1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19
20 #include <linux/slab.h>
21 #include <uapi/linux/sched/types.h>
22
23 #include "walt.h"
24
25 struct dl_bandwidth def_dl_bandwidth;
26
dl_task_of(struct sched_dl_entity * dl_se)27 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
28 {
29 return container_of(dl_se, struct task_struct, dl);
30 }
31
rq_of_dl_rq(struct dl_rq * dl_rq)32 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
33 {
34 return container_of(dl_rq, struct rq, dl);
35 }
36
dl_rq_of_se(struct sched_dl_entity * dl_se)37 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
38 {
39 struct task_struct *p = dl_task_of(dl_se);
40 struct rq *rq = task_rq(p);
41
42 return &rq->dl;
43 }
44
on_dl_rq(struct sched_dl_entity * dl_se)45 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
46 {
47 return !RB_EMPTY_NODE(&dl_se->rb_node);
48 }
49
50 #ifdef CONFIG_SMP
dl_bw_of(int i)51 static inline struct dl_bw *dl_bw_of(int i)
52 {
53 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
54 "sched RCU must be held");
55 return &cpu_rq(i)->rd->dl_bw;
56 }
57
dl_bw_cpus(int i)58 static inline int dl_bw_cpus(int i)
59 {
60 struct root_domain *rd = cpu_rq(i)->rd;
61 int cpus = 0;
62
63 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
64 "sched RCU must be held");
65 for_each_cpu_and(i, rd->span, cpu_active_mask)
66 cpus++;
67
68 return cpus;
69 }
70 #else
dl_bw_of(int i)71 static inline struct dl_bw *dl_bw_of(int i)
72 {
73 return &cpu_rq(i)->dl.dl_bw;
74 }
75
dl_bw_cpus(int i)76 static inline int dl_bw_cpus(int i)
77 {
78 return 1;
79 }
80 #endif
81
82 static inline
add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)83 void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
84 {
85 u64 old = dl_rq->running_bw;
86
87 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
88 dl_rq->running_bw += dl_bw;
89 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
90 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
91 }
92
93 static inline
sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)94 void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
95 {
96 u64 old = dl_rq->running_bw;
97
98 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
99 dl_rq->running_bw -= dl_bw;
100 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
101 if (dl_rq->running_bw > old)
102 dl_rq->running_bw = 0;
103 }
104
105 static inline
add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)106 void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 u64 old = dl_rq->this_bw;
109
110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 dl_rq->this_bw += dl_bw;
112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114
115 static inline
sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)116 void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 u64 old = dl_rq->this_bw;
119
120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 dl_rq->this_bw -= dl_bw;
122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 if (dl_rq->this_bw > old)
124 dl_rq->this_bw = 0;
125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127
dl_change_utilization(struct task_struct * p,u64 new_bw)128 void dl_change_utilization(struct task_struct *p, u64 new_bw)
129 {
130 struct rq *rq;
131
132 if (task_on_rq_queued(p))
133 return;
134
135 rq = task_rq(p);
136 if (p->dl.dl_non_contending) {
137 sub_running_bw(p->dl.dl_bw, &rq->dl);
138 p->dl.dl_non_contending = 0;
139 /*
140 * If the timer handler is currently running and the
141 * timer cannot be cancelled, inactive_task_timer()
142 * will see that dl_not_contending is not set, and
143 * will not touch the rq's active utilization,
144 * so we are still safe.
145 */
146 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
147 put_task_struct(p);
148 }
149 sub_rq_bw(p->dl.dl_bw, &rq->dl);
150 add_rq_bw(new_bw, &rq->dl);
151 }
152
153 /*
154 * The utilization of a task cannot be immediately removed from
155 * the rq active utilization (running_bw) when the task blocks.
156 * Instead, we have to wait for the so called "0-lag time".
157 *
158 * If a task blocks before the "0-lag time", a timer (the inactive
159 * timer) is armed, and running_bw is decreased when the timer
160 * fires.
161 *
162 * If the task wakes up again before the inactive timer fires,
163 * the timer is cancelled, whereas if the task wakes up after the
164 * inactive timer fired (and running_bw has been decreased) the
165 * task's utilization has to be added to running_bw again.
166 * A flag in the deadline scheduling entity (dl_non_contending)
167 * is used to avoid race conditions between the inactive timer handler
168 * and task wakeups.
169 *
170 * The following diagram shows how running_bw is updated. A task is
171 * "ACTIVE" when its utilization contributes to running_bw; an
172 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
173 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
174 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
175 * time already passed, which does not contribute to running_bw anymore.
176 * +------------------+
177 * wakeup | ACTIVE |
178 * +------------------>+ contending |
179 * | add_running_bw | |
180 * | +----+------+------+
181 * | | ^
182 * | dequeue | |
183 * +--------+-------+ | |
184 * | | t >= 0-lag | | wakeup
185 * | INACTIVE |<---------------+ |
186 * | | sub_running_bw | |
187 * +--------+-------+ | |
188 * ^ | |
189 * | t < 0-lag | |
190 * | | |
191 * | V |
192 * | +----+------+------+
193 * | sub_running_bw | ACTIVE |
194 * +-------------------+ |
195 * inactive timer | non contending |
196 * fired +------------------+
197 *
198 * The task_non_contending() function is invoked when a task
199 * blocks, and checks if the 0-lag time already passed or
200 * not (in the first case, it directly updates running_bw;
201 * in the second case, it arms the inactive timer).
202 *
203 * The task_contending() function is invoked when a task wakes
204 * up, and checks if the task is still in the "ACTIVE non contending"
205 * state or not (in the second case, it updates running_bw).
206 */
task_non_contending(struct task_struct * p)207 static void task_non_contending(struct task_struct *p)
208 {
209 struct sched_dl_entity *dl_se = &p->dl;
210 struct hrtimer *timer = &dl_se->inactive_timer;
211 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
212 struct rq *rq = rq_of_dl_rq(dl_rq);
213 s64 zerolag_time;
214
215 /*
216 * If this is a non-deadline task that has been boosted,
217 * do nothing
218 */
219 if (dl_se->dl_runtime == 0)
220 return;
221
222 WARN_ON(dl_se->dl_non_contending);
223
224 zerolag_time = dl_se->deadline -
225 div64_long((dl_se->runtime * dl_se->dl_period),
226 dl_se->dl_runtime);
227
228 /*
229 * Using relative times instead of the absolute "0-lag time"
230 * allows to simplify the code
231 */
232 zerolag_time -= rq_clock(rq);
233
234 /*
235 * If the "0-lag time" already passed, decrease the active
236 * utilization now, instead of starting a timer
237 */
238 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
239 if (dl_task(p))
240 sub_running_bw(dl_se->dl_bw, dl_rq);
241 if (!dl_task(p) || p->state == TASK_DEAD) {
242 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
243
244 if (p->state == TASK_DEAD)
245 sub_rq_bw(p->dl.dl_bw, &rq->dl);
246 raw_spin_lock(&dl_b->lock);
247 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
248 __dl_clear_params(p);
249 raw_spin_unlock(&dl_b->lock);
250 }
251
252 return;
253 }
254
255 dl_se->dl_non_contending = 1;
256 get_task_struct(p);
257 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
258 }
259
task_contending(struct sched_dl_entity * dl_se,int flags)260 static void task_contending(struct sched_dl_entity *dl_se, int flags)
261 {
262 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
263
264 /*
265 * If this is a non-deadline task that has been boosted,
266 * do nothing
267 */
268 if (dl_se->dl_runtime == 0)
269 return;
270
271 if (flags & ENQUEUE_MIGRATED)
272 add_rq_bw(dl_se->dl_bw, dl_rq);
273
274 if (dl_se->dl_non_contending) {
275 dl_se->dl_non_contending = 0;
276 /*
277 * If the timer handler is currently running and the
278 * timer cannot be cancelled, inactive_task_timer()
279 * will see that dl_not_contending is not set, and
280 * will not touch the rq's active utilization,
281 * so we are still safe.
282 */
283 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
284 put_task_struct(dl_task_of(dl_se));
285 } else {
286 /*
287 * Since "dl_non_contending" is not set, the
288 * task's utilization has already been removed from
289 * active utilization (either when the task blocked,
290 * when the "inactive timer" fired).
291 * So, add it back.
292 */
293 add_running_bw(dl_se->dl_bw, dl_rq);
294 }
295 }
296
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)297 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
298 {
299 struct sched_dl_entity *dl_se = &p->dl;
300
301 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
302 }
303
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)304 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
305 {
306 raw_spin_lock_init(&dl_b->dl_runtime_lock);
307 dl_b->dl_period = period;
308 dl_b->dl_runtime = runtime;
309 }
310
init_dl_bw(struct dl_bw * dl_b)311 void init_dl_bw(struct dl_bw *dl_b)
312 {
313 raw_spin_lock_init(&dl_b->lock);
314 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
315 if (global_rt_runtime() == RUNTIME_INF)
316 dl_b->bw = -1;
317 else
318 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
319 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
320 dl_b->total_bw = 0;
321 }
322
init_dl_rq(struct dl_rq * dl_rq)323 void init_dl_rq(struct dl_rq *dl_rq)
324 {
325 dl_rq->root = RB_ROOT_CACHED;
326
327 #ifdef CONFIG_SMP
328 /* zero means no -deadline tasks */
329 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
330
331 dl_rq->dl_nr_migratory = 0;
332 dl_rq->overloaded = 0;
333 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
334 #else
335 init_dl_bw(&dl_rq->dl_bw);
336 #endif
337
338 dl_rq->running_bw = 0;
339 dl_rq->this_bw = 0;
340 init_dl_rq_bw_ratio(dl_rq);
341 }
342
343 #ifdef CONFIG_SMP
344
dl_overloaded(struct rq * rq)345 static inline int dl_overloaded(struct rq *rq)
346 {
347 return atomic_read(&rq->rd->dlo_count);
348 }
349
dl_set_overload(struct rq * rq)350 static inline void dl_set_overload(struct rq *rq)
351 {
352 if (!rq->online)
353 return;
354
355 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
356 /*
357 * Must be visible before the overload count is
358 * set (as in sched_rt.c).
359 *
360 * Matched by the barrier in pull_dl_task().
361 */
362 smp_wmb();
363 atomic_inc(&rq->rd->dlo_count);
364 }
365
dl_clear_overload(struct rq * rq)366 static inline void dl_clear_overload(struct rq *rq)
367 {
368 if (!rq->online)
369 return;
370
371 atomic_dec(&rq->rd->dlo_count);
372 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
373 }
374
update_dl_migration(struct dl_rq * dl_rq)375 static void update_dl_migration(struct dl_rq *dl_rq)
376 {
377 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
378 if (!dl_rq->overloaded) {
379 dl_set_overload(rq_of_dl_rq(dl_rq));
380 dl_rq->overloaded = 1;
381 }
382 } else if (dl_rq->overloaded) {
383 dl_clear_overload(rq_of_dl_rq(dl_rq));
384 dl_rq->overloaded = 0;
385 }
386 }
387
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)388 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
389 {
390 struct task_struct *p = dl_task_of(dl_se);
391
392 if (p->nr_cpus_allowed > 1)
393 dl_rq->dl_nr_migratory++;
394
395 update_dl_migration(dl_rq);
396 }
397
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)398 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
399 {
400 struct task_struct *p = dl_task_of(dl_se);
401
402 if (p->nr_cpus_allowed > 1)
403 dl_rq->dl_nr_migratory--;
404
405 update_dl_migration(dl_rq);
406 }
407
408 /*
409 * The list of pushable -deadline task is not a plist, like in
410 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
411 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)412 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
413 {
414 struct dl_rq *dl_rq = &rq->dl;
415 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct task_struct *entry;
418 bool leftmost = true;
419
420 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
421
422 while (*link) {
423 parent = *link;
424 entry = rb_entry(parent, struct task_struct,
425 pushable_dl_tasks);
426 if (dl_entity_preempt(&p->dl, &entry->dl))
427 link = &parent->rb_left;
428 else {
429 link = &parent->rb_right;
430 leftmost = false;
431 }
432 }
433
434 if (leftmost)
435 dl_rq->earliest_dl.next = p->dl.deadline;
436
437 rb_link_node(&p->pushable_dl_tasks, parent, link);
438 rb_insert_color_cached(&p->pushable_dl_tasks,
439 &dl_rq->pushable_dl_tasks_root, leftmost);
440 }
441
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)442 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
443 {
444 struct dl_rq *dl_rq = &rq->dl;
445
446 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
447 return;
448
449 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
450 struct rb_node *next_node;
451
452 next_node = rb_next(&p->pushable_dl_tasks);
453 if (next_node) {
454 dl_rq->earliest_dl.next = rb_entry(next_node,
455 struct task_struct, pushable_dl_tasks)->dl.deadline;
456 }
457 }
458
459 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
460 RB_CLEAR_NODE(&p->pushable_dl_tasks);
461 }
462
has_pushable_dl_tasks(struct rq * rq)463 static inline int has_pushable_dl_tasks(struct rq *rq)
464 {
465 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
466 }
467
468 static int push_dl_task(struct rq *rq);
469
need_pull_dl_task(struct rq * rq,struct task_struct * prev)470 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
471 {
472 return dl_task(prev);
473 }
474
475 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
476 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
477
478 static void push_dl_tasks(struct rq *);
479 static void pull_dl_task(struct rq *);
480
queue_push_tasks(struct rq * rq)481 static inline void queue_push_tasks(struct rq *rq)
482 {
483 if (!has_pushable_dl_tasks(rq))
484 return;
485
486 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
487 }
488
queue_pull_task(struct rq * rq)489 static inline void queue_pull_task(struct rq *rq)
490 {
491 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
492 }
493
494 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
495
dl_task_offline_migration(struct rq * rq,struct task_struct * p)496 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
497 {
498 struct rq *later_rq = NULL;
499
500 later_rq = find_lock_later_rq(p, rq);
501 if (!later_rq) {
502 int cpu;
503
504 /*
505 * If we cannot preempt any rq, fall back to pick any
506 * online cpu.
507 */
508 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
509 if (cpu >= nr_cpu_ids) {
510 /*
511 * Fail to find any suitable cpu.
512 * The task will never come back!
513 */
514 BUG_ON(dl_bandwidth_enabled());
515
516 /*
517 * If admission control is disabled we
518 * try a little harder to let the task
519 * run.
520 */
521 cpu = cpumask_any(cpu_active_mask);
522 }
523 later_rq = cpu_rq(cpu);
524 double_lock_balance(rq, later_rq);
525 }
526
527 set_task_cpu(p, later_rq->cpu);
528 double_unlock_balance(later_rq, rq);
529
530 return later_rq;
531 }
532
533 #else
534
535 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)536 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
537 {
538 }
539
540 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)541 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
542 {
543 }
544
545 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)546 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
547 {
548 }
549
550 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)551 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
552 {
553 }
554
need_pull_dl_task(struct rq * rq,struct task_struct * prev)555 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
556 {
557 return false;
558 }
559
pull_dl_task(struct rq * rq)560 static inline void pull_dl_task(struct rq *rq)
561 {
562 }
563
queue_push_tasks(struct rq * rq)564 static inline void queue_push_tasks(struct rq *rq)
565 {
566 }
567
queue_pull_task(struct rq * rq)568 static inline void queue_pull_task(struct rq *rq)
569 {
570 }
571 #endif /* CONFIG_SMP */
572
573 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
574 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
575 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
576 int flags);
577
578 /*
579 * We are being explicitly informed that a new instance is starting,
580 * and this means that:
581 * - the absolute deadline of the entity has to be placed at
582 * current time + relative deadline;
583 * - the runtime of the entity has to be set to the maximum value.
584 *
585 * The capability of specifying such event is useful whenever a -deadline
586 * entity wants to (try to!) synchronize its behaviour with the scheduler's
587 * one, and to (try to!) reconcile itself with its own scheduling
588 * parameters.
589 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)590 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
591 {
592 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
593 struct rq *rq = rq_of_dl_rq(dl_rq);
594
595 WARN_ON(dl_se->dl_boosted);
596 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
597
598 /*
599 * We are racing with the deadline timer. So, do nothing because
600 * the deadline timer handler will take care of properly recharging
601 * the runtime and postponing the deadline
602 */
603 if (dl_se->dl_throttled)
604 return;
605
606 /*
607 * We use the regular wall clock time to set deadlines in the
608 * future; in fact, we must consider execution overheads (time
609 * spent on hardirq context, etc.).
610 */
611 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
612 dl_se->runtime = dl_se->dl_runtime;
613 }
614
615 /*
616 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
617 * possibility of a entity lasting more than what it declared, and thus
618 * exhausting its runtime.
619 *
620 * Here we are interested in making runtime overrun possible, but we do
621 * not want a entity which is misbehaving to affect the scheduling of all
622 * other entities.
623 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
624 * is used, in order to confine each entity within its own bandwidth.
625 *
626 * This function deals exactly with that, and ensures that when the runtime
627 * of a entity is replenished, its deadline is also postponed. That ensures
628 * the overrunning entity can't interfere with other entity in the system and
629 * can't make them miss their deadlines. Reasons why this kind of overruns
630 * could happen are, typically, a entity voluntarily trying to overcome its
631 * runtime, or it just underestimated it during sched_setattr().
632 */
replenish_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se)633 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
634 struct sched_dl_entity *pi_se)
635 {
636 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
637 struct rq *rq = rq_of_dl_rq(dl_rq);
638
639 BUG_ON(pi_se->dl_runtime <= 0);
640
641 /*
642 * This could be the case for a !-dl task that is boosted.
643 * Just go with full inherited parameters.
644 */
645 if (dl_se->dl_deadline == 0) {
646 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
647 dl_se->runtime = pi_se->dl_runtime;
648 }
649
650 if (dl_se->dl_yielded && dl_se->runtime > 0)
651 dl_se->runtime = 0;
652
653 /*
654 * We keep moving the deadline away until we get some
655 * available runtime for the entity. This ensures correct
656 * handling of situations where the runtime overrun is
657 * arbitrary large.
658 */
659 while (dl_se->runtime <= 0) {
660 dl_se->deadline += pi_se->dl_period;
661 dl_se->runtime += pi_se->dl_runtime;
662 }
663
664 /*
665 * At this point, the deadline really should be "in
666 * the future" with respect to rq->clock. If it's
667 * not, we are, for some reason, lagging too much!
668 * Anyway, after having warn userspace abut that,
669 * we still try to keep the things running by
670 * resetting the deadline and the budget of the
671 * entity.
672 */
673 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
674 printk_deferred_once("sched: DL replenish lagged too much\n");
675 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
676 dl_se->runtime = pi_se->dl_runtime;
677 }
678
679 if (dl_se->dl_yielded)
680 dl_se->dl_yielded = 0;
681 if (dl_se->dl_throttled)
682 dl_se->dl_throttled = 0;
683 }
684
685 /*
686 * Here we check if --at time t-- an entity (which is probably being
687 * [re]activated or, in general, enqueued) can use its remaining runtime
688 * and its current deadline _without_ exceeding the bandwidth it is
689 * assigned (function returns true if it can't). We are in fact applying
690 * one of the CBS rules: when a task wakes up, if the residual runtime
691 * over residual deadline fits within the allocated bandwidth, then we
692 * can keep the current (absolute) deadline and residual budget without
693 * disrupting the schedulability of the system. Otherwise, we should
694 * refill the runtime and set the deadline a period in the future,
695 * because keeping the current (absolute) deadline of the task would
696 * result in breaking guarantees promised to other tasks (refer to
697 * Documentation/scheduler/sched-deadline.txt for more informations).
698 *
699 * This function returns true if:
700 *
701 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
702 *
703 * IOW we can't recycle current parameters.
704 *
705 * Notice that the bandwidth check is done against the deadline. For
706 * task with deadline equal to period this is the same of using
707 * dl_period instead of dl_deadline in the equation above.
708 */
dl_entity_overflow(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se,u64 t)709 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
710 struct sched_dl_entity *pi_se, u64 t)
711 {
712 u64 left, right;
713
714 /*
715 * left and right are the two sides of the equation above,
716 * after a bit of shuffling to use multiplications instead
717 * of divisions.
718 *
719 * Note that none of the time values involved in the two
720 * multiplications are absolute: dl_deadline and dl_runtime
721 * are the relative deadline and the maximum runtime of each
722 * instance, runtime is the runtime left for the last instance
723 * and (deadline - t), since t is rq->clock, is the time left
724 * to the (absolute) deadline. Even if overflowing the u64 type
725 * is very unlikely to occur in both cases, here we scale down
726 * as we want to avoid that risk at all. Scaling down by 10
727 * means that we reduce granularity to 1us. We are fine with it,
728 * since this is only a true/false check and, anyway, thinking
729 * of anything below microseconds resolution is actually fiction
730 * (but still we want to give the user that illusion >;).
731 */
732 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
733 right = ((dl_se->deadline - t) >> DL_SCALE) *
734 (pi_se->dl_runtime >> DL_SCALE);
735
736 return dl_time_before(right, left);
737 }
738
739 /*
740 * Revised wakeup rule [1]: For self-suspending tasks, rather then
741 * re-initializing task's runtime and deadline, the revised wakeup
742 * rule adjusts the task's runtime to avoid the task to overrun its
743 * density.
744 *
745 * Reasoning: a task may overrun the density if:
746 * runtime / (deadline - t) > dl_runtime / dl_deadline
747 *
748 * Therefore, runtime can be adjusted to:
749 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
750 *
751 * In such way that runtime will be equal to the maximum density
752 * the task can use without breaking any rule.
753 *
754 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
755 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
756 */
757 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)758 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
759 {
760 u64 laxity = dl_se->deadline - rq_clock(rq);
761
762 /*
763 * If the task has deadline < period, and the deadline is in the past,
764 * it should already be throttled before this check.
765 *
766 * See update_dl_entity() comments for further details.
767 */
768 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
769
770 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
771 }
772
773 /*
774 * Regarding the deadline, a task with implicit deadline has a relative
775 * deadline == relative period. A task with constrained deadline has a
776 * relative deadline <= relative period.
777 *
778 * We support constrained deadline tasks. However, there are some restrictions
779 * applied only for tasks which do not have an implicit deadline. See
780 * update_dl_entity() to know more about such restrictions.
781 *
782 * The dl_is_implicit() returns true if the task has an implicit deadline.
783 */
dl_is_implicit(struct sched_dl_entity * dl_se)784 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
785 {
786 return dl_se->dl_deadline == dl_se->dl_period;
787 }
788
789 /*
790 * When a deadline entity is placed in the runqueue, its runtime and deadline
791 * might need to be updated. This is done by a CBS wake up rule. There are two
792 * different rules: 1) the original CBS; and 2) the Revisited CBS.
793 *
794 * When the task is starting a new period, the Original CBS is used. In this
795 * case, the runtime is replenished and a new absolute deadline is set.
796 *
797 * When a task is queued before the begin of the next period, using the
798 * remaining runtime and deadline could make the entity to overflow, see
799 * dl_entity_overflow() to find more about runtime overflow. When such case
800 * is detected, the runtime and deadline need to be updated.
801 *
802 * If the task has an implicit deadline, i.e., deadline == period, the Original
803 * CBS is applied. the runtime is replenished and a new absolute deadline is
804 * set, as in the previous cases.
805 *
806 * However, the Original CBS does not work properly for tasks with
807 * deadline < period, which are said to have a constrained deadline. By
808 * applying the Original CBS, a constrained deadline task would be able to run
809 * runtime/deadline in a period. With deadline < period, the task would
810 * overrun the runtime/period allowed bandwidth, breaking the admission test.
811 *
812 * In order to prevent this misbehave, the Revisited CBS is used for
813 * constrained deadline tasks when a runtime overflow is detected. In the
814 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
815 * the remaining runtime of the task is reduced to avoid runtime overflow.
816 * Please refer to the comments update_dl_revised_wakeup() function to find
817 * more about the Revised CBS rule.
818 */
update_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se)819 static void update_dl_entity(struct sched_dl_entity *dl_se,
820 struct sched_dl_entity *pi_se)
821 {
822 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
823 struct rq *rq = rq_of_dl_rq(dl_rq);
824
825 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
826 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
827
828 if (unlikely(!dl_is_implicit(dl_se) &&
829 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
830 !dl_se->dl_boosted)){
831 update_dl_revised_wakeup(dl_se, rq);
832 return;
833 }
834
835 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
836 dl_se->runtime = pi_se->dl_runtime;
837 }
838 }
839
dl_next_period(struct sched_dl_entity * dl_se)840 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
841 {
842 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
843 }
844
845 /*
846 * If the entity depleted all its runtime, and if we want it to sleep
847 * while waiting for some new execution time to become available, we
848 * set the bandwidth replenishment timer to the replenishment instant
849 * and try to activate it.
850 *
851 * Notice that it is important for the caller to know if the timer
852 * actually started or not (i.e., the replenishment instant is in
853 * the future or in the past).
854 */
start_dl_timer(struct task_struct * p)855 static int start_dl_timer(struct task_struct *p)
856 {
857 struct sched_dl_entity *dl_se = &p->dl;
858 struct hrtimer *timer = &dl_se->dl_timer;
859 struct rq *rq = task_rq(p);
860 ktime_t now, act;
861 s64 delta;
862
863 lockdep_assert_held(&rq->lock);
864
865 /*
866 * We want the timer to fire at the deadline, but considering
867 * that it is actually coming from rq->clock and not from
868 * hrtimer's time base reading.
869 */
870 act = ns_to_ktime(dl_next_period(dl_se));
871 now = hrtimer_cb_get_time(timer);
872 delta = ktime_to_ns(now) - rq_clock(rq);
873 act = ktime_add_ns(act, delta);
874
875 /*
876 * If the expiry time already passed, e.g., because the value
877 * chosen as the deadline is too small, don't even try to
878 * start the timer in the past!
879 */
880 if (ktime_us_delta(act, now) < 0)
881 return 0;
882
883 /*
884 * !enqueued will guarantee another callback; even if one is already in
885 * progress. This ensures a balanced {get,put}_task_struct().
886 *
887 * The race against __run_timer() clearing the enqueued state is
888 * harmless because we're holding task_rq()->lock, therefore the timer
889 * expiring after we've done the check will wait on its task_rq_lock()
890 * and observe our state.
891 */
892 if (!hrtimer_is_queued(timer)) {
893 get_task_struct(p);
894 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
895 }
896
897 return 1;
898 }
899
900 /*
901 * This is the bandwidth enforcement timer callback. If here, we know
902 * a task is not on its dl_rq, since the fact that the timer was running
903 * means the task is throttled and needs a runtime replenishment.
904 *
905 * However, what we actually do depends on the fact the task is active,
906 * (it is on its rq) or has been removed from there by a call to
907 * dequeue_task_dl(). In the former case we must issue the runtime
908 * replenishment and add the task back to the dl_rq; in the latter, we just
909 * do nothing but clearing dl_throttled, so that runtime and deadline
910 * updating (and the queueing back to dl_rq) will be done by the
911 * next call to enqueue_task_dl().
912 */
dl_task_timer(struct hrtimer * timer)913 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
914 {
915 struct sched_dl_entity *dl_se = container_of(timer,
916 struct sched_dl_entity,
917 dl_timer);
918 struct task_struct *p = dl_task_of(dl_se);
919 struct rq_flags rf;
920 struct rq *rq;
921
922 rq = task_rq_lock(p, &rf);
923
924 /*
925 * The task might have changed its scheduling policy to something
926 * different than SCHED_DEADLINE (through switched_from_dl()).
927 */
928 if (!dl_task(p))
929 goto unlock;
930
931 /*
932 * The task might have been boosted by someone else and might be in the
933 * boosting/deboosting path, its not throttled.
934 */
935 if (dl_se->dl_boosted)
936 goto unlock;
937
938 /*
939 * Spurious timer due to start_dl_timer() race; or we already received
940 * a replenishment from rt_mutex_setprio().
941 */
942 if (!dl_se->dl_throttled)
943 goto unlock;
944
945 sched_clock_tick();
946 update_rq_clock(rq);
947
948 /*
949 * If the throttle happened during sched-out; like:
950 *
951 * schedule()
952 * deactivate_task()
953 * dequeue_task_dl()
954 * update_curr_dl()
955 * start_dl_timer()
956 * __dequeue_task_dl()
957 * prev->on_rq = 0;
958 *
959 * We can be both throttled and !queued. Replenish the counter
960 * but do not enqueue -- wait for our wakeup to do that.
961 */
962 if (!task_on_rq_queued(p)) {
963 replenish_dl_entity(dl_se, dl_se);
964 goto unlock;
965 }
966
967 #ifdef CONFIG_SMP
968 if (unlikely(!rq->online)) {
969 /*
970 * If the runqueue is no longer available, migrate the
971 * task elsewhere. This necessarily changes rq.
972 */
973 lockdep_unpin_lock(&rq->lock, rf.cookie);
974 rq = dl_task_offline_migration(rq, p);
975 rf.cookie = lockdep_pin_lock(&rq->lock);
976 update_rq_clock(rq);
977
978 /*
979 * Now that the task has been migrated to the new RQ and we
980 * have that locked, proceed as normal and enqueue the task
981 * there.
982 */
983 }
984 #endif
985
986 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
987 if (dl_task(rq->curr))
988 check_preempt_curr_dl(rq, p, 0);
989 else
990 resched_curr(rq);
991
992 #ifdef CONFIG_SMP
993 /*
994 * Queueing this task back might have overloaded rq, check if we need
995 * to kick someone away.
996 */
997 if (has_pushable_dl_tasks(rq)) {
998 /*
999 * Nothing relies on rq->lock after this, so its safe to drop
1000 * rq->lock.
1001 */
1002 rq_unpin_lock(rq, &rf);
1003 push_dl_task(rq);
1004 rq_repin_lock(rq, &rf);
1005 }
1006 #endif
1007
1008 unlock:
1009 task_rq_unlock(rq, p, &rf);
1010
1011 /*
1012 * This can free the task_struct, including this hrtimer, do not touch
1013 * anything related to that after this.
1014 */
1015 put_task_struct(p);
1016
1017 return HRTIMER_NORESTART;
1018 }
1019
init_dl_task_timer(struct sched_dl_entity * dl_se)1020 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1021 {
1022 struct hrtimer *timer = &dl_se->dl_timer;
1023
1024 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1025 timer->function = dl_task_timer;
1026 }
1027
1028 /*
1029 * During the activation, CBS checks if it can reuse the current task's
1030 * runtime and period. If the deadline of the task is in the past, CBS
1031 * cannot use the runtime, and so it replenishes the task. This rule
1032 * works fine for implicit deadline tasks (deadline == period), and the
1033 * CBS was designed for implicit deadline tasks. However, a task with
1034 * constrained deadline (deadine < period) might be awakened after the
1035 * deadline, but before the next period. In this case, replenishing the
1036 * task would allow it to run for runtime / deadline. As in this case
1037 * deadline < period, CBS enables a task to run for more than the
1038 * runtime / period. In a very loaded system, this can cause a domino
1039 * effect, making other tasks miss their deadlines.
1040 *
1041 * To avoid this problem, in the activation of a constrained deadline
1042 * task after the deadline but before the next period, throttle the
1043 * task and set the replenishing timer to the begin of the next period,
1044 * unless it is boosted.
1045 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1046 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1047 {
1048 struct task_struct *p = dl_task_of(dl_se);
1049 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1050
1051 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1052 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1053 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1054 return;
1055 dl_se->dl_throttled = 1;
1056 if (dl_se->runtime > 0)
1057 dl_se->runtime = 0;
1058 }
1059 }
1060
1061 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1062 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1063 {
1064 return (dl_se->runtime <= 0);
1065 }
1066
1067 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1068
1069 /*
1070 * This function implements the GRUB accounting rule:
1071 * according to the GRUB reclaiming algorithm, the runtime is
1072 * not decreased as "dq = -dt", but as
1073 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1074 * where u is the utilization of the task, Umax is the maximum reclaimable
1075 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1076 * as the difference between the "total runqueue utilization" and the
1077 * runqueue active utilization, and Uextra is the (per runqueue) extra
1078 * reclaimable utilization.
1079 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1080 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1081 * BW_SHIFT.
1082 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1083 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1084 * Since delta is a 64 bit variable, to have an overflow its value
1085 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1086 * So, overflow is not an issue here.
1087 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1088 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1089 {
1090 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1091 u64 u_act;
1092 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1093
1094 /*
1095 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1096 * we compare u_inact + rq->dl.extra_bw with
1097 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1098 * u_inact + rq->dl.extra_bw can be larger than
1099 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1100 * leading to wrong results)
1101 */
1102 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1103 u_act = u_act_min;
1104 else
1105 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1106
1107 return (delta * u_act) >> BW_SHIFT;
1108 }
1109
1110 /*
1111 * Update the current task's runtime statistics (provided it is still
1112 * a -deadline task and has not been removed from the dl_rq).
1113 */
update_curr_dl(struct rq * rq)1114 static void update_curr_dl(struct rq *rq)
1115 {
1116 struct task_struct *curr = rq->curr;
1117 struct sched_dl_entity *dl_se = &curr->dl;
1118 u64 delta_exec;
1119
1120 if (!dl_task(curr) || !on_dl_rq(dl_se))
1121 return;
1122
1123 /*
1124 * Consumed budget is computed considering the time as
1125 * observed by schedulable tasks (excluding time spent
1126 * in hardirq context, etc.). Deadlines are instead
1127 * computed using hard walltime. This seems to be the more
1128 * natural solution, but the full ramifications of this
1129 * approach need further study.
1130 */
1131 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1132 if (unlikely((s64)delta_exec <= 0)) {
1133 if (unlikely(dl_se->dl_yielded))
1134 goto throttle;
1135 return;
1136 }
1137
1138 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
1139 cpufreq_update_util(rq, SCHED_CPUFREQ_DL);
1140
1141 schedstat_set(curr->se.statistics.exec_max,
1142 max(curr->se.statistics.exec_max, delta_exec));
1143
1144 curr->se.sum_exec_runtime += delta_exec;
1145 account_group_exec_runtime(curr, delta_exec);
1146
1147 curr->se.exec_start = rq_clock_task(rq);
1148 cpuacct_charge(curr, delta_exec);
1149
1150 sched_rt_avg_update(rq, delta_exec);
1151
1152 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM))
1153 delta_exec = grub_reclaim(delta_exec, rq, &curr->dl);
1154 dl_se->runtime -= delta_exec;
1155
1156 throttle:
1157 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1158 dl_se->dl_throttled = 1;
1159 __dequeue_task_dl(rq, curr, 0);
1160 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1161 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1162
1163 if (!is_leftmost(curr, &rq->dl))
1164 resched_curr(rq);
1165 }
1166
1167 /*
1168 * Because -- for now -- we share the rt bandwidth, we need to
1169 * account our runtime there too, otherwise actual rt tasks
1170 * would be able to exceed the shared quota.
1171 *
1172 * Account to the root rt group for now.
1173 *
1174 * The solution we're working towards is having the RT groups scheduled
1175 * using deadline servers -- however there's a few nasties to figure
1176 * out before that can happen.
1177 */
1178 if (rt_bandwidth_enabled()) {
1179 struct rt_rq *rt_rq = &rq->rt;
1180
1181 raw_spin_lock(&rt_rq->rt_runtime_lock);
1182 /*
1183 * We'll let actual RT tasks worry about the overflow here, we
1184 * have our own CBS to keep us inline; only account when RT
1185 * bandwidth is relevant.
1186 */
1187 if (sched_rt_bandwidth_account(rt_rq))
1188 rt_rq->rt_time += delta_exec;
1189 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1190 }
1191 }
1192
inactive_task_timer(struct hrtimer * timer)1193 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1194 {
1195 struct sched_dl_entity *dl_se = container_of(timer,
1196 struct sched_dl_entity,
1197 inactive_timer);
1198 struct task_struct *p = dl_task_of(dl_se);
1199 struct rq_flags rf;
1200 struct rq *rq;
1201
1202 rq = task_rq_lock(p, &rf);
1203
1204 if (!dl_task(p) || p->state == TASK_DEAD) {
1205 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1206
1207 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1208 sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1209 sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
1210 dl_se->dl_non_contending = 0;
1211 }
1212
1213 raw_spin_lock(&dl_b->lock);
1214 __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1215 raw_spin_unlock(&dl_b->lock);
1216 __dl_clear_params(p);
1217
1218 goto unlock;
1219 }
1220 if (dl_se->dl_non_contending == 0)
1221 goto unlock;
1222
1223 sched_clock_tick();
1224 update_rq_clock(rq);
1225
1226 sub_running_bw(dl_se->dl_bw, &rq->dl);
1227 dl_se->dl_non_contending = 0;
1228 unlock:
1229 task_rq_unlock(rq, p, &rf);
1230 put_task_struct(p);
1231
1232 return HRTIMER_NORESTART;
1233 }
1234
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1235 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1236 {
1237 struct hrtimer *timer = &dl_se->inactive_timer;
1238
1239 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1240 timer->function = inactive_task_timer;
1241 }
1242
1243 #ifdef CONFIG_SMP
1244
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1245 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1246 {
1247 struct rq *rq = rq_of_dl_rq(dl_rq);
1248
1249 if (dl_rq->earliest_dl.curr == 0 ||
1250 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1251 dl_rq->earliest_dl.curr = deadline;
1252 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1253 }
1254 }
1255
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1256 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1257 {
1258 struct rq *rq = rq_of_dl_rq(dl_rq);
1259
1260 /*
1261 * Since we may have removed our earliest (and/or next earliest)
1262 * task we must recompute them.
1263 */
1264 if (!dl_rq->dl_nr_running) {
1265 dl_rq->earliest_dl.curr = 0;
1266 dl_rq->earliest_dl.next = 0;
1267 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1268 } else {
1269 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1270 struct sched_dl_entity *entry;
1271
1272 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1273 dl_rq->earliest_dl.curr = entry->deadline;
1274 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1275 }
1276 }
1277
1278 #else
1279
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1280 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1281 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1282
1283 #endif /* CONFIG_SMP */
1284
1285 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1286 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1287 {
1288 int prio = dl_task_of(dl_se)->prio;
1289 u64 deadline = dl_se->deadline;
1290
1291 WARN_ON(!dl_prio(prio));
1292 dl_rq->dl_nr_running++;
1293 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1294 walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1295
1296 inc_dl_deadline(dl_rq, deadline);
1297 inc_dl_migration(dl_se, dl_rq);
1298 }
1299
1300 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1301 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1302 {
1303 int prio = dl_task_of(dl_se)->prio;
1304
1305 WARN_ON(!dl_prio(prio));
1306 WARN_ON(!dl_rq->dl_nr_running);
1307 dl_rq->dl_nr_running--;
1308 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1309 walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1310
1311 dec_dl_deadline(dl_rq, dl_se->deadline);
1312 dec_dl_migration(dl_se, dl_rq);
1313 }
1314
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1315 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1316 {
1317 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1318 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1319 struct rb_node *parent = NULL;
1320 struct sched_dl_entity *entry;
1321 int leftmost = 1;
1322
1323 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1324
1325 while (*link) {
1326 parent = *link;
1327 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1328 if (dl_time_before(dl_se->deadline, entry->deadline))
1329 link = &parent->rb_left;
1330 else {
1331 link = &parent->rb_right;
1332 leftmost = 0;
1333 }
1334 }
1335
1336 rb_link_node(&dl_se->rb_node, parent, link);
1337 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1338
1339 inc_dl_tasks(dl_se, dl_rq);
1340 }
1341
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1342 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1343 {
1344 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1345
1346 if (RB_EMPTY_NODE(&dl_se->rb_node))
1347 return;
1348
1349 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1350 RB_CLEAR_NODE(&dl_se->rb_node);
1351
1352 dec_dl_tasks(dl_se, dl_rq);
1353 }
1354
1355 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se,int flags)1356 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1357 struct sched_dl_entity *pi_se, int flags)
1358 {
1359 BUG_ON(on_dl_rq(dl_se));
1360
1361 /*
1362 * If this is a wakeup or a new instance, the scheduling
1363 * parameters of the task might need updating. Otherwise,
1364 * we want a replenishment of its runtime.
1365 */
1366 if (flags & ENQUEUE_WAKEUP) {
1367 task_contending(dl_se, flags);
1368 update_dl_entity(dl_se, pi_se);
1369 } else if (flags & ENQUEUE_REPLENISH) {
1370 replenish_dl_entity(dl_se, pi_se);
1371 } else if ((flags & ENQUEUE_RESTORE) &&
1372 dl_time_before(dl_se->deadline,
1373 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1374 setup_new_dl_entity(dl_se);
1375 }
1376
1377 __enqueue_dl_entity(dl_se);
1378 }
1379
dequeue_dl_entity(struct sched_dl_entity * dl_se)1380 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1381 {
1382 __dequeue_dl_entity(dl_se);
1383 }
1384
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1385 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1386 {
1387 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1388 struct sched_dl_entity *pi_se = &p->dl;
1389
1390 /*
1391 * Use the scheduling parameters of the top pi-waiter task if:
1392 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1393 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1394 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1395 * boosted due to a SCHED_DEADLINE pi-waiter).
1396 * Otherwise we keep our runtime and deadline.
1397 */
1398 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1399 pi_se = &pi_task->dl;
1400 } else if (!dl_prio(p->normal_prio)) {
1401 /*
1402 * Special case in which we have a !SCHED_DEADLINE task
1403 * that is going to be deboosted, but exceeds its
1404 * runtime while doing so. No point in replenishing
1405 * it, as it's going to return back to its original
1406 * scheduling class after this.
1407 */
1408 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1409 return;
1410 }
1411
1412 /*
1413 * Check if a constrained deadline task was activated
1414 * after the deadline but before the next period.
1415 * If that is the case, the task will be throttled and
1416 * the replenishment timer will be set to the next period.
1417 */
1418 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1419 dl_check_constrained_dl(&p->dl);
1420
1421 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1422 add_rq_bw(p->dl.dl_bw, &rq->dl);
1423 add_running_bw(p->dl.dl_bw, &rq->dl);
1424 }
1425
1426 /*
1427 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1428 * its budget it needs a replenishment and, since it now is on
1429 * its rq, the bandwidth timer callback (which clearly has not
1430 * run yet) will take care of this.
1431 * However, the active utilization does not depend on the fact
1432 * that the task is on the runqueue or not (but depends on the
1433 * task's state - in GRUB parlance, "inactive" vs "active contending").
1434 * In other words, even if a task is throttled its utilization must
1435 * be counted in the active utilization; hence, we need to call
1436 * add_running_bw().
1437 */
1438 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1439 if (flags & ENQUEUE_WAKEUP)
1440 task_contending(&p->dl, flags);
1441
1442 return;
1443 }
1444
1445 enqueue_dl_entity(&p->dl, pi_se, flags);
1446
1447 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1448 enqueue_pushable_dl_task(rq, p);
1449 }
1450
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1451 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1452 {
1453 dequeue_dl_entity(&p->dl);
1454 dequeue_pushable_dl_task(rq, p);
1455 }
1456
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1457 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1458 {
1459 update_curr_dl(rq);
1460 __dequeue_task_dl(rq, p, flags);
1461
1462 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1463 sub_running_bw(p->dl.dl_bw, &rq->dl);
1464 sub_rq_bw(p->dl.dl_bw, &rq->dl);
1465 }
1466
1467 /*
1468 * This check allows to start the inactive timer (or to immediately
1469 * decrease the active utilization, if needed) in two cases:
1470 * when the task blocks and when it is terminating
1471 * (p->state == TASK_DEAD). We can handle the two cases in the same
1472 * way, because from GRUB's point of view the same thing is happening
1473 * (the task moves from "active contending" to "active non contending"
1474 * or "inactive")
1475 */
1476 if (flags & DEQUEUE_SLEEP)
1477 task_non_contending(p);
1478 }
1479
1480 /*
1481 * Yield task semantic for -deadline tasks is:
1482 *
1483 * get off from the CPU until our next instance, with
1484 * a new runtime. This is of little use now, since we
1485 * don't have a bandwidth reclaiming mechanism. Anyway,
1486 * bandwidth reclaiming is planned for the future, and
1487 * yield_task_dl will indicate that some spare budget
1488 * is available for other task instances to use it.
1489 */
yield_task_dl(struct rq * rq)1490 static void yield_task_dl(struct rq *rq)
1491 {
1492 /*
1493 * We make the task go to sleep until its current deadline by
1494 * forcing its runtime to zero. This way, update_curr_dl() stops
1495 * it and the bandwidth timer will wake it up and will give it
1496 * new scheduling parameters (thanks to dl_yielded=1).
1497 */
1498 rq->curr->dl.dl_yielded = 1;
1499
1500 update_rq_clock(rq);
1501 update_curr_dl(rq);
1502 /*
1503 * Tell update_rq_clock() that we've just updated,
1504 * so we don't do microscopic update in schedule()
1505 * and double the fastpath cost.
1506 */
1507 rq_clock_skip_update(rq, true);
1508 }
1509
1510 #ifdef CONFIG_SMP
1511
1512 static int find_later_rq(struct task_struct *task);
1513
1514 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags,int sibling_count_hint)1515 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags,
1516 int sibling_count_hint)
1517 {
1518 struct task_struct *curr;
1519 struct rq *rq;
1520
1521 if (sd_flag != SD_BALANCE_WAKE)
1522 goto out;
1523
1524 rq = cpu_rq(cpu);
1525
1526 rcu_read_lock();
1527 curr = READ_ONCE(rq->curr); /* unlocked access */
1528
1529 /*
1530 * If we are dealing with a -deadline task, we must
1531 * decide where to wake it up.
1532 * If it has a later deadline and the current task
1533 * on this rq can't move (provided the waking task
1534 * can!) we prefer to send it somewhere else. On the
1535 * other hand, if it has a shorter deadline, we
1536 * try to make it stay here, it might be important.
1537 */
1538 if (unlikely(dl_task(curr)) &&
1539 (curr->nr_cpus_allowed < 2 ||
1540 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1541 (p->nr_cpus_allowed > 1)) {
1542 int target = find_later_rq(p);
1543
1544 if (target != -1 &&
1545 (dl_time_before(p->dl.deadline,
1546 cpu_rq(target)->dl.earliest_dl.curr) ||
1547 (cpu_rq(target)->dl.dl_nr_running == 0)))
1548 cpu = target;
1549 }
1550 rcu_read_unlock();
1551
1552 out:
1553 return cpu;
1554 }
1555
migrate_task_rq_dl(struct task_struct * p)1556 static void migrate_task_rq_dl(struct task_struct *p)
1557 {
1558 struct rq *rq;
1559
1560 if (p->state != TASK_WAKING)
1561 return;
1562
1563 rq = task_rq(p);
1564 /*
1565 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1566 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1567 * rq->lock is not... So, lock it
1568 */
1569 raw_spin_lock(&rq->lock);
1570 if (p->dl.dl_non_contending) {
1571 sub_running_bw(p->dl.dl_bw, &rq->dl);
1572 p->dl.dl_non_contending = 0;
1573 /*
1574 * If the timer handler is currently running and the
1575 * timer cannot be cancelled, inactive_task_timer()
1576 * will see that dl_not_contending is not set, and
1577 * will not touch the rq's active utilization,
1578 * so we are still safe.
1579 */
1580 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1581 put_task_struct(p);
1582 }
1583 sub_rq_bw(p->dl.dl_bw, &rq->dl);
1584 raw_spin_unlock(&rq->lock);
1585 }
1586
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1587 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1588 {
1589 /*
1590 * Current can't be migrated, useless to reschedule,
1591 * let's hope p can move out.
1592 */
1593 if (rq->curr->nr_cpus_allowed == 1 ||
1594 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1595 return;
1596
1597 /*
1598 * p is migratable, so let's not schedule it and
1599 * see if it is pushed or pulled somewhere else.
1600 */
1601 if (p->nr_cpus_allowed != 1 &&
1602 cpudl_find(&rq->rd->cpudl, p, NULL))
1603 return;
1604
1605 resched_curr(rq);
1606 }
1607
1608 #endif /* CONFIG_SMP */
1609
1610 /*
1611 * Only called when both the current and waking task are -deadline
1612 * tasks.
1613 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1614 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1615 int flags)
1616 {
1617 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1618 resched_curr(rq);
1619 return;
1620 }
1621
1622 #ifdef CONFIG_SMP
1623 /*
1624 * In the unlikely case current and p have the same deadline
1625 * let us try to decide what's the best thing to do...
1626 */
1627 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1628 !test_tsk_need_resched(rq->curr))
1629 check_preempt_equal_dl(rq, p);
1630 #endif /* CONFIG_SMP */
1631 }
1632
1633 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1634 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1635 {
1636 hrtick_start(rq, p->dl.runtime);
1637 }
1638 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1639 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1640 {
1641 }
1642 #endif
1643
pick_next_dl_entity(struct rq * rq,struct dl_rq * dl_rq)1644 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1645 struct dl_rq *dl_rq)
1646 {
1647 struct rb_node *left = rb_first_cached(&dl_rq->root);
1648
1649 if (!left)
1650 return NULL;
1651
1652 return rb_entry(left, struct sched_dl_entity, rb_node);
1653 }
1654
1655 static struct task_struct *
pick_next_task_dl(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1656 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1657 {
1658 struct sched_dl_entity *dl_se;
1659 struct task_struct *p;
1660 struct dl_rq *dl_rq;
1661
1662 dl_rq = &rq->dl;
1663
1664 if (need_pull_dl_task(rq, prev)) {
1665 /*
1666 * This is OK, because current is on_cpu, which avoids it being
1667 * picked for load-balance and preemption/IRQs are still
1668 * disabled avoiding further scheduler activity on it and we're
1669 * being very careful to re-start the picking loop.
1670 */
1671 rq_unpin_lock(rq, rf);
1672 pull_dl_task(rq);
1673 rq_repin_lock(rq, rf);
1674 /*
1675 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1676 * means a stop task can slip in, in which case we need to
1677 * re-start task selection.
1678 */
1679 if (rq->stop && task_on_rq_queued(rq->stop))
1680 return RETRY_TASK;
1681 }
1682
1683 /*
1684 * When prev is DL, we may throttle it in put_prev_task().
1685 * So, we update time before we check for dl_nr_running.
1686 */
1687 if (prev->sched_class == &dl_sched_class)
1688 update_curr_dl(rq);
1689
1690 if (unlikely(!dl_rq->dl_nr_running))
1691 return NULL;
1692
1693 put_prev_task(rq, prev);
1694
1695 dl_se = pick_next_dl_entity(rq, dl_rq);
1696 BUG_ON(!dl_se);
1697
1698 p = dl_task_of(dl_se);
1699 p->se.exec_start = rq_clock_task(rq);
1700
1701 /* Running task will never be pushed. */
1702 dequeue_pushable_dl_task(rq, p);
1703
1704 if (hrtick_enabled(rq))
1705 start_hrtick_dl(rq, p);
1706
1707 queue_push_tasks(rq);
1708
1709 return p;
1710 }
1711
put_prev_task_dl(struct rq * rq,struct task_struct * p)1712 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1713 {
1714 update_curr_dl(rq);
1715
1716 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1717 enqueue_pushable_dl_task(rq, p);
1718 }
1719
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1720 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1721 {
1722 update_curr_dl(rq);
1723
1724 /*
1725 * Even when we have runtime, update_curr_dl() might have resulted in us
1726 * not being the leftmost task anymore. In that case NEED_RESCHED will
1727 * be set and schedule() will start a new hrtick for the next task.
1728 */
1729 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1730 is_leftmost(p, &rq->dl))
1731 start_hrtick_dl(rq, p);
1732 }
1733
task_fork_dl(struct task_struct * p)1734 static void task_fork_dl(struct task_struct *p)
1735 {
1736 /*
1737 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1738 * sched_fork()
1739 */
1740 }
1741
set_curr_task_dl(struct rq * rq)1742 static void set_curr_task_dl(struct rq *rq)
1743 {
1744 struct task_struct *p = rq->curr;
1745
1746 p->se.exec_start = rq_clock_task(rq);
1747
1748 /* You can't push away the running task */
1749 dequeue_pushable_dl_task(rq, p);
1750 }
1751
1752 #ifdef CONFIG_SMP
1753
1754 /* Only try algorithms three times */
1755 #define DL_MAX_TRIES 3
1756
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1757 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1758 {
1759 if (!task_running(rq, p) &&
1760 cpumask_test_cpu(cpu, &p->cpus_allowed))
1761 return 1;
1762 return 0;
1763 }
1764
1765 /*
1766 * Return the earliest pushable rq's task, which is suitable to be executed
1767 * on the CPU, NULL otherwise:
1768 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1769 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1770 {
1771 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1772 struct task_struct *p = NULL;
1773
1774 if (!has_pushable_dl_tasks(rq))
1775 return NULL;
1776
1777 next_node:
1778 if (next_node) {
1779 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1780
1781 if (pick_dl_task(rq, p, cpu))
1782 return p;
1783
1784 next_node = rb_next(next_node);
1785 goto next_node;
1786 }
1787
1788 return NULL;
1789 }
1790
1791 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1792
find_later_rq(struct task_struct * task)1793 static int find_later_rq(struct task_struct *task)
1794 {
1795 struct sched_domain *sd;
1796 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1797 int this_cpu = smp_processor_id();
1798 int cpu = task_cpu(task);
1799
1800 /* Make sure the mask is initialized first */
1801 if (unlikely(!later_mask))
1802 return -1;
1803
1804 if (task->nr_cpus_allowed == 1)
1805 return -1;
1806
1807 /*
1808 * We have to consider system topology and task affinity
1809 * first, then we can look for a suitable cpu.
1810 */
1811 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1812 return -1;
1813
1814 /*
1815 * If we are here, some targets have been found, including
1816 * the most suitable which is, among the runqueues where the
1817 * current tasks have later deadlines than the task's one, the
1818 * rq with the latest possible one.
1819 *
1820 * Now we check how well this matches with task's
1821 * affinity and system topology.
1822 *
1823 * The last cpu where the task run is our first
1824 * guess, since it is most likely cache-hot there.
1825 */
1826 if (cpumask_test_cpu(cpu, later_mask))
1827 return cpu;
1828 /*
1829 * Check if this_cpu is to be skipped (i.e., it is
1830 * not in the mask) or not.
1831 */
1832 if (!cpumask_test_cpu(this_cpu, later_mask))
1833 this_cpu = -1;
1834
1835 rcu_read_lock();
1836 for_each_domain(cpu, sd) {
1837 if (sd->flags & SD_WAKE_AFFINE) {
1838 int best_cpu;
1839
1840 /*
1841 * If possible, preempting this_cpu is
1842 * cheaper than migrating.
1843 */
1844 if (this_cpu != -1 &&
1845 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1846 rcu_read_unlock();
1847 return this_cpu;
1848 }
1849
1850 best_cpu = cpumask_first_and(later_mask,
1851 sched_domain_span(sd));
1852 /*
1853 * Last chance: if a cpu being in both later_mask
1854 * and current sd span is valid, that becomes our
1855 * choice. Of course, the latest possible cpu is
1856 * already under consideration through later_mask.
1857 */
1858 if (best_cpu < nr_cpu_ids) {
1859 rcu_read_unlock();
1860 return best_cpu;
1861 }
1862 }
1863 }
1864 rcu_read_unlock();
1865
1866 /*
1867 * At this point, all our guesses failed, we just return
1868 * 'something', and let the caller sort the things out.
1869 */
1870 if (this_cpu != -1)
1871 return this_cpu;
1872
1873 cpu = cpumask_any(later_mask);
1874 if (cpu < nr_cpu_ids)
1875 return cpu;
1876
1877 return -1;
1878 }
1879
1880 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)1881 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1882 {
1883 struct rq *later_rq = NULL;
1884 int tries;
1885 int cpu;
1886
1887 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1888 cpu = find_later_rq(task);
1889
1890 if ((cpu == -1) || (cpu == rq->cpu))
1891 break;
1892
1893 later_rq = cpu_rq(cpu);
1894
1895 if (later_rq->dl.dl_nr_running &&
1896 !dl_time_before(task->dl.deadline,
1897 later_rq->dl.earliest_dl.curr)) {
1898 /*
1899 * Target rq has tasks of equal or earlier deadline,
1900 * retrying does not release any lock and is unlikely
1901 * to yield a different result.
1902 */
1903 later_rq = NULL;
1904 break;
1905 }
1906
1907 /* Retry if something changed. */
1908 if (double_lock_balance(rq, later_rq)) {
1909 if (unlikely(task_rq(task) != rq ||
1910 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1911 task_running(rq, task) ||
1912 !dl_task(task) ||
1913 !task_on_rq_queued(task))) {
1914 double_unlock_balance(rq, later_rq);
1915 later_rq = NULL;
1916 break;
1917 }
1918 }
1919
1920 /*
1921 * If the rq we found has no -deadline task, or
1922 * its earliest one has a later deadline than our
1923 * task, the rq is a good one.
1924 */
1925 if (!later_rq->dl.dl_nr_running ||
1926 dl_time_before(task->dl.deadline,
1927 later_rq->dl.earliest_dl.curr))
1928 break;
1929
1930 /* Otherwise we try again. */
1931 double_unlock_balance(rq, later_rq);
1932 later_rq = NULL;
1933 }
1934
1935 return later_rq;
1936 }
1937
pick_next_pushable_dl_task(struct rq * rq)1938 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1939 {
1940 struct task_struct *p;
1941
1942 if (!has_pushable_dl_tasks(rq))
1943 return NULL;
1944
1945 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
1946 struct task_struct, pushable_dl_tasks);
1947
1948 BUG_ON(rq->cpu != task_cpu(p));
1949 BUG_ON(task_current(rq, p));
1950 BUG_ON(p->nr_cpus_allowed <= 1);
1951
1952 BUG_ON(!task_on_rq_queued(p));
1953 BUG_ON(!dl_task(p));
1954
1955 return p;
1956 }
1957
1958 /*
1959 * See if the non running -deadline tasks on this rq
1960 * can be sent to some other CPU where they can preempt
1961 * and start executing.
1962 */
push_dl_task(struct rq * rq)1963 static int push_dl_task(struct rq *rq)
1964 {
1965 struct task_struct *next_task;
1966 struct rq *later_rq;
1967 int ret = 0;
1968
1969 if (!rq->dl.overloaded)
1970 return 0;
1971
1972 next_task = pick_next_pushable_dl_task(rq);
1973 if (!next_task)
1974 return 0;
1975
1976 retry:
1977 if (unlikely(next_task == rq->curr)) {
1978 WARN_ON(1);
1979 return 0;
1980 }
1981
1982 /*
1983 * If next_task preempts rq->curr, and rq->curr
1984 * can move away, it makes sense to just reschedule
1985 * without going further in pushing next_task.
1986 */
1987 if (dl_task(rq->curr) &&
1988 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1989 rq->curr->nr_cpus_allowed > 1) {
1990 resched_curr(rq);
1991 return 0;
1992 }
1993
1994 /* We might release rq lock */
1995 get_task_struct(next_task);
1996
1997 /* Will lock the rq it'll find */
1998 later_rq = find_lock_later_rq(next_task, rq);
1999 if (!later_rq) {
2000 struct task_struct *task;
2001
2002 /*
2003 * We must check all this again, since
2004 * find_lock_later_rq releases rq->lock and it is
2005 * then possible that next_task has migrated.
2006 */
2007 task = pick_next_pushable_dl_task(rq);
2008 if (task == next_task) {
2009 /*
2010 * The task is still there. We don't try
2011 * again, some other cpu will pull it when ready.
2012 */
2013 goto out;
2014 }
2015
2016 if (!task)
2017 /* No more tasks */
2018 goto out;
2019
2020 put_task_struct(next_task);
2021 next_task = task;
2022 goto retry;
2023 }
2024
2025 deactivate_task(rq, next_task, 0);
2026 sub_running_bw(next_task->dl.dl_bw, &rq->dl);
2027 sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
2028 next_task->on_rq = TASK_ON_RQ_MIGRATING;
2029 set_task_cpu(next_task, later_rq->cpu);
2030 next_task->on_rq = TASK_ON_RQ_QUEUED;
2031 add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
2032 add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
2033 activate_task(later_rq, next_task, 0);
2034 ret = 1;
2035
2036 resched_curr(later_rq);
2037
2038 double_unlock_balance(rq, later_rq);
2039
2040 out:
2041 put_task_struct(next_task);
2042
2043 return ret;
2044 }
2045
push_dl_tasks(struct rq * rq)2046 static void push_dl_tasks(struct rq *rq)
2047 {
2048 /* push_dl_task() will return true if it moved a -deadline task */
2049 while (push_dl_task(rq))
2050 ;
2051 }
2052
pull_dl_task(struct rq * this_rq)2053 static void pull_dl_task(struct rq *this_rq)
2054 {
2055 int this_cpu = this_rq->cpu, cpu;
2056 struct task_struct *p;
2057 bool resched = false;
2058 struct rq *src_rq;
2059 u64 dmin = LONG_MAX;
2060
2061 if (likely(!dl_overloaded(this_rq)))
2062 return;
2063
2064 /*
2065 * Match the barrier from dl_set_overloaded; this guarantees that if we
2066 * see overloaded we must also see the dlo_mask bit.
2067 */
2068 smp_rmb();
2069
2070 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2071 if (this_cpu == cpu)
2072 continue;
2073
2074 src_rq = cpu_rq(cpu);
2075
2076 /*
2077 * It looks racy, abd it is! However, as in sched_rt.c,
2078 * we are fine with this.
2079 */
2080 if (this_rq->dl.dl_nr_running &&
2081 dl_time_before(this_rq->dl.earliest_dl.curr,
2082 src_rq->dl.earliest_dl.next))
2083 continue;
2084
2085 /* Might drop this_rq->lock */
2086 double_lock_balance(this_rq, src_rq);
2087
2088 /*
2089 * If there are no more pullable tasks on the
2090 * rq, we're done with it.
2091 */
2092 if (src_rq->dl.dl_nr_running <= 1)
2093 goto skip;
2094
2095 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2096
2097 /*
2098 * We found a task to be pulled if:
2099 * - it preempts our current (if there's one),
2100 * - it will preempt the last one we pulled (if any).
2101 */
2102 if (p && dl_time_before(p->dl.deadline, dmin) &&
2103 (!this_rq->dl.dl_nr_running ||
2104 dl_time_before(p->dl.deadline,
2105 this_rq->dl.earliest_dl.curr))) {
2106 WARN_ON(p == src_rq->curr);
2107 WARN_ON(!task_on_rq_queued(p));
2108
2109 /*
2110 * Then we pull iff p has actually an earlier
2111 * deadline than the current task of its runqueue.
2112 */
2113 if (dl_time_before(p->dl.deadline,
2114 src_rq->curr->dl.deadline))
2115 goto skip;
2116
2117 resched = true;
2118
2119 deactivate_task(src_rq, p, 0);
2120 sub_running_bw(p->dl.dl_bw, &src_rq->dl);
2121 sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
2122 p->on_rq = TASK_ON_RQ_MIGRATING;
2123 set_task_cpu(p, this_cpu);
2124 p->on_rq = TASK_ON_RQ_QUEUED;
2125 add_rq_bw(p->dl.dl_bw, &this_rq->dl);
2126 add_running_bw(p->dl.dl_bw, &this_rq->dl);
2127 activate_task(this_rq, p, 0);
2128 dmin = p->dl.deadline;
2129
2130 /* Is there any other task even earlier? */
2131 }
2132 skip:
2133 double_unlock_balance(this_rq, src_rq);
2134 }
2135
2136 if (resched)
2137 resched_curr(this_rq);
2138 }
2139
2140 /*
2141 * Since the task is not running and a reschedule is not going to happen
2142 * anytime soon on its runqueue, we try pushing it away now.
2143 */
task_woken_dl(struct rq * rq,struct task_struct * p)2144 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2145 {
2146 if (!task_running(rq, p) &&
2147 !test_tsk_need_resched(rq->curr) &&
2148 p->nr_cpus_allowed > 1 &&
2149 dl_task(rq->curr) &&
2150 (rq->curr->nr_cpus_allowed < 2 ||
2151 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2152 push_dl_tasks(rq);
2153 }
2154 }
2155
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2156 static void set_cpus_allowed_dl(struct task_struct *p,
2157 const struct cpumask *new_mask)
2158 {
2159 struct root_domain *src_rd;
2160 struct rq *rq;
2161
2162 BUG_ON(!dl_task(p));
2163
2164 rq = task_rq(p);
2165 src_rd = rq->rd;
2166 /*
2167 * Migrating a SCHED_DEADLINE task between exclusive
2168 * cpusets (different root_domains) entails a bandwidth
2169 * update. We already made space for us in the destination
2170 * domain (see cpuset_can_attach()).
2171 */
2172 if (!cpumask_intersects(src_rd->span, new_mask)) {
2173 struct dl_bw *src_dl_b;
2174
2175 src_dl_b = dl_bw_of(cpu_of(rq));
2176 /*
2177 * We now free resources of the root_domain we are migrating
2178 * off. In the worst case, sched_setattr() may temporary fail
2179 * until we complete the update.
2180 */
2181 raw_spin_lock(&src_dl_b->lock);
2182 __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2183 raw_spin_unlock(&src_dl_b->lock);
2184 }
2185
2186 set_cpus_allowed_common(p, new_mask);
2187 }
2188
2189 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2190 static void rq_online_dl(struct rq *rq)
2191 {
2192 if (rq->dl.overloaded)
2193 dl_set_overload(rq);
2194
2195 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2196 if (rq->dl.dl_nr_running > 0)
2197 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2198 }
2199
2200 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2201 static void rq_offline_dl(struct rq *rq)
2202 {
2203 if (rq->dl.overloaded)
2204 dl_clear_overload(rq);
2205
2206 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2207 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2208 }
2209
init_sched_dl_class(void)2210 void __init init_sched_dl_class(void)
2211 {
2212 unsigned int i;
2213
2214 for_each_possible_cpu(i)
2215 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2216 GFP_KERNEL, cpu_to_node(i));
2217 }
2218
2219 #endif /* CONFIG_SMP */
2220
switched_from_dl(struct rq * rq,struct task_struct * p)2221 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2222 {
2223 /*
2224 * task_non_contending() can start the "inactive timer" (if the 0-lag
2225 * time is in the future). If the task switches back to dl before
2226 * the "inactive timer" fires, it can continue to consume its current
2227 * runtime using its current deadline. If it stays outside of
2228 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2229 * will reset the task parameters.
2230 */
2231 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2232 task_non_contending(p);
2233
2234 if (!task_on_rq_queued(p))
2235 sub_rq_bw(p->dl.dl_bw, &rq->dl);
2236
2237 /*
2238 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2239 * at the 0-lag time, because the task could have been migrated
2240 * while SCHED_OTHER in the meanwhile.
2241 */
2242 if (p->dl.dl_non_contending)
2243 p->dl.dl_non_contending = 0;
2244
2245 /*
2246 * Since this might be the only -deadline task on the rq,
2247 * this is the right place to try to pull some other one
2248 * from an overloaded cpu, if any.
2249 */
2250 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2251 return;
2252
2253 queue_pull_task(rq);
2254 }
2255
2256 /*
2257 * When switching to -deadline, we may overload the rq, then
2258 * we try to push someone off, if possible.
2259 */
switched_to_dl(struct rq * rq,struct task_struct * p)2260 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2261 {
2262 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2263 put_task_struct(p);
2264
2265 /* If p is not queued we will update its parameters at next wakeup. */
2266 if (!task_on_rq_queued(p)) {
2267 add_rq_bw(p->dl.dl_bw, &rq->dl);
2268
2269 return;
2270 }
2271
2272 if (rq->curr != p) {
2273 #ifdef CONFIG_SMP
2274 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2275 queue_push_tasks(rq);
2276 #endif
2277 if (dl_task(rq->curr))
2278 check_preempt_curr_dl(rq, p, 0);
2279 else
2280 resched_curr(rq);
2281 }
2282 }
2283
2284 /*
2285 * If the scheduling parameters of a -deadline task changed,
2286 * a push or pull operation might be needed.
2287 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2288 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2289 int oldprio)
2290 {
2291 if (task_on_rq_queued(p) || rq->curr == p) {
2292 #ifdef CONFIG_SMP
2293 /*
2294 * This might be too much, but unfortunately
2295 * we don't have the old deadline value, and
2296 * we can't argue if the task is increasing
2297 * or lowering its prio, so...
2298 */
2299 if (!rq->dl.overloaded)
2300 queue_pull_task(rq);
2301
2302 /*
2303 * If we now have a earlier deadline task than p,
2304 * then reschedule, provided p is still on this
2305 * runqueue.
2306 */
2307 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2308 resched_curr(rq);
2309 #else
2310 /*
2311 * Again, we don't know if p has a earlier
2312 * or later deadline, so let's blindly set a
2313 * (maybe not needed) rescheduling point.
2314 */
2315 resched_curr(rq);
2316 #endif /* CONFIG_SMP */
2317 }
2318 }
2319
2320 const struct sched_class dl_sched_class = {
2321 .next = &rt_sched_class,
2322 .enqueue_task = enqueue_task_dl,
2323 .dequeue_task = dequeue_task_dl,
2324 .yield_task = yield_task_dl,
2325
2326 .check_preempt_curr = check_preempt_curr_dl,
2327
2328 .pick_next_task = pick_next_task_dl,
2329 .put_prev_task = put_prev_task_dl,
2330
2331 #ifdef CONFIG_SMP
2332 .select_task_rq = select_task_rq_dl,
2333 .migrate_task_rq = migrate_task_rq_dl,
2334 .set_cpus_allowed = set_cpus_allowed_dl,
2335 .rq_online = rq_online_dl,
2336 .rq_offline = rq_offline_dl,
2337 .task_woken = task_woken_dl,
2338 #endif
2339
2340 .set_curr_task = set_curr_task_dl,
2341 .task_tick = task_tick_dl,
2342 .task_fork = task_fork_dl,
2343
2344 .prio_changed = prio_changed_dl,
2345 .switched_from = switched_from_dl,
2346 .switched_to = switched_to_dl,
2347
2348 .update_curr = update_curr_dl,
2349 };
2350
sched_dl_global_validate(void)2351 int sched_dl_global_validate(void)
2352 {
2353 u64 runtime = global_rt_runtime();
2354 u64 period = global_rt_period();
2355 u64 new_bw = to_ratio(period, runtime);
2356 struct dl_bw *dl_b;
2357 int cpu, ret = 0;
2358 unsigned long flags;
2359
2360 /*
2361 * Here we want to check the bandwidth not being set to some
2362 * value smaller than the currently allocated bandwidth in
2363 * any of the root_domains.
2364 *
2365 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2366 * cycling on root_domains... Discussion on different/better
2367 * solutions is welcome!
2368 */
2369 for_each_possible_cpu(cpu) {
2370 rcu_read_lock_sched();
2371 dl_b = dl_bw_of(cpu);
2372
2373 raw_spin_lock_irqsave(&dl_b->lock, flags);
2374 if (new_bw < dl_b->total_bw)
2375 ret = -EBUSY;
2376 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2377
2378 rcu_read_unlock_sched();
2379
2380 if (ret)
2381 break;
2382 }
2383
2384 return ret;
2385 }
2386
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2387 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2388 {
2389 if (global_rt_runtime() == RUNTIME_INF) {
2390 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2391 dl_rq->extra_bw = 1 << BW_SHIFT;
2392 } else {
2393 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2394 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2395 dl_rq->extra_bw = to_ratio(global_rt_period(),
2396 global_rt_runtime());
2397 }
2398 }
2399
sched_dl_do_global(void)2400 void sched_dl_do_global(void)
2401 {
2402 u64 new_bw = -1;
2403 struct dl_bw *dl_b;
2404 int cpu;
2405 unsigned long flags;
2406
2407 def_dl_bandwidth.dl_period = global_rt_period();
2408 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2409
2410 if (global_rt_runtime() != RUNTIME_INF)
2411 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2412
2413 /*
2414 * FIXME: As above...
2415 */
2416 for_each_possible_cpu(cpu) {
2417 rcu_read_lock_sched();
2418 dl_b = dl_bw_of(cpu);
2419
2420 raw_spin_lock_irqsave(&dl_b->lock, flags);
2421 dl_b->bw = new_bw;
2422 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2423
2424 rcu_read_unlock_sched();
2425 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2426 }
2427 }
2428
2429 /*
2430 * We must be sure that accepting a new task (or allowing changing the
2431 * parameters of an existing one) is consistent with the bandwidth
2432 * constraints. If yes, this function also accordingly updates the currently
2433 * allocated bandwidth to reflect the new situation.
2434 *
2435 * This function is called while holding p's rq->lock.
2436 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2437 int sched_dl_overflow(struct task_struct *p, int policy,
2438 const struct sched_attr *attr)
2439 {
2440 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2441 u64 period = attr->sched_period ?: attr->sched_deadline;
2442 u64 runtime = attr->sched_runtime;
2443 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2444 int cpus, err = -1;
2445
2446 /* !deadline task may carry old deadline bandwidth */
2447 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2448 return 0;
2449
2450 /*
2451 * Either if a task, enters, leave, or stays -deadline but changes
2452 * its parameters, we may need to update accordingly the total
2453 * allocated bandwidth of the container.
2454 */
2455 raw_spin_lock(&dl_b->lock);
2456 cpus = dl_bw_cpus(task_cpu(p));
2457 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2458 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2459 if (hrtimer_active(&p->dl.inactive_timer))
2460 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2461 __dl_add(dl_b, new_bw, cpus);
2462 err = 0;
2463 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2464 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2465 /*
2466 * XXX this is slightly incorrect: when the task
2467 * utilization decreases, we should delay the total
2468 * utilization change until the task's 0-lag point.
2469 * But this would require to set the task's "inactive
2470 * timer" when the task is not inactive.
2471 */
2472 __dl_clear(dl_b, p->dl.dl_bw, cpus);
2473 __dl_add(dl_b, new_bw, cpus);
2474 dl_change_utilization(p, new_bw);
2475 err = 0;
2476 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2477 /*
2478 * Do not decrease the total deadline utilization here,
2479 * switched_from_dl() will take care to do it at the correct
2480 * (0-lag) time.
2481 */
2482 err = 0;
2483 }
2484 raw_spin_unlock(&dl_b->lock);
2485
2486 return err;
2487 }
2488
2489 /*
2490 * This function initializes the sched_dl_entity of a newly becoming
2491 * SCHED_DEADLINE task.
2492 *
2493 * Only the static values are considered here, the actual runtime and the
2494 * absolute deadline will be properly calculated when the task is enqueued
2495 * for the first time with its new policy.
2496 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2497 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2498 {
2499 struct sched_dl_entity *dl_se = &p->dl;
2500
2501 dl_se->dl_runtime = attr->sched_runtime;
2502 dl_se->dl_deadline = attr->sched_deadline;
2503 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2504 dl_se->flags = attr->sched_flags;
2505 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2506 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2507 }
2508
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2509 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2510 {
2511 struct sched_dl_entity *dl_se = &p->dl;
2512
2513 attr->sched_priority = p->rt_priority;
2514 attr->sched_runtime = dl_se->dl_runtime;
2515 attr->sched_deadline = dl_se->dl_deadline;
2516 attr->sched_period = dl_se->dl_period;
2517 attr->sched_flags = dl_se->flags;
2518 }
2519
2520 /*
2521 * This function validates the new parameters of a -deadline task.
2522 * We ask for the deadline not being zero, and greater or equal
2523 * than the runtime, as well as the period of being zero or
2524 * greater than deadline. Furthermore, we have to be sure that
2525 * user parameters are above the internal resolution of 1us (we
2526 * check sched_runtime only since it is always the smaller one) and
2527 * below 2^63 ns (we have to check both sched_deadline and
2528 * sched_period, as the latter can be zero).
2529 */
__checkparam_dl(const struct sched_attr * attr)2530 bool __checkparam_dl(const struct sched_attr *attr)
2531 {
2532 /* deadline != 0 */
2533 if (attr->sched_deadline == 0)
2534 return false;
2535
2536 /*
2537 * Since we truncate DL_SCALE bits, make sure we're at least
2538 * that big.
2539 */
2540 if (attr->sched_runtime < (1ULL << DL_SCALE))
2541 return false;
2542
2543 /*
2544 * Since we use the MSB for wrap-around and sign issues, make
2545 * sure it's not set (mind that period can be equal to zero).
2546 */
2547 if (attr->sched_deadline & (1ULL << 63) ||
2548 attr->sched_period & (1ULL << 63))
2549 return false;
2550
2551 /* runtime <= deadline <= period (if period != 0) */
2552 if ((attr->sched_period != 0 &&
2553 attr->sched_period < attr->sched_deadline) ||
2554 attr->sched_deadline < attr->sched_runtime)
2555 return false;
2556
2557 return true;
2558 }
2559
2560 /*
2561 * This function clears the sched_dl_entity static params.
2562 */
__dl_clear_params(struct task_struct * p)2563 void __dl_clear_params(struct task_struct *p)
2564 {
2565 struct sched_dl_entity *dl_se = &p->dl;
2566
2567 dl_se->dl_runtime = 0;
2568 dl_se->dl_deadline = 0;
2569 dl_se->dl_period = 0;
2570 dl_se->flags = 0;
2571 dl_se->dl_bw = 0;
2572 dl_se->dl_density = 0;
2573
2574 dl_se->dl_throttled = 0;
2575 dl_se->dl_yielded = 0;
2576 dl_se->dl_non_contending = 0;
2577 }
2578
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2579 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2580 {
2581 struct sched_dl_entity *dl_se = &p->dl;
2582
2583 if (dl_se->dl_runtime != attr->sched_runtime ||
2584 dl_se->dl_deadline != attr->sched_deadline ||
2585 dl_se->dl_period != attr->sched_period ||
2586 dl_se->flags != attr->sched_flags)
2587 return true;
2588
2589 return false;
2590 }
2591
2592 #ifdef CONFIG_SMP
dl_task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)2593 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2594 {
2595 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
2596 cs_cpus_allowed);
2597 struct dl_bw *dl_b;
2598 bool overflow;
2599 int cpus, ret;
2600 unsigned long flags;
2601
2602 rcu_read_lock_sched();
2603 dl_b = dl_bw_of(dest_cpu);
2604 raw_spin_lock_irqsave(&dl_b->lock, flags);
2605 cpus = dl_bw_cpus(dest_cpu);
2606 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2607 if (overflow)
2608 ret = -EBUSY;
2609 else {
2610 /*
2611 * We reserve space for this task in the destination
2612 * root_domain, as we can't fail after this point.
2613 * We will free resources in the source root_domain
2614 * later on (see set_cpus_allowed_dl()).
2615 */
2616 __dl_add(dl_b, p->dl.dl_bw, cpus);
2617 ret = 0;
2618 }
2619 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2620 rcu_read_unlock_sched();
2621 return ret;
2622 }
2623
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2624 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2625 const struct cpumask *trial)
2626 {
2627 int ret = 1, trial_cpus;
2628 struct dl_bw *cur_dl_b;
2629 unsigned long flags;
2630
2631 rcu_read_lock_sched();
2632 cur_dl_b = dl_bw_of(cpumask_any(cur));
2633 trial_cpus = cpumask_weight(trial);
2634
2635 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2636 if (cur_dl_b->bw != -1 &&
2637 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2638 ret = 0;
2639 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2640 rcu_read_unlock_sched();
2641 return ret;
2642 }
2643
dl_cpu_busy(unsigned int cpu)2644 bool dl_cpu_busy(unsigned int cpu)
2645 {
2646 unsigned long flags;
2647 struct dl_bw *dl_b;
2648 bool overflow;
2649 int cpus;
2650
2651 rcu_read_lock_sched();
2652 dl_b = dl_bw_of(cpu);
2653 raw_spin_lock_irqsave(&dl_b->lock, flags);
2654 cpus = dl_bw_cpus(cpu);
2655 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2656 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2657 rcu_read_unlock_sched();
2658 return overflow;
2659 }
2660 #endif
2661
2662 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2663 void print_dl_stats(struct seq_file *m, int cpu)
2664 {
2665 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2666 }
2667 #endif /* CONFIG_SCHED_DEBUG */
2668