1 /*
2 * gendisk handling
3 */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24
25 #include "blk.h"
26
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT (1 << MINORBITS)
32
33 /* For extended devt allocation. ext_devt_lock prevents look up
34 * results from going away underneath its user.
35 */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38
39 static const struct device_type disk_type;
40
41 static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47
part_inc_in_flight(struct request_queue * q,struct hd_struct * part,int rw)48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 if (q->mq_ops)
51 return;
52
53 atomic_inc(&part->in_flight[rw]);
54 if (part->partno)
55 atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57
part_dec_in_flight(struct request_queue * q,struct hd_struct * part,int rw)58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 if (q->mq_ops)
61 return;
62
63 atomic_dec(&part->in_flight[rw]);
64 if (part->partno)
65 atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67
part_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 unsigned int inflight[2])
70 {
71 if (q->mq_ops) {
72 blk_mq_in_flight(q, part, inflight);
73 return;
74 }
75
76 inflight[0] = atomic_read(&part->in_flight[0]) +
77 atomic_read(&part->in_flight[1]);
78 if (part->partno) {
79 part = &part_to_disk(part)->part0;
80 inflight[1] = atomic_read(&part->in_flight[0]) +
81 atomic_read(&part->in_flight[1]);
82 }
83 }
84
part_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 unsigned int inflight[2])
87 {
88 if (q->mq_ops) {
89 blk_mq_in_flight_rw(q, part, inflight);
90 return;
91 }
92
93 inflight[0] = atomic_read(&part->in_flight[0]);
94 inflight[1] = atomic_read(&part->in_flight[1]);
95 }
96
__disk_get_part(struct gendisk * disk,int partno)97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98 {
99 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100
101 if (unlikely(partno < 0 || partno >= ptbl->len))
102 return NULL;
103 return rcu_dereference(ptbl->part[partno]);
104 }
105
106 /**
107 * disk_get_part - get partition
108 * @disk: disk to look partition from
109 * @partno: partition number
110 *
111 * Look for partition @partno from @disk. If found, increment
112 * reference count and return it.
113 *
114 * CONTEXT:
115 * Don't care.
116 *
117 * RETURNS:
118 * Pointer to the found partition on success, NULL if not found.
119 */
disk_get_part(struct gendisk * disk,int partno)120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121 {
122 struct hd_struct *part;
123
124 rcu_read_lock();
125 part = __disk_get_part(disk, partno);
126 if (part)
127 get_device(part_to_dev(part));
128 rcu_read_unlock();
129
130 return part;
131 }
132 EXPORT_SYMBOL_GPL(disk_get_part);
133
134 /**
135 * disk_part_iter_init - initialize partition iterator
136 * @piter: iterator to initialize
137 * @disk: disk to iterate over
138 * @flags: DISK_PITER_* flags
139 *
140 * Initialize @piter so that it iterates over partitions of @disk.
141 *
142 * CONTEXT:
143 * Don't care.
144 */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 unsigned int flags)
147 {
148 struct disk_part_tbl *ptbl;
149
150 rcu_read_lock();
151 ptbl = rcu_dereference(disk->part_tbl);
152
153 piter->disk = disk;
154 piter->part = NULL;
155
156 if (flags & DISK_PITER_REVERSE)
157 piter->idx = ptbl->len - 1;
158 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 piter->idx = 0;
160 else
161 piter->idx = 1;
162
163 piter->flags = flags;
164
165 rcu_read_unlock();
166 }
167 EXPORT_SYMBOL_GPL(disk_part_iter_init);
168
169 /**
170 * disk_part_iter_next - proceed iterator to the next partition and return it
171 * @piter: iterator of interest
172 *
173 * Proceed @piter to the next partition and return it.
174 *
175 * CONTEXT:
176 * Don't care.
177 */
disk_part_iter_next(struct disk_part_iter * piter)178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179 {
180 struct disk_part_tbl *ptbl;
181 int inc, end;
182
183 /* put the last partition */
184 disk_put_part(piter->part);
185 piter->part = NULL;
186
187 /* get part_tbl */
188 rcu_read_lock();
189 ptbl = rcu_dereference(piter->disk->part_tbl);
190
191 /* determine iteration parameters */
192 if (piter->flags & DISK_PITER_REVERSE) {
193 inc = -1;
194 if (piter->flags & (DISK_PITER_INCL_PART0 |
195 DISK_PITER_INCL_EMPTY_PART0))
196 end = -1;
197 else
198 end = 0;
199 } else {
200 inc = 1;
201 end = ptbl->len;
202 }
203
204 /* iterate to the next partition */
205 for (; piter->idx != end; piter->idx += inc) {
206 struct hd_struct *part;
207
208 part = rcu_dereference(ptbl->part[piter->idx]);
209 if (!part)
210 continue;
211 if (!part_nr_sects_read(part) &&
212 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
213 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
214 piter->idx == 0))
215 continue;
216
217 get_device(part_to_dev(part));
218 piter->part = part;
219 piter->idx += inc;
220 break;
221 }
222
223 rcu_read_unlock();
224
225 return piter->part;
226 }
227 EXPORT_SYMBOL_GPL(disk_part_iter_next);
228
229 /**
230 * disk_part_iter_exit - finish up partition iteration
231 * @piter: iter of interest
232 *
233 * Called when iteration is over. Cleans up @piter.
234 *
235 * CONTEXT:
236 * Don't care.
237 */
disk_part_iter_exit(struct disk_part_iter * piter)238 void disk_part_iter_exit(struct disk_part_iter *piter)
239 {
240 disk_put_part(piter->part);
241 piter->part = NULL;
242 }
243 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
244
sector_in_part(struct hd_struct * part,sector_t sector)245 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
246 {
247 return part->start_sect <= sector &&
248 sector < part->start_sect + part_nr_sects_read(part);
249 }
250
251 /**
252 * disk_map_sector_rcu - map sector to partition
253 * @disk: gendisk of interest
254 * @sector: sector to map
255 *
256 * Find out which partition @sector maps to on @disk. This is
257 * primarily used for stats accounting.
258 *
259 * CONTEXT:
260 * RCU read locked. The returned partition pointer is valid only
261 * while preemption is disabled.
262 *
263 * RETURNS:
264 * Found partition on success, part0 is returned if no partition matches
265 */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)266 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
267 {
268 struct disk_part_tbl *ptbl;
269 struct hd_struct *part;
270 int i;
271
272 ptbl = rcu_dereference(disk->part_tbl);
273
274 part = rcu_dereference(ptbl->last_lookup);
275 if (part && sector_in_part(part, sector))
276 return part;
277
278 for (i = 1; i < ptbl->len; i++) {
279 part = rcu_dereference(ptbl->part[i]);
280
281 if (part && sector_in_part(part, sector)) {
282 rcu_assign_pointer(ptbl->last_lookup, part);
283 return part;
284 }
285 }
286 return &disk->part0;
287 }
288 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
289
290 /*
291 * Can be deleted altogether. Later.
292 *
293 */
294 #define BLKDEV_MAJOR_HASH_SIZE 255
295 static struct blk_major_name {
296 struct blk_major_name *next;
297 int major;
298 char name[16];
299 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
300
301 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)302 static inline int major_to_index(unsigned major)
303 {
304 return major % BLKDEV_MAJOR_HASH_SIZE;
305 }
306
307 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)308 void blkdev_show(struct seq_file *seqf, off_t offset)
309 {
310 struct blk_major_name *dp;
311
312 mutex_lock(&block_class_lock);
313 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
314 if (dp->major == offset)
315 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
316 mutex_unlock(&block_class_lock);
317 }
318 #endif /* CONFIG_PROC_FS */
319
320 /**
321 * register_blkdev - register a new block device
322 *
323 * @major: the requested major device number [1..255]. If @major = 0, try to
324 * allocate any unused major number.
325 * @name: the name of the new block device as a zero terminated string
326 *
327 * The @name must be unique within the system.
328 *
329 * The return value depends on the @major input parameter:
330 *
331 * - if a major device number was requested in range [1..255] then the
332 * function returns zero on success, or a negative error code
333 * - if any unused major number was requested with @major = 0 parameter
334 * then the return value is the allocated major number in range
335 * [1..255] or a negative error code otherwise
336 */
register_blkdev(unsigned int major,const char * name)337 int register_blkdev(unsigned int major, const char *name)
338 {
339 struct blk_major_name **n, *p;
340 int index, ret = 0;
341
342 mutex_lock(&block_class_lock);
343
344 /* temporary */
345 if (major == 0) {
346 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
347 if (major_names[index] == NULL)
348 break;
349 }
350
351 if (index == 0) {
352 printk("register_blkdev: failed to get major for %s\n",
353 name);
354 ret = -EBUSY;
355 goto out;
356 }
357 major = index;
358 ret = major;
359 }
360
361 if (major >= BLKDEV_MAJOR_MAX) {
362 pr_err("register_blkdev: major requested (%d) is greater than the maximum (%d) for %s\n",
363 major, BLKDEV_MAJOR_MAX, name);
364
365 ret = -EINVAL;
366 goto out;
367 }
368
369 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
370 if (p == NULL) {
371 ret = -ENOMEM;
372 goto out;
373 }
374
375 p->major = major;
376 strlcpy(p->name, name, sizeof(p->name));
377 p->next = NULL;
378 index = major_to_index(major);
379
380 for (n = &major_names[index]; *n; n = &(*n)->next) {
381 if ((*n)->major == major)
382 break;
383 }
384 if (!*n)
385 *n = p;
386 else
387 ret = -EBUSY;
388
389 if (ret < 0) {
390 printk("register_blkdev: cannot get major %d for %s\n",
391 major, name);
392 kfree(p);
393 }
394 out:
395 mutex_unlock(&block_class_lock);
396 return ret;
397 }
398
399 EXPORT_SYMBOL(register_blkdev);
400
unregister_blkdev(unsigned int major,const char * name)401 void unregister_blkdev(unsigned int major, const char *name)
402 {
403 struct blk_major_name **n;
404 struct blk_major_name *p = NULL;
405 int index = major_to_index(major);
406
407 mutex_lock(&block_class_lock);
408 for (n = &major_names[index]; *n; n = &(*n)->next)
409 if ((*n)->major == major)
410 break;
411 if (!*n || strcmp((*n)->name, name)) {
412 WARN_ON(1);
413 } else {
414 p = *n;
415 *n = p->next;
416 }
417 mutex_unlock(&block_class_lock);
418 kfree(p);
419 }
420
421 EXPORT_SYMBOL(unregister_blkdev);
422
423 static struct kobj_map *bdev_map;
424
425 /**
426 * blk_mangle_minor - scatter minor numbers apart
427 * @minor: minor number to mangle
428 *
429 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
430 * is enabled. Mangling twice gives the original value.
431 *
432 * RETURNS:
433 * Mangled value.
434 *
435 * CONTEXT:
436 * Don't care.
437 */
blk_mangle_minor(int minor)438 static int blk_mangle_minor(int minor)
439 {
440 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
441 int i;
442
443 for (i = 0; i < MINORBITS / 2; i++) {
444 int low = minor & (1 << i);
445 int high = minor & (1 << (MINORBITS - 1 - i));
446 int distance = MINORBITS - 1 - 2 * i;
447
448 minor ^= low | high; /* clear both bits */
449 low <<= distance; /* swap the positions */
450 high >>= distance;
451 minor |= low | high; /* and set */
452 }
453 #endif
454 return minor;
455 }
456
457 /**
458 * blk_alloc_devt - allocate a dev_t for a partition
459 * @part: partition to allocate dev_t for
460 * @devt: out parameter for resulting dev_t
461 *
462 * Allocate a dev_t for block device.
463 *
464 * RETURNS:
465 * 0 on success, allocated dev_t is returned in *@devt. -errno on
466 * failure.
467 *
468 * CONTEXT:
469 * Might sleep.
470 */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)471 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
472 {
473 struct gendisk *disk = part_to_disk(part);
474 int idx;
475
476 /* in consecutive minor range? */
477 if (part->partno < disk->minors) {
478 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
479 return 0;
480 }
481
482 /* allocate ext devt */
483 idr_preload(GFP_KERNEL);
484
485 spin_lock_bh(&ext_devt_lock);
486 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
487 spin_unlock_bh(&ext_devt_lock);
488
489 idr_preload_end();
490 if (idx < 0)
491 return idx == -ENOSPC ? -EBUSY : idx;
492
493 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
494 return 0;
495 }
496
497 /**
498 * blk_free_devt - free a dev_t
499 * @devt: dev_t to free
500 *
501 * Free @devt which was allocated using blk_alloc_devt().
502 *
503 * CONTEXT:
504 * Might sleep.
505 */
blk_free_devt(dev_t devt)506 void blk_free_devt(dev_t devt)
507 {
508 if (devt == MKDEV(0, 0))
509 return;
510
511 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
512 spin_lock_bh(&ext_devt_lock);
513 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
514 spin_unlock_bh(&ext_devt_lock);
515 }
516 }
517
bdevt_str(dev_t devt,char * buf)518 static char *bdevt_str(dev_t devt, char *buf)
519 {
520 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
521 char tbuf[BDEVT_SIZE];
522 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
523 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
524 } else
525 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
526
527 return buf;
528 }
529
530 /*
531 * Register device numbers dev..(dev+range-1)
532 * range must be nonzero
533 * The hash chain is sorted on range, so that subranges can override.
534 */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)535 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
536 struct kobject *(*probe)(dev_t, int *, void *),
537 int (*lock)(dev_t, void *), void *data)
538 {
539 kobj_map(bdev_map, devt, range, module, probe, lock, data);
540 }
541
542 EXPORT_SYMBOL(blk_register_region);
543
blk_unregister_region(dev_t devt,unsigned long range)544 void blk_unregister_region(dev_t devt, unsigned long range)
545 {
546 kobj_unmap(bdev_map, devt, range);
547 }
548
549 EXPORT_SYMBOL(blk_unregister_region);
550
exact_match(dev_t devt,int * partno,void * data)551 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
552 {
553 struct gendisk *p = data;
554
555 return &disk_to_dev(p)->kobj;
556 }
557
exact_lock(dev_t devt,void * data)558 static int exact_lock(dev_t devt, void *data)
559 {
560 struct gendisk *p = data;
561
562 if (!get_disk(p))
563 return -1;
564 return 0;
565 }
566
register_disk(struct device * parent,struct gendisk * disk)567 static void register_disk(struct device *parent, struct gendisk *disk)
568 {
569 struct device *ddev = disk_to_dev(disk);
570 struct block_device *bdev;
571 struct disk_part_iter piter;
572 struct hd_struct *part;
573 int err;
574
575 ddev->parent = parent;
576
577 dev_set_name(ddev, "%s", disk->disk_name);
578
579 /* delay uevents, until we scanned partition table */
580 dev_set_uevent_suppress(ddev, 1);
581
582 if (device_add(ddev))
583 return;
584 if (!sysfs_deprecated) {
585 err = sysfs_create_link(block_depr, &ddev->kobj,
586 kobject_name(&ddev->kobj));
587 if (err) {
588 device_del(ddev);
589 return;
590 }
591 }
592
593 /*
594 * avoid probable deadlock caused by allocating memory with
595 * GFP_KERNEL in runtime_resume callback of its all ancestor
596 * devices
597 */
598 pm_runtime_set_memalloc_noio(ddev, true);
599
600 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
601 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
602
603 /* No minors to use for partitions */
604 if (!disk_part_scan_enabled(disk))
605 goto exit;
606
607 /* No such device (e.g., media were just removed) */
608 if (!get_capacity(disk))
609 goto exit;
610
611 bdev = bdget_disk(disk, 0);
612 if (!bdev)
613 goto exit;
614
615 bdev->bd_invalidated = 1;
616 err = blkdev_get(bdev, FMODE_READ, NULL);
617 if (err < 0)
618 goto exit;
619 blkdev_put(bdev, FMODE_READ);
620
621 exit:
622 /* announce disk after possible partitions are created */
623 dev_set_uevent_suppress(ddev, 0);
624 kobject_uevent(&ddev->kobj, KOBJ_ADD);
625
626 /* announce possible partitions */
627 disk_part_iter_init(&piter, disk, 0);
628 while ((part = disk_part_iter_next(&piter)))
629 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
630 disk_part_iter_exit(&piter);
631 }
632
633 /**
634 * device_add_disk - add partitioning information to kernel list
635 * @parent: parent device for the disk
636 * @disk: per-device partitioning information
637 *
638 * This function registers the partitioning information in @disk
639 * with the kernel.
640 *
641 * FIXME: error handling
642 */
device_add_disk(struct device * parent,struct gendisk * disk)643 void device_add_disk(struct device *parent, struct gendisk *disk)
644 {
645 struct backing_dev_info *bdi;
646 dev_t devt;
647 int retval;
648
649 /* minors == 0 indicates to use ext devt from part0 and should
650 * be accompanied with EXT_DEVT flag. Make sure all
651 * parameters make sense.
652 */
653 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
654 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
655
656 disk->flags |= GENHD_FL_UP;
657
658 retval = blk_alloc_devt(&disk->part0, &devt);
659 if (retval) {
660 WARN_ON(1);
661 return;
662 }
663 disk_to_dev(disk)->devt = devt;
664
665 /* ->major and ->first_minor aren't supposed to be
666 * dereferenced from here on, but set them just in case.
667 */
668 disk->major = MAJOR(devt);
669 disk->first_minor = MINOR(devt);
670
671 disk_alloc_events(disk);
672
673 /* Register BDI before referencing it from bdev */
674 bdi = disk->queue->backing_dev_info;
675 bdi_register_owner(bdi, disk_to_dev(disk));
676
677 blk_register_region(disk_devt(disk), disk->minors, NULL,
678 exact_match, exact_lock, disk);
679 register_disk(parent, disk);
680 blk_register_queue(disk);
681
682 /*
683 * Take an extra ref on queue which will be put on disk_release()
684 * so that it sticks around as long as @disk is there.
685 */
686 WARN_ON_ONCE(!blk_get_queue(disk->queue));
687
688 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
689 "bdi");
690 WARN_ON(retval);
691
692 disk_add_events(disk);
693 blk_integrity_add(disk);
694 }
695 EXPORT_SYMBOL(device_add_disk);
696
del_gendisk(struct gendisk * disk)697 void del_gendisk(struct gendisk *disk)
698 {
699 struct disk_part_iter piter;
700 struct hd_struct *part;
701
702 blk_integrity_del(disk);
703 disk_del_events(disk);
704
705 /* invalidate stuff */
706 disk_part_iter_init(&piter, disk,
707 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
708 while ((part = disk_part_iter_next(&piter))) {
709 invalidate_partition(disk, part->partno);
710 bdev_unhash_inode(part_devt(part));
711 delete_partition(disk, part->partno);
712 }
713 disk_part_iter_exit(&piter);
714
715 invalidate_partition(disk, 0);
716 bdev_unhash_inode(disk_devt(disk));
717 set_capacity(disk, 0);
718 disk->flags &= ~GENHD_FL_UP;
719
720 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
721 if (disk->queue) {
722 /*
723 * Unregister bdi before releasing device numbers (as they can
724 * get reused and we'd get clashes in sysfs).
725 */
726 bdi_unregister(disk->queue->backing_dev_info);
727 blk_unregister_queue(disk);
728 } else {
729 WARN_ON(1);
730 }
731 blk_unregister_region(disk_devt(disk), disk->minors);
732
733 part_stat_set_all(&disk->part0, 0);
734 disk->part0.stamp = 0;
735
736 kobject_put(disk->part0.holder_dir);
737 kobject_put(disk->slave_dir);
738 if (!sysfs_deprecated)
739 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
740 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
741 device_del(disk_to_dev(disk));
742 }
743 EXPORT_SYMBOL(del_gendisk);
744
745 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)746 static ssize_t disk_badblocks_show(struct device *dev,
747 struct device_attribute *attr,
748 char *page)
749 {
750 struct gendisk *disk = dev_to_disk(dev);
751
752 if (!disk->bb)
753 return sprintf(page, "\n");
754
755 return badblocks_show(disk->bb, page, 0);
756 }
757
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)758 static ssize_t disk_badblocks_store(struct device *dev,
759 struct device_attribute *attr,
760 const char *page, size_t len)
761 {
762 struct gendisk *disk = dev_to_disk(dev);
763
764 if (!disk->bb)
765 return -ENXIO;
766
767 return badblocks_store(disk->bb, page, len, 0);
768 }
769
770 /**
771 * get_gendisk - get partitioning information for a given device
772 * @devt: device to get partitioning information for
773 * @partno: returned partition index
774 *
775 * This function gets the structure containing partitioning
776 * information for the given device @devt.
777 */
get_gendisk(dev_t devt,int * partno)778 struct gendisk *get_gendisk(dev_t devt, int *partno)
779 {
780 struct gendisk *disk = NULL;
781
782 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
783 struct kobject *kobj;
784
785 kobj = kobj_lookup(bdev_map, devt, partno);
786 if (kobj)
787 disk = dev_to_disk(kobj_to_dev(kobj));
788 } else {
789 struct hd_struct *part;
790
791 spin_lock_bh(&ext_devt_lock);
792 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
793 if (part && get_disk(part_to_disk(part))) {
794 *partno = part->partno;
795 disk = part_to_disk(part);
796 }
797 spin_unlock_bh(&ext_devt_lock);
798 }
799
800 return disk;
801 }
802 EXPORT_SYMBOL(get_gendisk);
803
804 /**
805 * bdget_disk - do bdget() by gendisk and partition number
806 * @disk: gendisk of interest
807 * @partno: partition number
808 *
809 * Find partition @partno from @disk, do bdget() on it.
810 *
811 * CONTEXT:
812 * Don't care.
813 *
814 * RETURNS:
815 * Resulting block_device on success, NULL on failure.
816 */
bdget_disk(struct gendisk * disk,int partno)817 struct block_device *bdget_disk(struct gendisk *disk, int partno)
818 {
819 struct hd_struct *part;
820 struct block_device *bdev = NULL;
821
822 part = disk_get_part(disk, partno);
823 if (part)
824 bdev = bdget(part_devt(part));
825 disk_put_part(part);
826
827 return bdev;
828 }
829 EXPORT_SYMBOL(bdget_disk);
830
831 /*
832 * print a full list of all partitions - intended for places where the root
833 * filesystem can't be mounted and thus to give the victim some idea of what
834 * went wrong
835 */
printk_all_partitions(void)836 void __init printk_all_partitions(void)
837 {
838 struct class_dev_iter iter;
839 struct device *dev;
840
841 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
842 while ((dev = class_dev_iter_next(&iter))) {
843 struct gendisk *disk = dev_to_disk(dev);
844 struct disk_part_iter piter;
845 struct hd_struct *part;
846 char name_buf[BDEVNAME_SIZE];
847 char devt_buf[BDEVT_SIZE];
848
849 /*
850 * Don't show empty devices or things that have been
851 * suppressed
852 */
853 if (get_capacity(disk) == 0 ||
854 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
855 continue;
856
857 /*
858 * Note, unlike /proc/partitions, I am showing the
859 * numbers in hex - the same format as the root=
860 * option takes.
861 */
862 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
863 while ((part = disk_part_iter_next(&piter))) {
864 bool is_part0 = part == &disk->part0;
865
866 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
867 bdevt_str(part_devt(part), devt_buf),
868 (unsigned long long)part_nr_sects_read(part) >> 1
869 , disk_name(disk, part->partno, name_buf),
870 part->info ? part->info->uuid : "");
871 if (is_part0) {
872 if (dev->parent && dev->parent->driver)
873 printk(" driver: %s\n",
874 dev->parent->driver->name);
875 else
876 printk(" (driver?)\n");
877 } else
878 printk("\n");
879 }
880 disk_part_iter_exit(&piter);
881 }
882 class_dev_iter_exit(&iter);
883 }
884
885 #ifdef CONFIG_PROC_FS
886 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)887 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
888 {
889 loff_t skip = *pos;
890 struct class_dev_iter *iter;
891 struct device *dev;
892
893 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
894 if (!iter)
895 return ERR_PTR(-ENOMEM);
896
897 seqf->private = iter;
898 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
899 do {
900 dev = class_dev_iter_next(iter);
901 if (!dev)
902 return NULL;
903 } while (skip--);
904
905 return dev_to_disk(dev);
906 }
907
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)908 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
909 {
910 struct device *dev;
911
912 (*pos)++;
913 dev = class_dev_iter_next(seqf->private);
914 if (dev)
915 return dev_to_disk(dev);
916
917 return NULL;
918 }
919
disk_seqf_stop(struct seq_file * seqf,void * v)920 static void disk_seqf_stop(struct seq_file *seqf, void *v)
921 {
922 struct class_dev_iter *iter = seqf->private;
923
924 /* stop is called even after start failed :-( */
925 if (iter) {
926 class_dev_iter_exit(iter);
927 kfree(iter);
928 seqf->private = NULL;
929 }
930 }
931
show_partition_start(struct seq_file * seqf,loff_t * pos)932 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
933 {
934 void *p;
935
936 p = disk_seqf_start(seqf, pos);
937 if (!IS_ERR_OR_NULL(p) && !*pos)
938 seq_puts(seqf, "major minor #blocks name\n\n");
939 return p;
940 }
941
show_partition(struct seq_file * seqf,void * v)942 static int show_partition(struct seq_file *seqf, void *v)
943 {
944 struct gendisk *sgp = v;
945 struct disk_part_iter piter;
946 struct hd_struct *part;
947 char buf[BDEVNAME_SIZE];
948
949 /* Don't show non-partitionable removeable devices or empty devices */
950 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
951 (sgp->flags & GENHD_FL_REMOVABLE)))
952 return 0;
953 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
954 return 0;
955
956 /* show the full disk and all non-0 size partitions of it */
957 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
958 while ((part = disk_part_iter_next(&piter)))
959 seq_printf(seqf, "%4d %7d %10llu %s\n",
960 MAJOR(part_devt(part)), MINOR(part_devt(part)),
961 (unsigned long long)part_nr_sects_read(part) >> 1,
962 disk_name(sgp, part->partno, buf));
963 disk_part_iter_exit(&piter);
964
965 return 0;
966 }
967
968 static const struct seq_operations partitions_op = {
969 .start = show_partition_start,
970 .next = disk_seqf_next,
971 .stop = disk_seqf_stop,
972 .show = show_partition
973 };
974
partitions_open(struct inode * inode,struct file * file)975 static int partitions_open(struct inode *inode, struct file *file)
976 {
977 return seq_open(file, &partitions_op);
978 }
979
980 static const struct file_operations proc_partitions_operations = {
981 .open = partitions_open,
982 .read = seq_read,
983 .llseek = seq_lseek,
984 .release = seq_release,
985 };
986 #endif
987
988
base_probe(dev_t devt,int * partno,void * data)989 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
990 {
991 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
992 /* Make old-style 2.4 aliases work */
993 request_module("block-major-%d", MAJOR(devt));
994 return NULL;
995 }
996
genhd_device_init(void)997 static int __init genhd_device_init(void)
998 {
999 int error;
1000
1001 block_class.dev_kobj = sysfs_dev_block_kobj;
1002 error = class_register(&block_class);
1003 if (unlikely(error))
1004 return error;
1005 bdev_map = kobj_map_init(base_probe, &block_class_lock);
1006 blk_dev_init();
1007
1008 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1009
1010 /* create top-level block dir */
1011 if (!sysfs_deprecated)
1012 block_depr = kobject_create_and_add("block", NULL);
1013 return 0;
1014 }
1015
1016 subsys_initcall(genhd_device_init);
1017
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1018 static ssize_t disk_range_show(struct device *dev,
1019 struct device_attribute *attr, char *buf)
1020 {
1021 struct gendisk *disk = dev_to_disk(dev);
1022
1023 return sprintf(buf, "%d\n", disk->minors);
1024 }
1025
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1026 static ssize_t disk_ext_range_show(struct device *dev,
1027 struct device_attribute *attr, char *buf)
1028 {
1029 struct gendisk *disk = dev_to_disk(dev);
1030
1031 return sprintf(buf, "%d\n", disk_max_parts(disk));
1032 }
1033
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1034 static ssize_t disk_removable_show(struct device *dev,
1035 struct device_attribute *attr, char *buf)
1036 {
1037 struct gendisk *disk = dev_to_disk(dev);
1038
1039 return sprintf(buf, "%d\n",
1040 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1041 }
1042
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1043 static ssize_t disk_ro_show(struct device *dev,
1044 struct device_attribute *attr, char *buf)
1045 {
1046 struct gendisk *disk = dev_to_disk(dev);
1047
1048 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1049 }
1050
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1051 static ssize_t disk_capability_show(struct device *dev,
1052 struct device_attribute *attr, char *buf)
1053 {
1054 struct gendisk *disk = dev_to_disk(dev);
1055
1056 return sprintf(buf, "%x\n", disk->flags);
1057 }
1058
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1059 static ssize_t disk_alignment_offset_show(struct device *dev,
1060 struct device_attribute *attr,
1061 char *buf)
1062 {
1063 struct gendisk *disk = dev_to_disk(dev);
1064
1065 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1066 }
1067
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1068 static ssize_t disk_discard_alignment_show(struct device *dev,
1069 struct device_attribute *attr,
1070 char *buf)
1071 {
1072 struct gendisk *disk = dev_to_disk(dev);
1073
1074 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1075 }
1076
1077 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
1078 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
1079 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
1080 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
1081 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
1082 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
1083 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
1084 NULL);
1085 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
1086 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
1087 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
1088 static DEVICE_ATTR(badblocks, S_IRUGO | S_IWUSR, disk_badblocks_show,
1089 disk_badblocks_store);
1090 #ifdef CONFIG_FAIL_MAKE_REQUEST
1091 static struct device_attribute dev_attr_fail =
1092 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1093 #endif
1094 #ifdef CONFIG_FAIL_IO_TIMEOUT
1095 static struct device_attribute dev_attr_fail_timeout =
1096 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show,
1097 part_timeout_store);
1098 #endif
1099
1100 static struct attribute *disk_attrs[] = {
1101 &dev_attr_range.attr,
1102 &dev_attr_ext_range.attr,
1103 &dev_attr_removable.attr,
1104 &dev_attr_ro.attr,
1105 &dev_attr_size.attr,
1106 &dev_attr_alignment_offset.attr,
1107 &dev_attr_discard_alignment.attr,
1108 &dev_attr_capability.attr,
1109 &dev_attr_stat.attr,
1110 &dev_attr_inflight.attr,
1111 &dev_attr_badblocks.attr,
1112 #ifdef CONFIG_FAIL_MAKE_REQUEST
1113 &dev_attr_fail.attr,
1114 #endif
1115 #ifdef CONFIG_FAIL_IO_TIMEOUT
1116 &dev_attr_fail_timeout.attr,
1117 #endif
1118 NULL
1119 };
1120
disk_visible(struct kobject * kobj,struct attribute * a,int n)1121 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1122 {
1123 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1124 struct gendisk *disk = dev_to_disk(dev);
1125
1126 if (a == &dev_attr_badblocks.attr && !disk->bb)
1127 return 0;
1128 return a->mode;
1129 }
1130
1131 static struct attribute_group disk_attr_group = {
1132 .attrs = disk_attrs,
1133 .is_visible = disk_visible,
1134 };
1135
1136 static const struct attribute_group *disk_attr_groups[] = {
1137 &disk_attr_group,
1138 NULL
1139 };
1140
1141 /**
1142 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1143 * @disk: disk to replace part_tbl for
1144 * @new_ptbl: new part_tbl to install
1145 *
1146 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1147 * original ptbl is freed using RCU callback.
1148 *
1149 * LOCKING:
1150 * Matching bd_mutex locked or the caller is the only user of @disk.
1151 */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1152 static void disk_replace_part_tbl(struct gendisk *disk,
1153 struct disk_part_tbl *new_ptbl)
1154 {
1155 struct disk_part_tbl *old_ptbl =
1156 rcu_dereference_protected(disk->part_tbl, 1);
1157
1158 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1159
1160 if (old_ptbl) {
1161 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1162 kfree_rcu(old_ptbl, rcu_head);
1163 }
1164 }
1165
1166 /**
1167 * disk_expand_part_tbl - expand disk->part_tbl
1168 * @disk: disk to expand part_tbl for
1169 * @partno: expand such that this partno can fit in
1170 *
1171 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1172 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1173 *
1174 * LOCKING:
1175 * Matching bd_mutex locked or the caller is the only user of @disk.
1176 * Might sleep.
1177 *
1178 * RETURNS:
1179 * 0 on success, -errno on failure.
1180 */
disk_expand_part_tbl(struct gendisk * disk,int partno)1181 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1182 {
1183 struct disk_part_tbl *old_ptbl =
1184 rcu_dereference_protected(disk->part_tbl, 1);
1185 struct disk_part_tbl *new_ptbl;
1186 int len = old_ptbl ? old_ptbl->len : 0;
1187 int i, target;
1188 size_t size;
1189
1190 /*
1191 * check for int overflow, since we can get here from blkpg_ioctl()
1192 * with a user passed 'partno'.
1193 */
1194 target = partno + 1;
1195 if (target < 0)
1196 return -EINVAL;
1197
1198 /* disk_max_parts() is zero during initialization, ignore if so */
1199 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1200 return -EINVAL;
1201
1202 if (target <= len)
1203 return 0;
1204
1205 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1206 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1207 if (!new_ptbl)
1208 return -ENOMEM;
1209
1210 new_ptbl->len = target;
1211
1212 for (i = 0; i < len; i++)
1213 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1214
1215 disk_replace_part_tbl(disk, new_ptbl);
1216 return 0;
1217 }
1218
disk_release(struct device * dev)1219 static void disk_release(struct device *dev)
1220 {
1221 struct gendisk *disk = dev_to_disk(dev);
1222
1223 blk_free_devt(dev->devt);
1224 disk_release_events(disk);
1225 kfree(disk->random);
1226 disk_replace_part_tbl(disk, NULL);
1227 hd_free_part(&disk->part0);
1228 if (disk->queue)
1229 blk_put_queue(disk->queue);
1230 kfree(disk);
1231 }
1232 struct class block_class = {
1233 .name = "block",
1234 };
1235
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1236 static char *block_devnode(struct device *dev, umode_t *mode,
1237 kuid_t *uid, kgid_t *gid)
1238 {
1239 struct gendisk *disk = dev_to_disk(dev);
1240
1241 if (disk->devnode)
1242 return disk->devnode(disk, mode);
1243 return NULL;
1244 }
1245
1246 static const struct device_type disk_type = {
1247 .name = "disk",
1248 .groups = disk_attr_groups,
1249 .release = disk_release,
1250 .devnode = block_devnode,
1251 };
1252
1253 #ifdef CONFIG_PROC_FS
1254 /*
1255 * aggregate disk stat collector. Uses the same stats that the sysfs
1256 * entries do, above, but makes them available through one seq_file.
1257 *
1258 * The output looks suspiciously like /proc/partitions with a bunch of
1259 * extra fields.
1260 */
diskstats_show(struct seq_file * seqf,void * v)1261 static int diskstats_show(struct seq_file *seqf, void *v)
1262 {
1263 struct gendisk *gp = v;
1264 struct disk_part_iter piter;
1265 struct hd_struct *hd;
1266 char buf[BDEVNAME_SIZE];
1267 unsigned int inflight[2];
1268 int cpu;
1269
1270 /*
1271 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1272 seq_puts(seqf, "major minor name"
1273 " rio rmerge rsect ruse wio wmerge "
1274 "wsect wuse running use aveq"
1275 "\n\n");
1276 */
1277
1278 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1279 while ((hd = disk_part_iter_next(&piter))) {
1280 cpu = part_stat_lock();
1281 part_round_stats(gp->queue, cpu, hd);
1282 part_stat_unlock();
1283 part_in_flight(gp->queue, hd, inflight);
1284 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1285 "%u %lu %lu %lu %u %u %u %u\n",
1286 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1287 disk_name(gp, hd->partno, buf),
1288 part_stat_read(hd, ios[READ]),
1289 part_stat_read(hd, merges[READ]),
1290 part_stat_read(hd, sectors[READ]),
1291 jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1292 part_stat_read(hd, ios[WRITE]),
1293 part_stat_read(hd, merges[WRITE]),
1294 part_stat_read(hd, sectors[WRITE]),
1295 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1296 inflight[0],
1297 jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1298 jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1299 );
1300 }
1301 disk_part_iter_exit(&piter);
1302
1303 return 0;
1304 }
1305
1306 static const struct seq_operations diskstats_op = {
1307 .start = disk_seqf_start,
1308 .next = disk_seqf_next,
1309 .stop = disk_seqf_stop,
1310 .show = diskstats_show
1311 };
1312
diskstats_open(struct inode * inode,struct file * file)1313 static int diskstats_open(struct inode *inode, struct file *file)
1314 {
1315 return seq_open(file, &diskstats_op);
1316 }
1317
1318 static const struct file_operations proc_diskstats_operations = {
1319 .open = diskstats_open,
1320 .read = seq_read,
1321 .llseek = seq_lseek,
1322 .release = seq_release,
1323 };
1324
proc_genhd_init(void)1325 static int __init proc_genhd_init(void)
1326 {
1327 proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1328 proc_create("partitions", 0, NULL, &proc_partitions_operations);
1329 return 0;
1330 }
1331 module_init(proc_genhd_init);
1332 #endif /* CONFIG_PROC_FS */
1333
blk_lookup_devt(const char * name,int partno)1334 dev_t blk_lookup_devt(const char *name, int partno)
1335 {
1336 dev_t devt = MKDEV(0, 0);
1337 struct class_dev_iter iter;
1338 struct device *dev;
1339
1340 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1341 while ((dev = class_dev_iter_next(&iter))) {
1342 struct gendisk *disk = dev_to_disk(dev);
1343 struct hd_struct *part;
1344
1345 if (strcmp(dev_name(dev), name))
1346 continue;
1347
1348 if (partno < disk->minors) {
1349 /* We need to return the right devno, even
1350 * if the partition doesn't exist yet.
1351 */
1352 devt = MKDEV(MAJOR(dev->devt),
1353 MINOR(dev->devt) + partno);
1354 break;
1355 }
1356 part = disk_get_part(disk, partno);
1357 if (part) {
1358 devt = part_devt(part);
1359 disk_put_part(part);
1360 break;
1361 }
1362 disk_put_part(part);
1363 }
1364 class_dev_iter_exit(&iter);
1365 return devt;
1366 }
1367 EXPORT_SYMBOL(blk_lookup_devt);
1368
alloc_disk(int minors)1369 struct gendisk *alloc_disk(int minors)
1370 {
1371 return alloc_disk_node(minors, NUMA_NO_NODE);
1372 }
1373 EXPORT_SYMBOL(alloc_disk);
1374
alloc_disk_node(int minors,int node_id)1375 struct gendisk *alloc_disk_node(int minors, int node_id)
1376 {
1377 struct gendisk *disk;
1378 struct disk_part_tbl *ptbl;
1379
1380 if (minors > DISK_MAX_PARTS) {
1381 printk(KERN_ERR
1382 "block: can't allocated more than %d partitions\n",
1383 DISK_MAX_PARTS);
1384 minors = DISK_MAX_PARTS;
1385 }
1386
1387 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1388 if (disk) {
1389 if (!init_part_stats(&disk->part0)) {
1390 kfree(disk);
1391 return NULL;
1392 }
1393 disk->node_id = node_id;
1394 if (disk_expand_part_tbl(disk, 0)) {
1395 free_part_stats(&disk->part0);
1396 kfree(disk);
1397 return NULL;
1398 }
1399 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1400 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1401
1402 /*
1403 * set_capacity() and get_capacity() currently don't use
1404 * seqcounter to read/update the part0->nr_sects. Still init
1405 * the counter as we can read the sectors in IO submission
1406 * patch using seqence counters.
1407 *
1408 * TODO: Ideally set_capacity() and get_capacity() should be
1409 * converted to make use of bd_mutex and sequence counters.
1410 */
1411 seqcount_init(&disk->part0.nr_sects_seq);
1412 if (hd_ref_init(&disk->part0)) {
1413 hd_free_part(&disk->part0);
1414 kfree(disk);
1415 return NULL;
1416 }
1417
1418 disk->minors = minors;
1419 rand_initialize_disk(disk);
1420 disk_to_dev(disk)->class = &block_class;
1421 disk_to_dev(disk)->type = &disk_type;
1422 device_initialize(disk_to_dev(disk));
1423 }
1424 return disk;
1425 }
1426 EXPORT_SYMBOL(alloc_disk_node);
1427
get_disk(struct gendisk * disk)1428 struct kobject *get_disk(struct gendisk *disk)
1429 {
1430 struct module *owner;
1431 struct kobject *kobj;
1432
1433 if (!disk->fops)
1434 return NULL;
1435 owner = disk->fops->owner;
1436 if (owner && !try_module_get(owner))
1437 return NULL;
1438 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1439 if (kobj == NULL) {
1440 module_put(owner);
1441 return NULL;
1442 }
1443 return kobj;
1444
1445 }
1446
1447 EXPORT_SYMBOL(get_disk);
1448
put_disk(struct gendisk * disk)1449 void put_disk(struct gendisk *disk)
1450 {
1451 if (disk)
1452 kobject_put(&disk_to_dev(disk)->kobj);
1453 }
1454
1455 EXPORT_SYMBOL(put_disk);
1456
set_disk_ro_uevent(struct gendisk * gd,int ro)1457 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1458 {
1459 char event[] = "DISK_RO=1";
1460 char *envp[] = { event, NULL };
1461
1462 if (!ro)
1463 event[8] = '0';
1464 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1465 }
1466
set_device_ro(struct block_device * bdev,int flag)1467 void set_device_ro(struct block_device *bdev, int flag)
1468 {
1469 bdev->bd_part->policy = flag;
1470 }
1471
1472 EXPORT_SYMBOL(set_device_ro);
1473
set_disk_ro(struct gendisk * disk,int flag)1474 void set_disk_ro(struct gendisk *disk, int flag)
1475 {
1476 struct disk_part_iter piter;
1477 struct hd_struct *part;
1478
1479 if (disk->part0.policy != flag) {
1480 set_disk_ro_uevent(disk, flag);
1481 disk->part0.policy = flag;
1482 }
1483
1484 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1485 while ((part = disk_part_iter_next(&piter)))
1486 part->policy = flag;
1487 disk_part_iter_exit(&piter);
1488 }
1489
1490 EXPORT_SYMBOL(set_disk_ro);
1491
bdev_read_only(struct block_device * bdev)1492 int bdev_read_only(struct block_device *bdev)
1493 {
1494 if (!bdev)
1495 return 0;
1496 return bdev->bd_part->policy;
1497 }
1498
1499 EXPORT_SYMBOL(bdev_read_only);
1500
invalidate_partition(struct gendisk * disk,int partno)1501 int invalidate_partition(struct gendisk *disk, int partno)
1502 {
1503 int res = 0;
1504 struct block_device *bdev = bdget_disk(disk, partno);
1505 if (bdev) {
1506 fsync_bdev(bdev);
1507 res = __invalidate_device(bdev, true);
1508 bdput(bdev);
1509 }
1510 return res;
1511 }
1512
1513 EXPORT_SYMBOL(invalidate_partition);
1514
1515 /*
1516 * Disk events - monitor disk events like media change and eject request.
1517 */
1518 struct disk_events {
1519 struct list_head node; /* all disk_event's */
1520 struct gendisk *disk; /* the associated disk */
1521 spinlock_t lock;
1522
1523 struct mutex block_mutex; /* protects blocking */
1524 int block; /* event blocking depth */
1525 unsigned int pending; /* events already sent out */
1526 unsigned int clearing; /* events being cleared */
1527
1528 long poll_msecs; /* interval, -1 for default */
1529 struct delayed_work dwork;
1530 };
1531
1532 static const char *disk_events_strs[] = {
1533 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1534 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1535 };
1536
1537 static char *disk_uevents[] = {
1538 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1539 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1540 };
1541
1542 /* list of all disk_events */
1543 static DEFINE_MUTEX(disk_events_mutex);
1544 static LIST_HEAD(disk_events);
1545
1546 /* disable in-kernel polling by default */
1547 static unsigned long disk_events_dfl_poll_msecs;
1548
disk_events_poll_jiffies(struct gendisk * disk)1549 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1550 {
1551 struct disk_events *ev = disk->ev;
1552 long intv_msecs = 0;
1553
1554 /*
1555 * If device-specific poll interval is set, always use it. If
1556 * the default is being used, poll iff there are events which
1557 * can't be monitored asynchronously.
1558 */
1559 if (ev->poll_msecs >= 0)
1560 intv_msecs = ev->poll_msecs;
1561 else if (disk->events & ~disk->async_events)
1562 intv_msecs = disk_events_dfl_poll_msecs;
1563
1564 return msecs_to_jiffies(intv_msecs);
1565 }
1566
1567 /**
1568 * disk_block_events - block and flush disk event checking
1569 * @disk: disk to block events for
1570 *
1571 * On return from this function, it is guaranteed that event checking
1572 * isn't in progress and won't happen until unblocked by
1573 * disk_unblock_events(). Events blocking is counted and the actual
1574 * unblocking happens after the matching number of unblocks are done.
1575 *
1576 * Note that this intentionally does not block event checking from
1577 * disk_clear_events().
1578 *
1579 * CONTEXT:
1580 * Might sleep.
1581 */
disk_block_events(struct gendisk * disk)1582 void disk_block_events(struct gendisk *disk)
1583 {
1584 struct disk_events *ev = disk->ev;
1585 unsigned long flags;
1586 bool cancel;
1587
1588 if (!ev)
1589 return;
1590
1591 /*
1592 * Outer mutex ensures that the first blocker completes canceling
1593 * the event work before further blockers are allowed to finish.
1594 */
1595 mutex_lock(&ev->block_mutex);
1596
1597 spin_lock_irqsave(&ev->lock, flags);
1598 cancel = !ev->block++;
1599 spin_unlock_irqrestore(&ev->lock, flags);
1600
1601 if (cancel)
1602 cancel_delayed_work_sync(&disk->ev->dwork);
1603
1604 mutex_unlock(&ev->block_mutex);
1605 }
1606
__disk_unblock_events(struct gendisk * disk,bool check_now)1607 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1608 {
1609 struct disk_events *ev = disk->ev;
1610 unsigned long intv;
1611 unsigned long flags;
1612
1613 spin_lock_irqsave(&ev->lock, flags);
1614
1615 if (WARN_ON_ONCE(ev->block <= 0))
1616 goto out_unlock;
1617
1618 if (--ev->block)
1619 goto out_unlock;
1620
1621 intv = disk_events_poll_jiffies(disk);
1622 if (check_now)
1623 queue_delayed_work(system_freezable_power_efficient_wq,
1624 &ev->dwork, 0);
1625 else if (intv)
1626 queue_delayed_work(system_freezable_power_efficient_wq,
1627 &ev->dwork, intv);
1628 out_unlock:
1629 spin_unlock_irqrestore(&ev->lock, flags);
1630 }
1631
1632 /**
1633 * disk_unblock_events - unblock disk event checking
1634 * @disk: disk to unblock events for
1635 *
1636 * Undo disk_block_events(). When the block count reaches zero, it
1637 * starts events polling if configured.
1638 *
1639 * CONTEXT:
1640 * Don't care. Safe to call from irq context.
1641 */
disk_unblock_events(struct gendisk * disk)1642 void disk_unblock_events(struct gendisk *disk)
1643 {
1644 if (disk->ev)
1645 __disk_unblock_events(disk, false);
1646 }
1647
1648 /**
1649 * disk_flush_events - schedule immediate event checking and flushing
1650 * @disk: disk to check and flush events for
1651 * @mask: events to flush
1652 *
1653 * Schedule immediate event checking on @disk if not blocked. Events in
1654 * @mask are scheduled to be cleared from the driver. Note that this
1655 * doesn't clear the events from @disk->ev.
1656 *
1657 * CONTEXT:
1658 * If @mask is non-zero must be called with bdev->bd_mutex held.
1659 */
disk_flush_events(struct gendisk * disk,unsigned int mask)1660 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1661 {
1662 struct disk_events *ev = disk->ev;
1663
1664 if (!ev)
1665 return;
1666
1667 spin_lock_irq(&ev->lock);
1668 ev->clearing |= mask;
1669 if (!ev->block)
1670 mod_delayed_work(system_freezable_power_efficient_wq,
1671 &ev->dwork, 0);
1672 spin_unlock_irq(&ev->lock);
1673 }
1674
1675 /**
1676 * disk_clear_events - synchronously check, clear and return pending events
1677 * @disk: disk to fetch and clear events from
1678 * @mask: mask of events to be fetched and cleared
1679 *
1680 * Disk events are synchronously checked and pending events in @mask
1681 * are cleared and returned. This ignores the block count.
1682 *
1683 * CONTEXT:
1684 * Might sleep.
1685 */
disk_clear_events(struct gendisk * disk,unsigned int mask)1686 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1687 {
1688 const struct block_device_operations *bdops = disk->fops;
1689 struct disk_events *ev = disk->ev;
1690 unsigned int pending;
1691 unsigned int clearing = mask;
1692
1693 if (!ev) {
1694 /* for drivers still using the old ->media_changed method */
1695 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1696 bdops->media_changed && bdops->media_changed(disk))
1697 return DISK_EVENT_MEDIA_CHANGE;
1698 return 0;
1699 }
1700
1701 disk_block_events(disk);
1702
1703 /*
1704 * store the union of mask and ev->clearing on the stack so that the
1705 * race with disk_flush_events does not cause ambiguity (ev->clearing
1706 * can still be modified even if events are blocked).
1707 */
1708 spin_lock_irq(&ev->lock);
1709 clearing |= ev->clearing;
1710 ev->clearing = 0;
1711 spin_unlock_irq(&ev->lock);
1712
1713 disk_check_events(ev, &clearing);
1714 /*
1715 * if ev->clearing is not 0, the disk_flush_events got called in the
1716 * middle of this function, so we want to run the workfn without delay.
1717 */
1718 __disk_unblock_events(disk, ev->clearing ? true : false);
1719
1720 /* then, fetch and clear pending events */
1721 spin_lock_irq(&ev->lock);
1722 pending = ev->pending & mask;
1723 ev->pending &= ~mask;
1724 spin_unlock_irq(&ev->lock);
1725 WARN_ON_ONCE(clearing & mask);
1726
1727 return pending;
1728 }
1729
1730 /*
1731 * Separate this part out so that a different pointer for clearing_ptr can be
1732 * passed in for disk_clear_events.
1733 */
disk_events_workfn(struct work_struct * work)1734 static void disk_events_workfn(struct work_struct *work)
1735 {
1736 struct delayed_work *dwork = to_delayed_work(work);
1737 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1738
1739 disk_check_events(ev, &ev->clearing);
1740 }
1741
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1742 static void disk_check_events(struct disk_events *ev,
1743 unsigned int *clearing_ptr)
1744 {
1745 struct gendisk *disk = ev->disk;
1746 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1747 unsigned int clearing = *clearing_ptr;
1748 unsigned int events;
1749 unsigned long intv;
1750 int nr_events = 0, i;
1751
1752 /* check events */
1753 events = disk->fops->check_events(disk, clearing);
1754
1755 /* accumulate pending events and schedule next poll if necessary */
1756 spin_lock_irq(&ev->lock);
1757
1758 events &= ~ev->pending;
1759 ev->pending |= events;
1760 *clearing_ptr &= ~clearing;
1761
1762 intv = disk_events_poll_jiffies(disk);
1763 if (!ev->block && intv)
1764 queue_delayed_work(system_freezable_power_efficient_wq,
1765 &ev->dwork, intv);
1766
1767 spin_unlock_irq(&ev->lock);
1768
1769 /*
1770 * Tell userland about new events. Only the events listed in
1771 * @disk->events are reported. Unlisted events are processed the
1772 * same internally but never get reported to userland.
1773 */
1774 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1775 if (events & disk->events & (1 << i))
1776 envp[nr_events++] = disk_uevents[i];
1777
1778 if (nr_events)
1779 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1780 }
1781
1782 /*
1783 * A disk events enabled device has the following sysfs nodes under
1784 * its /sys/block/X/ directory.
1785 *
1786 * events : list of all supported events
1787 * events_async : list of events which can be detected w/o polling
1788 * events_poll_msecs : polling interval, 0: disable, -1: system default
1789 */
__disk_events_show(unsigned int events,char * buf)1790 static ssize_t __disk_events_show(unsigned int events, char *buf)
1791 {
1792 const char *delim = "";
1793 ssize_t pos = 0;
1794 int i;
1795
1796 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1797 if (events & (1 << i)) {
1798 pos += sprintf(buf + pos, "%s%s",
1799 delim, disk_events_strs[i]);
1800 delim = " ";
1801 }
1802 if (pos)
1803 pos += sprintf(buf + pos, "\n");
1804 return pos;
1805 }
1806
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1807 static ssize_t disk_events_show(struct device *dev,
1808 struct device_attribute *attr, char *buf)
1809 {
1810 struct gendisk *disk = dev_to_disk(dev);
1811
1812 return __disk_events_show(disk->events, buf);
1813 }
1814
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1815 static ssize_t disk_events_async_show(struct device *dev,
1816 struct device_attribute *attr, char *buf)
1817 {
1818 struct gendisk *disk = dev_to_disk(dev);
1819
1820 return __disk_events_show(disk->async_events, buf);
1821 }
1822
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1823 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1824 struct device_attribute *attr,
1825 char *buf)
1826 {
1827 struct gendisk *disk = dev_to_disk(dev);
1828
1829 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1830 }
1831
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1832 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1833 struct device_attribute *attr,
1834 const char *buf, size_t count)
1835 {
1836 struct gendisk *disk = dev_to_disk(dev);
1837 long intv;
1838
1839 if (!count || !sscanf(buf, "%ld", &intv))
1840 return -EINVAL;
1841
1842 if (intv < 0 && intv != -1)
1843 return -EINVAL;
1844
1845 disk_block_events(disk);
1846 disk->ev->poll_msecs = intv;
1847 __disk_unblock_events(disk, true);
1848
1849 return count;
1850 }
1851
1852 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1853 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1854 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1855 disk_events_poll_msecs_show,
1856 disk_events_poll_msecs_store);
1857
1858 static const struct attribute *disk_events_attrs[] = {
1859 &dev_attr_events.attr,
1860 &dev_attr_events_async.attr,
1861 &dev_attr_events_poll_msecs.attr,
1862 NULL,
1863 };
1864
1865 /*
1866 * The default polling interval can be specified by the kernel
1867 * parameter block.events_dfl_poll_msecs which defaults to 0
1868 * (disable). This can also be modified runtime by writing to
1869 * /sys/module/block/events_dfl_poll_msecs.
1870 */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1871 static int disk_events_set_dfl_poll_msecs(const char *val,
1872 const struct kernel_param *kp)
1873 {
1874 struct disk_events *ev;
1875 int ret;
1876
1877 ret = param_set_ulong(val, kp);
1878 if (ret < 0)
1879 return ret;
1880
1881 mutex_lock(&disk_events_mutex);
1882
1883 list_for_each_entry(ev, &disk_events, node)
1884 disk_flush_events(ev->disk, 0);
1885
1886 mutex_unlock(&disk_events_mutex);
1887
1888 return 0;
1889 }
1890
1891 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1892 .set = disk_events_set_dfl_poll_msecs,
1893 .get = param_get_ulong,
1894 };
1895
1896 #undef MODULE_PARAM_PREFIX
1897 #define MODULE_PARAM_PREFIX "block."
1898
1899 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1900 &disk_events_dfl_poll_msecs, 0644);
1901
1902 /*
1903 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1904 */
disk_alloc_events(struct gendisk * disk)1905 static void disk_alloc_events(struct gendisk *disk)
1906 {
1907 struct disk_events *ev;
1908
1909 if (!disk->fops->check_events)
1910 return;
1911
1912 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1913 if (!ev) {
1914 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1915 return;
1916 }
1917
1918 INIT_LIST_HEAD(&ev->node);
1919 ev->disk = disk;
1920 spin_lock_init(&ev->lock);
1921 mutex_init(&ev->block_mutex);
1922 ev->block = 1;
1923 ev->poll_msecs = -1;
1924 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1925
1926 disk->ev = ev;
1927 }
1928
disk_add_events(struct gendisk * disk)1929 static void disk_add_events(struct gendisk *disk)
1930 {
1931 if (!disk->ev)
1932 return;
1933
1934 /* FIXME: error handling */
1935 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1936 pr_warn("%s: failed to create sysfs files for events\n",
1937 disk->disk_name);
1938
1939 mutex_lock(&disk_events_mutex);
1940 list_add_tail(&disk->ev->node, &disk_events);
1941 mutex_unlock(&disk_events_mutex);
1942
1943 /*
1944 * Block count is initialized to 1 and the following initial
1945 * unblock kicks it into action.
1946 */
1947 __disk_unblock_events(disk, true);
1948 }
1949
disk_del_events(struct gendisk * disk)1950 static void disk_del_events(struct gendisk *disk)
1951 {
1952 if (!disk->ev)
1953 return;
1954
1955 disk_block_events(disk);
1956
1957 mutex_lock(&disk_events_mutex);
1958 list_del_init(&disk->ev->node);
1959 mutex_unlock(&disk_events_mutex);
1960
1961 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1962 }
1963
disk_release_events(struct gendisk * disk)1964 static void disk_release_events(struct gendisk *disk)
1965 {
1966 /* the block count should be 1 from disk_del_events() */
1967 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1968 kfree(disk->ev);
1969 }
1970