1;
1924 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1925 
1926 	disk->ev = ev;
1927 }
1928 
disk_add_events(struct gendisk * disk)1929 static void disk_add_events(struct gendisk *disk)
1930 {
1931 	if (!disk->ev)
1932 		return;
1933 
1934 	/* FIXME: error handling */
1935 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1936 		pr_warn("%s: failed to create sysfs files for events\n",
1937 			disk->disk_name);
1938 
1939 	mutex_lock(&disk_events_mutex);
1940 	list_add_tail(&disk->ev->node, &disk_events);
1941 	mutex_unlock(&disk_events_mutex);
1942 
1943 	/*
1944 	 * Block count is initialized to 1 and the following initial
1945 	 * unblock kicks it into action.
1946 	 */
1947 	__disk_unblock_events(disk, true);
1948 }
1949 
disk_del_events(struct gendisk * disk)1950 static void disk_del_events(struct gendisk *disk)
1951 {
1952 	if (!disk->ev)
1953 		return;
1954 
1955 	disk_block_events(disk);
1956 
1957 	mutex_lock(&disk_events_mutex);
1958 	list_del_init(&disk->ev->node);
1959 	mutex_unlock(&disk_events_mutex);
1960 
1961 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1962 }
1963 
disk_release_events(struct gendisk * disk)1964 static void disk_release_events(struct gendisk *disk)
1965 {
1966 	/* the block count should be 1 from disk_del_events() */
1967 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1968 	kfree(disk->ev);
1969 }
1970