• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 
28 #define DM_MSG_PREFIX "core"
29 
30 /*
31  * Cookies are numeric values sent with CHANGE and REMOVE
32  * uevents while resuming, removing or renaming the device.
33  */
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
36 
37 static const char *_name = DM_NAME;
38 
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
41 
42 static DEFINE_IDR(_minor_idr);
43 
44 static DEFINE_SPINLOCK(_minor_lock);
45 
46 static void do_deferred_remove(struct work_struct *w);
47 
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
49 
50 static struct workqueue_struct *deferred_remove_workqueue;
51 
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
54 
dm_issue_global_event(void)55 void dm_issue_global_event(void)
56 {
57 	atomic_inc(&dm_global_event_nr);
58 	wake_up(&dm_global_eventq);
59 }
60 
61 /*
62  * One of these is allocated per bio.
63  */
64 struct dm_io {
65 	struct mapped_device *md;
66 	blk_status_t status;
67 	atomic_t io_count;
68 	struct bio *bio;
69 	unsigned long start_time;
70 	spinlock_t endio_lock;
71 	struct dm_stats_aux stats_aux;
72 };
73 
74 #define MINOR_ALLOCED ((void *)-1)
75 
76 /*
77  * Bits for the md->flags field.
78  */
79 #define DMF_BLOCK_IO_FOR_SUSPEND 0
80 #define DMF_SUSPENDED 1
81 #define DMF_FROZEN 2
82 #define DMF_FREEING 3
83 #define DMF_DELETING 4
84 #define DMF_NOFLUSH_SUSPENDING 5
85 #define DMF_DEFERRED_REMOVE 6
86 #define DMF_SUSPENDED_INTERNALLY 7
87 
88 #define DM_NUMA_NODE NUMA_NO_NODE
89 static int dm_numa_node = DM_NUMA_NODE;
90 
91 /*
92  * For mempools pre-allocation at the table loading time.
93  */
94 struct dm_md_mempools {
95 	mempool_t *io_pool;
96 	struct bio_set *bs;
97 };
98 
99 struct table_device {
100 	struct list_head list;
101 	atomic_t count;
102 	struct dm_dev dm_dev;
103 };
104 
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
108 
109 /*
110  * Bio-based DM's mempools' reserved IOs set by the user.
111  */
112 #define RESERVED_BIO_BASED_IOS		16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
114 
__dm_get_module_param_int(int * module_param,int min,int max)115 static int __dm_get_module_param_int(int *module_param, int min, int max)
116 {
117 	int param = ACCESS_ONCE(*module_param);
118 	int modified_param = 0;
119 	bool modified = true;
120 
121 	if (param < min)
122 		modified_param = min;
123 	else if (param > max)
124 		modified_param = max;
125 	else
126 		modified = false;
127 
128 	if (modified) {
129 		(void)cmpxchg(module_param, param, modified_param);
130 		param = modified_param;
131 	}
132 
133 	return param;
134 }
135 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)136 unsigned __dm_get_module_param(unsigned *module_param,
137 			       unsigned def, unsigned max)
138 {
139 	unsigned param = ACCESS_ONCE(*module_param);
140 	unsigned modified_param = 0;
141 
142 	if (!param)
143 		modified_param = def;
144 	else if (param > max)
145 		modified_param = max;
146 
147 	if (modified_param) {
148 		(void)cmpxchg(module_param, param, modified_param);
149 		param = modified_param;
150 	}
151 
152 	return param;
153 }
154 
dm_get_reserved_bio_based_ios(void)155 unsigned dm_get_reserved_bio_based_ios(void)
156 {
157 	return __dm_get_module_param(&reserved_bio_based_ios,
158 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
159 }
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
161 
dm_get_numa_node(void)162 static unsigned dm_get_numa_node(void)
163 {
164 	return __dm_get_module_param_int(&dm_numa_node,
165 					 DM_NUMA_NODE, num_online_nodes() - 1);
166 }
167 
local_init(void)168 static int __init local_init(void)
169 {
170 	int r = -ENOMEM;
171 
172 	/* allocate a slab for the dm_ios */
173 	_io_cache = KMEM_CACHE(dm_io, 0);
174 	if (!_io_cache)
175 		return r;
176 
177 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
178 	if (!_rq_tio_cache)
179 		goto out_free_io_cache;
180 
181 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 				      __alignof__(struct request), 0, NULL);
183 	if (!_rq_cache)
184 		goto out_free_rq_tio_cache;
185 
186 	r = dm_uevent_init();
187 	if (r)
188 		goto out_free_rq_cache;
189 
190 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 	if (!deferred_remove_workqueue) {
192 		r = -ENOMEM;
193 		goto out_uevent_exit;
194 	}
195 
196 	_major = major;
197 	r = register_blkdev(_major, _name);
198 	if (r < 0)
199 		goto out_free_workqueue;
200 
201 	if (!_major)
202 		_major = r;
203 
204 	return 0;
205 
206 out_free_workqueue:
207 	destroy_workqueue(deferred_remove_workqueue);
208 out_uevent_exit:
209 	dm_uevent_exit();
210 out_free_rq_cache:
211 	kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 	kmem_cache_destroy(_rq_tio_cache);
214 out_free_io_cache:
215 	kmem_cache_destroy(_io_cache);
216 
217 	return r;
218 }
219 
local_exit(void)220 static void local_exit(void)
221 {
222 	flush_scheduled_work();
223 	destroy_workqueue(deferred_remove_workqueue);
224 
225 	kmem_cache_destroy(_rq_cache);
226 	kmem_cache_destroy(_rq_tio_cache);
227 	kmem_cache_destroy(_io_cache);
228 	unregister_blkdev(_major, _name);
229 	dm_uevent_exit();
230 
231 	_major = 0;
232 
233 	DMINFO("cleaned up");
234 }
235 
236 static int (*_inits[])(void) __initdata = {
237 	local_init,
238 	dm_target_init,
239 	dm_linear_init,
240 	dm_stripe_init,
241 	dm_io_init,
242 	dm_kcopyd_init,
243 	dm_interface_init,
244 	dm_statistics_init,
245 };
246 
247 static void (*_exits[])(void) = {
248 	local_exit,
249 	dm_target_exit,
250 	dm_linear_exit,
251 	dm_stripe_exit,
252 	dm_io_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 	dm_statistics_exit,
256 };
257 
dm_init(void)258 static int __init dm_init(void)
259 {
260 	const int count = ARRAY_SIZE(_inits);
261 
262 	int r, i;
263 
264 	for (i = 0; i < count; i++) {
265 		r = _inits[i]();
266 		if (r)
267 			goto bad;
268 	}
269 
270 	return 0;
271 
272       bad:
273 	while (i--)
274 		_exits[i]();
275 
276 	return r;
277 }
278 
dm_exit(void)279 static void __exit dm_exit(void)
280 {
281 	int i = ARRAY_SIZE(_exits);
282 
283 	while (i--)
284 		_exits[i]();
285 
286 	/*
287 	 * Should be empty by this point.
288 	 */
289 	idr_destroy(&_minor_idr);
290 }
291 
292 /*
293  * Block device functions
294  */
dm_deleting_md(struct mapped_device * md)295 int dm_deleting_md(struct mapped_device *md)
296 {
297 	return test_bit(DMF_DELETING, &md->flags);
298 }
299 
dm_blk_open(struct block_device * bdev,fmode_t mode)300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
301 {
302 	struct mapped_device *md;
303 
304 	spin_lock(&_minor_lock);
305 
306 	md = bdev->bd_disk->private_data;
307 	if (!md)
308 		goto out;
309 
310 	if (test_bit(DMF_FREEING, &md->flags) ||
311 	    dm_deleting_md(md)) {
312 		md = NULL;
313 		goto out;
314 	}
315 
316 	dm_get(md);
317 	atomic_inc(&md->open_count);
318 out:
319 	spin_unlock(&_minor_lock);
320 
321 	return md ? 0 : -ENXIO;
322 }
323 
dm_blk_close(struct gendisk * disk,fmode_t mode)324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
325 {
326 	struct mapped_device *md;
327 
328 	spin_lock(&_minor_lock);
329 
330 	md = disk->private_data;
331 	if (WARN_ON(!md))
332 		goto out;
333 
334 	if (atomic_dec_and_test(&md->open_count) &&
335 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
337 
338 	dm_put(md);
339 out:
340 	spin_unlock(&_minor_lock);
341 }
342 
dm_open_count(struct mapped_device * md)343 int dm_open_count(struct mapped_device *md)
344 {
345 	return atomic_read(&md->open_count);
346 }
347 
348 /*
349  * Guarantees nothing is using the device before it's deleted.
350  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
352 {
353 	int r = 0;
354 
355 	spin_lock(&_minor_lock);
356 
357 	if (dm_open_count(md)) {
358 		r = -EBUSY;
359 		if (mark_deferred)
360 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 		r = -EEXIST;
363 	else
364 		set_bit(DMF_DELETING, &md->flags);
365 
366 	spin_unlock(&_minor_lock);
367 
368 	return r;
369 }
370 
dm_cancel_deferred_remove(struct mapped_device * md)371 int dm_cancel_deferred_remove(struct mapped_device *md)
372 {
373 	int r = 0;
374 
375 	spin_lock(&_minor_lock);
376 
377 	if (test_bit(DMF_DELETING, &md->flags))
378 		r = -EBUSY;
379 	else
380 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
do_deferred_remove(struct work_struct * w)387 static void do_deferred_remove(struct work_struct *w)
388 {
389 	dm_deferred_remove();
390 }
391 
dm_get_size(struct mapped_device * md)392 sector_t dm_get_size(struct mapped_device *md)
393 {
394 	return get_capacity(md->disk);
395 }
396 
dm_get_md_queue(struct mapped_device * md)397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
398 {
399 	return md->queue;
400 }
401 
dm_get_stats(struct mapped_device * md)402 struct dm_stats *dm_get_stats(struct mapped_device *md)
403 {
404 	return &md->stats;
405 }
406 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 {
409 	struct mapped_device *md = bdev->bd_disk->private_data;
410 
411 	return dm_get_geometry(md, geo);
412 }
413 
dm_grab_bdev_for_ioctl(struct mapped_device * md,struct block_device ** bdev,fmode_t * mode)414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 				  struct block_device **bdev,
416 				  fmode_t *mode)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int srcu_idx, r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, &srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		goto out;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		goto out;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		goto out;
435 
436 	if (dm_suspended_md(md)) {
437 		r = -EAGAIN;
438 		goto out;
439 	}
440 
441 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
442 	if (r < 0)
443 		goto out;
444 
445 	bdgrab(*bdev);
446 	dm_put_live_table(md, srcu_idx);
447 	return r;
448 
449 out:
450 	dm_put_live_table(md, srcu_idx);
451 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
452 		msleep(10);
453 		goto retry;
454 	}
455 	return r;
456 }
457 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 			unsigned int cmd, unsigned long arg)
460 {
461 	struct mapped_device *md = bdev->bd_disk->private_data;
462 	int r;
463 
464 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
465 	if (r < 0)
466 		return r;
467 
468 	if (r > 0) {
469 		/*
470 		 * Target determined this ioctl is being issued against a
471 		 * subset of the parent bdev; require extra privileges.
472 		 */
473 		if (!capable(CAP_SYS_RAWIO)) {
474 			DMWARN_LIMIT(
475 	"%s: sending ioctl %x to DM device without required privilege.",
476 				current->comm, cmd);
477 			r = -ENOIOCTLCMD;
478 			goto out;
479 		}
480 	}
481 
482 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
483 out:
484 	bdput(bdev);
485 	return r;
486 }
487 
alloc_io(struct mapped_device * md)488 static struct dm_io *alloc_io(struct mapped_device *md)
489 {
490 	return mempool_alloc(md->io_pool, GFP_NOIO);
491 }
492 
free_io(struct mapped_device * md,struct dm_io * io)493 static void free_io(struct mapped_device *md, struct dm_io *io)
494 {
495 	mempool_free(io, md->io_pool);
496 }
497 
free_tio(struct dm_target_io * tio)498 static void free_tio(struct dm_target_io *tio)
499 {
500 	bio_put(&tio->clone);
501 }
502 
md_in_flight(struct mapped_device * md)503 int md_in_flight(struct mapped_device *md)
504 {
505 	return atomic_read(&md->pending[READ]) +
506 	       atomic_read(&md->pending[WRITE]);
507 }
508 
start_io_acct(struct dm_io * io)509 static void start_io_acct(struct dm_io *io)
510 {
511 	struct mapped_device *md = io->md;
512 	struct bio *bio = io->bio;
513 	int cpu;
514 	int rw = bio_data_dir(bio);
515 
516 	io->start_time = jiffies;
517 
518 	cpu = part_stat_lock();
519 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
520 	part_stat_unlock();
521 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
522 		atomic_inc_return(&md->pending[rw]));
523 
524 	if (unlikely(dm_stats_used(&md->stats)))
525 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
526 				    bio->bi_iter.bi_sector, bio_sectors(bio),
527 				    false, 0, &io->stats_aux);
528 }
529 
end_io_acct(struct dm_io * io)530 static void end_io_acct(struct dm_io *io)
531 {
532 	struct mapped_device *md = io->md;
533 	struct bio *bio = io->bio;
534 	unsigned long duration = jiffies - io->start_time;
535 	int pending;
536 	int rw = bio_data_dir(bio);
537 
538 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
539 
540 	if (unlikely(dm_stats_used(&md->stats)))
541 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
542 				    bio->bi_iter.bi_sector, bio_sectors(bio),
543 				    true, duration, &io->stats_aux);
544 
545 	/*
546 	 * After this is decremented the bio must not be touched if it is
547 	 * a flush.
548 	 */
549 	pending = atomic_dec_return(&md->pending[rw]);
550 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
551 	pending += atomic_read(&md->pending[rw^0x1]);
552 
553 	/* nudge anyone waiting on suspend queue */
554 	if (!pending)
555 		wake_up(&md->wait);
556 }
557 
558 /*
559  * Add the bio to the list of deferred io.
560  */
queue_io(struct mapped_device * md,struct bio * bio)561 static void queue_io(struct mapped_device *md, struct bio *bio)
562 {
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(&md->deferred_lock, flags);
566 	bio_list_add(&md->deferred, bio);
567 	spin_unlock_irqrestore(&md->deferred_lock, flags);
568 	queue_work(md->wq, &md->work);
569 }
570 
571 /*
572  * Everyone (including functions in this file), should use this
573  * function to access the md->map field, and make sure they call
574  * dm_put_live_table() when finished.
575  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
577 {
578 	*srcu_idx = srcu_read_lock(&md->io_barrier);
579 
580 	return srcu_dereference(md->map, &md->io_barrier);
581 }
582 
dm_put_live_table(struct mapped_device * md,int srcu_idx)583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
584 {
585 	srcu_read_unlock(&md->io_barrier, srcu_idx);
586 }
587 
dm_sync_table(struct mapped_device * md)588 void dm_sync_table(struct mapped_device *md)
589 {
590 	synchronize_srcu(&md->io_barrier);
591 	synchronize_rcu_expedited();
592 }
593 
594 /*
595  * A fast alternative to dm_get_live_table/dm_put_live_table.
596  * The caller must not block between these two functions.
597  */
dm_get_live_table_fast(struct mapped_device * md)598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
599 {
600 	rcu_read_lock();
601 	return rcu_dereference(md->map);
602 }
603 
dm_put_live_table_fast(struct mapped_device * md)604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
605 {
606 	rcu_read_unlock();
607 }
608 
609 /*
610  * Open a table device so we can use it as a map destination.
611  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)612 static int open_table_device(struct table_device *td, dev_t dev,
613 			     struct mapped_device *md)
614 {
615 	static char *_claim_ptr = "I belong to device-mapper";
616 	struct block_device *bdev;
617 
618 	int r;
619 
620 	BUG_ON(td->dm_dev.bdev);
621 
622 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
623 	if (IS_ERR(bdev))
624 		return PTR_ERR(bdev);
625 
626 	r = bd_link_disk_holder(bdev, dm_disk(md));
627 	if (r) {
628 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
629 		return r;
630 	}
631 
632 	td->dm_dev.bdev = bdev;
633 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
634 	return 0;
635 }
636 
637 /*
638  * Close a table device that we've been using.
639  */
close_table_device(struct table_device * td,struct mapped_device * md)640 static void close_table_device(struct table_device *td, struct mapped_device *md)
641 {
642 	if (!td->dm_dev.bdev)
643 		return;
644 
645 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
646 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
647 	put_dax(td->dm_dev.dax_dev);
648 	td->dm_dev.bdev = NULL;
649 	td->dm_dev.dax_dev = NULL;
650 }
651 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)652 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
653 					      fmode_t mode) {
654 	struct table_device *td;
655 
656 	list_for_each_entry(td, l, list)
657 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
658 			return td;
659 
660 	return NULL;
661 }
662 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
664 			struct dm_dev **result) {
665 	int r;
666 	struct table_device *td;
667 
668 	mutex_lock(&md->table_devices_lock);
669 	td = find_table_device(&md->table_devices, dev, mode);
670 	if (!td) {
671 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
672 		if (!td) {
673 			mutex_unlock(&md->table_devices_lock);
674 			return -ENOMEM;
675 		}
676 
677 		td->dm_dev.mode = mode;
678 		td->dm_dev.bdev = NULL;
679 
680 		if ((r = open_table_device(td, dev, md))) {
681 			mutex_unlock(&md->table_devices_lock);
682 			kfree(td);
683 			return r;
684 		}
685 
686 		format_dev_t(td->dm_dev.name, dev);
687 
688 		atomic_set(&td->count, 0);
689 		list_add(&td->list, &md->table_devices);
690 	}
691 	atomic_inc(&td->count);
692 	mutex_unlock(&md->table_devices_lock);
693 
694 	*result = &td->dm_dev;
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(dm_get_table_device);
698 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
700 {
701 	struct table_device *td = container_of(d, struct table_device, dm_dev);
702 
703 	mutex_lock(&md->table_devices_lock);
704 	if (atomic_dec_and_test(&td->count)) {
705 		close_table_device(td, md);
706 		list_del(&td->list);
707 		kfree(td);
708 	}
709 	mutex_unlock(&md->table_devices_lock);
710 }
711 EXPORT_SYMBOL(dm_put_table_device);
712 
free_table_devices(struct list_head * devices)713 static void free_table_devices(struct list_head *devices)
714 {
715 	struct list_head *tmp, *next;
716 
717 	list_for_each_safe(tmp, next, devices) {
718 		struct table_device *td = list_entry(tmp, struct table_device, list);
719 
720 		DMWARN("dm_destroy: %s still exists with %d references",
721 		       td->dm_dev.name, atomic_read(&td->count));
722 		kfree(td);
723 	}
724 }
725 
726 /*
727  * Get the geometry associated with a dm device
728  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
730 {
731 	*geo = md->geometry;
732 
733 	return 0;
734 }
735 
736 /*
737  * Set the geometry of a device.
738  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
740 {
741 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
742 
743 	if (geo->start > sz) {
744 		DMWARN("Start sector is beyond the geometry limits.");
745 		return -EINVAL;
746 	}
747 
748 	md->geometry = *geo;
749 
750 	return 0;
751 }
752 
753 /*-----------------------------------------------------------------
754  * CRUD START:
755  *   A more elegant soln is in the works that uses the queue
756  *   merge fn, unfortunately there are a couple of changes to
757  *   the block layer that I want to make for this.  So in the
758  *   interests of getting something for people to use I give
759  *   you this clearly demarcated crap.
760  *---------------------------------------------------------------*/
761 
__noflush_suspending(struct mapped_device * md)762 static int __noflush_suspending(struct mapped_device *md)
763 {
764 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
765 }
766 
767 /*
768  * Decrements the number of outstanding ios that a bio has been
769  * cloned into, completing the original io if necc.
770  */
dec_pending(struct dm_io * io,blk_status_t error)771 static void dec_pending(struct dm_io *io, blk_status_t error)
772 {
773 	unsigned long flags;
774 	blk_status_t io_error;
775 	struct bio *bio;
776 	struct mapped_device *md = io->md;
777 
778 	/* Push-back supersedes any I/O errors */
779 	if (unlikely(error)) {
780 		spin_lock_irqsave(&io->endio_lock, flags);
781 		if (!(io->status == BLK_STS_DM_REQUEUE &&
782 				__noflush_suspending(md)))
783 			io->status = error;
784 		spin_unlock_irqrestore(&io->endio_lock, flags);
785 	}
786 
787 	if (atomic_dec_and_test(&io->io_count)) {
788 		if (io->status == BLK_STS_DM_REQUEUE) {
789 			/*
790 			 * Target requested pushing back the I/O.
791 			 */
792 			spin_lock_irqsave(&md->deferred_lock, flags);
793 			if (__noflush_suspending(md))
794 				bio_list_add_head(&md->deferred, io->bio);
795 			else
796 				/* noflush suspend was interrupted. */
797 				io->status = BLK_STS_IOERR;
798 			spin_unlock_irqrestore(&md->deferred_lock, flags);
799 		}
800 
801 		io_error = io->status;
802 		bio = io->bio;
803 		end_io_acct(io);
804 		free_io(md, io);
805 
806 		if (io_error == BLK_STS_DM_REQUEUE)
807 			return;
808 
809 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
810 			/*
811 			 * Preflush done for flush with data, reissue
812 			 * without REQ_PREFLUSH.
813 			 */
814 			bio->bi_opf &= ~REQ_PREFLUSH;
815 			queue_io(md, bio);
816 		} else {
817 			/* done with normal IO or empty flush */
818 			if (io_error)
819 				bio->bi_status = io_error;
820 			bio_endio(bio);
821 		}
822 	}
823 }
824 
disable_write_same(struct mapped_device * md)825 void disable_write_same(struct mapped_device *md)
826 {
827 	struct queue_limits *limits = dm_get_queue_limits(md);
828 
829 	/* device doesn't really support WRITE SAME, disable it */
830 	limits->max_write_same_sectors = 0;
831 }
832 
disable_write_zeroes(struct mapped_device * md)833 void disable_write_zeroes(struct mapped_device *md)
834 {
835 	struct queue_limits *limits = dm_get_queue_limits(md);
836 
837 	/* device doesn't really support WRITE ZEROES, disable it */
838 	limits->max_write_zeroes_sectors = 0;
839 }
840 
clone_endio(struct bio * bio)841 static void clone_endio(struct bio *bio)
842 {
843 	blk_status_t error = bio->bi_status;
844 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
845 	struct dm_io *io = tio->io;
846 	struct mapped_device *md = tio->io->md;
847 	dm_endio_fn endio = tio->ti->type->end_io;
848 
849 	if (unlikely(error == BLK_STS_TARGET)) {
850 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
851 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
852 			disable_write_same(md);
853 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
854 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
855 			disable_write_zeroes(md);
856 	}
857 
858 	if (endio) {
859 		int r = endio(tio->ti, bio, &error);
860 		switch (r) {
861 		case DM_ENDIO_REQUEUE:
862 			error = BLK_STS_DM_REQUEUE;
863 			/*FALLTHRU*/
864 		case DM_ENDIO_DONE:
865 			break;
866 		case DM_ENDIO_INCOMPLETE:
867 			/* The target will handle the io */
868 			return;
869 		default:
870 			DMWARN("unimplemented target endio return value: %d", r);
871 			BUG();
872 		}
873 	}
874 
875 	free_tio(tio);
876 	dec_pending(io, error);
877 }
878 
879 /*
880  * Return maximum size of I/O possible at the supplied sector up to the current
881  * target boundary.
882  */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)883 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
884 {
885 	sector_t target_offset = dm_target_offset(ti, sector);
886 
887 	return ti->len - target_offset;
888 }
889 
max_io_len(sector_t sector,struct dm_target * ti)890 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
891 {
892 	sector_t len = max_io_len_target_boundary(sector, ti);
893 	sector_t offset, max_len;
894 
895 	/*
896 	 * Does the target need to split even further?
897 	 */
898 	if (ti->max_io_len) {
899 		offset = dm_target_offset(ti, sector);
900 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
901 			max_len = sector_div(offset, ti->max_io_len);
902 		else
903 			max_len = offset & (ti->max_io_len - 1);
904 		max_len = ti->max_io_len - max_len;
905 
906 		if (len > max_len)
907 			len = max_len;
908 	}
909 
910 	return len;
911 }
912 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)913 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
914 {
915 	if (len > UINT_MAX) {
916 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
917 		      (unsigned long long)len, UINT_MAX);
918 		ti->error = "Maximum size of target IO is too large";
919 		return -EINVAL;
920 	}
921 
922 	ti->max_io_len = (uint32_t) len;
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
927 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)928 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
929 		sector_t sector, int *srcu_idx)
930 {
931 	struct dm_table *map;
932 	struct dm_target *ti;
933 
934 	map = dm_get_live_table(md, srcu_idx);
935 	if (!map)
936 		return NULL;
937 
938 	ti = dm_table_find_target(map, sector);
939 	if (!dm_target_is_valid(ti))
940 		return NULL;
941 
942 	return ti;
943 }
944 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)945 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
946 		long nr_pages, void **kaddr, pfn_t *pfn)
947 {
948 	struct mapped_device *md = dax_get_private(dax_dev);
949 	sector_t sector = pgoff * PAGE_SECTORS;
950 	struct dm_target *ti;
951 	long len, ret = -EIO;
952 	int srcu_idx;
953 
954 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
955 
956 	if (!ti)
957 		goto out;
958 	if (!ti->type->direct_access)
959 		goto out;
960 	len = max_io_len(sector, ti) / PAGE_SECTORS;
961 	if (len < 1)
962 		goto out;
963 	nr_pages = min(len, nr_pages);
964 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
965 
966  out:
967 	dm_put_live_table(md, srcu_idx);
968 
969 	return ret;
970 }
971 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)972 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
973 		void *addr, size_t bytes, struct iov_iter *i)
974 {
975 	struct mapped_device *md = dax_get_private(dax_dev);
976 	sector_t sector = pgoff * PAGE_SECTORS;
977 	struct dm_target *ti;
978 	long ret = 0;
979 	int srcu_idx;
980 
981 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
982 
983 	if (!ti)
984 		goto out;
985 	if (!ti->type->dax_copy_from_iter) {
986 		ret = copy_from_iter(addr, bytes, i);
987 		goto out;
988 	}
989 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
990  out:
991 	dm_put_live_table(md, srcu_idx);
992 
993 	return ret;
994 }
995 
996 /*
997  * A target may call dm_accept_partial_bio only from the map routine.  It is
998  * allowed for all bio types except REQ_PREFLUSH.
999  *
1000  * dm_accept_partial_bio informs the dm that the target only wants to process
1001  * additional n_sectors sectors of the bio and the rest of the data should be
1002  * sent in a next bio.
1003  *
1004  * A diagram that explains the arithmetics:
1005  * +--------------------+---------------+-------+
1006  * |         1          |       2       |   3   |
1007  * +--------------------+---------------+-------+
1008  *
1009  * <-------------- *tio->len_ptr --------------->
1010  *                      <------- bi_size ------->
1011  *                      <-- n_sectors -->
1012  *
1013  * Region 1 was already iterated over with bio_advance or similar function.
1014  *	(it may be empty if the target doesn't use bio_advance)
1015  * Region 2 is the remaining bio size that the target wants to process.
1016  *	(it may be empty if region 1 is non-empty, although there is no reason
1017  *	 to make it empty)
1018  * The target requires that region 3 is to be sent in the next bio.
1019  *
1020  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1021  * the partially processed part (the sum of regions 1+2) must be the same for all
1022  * copies of the bio.
1023  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1024 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1025 {
1026 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1027 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1028 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1029 	BUG_ON(bi_size > *tio->len_ptr);
1030 	BUG_ON(n_sectors > bi_size);
1031 	*tio->len_ptr -= bi_size - n_sectors;
1032 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1033 }
1034 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1035 
1036 /*
1037  * The zone descriptors obtained with a zone report indicate zone positions
1038  * within the target backing device, regardless of that device is a partition
1039  * and regardless of the target mapping start sector on the device or partition.
1040  * The zone descriptors start sector and write pointer position must be adjusted
1041  * to match their relative position within the dm device.
1042  * A target may call dm_remap_zone_report() after completion of a
1043  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained from the
1044  * backing device.
1045  */
dm_remap_zone_report(struct dm_target * ti,struct bio * bio,sector_t start)1046 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1047 {
1048 #ifdef CONFIG_BLK_DEV_ZONED
1049 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1050 	struct bio *report_bio = tio->io->bio;
1051 	struct blk_zone_report_hdr *hdr = NULL;
1052 	struct blk_zone *zone;
1053 	unsigned int nr_rep = 0;
1054 	unsigned int ofst;
1055 	sector_t part_offset;
1056 	struct bio_vec bvec;
1057 	struct bvec_iter iter;
1058 	void *addr;
1059 
1060 	if (bio->bi_status)
1061 		return;
1062 
1063 	/*
1064 	 * bio sector was incremented by the request size on completion. Taking
1065 	 * into account the original request sector, the target start offset on
1066 	 * the backing device and the target mapping offset (ti->begin), the
1067 	 * start sector of the backing device. The partition offset is always 0
1068 	 * if the target uses a whole device.
1069 	 */
1070 	part_offset = bio->bi_iter.bi_sector + ti->begin - (start + bio_end_sector(report_bio));
1071 
1072 	/*
1073 	 * Remap the start sector of the reported zones. For sequential zones,
1074 	 * also remap the write pointer position.
1075 	 */
1076 	bio_for_each_segment(bvec, report_bio, iter) {
1077 		addr = kmap_atomic(bvec.bv_page);
1078 
1079 		/* Remember the report header in the first page */
1080 		if (!hdr) {
1081 			hdr = addr;
1082 			ofst = sizeof(struct blk_zone_report_hdr);
1083 		} else
1084 			ofst = 0;
1085 
1086 		/* Set zones start sector */
1087 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1088 			zone = addr + ofst;
1089 			zone->start -= part_offset;
1090 			if (zone->start >= start + ti->len) {
1091 				hdr->nr_zones = 0;
1092 				break;
1093 			}
1094 			zone->start = zone->start + ti->begin - start;
1095 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1096 				if (zone->cond == BLK_ZONE_COND_FULL)
1097 					zone->wp = zone->start + zone->len;
1098 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1099 					zone->wp = zone->start;
1100 				else
1101 					zone->wp = zone->wp + ti->begin - start - part_offset;
1102 			}
1103 			ofst += sizeof(struct blk_zone);
1104 			hdr->nr_zones--;
1105 			nr_rep++;
1106 		}
1107 
1108 		if (addr != hdr)
1109 			kunmap_atomic(addr);
1110 
1111 		if (!hdr->nr_zones)
1112 			break;
1113 	}
1114 
1115 	if (hdr) {
1116 		hdr->nr_zones = nr_rep;
1117 		kunmap_atomic(hdr);
1118 	}
1119 
1120 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1121 
1122 #else /* !CONFIG_BLK_DEV_ZONED */
1123 	bio->bi_status = BLK_STS_NOTSUPP;
1124 #endif
1125 }
1126 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1127 
1128 /*
1129  * Flush current->bio_list when the target map method blocks.
1130  * This fixes deadlocks in snapshot and possibly in other targets.
1131  */
1132 struct dm_offload {
1133 	struct blk_plug plug;
1134 	struct blk_plug_cb cb;
1135 };
1136 
flush_current_bio_list(struct blk_plug_cb * cb,bool from_schedule)1137 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1138 {
1139 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1140 	struct bio_list list;
1141 	struct bio *bio;
1142 	int i;
1143 
1144 	INIT_LIST_HEAD(&o->cb.list);
1145 
1146 	if (unlikely(!current->bio_list))
1147 		return;
1148 
1149 	for (i = 0; i < 2; i++) {
1150 		list = current->bio_list[i];
1151 		bio_list_init(&current->bio_list[i]);
1152 
1153 		while ((bio = bio_list_pop(&list))) {
1154 			struct bio_set *bs = bio->bi_pool;
1155 			if (unlikely(!bs) || bs == fs_bio_set ||
1156 			    !bs->rescue_workqueue) {
1157 				bio_list_add(&current->bio_list[i], bio);
1158 				continue;
1159 			}
1160 
1161 			spin_lock(&bs->rescue_lock);
1162 			bio_list_add(&bs->rescue_list, bio);
1163 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1164 			spin_unlock(&bs->rescue_lock);
1165 		}
1166 	}
1167 }
1168 
dm_offload_start(struct dm_offload * o)1169 static void dm_offload_start(struct dm_offload *o)
1170 {
1171 	blk_start_plug(&o->plug);
1172 	o->cb.callback = flush_current_bio_list;
1173 	list_add(&o->cb.list, &current->plug->cb_list);
1174 }
1175 
dm_offload_end(struct dm_offload * o)1176 static void dm_offload_end(struct dm_offload *o)
1177 {
1178 	list_del(&o->cb.list);
1179 	blk_finish_plug(&o->plug);
1180 }
1181 
__map_bio(struct dm_target_io * tio)1182 static void __map_bio(struct dm_target_io *tio)
1183 {
1184 	int r;
1185 	sector_t sector;
1186 	struct dm_offload o;
1187 	struct bio *clone = &tio->clone;
1188 	struct dm_target *ti = tio->ti;
1189 
1190 	clone->bi_end_io = clone_endio;
1191 
1192 	/*
1193 	 * Map the clone.  If r == 0 we don't need to do
1194 	 * anything, the target has assumed ownership of
1195 	 * this io.
1196 	 */
1197 	atomic_inc(&tio->io->io_count);
1198 	sector = clone->bi_iter.bi_sector;
1199 
1200 	dm_offload_start(&o);
1201 	r = ti->type->map(ti, clone);
1202 	dm_offload_end(&o);
1203 
1204 	switch (r) {
1205 	case DM_MAPIO_SUBMITTED:
1206 		break;
1207 	case DM_MAPIO_REMAPPED:
1208 		/* the bio has been remapped so dispatch it */
1209 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1210 				      bio_dev(tio->io->bio), sector);
1211 		generic_make_request(clone);
1212 		break;
1213 	case DM_MAPIO_KILL:
1214 		dec_pending(tio->io, BLK_STS_IOERR);
1215 		free_tio(tio);
1216 		break;
1217 	case DM_MAPIO_REQUEUE:
1218 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1219 		free_tio(tio);
1220 		break;
1221 	default:
1222 		DMWARN("unimplemented target map return value: %d", r);
1223 		BUG();
1224 	}
1225 }
1226 
1227 struct clone_info {
1228 	struct mapped_device *md;
1229 	struct dm_table *map;
1230 	struct bio *bio;
1231 	struct dm_io *io;
1232 	sector_t sector;
1233 	unsigned sector_count;
1234 };
1235 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1236 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1237 {
1238 	bio->bi_iter.bi_sector = sector;
1239 	bio->bi_iter.bi_size = to_bytes(len);
1240 }
1241 
1242 /*
1243  * Creates a bio that consists of range of complete bvecs.
1244  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1245 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1246 		     sector_t sector, unsigned len)
1247 {
1248 	struct bio *clone = &tio->clone;
1249 
1250 	__bio_clone_fast(clone, bio);
1251 
1252 	if (unlikely(bio_integrity(bio) != NULL)) {
1253 		int r;
1254 
1255 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1256 			     !dm_target_passes_integrity(tio->ti->type))) {
1257 			DMWARN("%s: the target %s doesn't support integrity data.",
1258 				dm_device_name(tio->io->md),
1259 				tio->ti->type->name);
1260 			return -EIO;
1261 		}
1262 
1263 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1264 		if (r < 0)
1265 			return r;
1266 	}
1267 
1268 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1269 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1270 	clone->bi_iter.bi_size = to_bytes(len);
1271 
1272 	if (unlikely(bio_integrity(bio) != NULL))
1273 		bio_integrity_trim(clone);
1274 
1275 	return 0;
1276 }
1277 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr)1278 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1279 				      struct dm_target *ti,
1280 				      unsigned target_bio_nr)
1281 {
1282 	struct dm_target_io *tio;
1283 	struct bio *clone;
1284 
1285 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1286 	tio = container_of(clone, struct dm_target_io, clone);
1287 
1288 	tio->io = ci->io;
1289 	tio->ti = ti;
1290 	tio->target_bio_nr = target_bio_nr;
1291 
1292 	return tio;
1293 }
1294 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len)1295 static void __clone_and_map_simple_bio(struct clone_info *ci,
1296 				       struct dm_target *ti,
1297 				       unsigned target_bio_nr, unsigned *len)
1298 {
1299 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1300 	struct bio *clone = &tio->clone;
1301 
1302 	tio->len_ptr = len;
1303 
1304 	__bio_clone_fast(clone, ci->bio);
1305 	if (len)
1306 		bio_setup_sector(clone, ci->sector, *len);
1307 
1308 	__map_bio(tio);
1309 }
1310 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1311 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1312 				  unsigned num_bios, unsigned *len)
1313 {
1314 	unsigned target_bio_nr;
1315 
1316 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1317 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1318 }
1319 
__send_empty_flush(struct clone_info * ci)1320 static int __send_empty_flush(struct clone_info *ci)
1321 {
1322 	unsigned target_nr = 0;
1323 	struct dm_target *ti;
1324 
1325 	BUG_ON(bio_has_data(ci->bio));
1326 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1327 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1328 
1329 	return 0;
1330 }
1331 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1332 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1333 				     sector_t sector, unsigned *len)
1334 {
1335 	struct bio *bio = ci->bio;
1336 	struct dm_target_io *tio;
1337 	unsigned target_bio_nr;
1338 	unsigned num_target_bios = 1;
1339 	int r = 0;
1340 
1341 	/*
1342 	 * Does the target want to receive duplicate copies of the bio?
1343 	 */
1344 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1345 		num_target_bios = ti->num_write_bios(ti, bio);
1346 
1347 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1348 		tio = alloc_tio(ci, ti, target_bio_nr);
1349 		tio->len_ptr = len;
1350 		r = clone_bio(tio, bio, sector, *len);
1351 		if (r < 0) {
1352 			free_tio(tio);
1353 			break;
1354 		}
1355 		__map_bio(tio);
1356 	}
1357 
1358 	return r;
1359 }
1360 
1361 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1362 
get_num_discard_bios(struct dm_target * ti)1363 static unsigned get_num_discard_bios(struct dm_target *ti)
1364 {
1365 	return ti->num_discard_bios;
1366 }
1367 
get_num_write_same_bios(struct dm_target * ti)1368 static unsigned get_num_write_same_bios(struct dm_target *ti)
1369 {
1370 	return ti->num_write_same_bios;
1371 }
1372 
get_num_write_zeroes_bios(struct dm_target * ti)1373 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1374 {
1375 	return ti->num_write_zeroes_bios;
1376 }
1377 
1378 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1379 
is_split_required_for_discard(struct dm_target * ti)1380 static bool is_split_required_for_discard(struct dm_target *ti)
1381 {
1382 	return ti->split_discard_bios;
1383 }
1384 
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1385 static int __send_changing_extent_only(struct clone_info *ci,
1386 				       get_num_bios_fn get_num_bios,
1387 				       is_split_required_fn is_split_required)
1388 {
1389 	struct dm_target *ti;
1390 	unsigned len;
1391 	unsigned num_bios;
1392 
1393 	do {
1394 		ti = dm_table_find_target(ci->map, ci->sector);
1395 		if (!dm_target_is_valid(ti))
1396 			return -EIO;
1397 
1398 		/*
1399 		 * Even though the device advertised support for this type of
1400 		 * request, that does not mean every target supports it, and
1401 		 * reconfiguration might also have changed that since the
1402 		 * check was performed.
1403 		 */
1404 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1405 		if (!num_bios)
1406 			return -EOPNOTSUPP;
1407 
1408 		if (is_split_required && !is_split_required(ti))
1409 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1410 		else
1411 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1412 
1413 		__send_duplicate_bios(ci, ti, num_bios, &len);
1414 
1415 		ci->sector += len;
1416 	} while (ci->sector_count -= len);
1417 
1418 	return 0;
1419 }
1420 
__send_discard(struct clone_info * ci)1421 static int __send_discard(struct clone_info *ci)
1422 {
1423 	return __send_changing_extent_only(ci, get_num_discard_bios,
1424 					   is_split_required_for_discard);
1425 }
1426 
__send_write_same(struct clone_info * ci)1427 static int __send_write_same(struct clone_info *ci)
1428 {
1429 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1430 }
1431 
__send_write_zeroes(struct clone_info * ci)1432 static int __send_write_zeroes(struct clone_info *ci)
1433 {
1434 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1435 }
1436 
1437 /*
1438  * Select the correct strategy for processing a non-flush bio.
1439  */
__split_and_process_non_flush(struct clone_info * ci)1440 static int __split_and_process_non_flush(struct clone_info *ci)
1441 {
1442 	struct bio *bio = ci->bio;
1443 	struct dm_target *ti;
1444 	unsigned len;
1445 	int r;
1446 
1447 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1448 		return __send_discard(ci);
1449 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1450 		return __send_write_same(ci);
1451 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1452 		return __send_write_zeroes(ci);
1453 
1454 	ti = dm_table_find_target(ci->map, ci->sector);
1455 	if (!dm_target_is_valid(ti))
1456 		return -EIO;
1457 
1458 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1459 		len = ci->sector_count;
1460 	else
1461 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1462 			    ci->sector_count);
1463 
1464 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1465 	if (r < 0)
1466 		return r;
1467 
1468 	ci->sector += len;
1469 	ci->sector_count -= len;
1470 
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Entry point to split a bio into clones and submit them to the targets.
1476  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1477 static void __split_and_process_bio(struct mapped_device *md,
1478 				    struct dm_table *map, struct bio *bio)
1479 {
1480 	struct clone_info ci;
1481 	int error = 0;
1482 
1483 	if (unlikely(!map)) {
1484 		bio_io_error(bio);
1485 		return;
1486 	}
1487 
1488 	ci.map = map;
1489 	ci.md = md;
1490 	ci.io = alloc_io(md);
1491 	ci.io->status = 0;
1492 	atomic_set(&ci.io->io_count, 1);
1493 	ci.io->bio = bio;
1494 	ci.io->md = md;
1495 	spin_lock_init(&ci.io->endio_lock);
1496 	ci.sector = bio->bi_iter.bi_sector;
1497 
1498 	start_io_acct(ci.io);
1499 
1500 	if (bio->bi_opf & REQ_PREFLUSH) {
1501 		ci.bio = &ci.md->flush_bio;
1502 		ci.sector_count = 0;
1503 		error = __send_empty_flush(&ci);
1504 		/* dec_pending submits any data associated with flush */
1505 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1506 		ci.bio = bio;
1507 		ci.sector_count = 0;
1508 		error = __split_and_process_non_flush(&ci);
1509 	} else {
1510 		ci.bio = bio;
1511 		ci.sector_count = bio_sectors(bio);
1512 		while (ci.sector_count && !error)
1513 			error = __split_and_process_non_flush(&ci);
1514 	}
1515 
1516 	/* drop the extra reference count */
1517 	dec_pending(ci.io, errno_to_blk_status(error));
1518 }
1519 /*-----------------------------------------------------------------
1520  * CRUD END
1521  *---------------------------------------------------------------*/
1522 
1523 /*
1524  * The request function that just remaps the bio built up by
1525  * dm_merge_bvec.
1526  */
dm_make_request(struct request_queue * q,struct bio * bio)1527 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529 	int rw = bio_data_dir(bio);
1530 	struct mapped_device *md = q->queuedata;
1531 	int srcu_idx;
1532 	struct dm_table *map;
1533 
1534 	map = dm_get_live_table(md, &srcu_idx);
1535 
1536 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1537 
1538 	/* if we're suspended, we have to queue this io for later */
1539 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1540 		dm_put_live_table(md, srcu_idx);
1541 
1542 		if (!(bio->bi_opf & REQ_RAHEAD))
1543 			queue_io(md, bio);
1544 		else
1545 			bio_io_error(bio);
1546 		return BLK_QC_T_NONE;
1547 	}
1548 
1549 	__split_and_process_bio(md, map, bio);
1550 	dm_put_live_table(md, srcu_idx);
1551 	return BLK_QC_T_NONE;
1552 }
1553 
dm_any_congested(void * congested_data,int bdi_bits)1554 static int dm_any_congested(void *congested_data, int bdi_bits)
1555 {
1556 	int r = bdi_bits;
1557 	struct mapped_device *md = congested_data;
1558 	struct dm_table *map;
1559 
1560 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1561 		if (dm_request_based(md)) {
1562 			/*
1563 			 * With request-based DM we only need to check the
1564 			 * top-level queue for congestion.
1565 			 */
1566 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1567 		} else {
1568 			map = dm_get_live_table_fast(md);
1569 			if (map)
1570 				r = dm_table_any_congested(map, bdi_bits);
1571 			dm_put_live_table_fast(md);
1572 		}
1573 	}
1574 
1575 	return r;
1576 }
1577 
1578 /*-----------------------------------------------------------------
1579  * An IDR is used to keep track of allocated minor numbers.
1580  *---------------------------------------------------------------*/
free_minor(int minor)1581 static void free_minor(int minor)
1582 {
1583 	spin_lock(&_minor_lock);
1584 	idr_remove(&_minor_idr, minor);
1585 	spin_unlock(&_minor_lock);
1586 }
1587 
1588 /*
1589  * See if the device with a specific minor # is free.
1590  */
specific_minor(int minor)1591 static int specific_minor(int minor)
1592 {
1593 	int r;
1594 
1595 	if (minor >= (1 << MINORBITS))
1596 		return -EINVAL;
1597 
1598 	idr_preload(GFP_KERNEL);
1599 	spin_lock(&_minor_lock);
1600 
1601 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1602 
1603 	spin_unlock(&_minor_lock);
1604 	idr_preload_end();
1605 	if (r < 0)
1606 		return r == -ENOSPC ? -EBUSY : r;
1607 	return 0;
1608 }
1609 
next_free_minor(int * minor)1610 static int next_free_minor(int *minor)
1611 {
1612 	int r;
1613 
1614 	idr_preload(GFP_KERNEL);
1615 	spin_lock(&_minor_lock);
1616 
1617 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1618 
1619 	spin_unlock(&_minor_lock);
1620 	idr_preload_end();
1621 	if (r < 0)
1622 		return r;
1623 	*minor = r;
1624 	return 0;
1625 }
1626 
1627 static const struct block_device_operations dm_blk_dops;
1628 static const struct dax_operations dm_dax_ops;
1629 
1630 static void dm_wq_work(struct work_struct *work);
1631 
dm_init_md_queue(struct mapped_device * md)1632 void dm_init_md_queue(struct mapped_device *md)
1633 {
1634 	/*
1635 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1636 	 * devices.  The type of this dm device may not have been decided yet.
1637 	 * The type is decided at the first table loading time.
1638 	 * To prevent problematic device stacking, clear the queue flag
1639 	 * for request stacking support until then.
1640 	 *
1641 	 * This queue is new, so no concurrency on the queue_flags.
1642 	 */
1643 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1644 
1645 	/*
1646 	 * Initialize data that will only be used by a non-blk-mq DM queue
1647 	 * - must do so here (in alloc_dev callchain) before queue is used
1648 	 */
1649 	md->queue->queuedata = md;
1650 }
1651 
dm_init_normal_md_queue(struct mapped_device * md)1652 void dm_init_normal_md_queue(struct mapped_device *md)
1653 {
1654 	md->use_blk_mq = false;
1655 	dm_init_md_queue(md);
1656 
1657 	/*
1658 	 * Initialize aspects of queue that aren't relevant for blk-mq
1659 	 */
1660 	md->queue->backing_dev_info->congested_data = md;
1661 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1662 }
1663 
cleanup_mapped_device(struct mapped_device * md)1664 static void cleanup_mapped_device(struct mapped_device *md)
1665 {
1666 	if (md->wq)
1667 		destroy_workqueue(md->wq);
1668 	if (md->kworker_task)
1669 		kthread_stop(md->kworker_task);
1670 	mempool_destroy(md->io_pool);
1671 	if (md->bs)
1672 		bioset_free(md->bs);
1673 
1674 	if (md->dax_dev) {
1675 		kill_dax(md->dax_dev);
1676 		put_dax(md->dax_dev);
1677 		md->dax_dev = NULL;
1678 	}
1679 
1680 	if (md->disk) {
1681 		spin_lock(&_minor_lock);
1682 		md->disk->private_data = NULL;
1683 		spin_unlock(&_minor_lock);
1684 		del_gendisk(md->disk);
1685 		put_disk(md->disk);
1686 	}
1687 
1688 	if (md->queue)
1689 		blk_cleanup_queue(md->queue);
1690 
1691 	cleanup_srcu_struct(&md->io_barrier);
1692 
1693 	if (md->bdev) {
1694 		bdput(md->bdev);
1695 		md->bdev = NULL;
1696 	}
1697 
1698 	dm_mq_cleanup_mapped_device(md);
1699 }
1700 
1701 /*
1702  * Allocate and initialise a blank device with a given minor.
1703  */
alloc_dev(int minor)1704 static struct mapped_device *alloc_dev(int minor)
1705 {
1706 	int r, numa_node_id = dm_get_numa_node();
1707 	struct dax_device *dax_dev;
1708 	struct mapped_device *md;
1709 	void *old_md;
1710 
1711 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1712 	if (!md) {
1713 		DMWARN("unable to allocate device, out of memory.");
1714 		return NULL;
1715 	}
1716 
1717 	if (!try_module_get(THIS_MODULE))
1718 		goto bad_module_get;
1719 
1720 	/* get a minor number for the dev */
1721 	if (minor == DM_ANY_MINOR)
1722 		r = next_free_minor(&minor);
1723 	else
1724 		r = specific_minor(minor);
1725 	if (r < 0)
1726 		goto bad_minor;
1727 
1728 	r = init_srcu_struct(&md->io_barrier);
1729 	if (r < 0)
1730 		goto bad_io_barrier;
1731 
1732 	md->numa_node_id = numa_node_id;
1733 	md->use_blk_mq = dm_use_blk_mq_default();
1734 	md->init_tio_pdu = false;
1735 	md->type = DM_TYPE_NONE;
1736 	mutex_init(&md->suspend_lock);
1737 	mutex_init(&md->type_lock);
1738 	mutex_init(&md->table_devices_lock);
1739 	spin_lock_init(&md->deferred_lock);
1740 	atomic_set(&md->holders, 1);
1741 	atomic_set(&md->open_count, 0);
1742 	atomic_set(&md->event_nr, 0);
1743 	atomic_set(&md->uevent_seq, 0);
1744 	INIT_LIST_HEAD(&md->uevent_list);
1745 	INIT_LIST_HEAD(&md->table_devices);
1746 	spin_lock_init(&md->uevent_lock);
1747 
1748 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1749 	if (!md->queue)
1750 		goto bad;
1751 
1752 	dm_init_md_queue(md);
1753 	/*
1754 	 * default to bio-based required ->make_request_fn until DM
1755 	 * table is loaded and md->type established. If request-based
1756 	 * table is loaded: blk-mq will override accordingly.
1757 	 */
1758 	blk_queue_make_request(md->queue, dm_make_request);
1759 
1760 	md->disk = alloc_disk_node(1, numa_node_id);
1761 	if (!md->disk)
1762 		goto bad;
1763 
1764 	atomic_set(&md->pending[0], 0);
1765 	atomic_set(&md->pending[1], 0);
1766 	init_waitqueue_head(&md->wait);
1767 	INIT_WORK(&md->work, dm_wq_work);
1768 	init_waitqueue_head(&md->eventq);
1769 	init_completion(&md->kobj_holder.completion);
1770 	md->kworker_task = NULL;
1771 
1772 	md->disk->major = _major;
1773 	md->disk->first_minor = minor;
1774 	md->disk->fops = &dm_blk_dops;
1775 	md->disk->queue = md->queue;
1776 	md->disk->private_data = md;
1777 	sprintf(md->disk->disk_name, "dm-%d", minor);
1778 
1779 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1780 	if (!dax_dev)
1781 		goto bad;
1782 	md->dax_dev = dax_dev;
1783 
1784 	add_disk(md->disk);
1785 	format_dev_t(md->name, MKDEV(_major, minor));
1786 
1787 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1788 	if (!md->wq)
1789 		goto bad;
1790 
1791 	md->bdev = bdget_disk(md->disk, 0);
1792 	if (!md->bdev)
1793 		goto bad;
1794 
1795 	bio_init(&md->flush_bio, NULL, 0);
1796 	bio_set_dev(&md->flush_bio, md->bdev);
1797 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1798 
1799 	dm_stats_init(&md->stats);
1800 
1801 	/* Populate the mapping, nobody knows we exist yet */
1802 	spin_lock(&_minor_lock);
1803 	old_md = idr_replace(&_minor_idr, md, minor);
1804 	spin_unlock(&_minor_lock);
1805 
1806 	BUG_ON(old_md != MINOR_ALLOCED);
1807 
1808 	return md;
1809 
1810 bad:
1811 	cleanup_mapped_device(md);
1812 bad_io_barrier:
1813 	free_minor(minor);
1814 bad_minor:
1815 	module_put(THIS_MODULE);
1816 bad_module_get:
1817 	kvfree(md);
1818 	return NULL;
1819 }
1820 
1821 static void unlock_fs(struct mapped_device *md);
1822 
free_dev(struct mapped_device * md)1823 static void free_dev(struct mapped_device *md)
1824 {
1825 	int minor = MINOR(disk_devt(md->disk));
1826 
1827 	unlock_fs(md);
1828 
1829 	cleanup_mapped_device(md);
1830 
1831 	free_table_devices(&md->table_devices);
1832 	dm_stats_cleanup(&md->stats);
1833 	free_minor(minor);
1834 
1835 	module_put(THIS_MODULE);
1836 	kvfree(md);
1837 }
1838 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1839 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1840 {
1841 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1842 
1843 	if (md->bs) {
1844 		/* The md already has necessary mempools. */
1845 		if (dm_table_bio_based(t)) {
1846 			/*
1847 			 * Reload bioset because front_pad may have changed
1848 			 * because a different table was loaded.
1849 			 */
1850 			bioset_free(md->bs);
1851 			md->bs = p->bs;
1852 			p->bs = NULL;
1853 		}
1854 		/*
1855 		 * There's no need to reload with request-based dm
1856 		 * because the size of front_pad doesn't change.
1857 		 * Note for future: If you are to reload bioset,
1858 		 * prep-ed requests in the queue may refer
1859 		 * to bio from the old bioset, so you must walk
1860 		 * through the queue to unprep.
1861 		 */
1862 		goto out;
1863 	}
1864 
1865 	BUG_ON(!p || md->io_pool || md->bs);
1866 
1867 	md->io_pool = p->io_pool;
1868 	p->io_pool = NULL;
1869 	md->bs = p->bs;
1870 	p->bs = NULL;
1871 
1872 out:
1873 	/* mempool bind completed, no longer need any mempools in the table */
1874 	dm_table_free_md_mempools(t);
1875 }
1876 
1877 /*
1878  * Bind a table to the device.
1879  */
event_callback(void * context)1880 static void event_callback(void *context)
1881 {
1882 	unsigned long flags;
1883 	LIST_HEAD(uevents);
1884 	struct mapped_device *md = (struct mapped_device *) context;
1885 
1886 	spin_lock_irqsave(&md->uevent_lock, flags);
1887 	list_splice_init(&md->uevent_list, &uevents);
1888 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1889 
1890 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1891 
1892 	atomic_inc(&md->event_nr);
1893 	wake_up(&md->eventq);
1894 	dm_issue_global_event();
1895 }
1896 
1897 /*
1898  * Protected by md->suspend_lock obtained by dm_swap_table().
1899  */
__set_size(struct mapped_device * md,sector_t size)1900 static void __set_size(struct mapped_device *md, sector_t size)
1901 {
1902 	lockdep_assert_held(&md->suspend_lock);
1903 
1904 	set_capacity(md->disk, size);
1905 
1906 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1907 }
1908 
1909 /*
1910  * Returns old map, which caller must destroy.
1911  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1912 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1913 			       struct queue_limits *limits)
1914 {
1915 	struct dm_table *old_map;
1916 	struct request_queue *q = md->queue;
1917 	sector_t size;
1918 
1919 	lockdep_assert_held(&md->suspend_lock);
1920 
1921 	size = dm_table_get_size(t);
1922 
1923 	/*
1924 	 * Wipe any geometry if the size of the table changed.
1925 	 */
1926 	if (size != dm_get_size(md))
1927 		memset(&md->geometry, 0, sizeof(md->geometry));
1928 
1929 	__set_size(md, size);
1930 
1931 	dm_table_event_callback(t, event_callback, md);
1932 
1933 	/*
1934 	 * The queue hasn't been stopped yet, if the old table type wasn't
1935 	 * for request-based during suspension.  So stop it to prevent
1936 	 * I/O mapping before resume.
1937 	 * This must be done before setting the queue restrictions,
1938 	 * because request-based dm may be run just after the setting.
1939 	 */
1940 	if (dm_table_request_based(t)) {
1941 		dm_stop_queue(q);
1942 		/*
1943 		 * Leverage the fact that request-based DM targets are
1944 		 * immutable singletons and establish md->immutable_target
1945 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1946 		 */
1947 		md->immutable_target = dm_table_get_immutable_target(t);
1948 	}
1949 
1950 	__bind_mempools(md, t);
1951 
1952 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1953 	rcu_assign_pointer(md->map, (void *)t);
1954 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1955 
1956 	dm_table_set_restrictions(t, q, limits);
1957 	if (old_map)
1958 		dm_sync_table(md);
1959 
1960 	return old_map;
1961 }
1962 
1963 /*
1964  * Returns unbound table for the caller to free.
1965  */
__unbind(struct mapped_device * md)1966 static struct dm_table *__unbind(struct mapped_device *md)
1967 {
1968 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1969 
1970 	if (!map)
1971 		return NULL;
1972 
1973 	dm_table_event_callback(map, NULL, NULL);
1974 	RCU_INIT_POINTER(md->map, NULL);
1975 	dm_sync_table(md);
1976 
1977 	return map;
1978 }
1979 
1980 /*
1981  * Constructor for a new device.
1982  */
dm_create(int minor,struct mapped_device ** result)1983 int dm_create(int minor, struct mapped_device **result)
1984 {
1985 	struct mapped_device *md;
1986 
1987 	md = alloc_dev(minor);
1988 	if (!md)
1989 		return -ENXIO;
1990 
1991 	dm_sysfs_init(md);
1992 
1993 	*result = md;
1994 	return 0;
1995 }
1996 
1997 /*
1998  * Functions to manage md->type.
1999  * All are required to hold md->type_lock.
2000  */
dm_lock_md_type(struct mapped_device * md)2001 void dm_lock_md_type(struct mapped_device *md)
2002 {
2003 	mutex_lock(&md->type_lock);
2004 }
2005 
dm_unlock_md_type(struct mapped_device * md)2006 void dm_unlock_md_type(struct mapped_device *md)
2007 {
2008 	mutex_unlock(&md->type_lock);
2009 }
2010 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2011 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2012 {
2013 	BUG_ON(!mutex_is_locked(&md->type_lock));
2014 	md->type = type;
2015 }
2016 
dm_get_md_type(struct mapped_device * md)2017 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2018 {
2019 	return md->type;
2020 }
2021 
dm_get_immutable_target_type(struct mapped_device * md)2022 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2023 {
2024 	return md->immutable_target_type;
2025 }
2026 
2027 /*
2028  * The queue_limits are only valid as long as you have a reference
2029  * count on 'md'.
2030  */
dm_get_queue_limits(struct mapped_device * md)2031 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2032 {
2033 	BUG_ON(!atomic_read(&md->holders));
2034 	return &md->queue->limits;
2035 }
2036 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2037 
2038 /*
2039  * Setup the DM device's queue based on md's type
2040  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2041 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2042 {
2043 	int r;
2044 	enum dm_queue_mode type = dm_get_md_type(md);
2045 
2046 	switch (type) {
2047 	case DM_TYPE_REQUEST_BASED:
2048 		r = dm_old_init_request_queue(md, t);
2049 		if (r) {
2050 			DMERR("Cannot initialize queue for request-based mapped device");
2051 			return r;
2052 		}
2053 		break;
2054 	case DM_TYPE_MQ_REQUEST_BASED:
2055 		r = dm_mq_init_request_queue(md, t);
2056 		if (r) {
2057 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2058 			return r;
2059 		}
2060 		break;
2061 	case DM_TYPE_BIO_BASED:
2062 	case DM_TYPE_DAX_BIO_BASED:
2063 		dm_init_normal_md_queue(md);
2064 		/*
2065 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2066 		 * since it won't be used (saves 1 process per bio-based DM device).
2067 		 */
2068 		bioset_free(md->queue->bio_split);
2069 		md->queue->bio_split = NULL;
2070 		break;
2071 	case DM_TYPE_NONE:
2072 		WARN_ON_ONCE(true);
2073 		break;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
dm_get_md(dev_t dev)2079 struct mapped_device *dm_get_md(dev_t dev)
2080 {
2081 	struct mapped_device *md;
2082 	unsigned minor = MINOR(dev);
2083 
2084 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2085 		return NULL;
2086 
2087 	spin_lock(&_minor_lock);
2088 
2089 	md = idr_find(&_minor_idr, minor);
2090 	if (md) {
2091 		if ((md == MINOR_ALLOCED ||
2092 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2093 		     dm_deleting_md(md) ||
2094 		     test_bit(DMF_FREEING, &md->flags))) {
2095 			md = NULL;
2096 			goto out;
2097 		}
2098 		dm_get(md);
2099 	}
2100 
2101 out:
2102 	spin_unlock(&_minor_lock);
2103 
2104 	return md;
2105 }
2106 EXPORT_SYMBOL_GPL(dm_get_md);
2107 
dm_get_mdptr(struct mapped_device * md)2108 void *dm_get_mdptr(struct mapped_device *md)
2109 {
2110 	return md->interface_ptr;
2111 }
2112 
dm_set_mdptr(struct mapped_device * md,void * ptr)2113 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2114 {
2115 	md->interface_ptr = ptr;
2116 }
2117 
dm_get(struct mapped_device * md)2118 void dm_get(struct mapped_device *md)
2119 {
2120 	atomic_inc(&md->holders);
2121 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2122 }
2123 
dm_hold(struct mapped_device * md)2124 int dm_hold(struct mapped_device *md)
2125 {
2126 	spin_lock(&_minor_lock);
2127 	if (test_bit(DMF_FREEING, &md->flags)) {
2128 		spin_unlock(&_minor_lock);
2129 		return -EBUSY;
2130 	}
2131 	dm_get(md);
2132 	spin_unlock(&_minor_lock);
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(dm_hold);
2136 
dm_device_name(struct mapped_device * md)2137 const char *dm_device_name(struct mapped_device *md)
2138 {
2139 	return md->name;
2140 }
2141 EXPORT_SYMBOL_GPL(dm_device_name);
2142 
__dm_destroy(struct mapped_device * md,bool wait)2143 static void __dm_destroy(struct mapped_device *md, bool wait)
2144 {
2145 	struct request_queue *q = dm_get_md_queue(md);
2146 	struct dm_table *map;
2147 	int srcu_idx;
2148 
2149 	might_sleep();
2150 
2151 	spin_lock(&_minor_lock);
2152 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2153 	set_bit(DMF_FREEING, &md->flags);
2154 	spin_unlock(&_minor_lock);
2155 
2156 	blk_set_queue_dying(q);
2157 
2158 	if (dm_request_based(md) && md->kworker_task)
2159 		kthread_flush_worker(&md->kworker);
2160 
2161 	/*
2162 	 * Take suspend_lock so that presuspend and postsuspend methods
2163 	 * do not race with internal suspend.
2164 	 */
2165 	mutex_lock(&md->suspend_lock);
2166 	map = dm_get_live_table(md, &srcu_idx);
2167 	if (!dm_suspended_md(md)) {
2168 		dm_table_presuspend_targets(map);
2169 		dm_table_postsuspend_targets(map);
2170 	}
2171 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2172 	dm_put_live_table(md, srcu_idx);
2173 	mutex_unlock(&md->suspend_lock);
2174 
2175 	/*
2176 	 * Rare, but there may be I/O requests still going to complete,
2177 	 * for example.  Wait for all references to disappear.
2178 	 * No one should increment the reference count of the mapped_device,
2179 	 * after the mapped_device state becomes DMF_FREEING.
2180 	 */
2181 	if (wait)
2182 		while (atomic_read(&md->holders))
2183 			msleep(1);
2184 	else if (atomic_read(&md->holders))
2185 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2186 		       dm_device_name(md), atomic_read(&md->holders));
2187 
2188 	dm_sysfs_exit(md);
2189 	dm_table_destroy(__unbind(md));
2190 	free_dev(md);
2191 }
2192 
dm_destroy(struct mapped_device * md)2193 void dm_destroy(struct mapped_device *md)
2194 {
2195 	__dm_destroy(md, true);
2196 }
2197 
dm_destroy_immediate(struct mapped_device * md)2198 void dm_destroy_immediate(struct mapped_device *md)
2199 {
2200 	__dm_destroy(md, false);
2201 }
2202 
dm_put(struct mapped_device * md)2203 void dm_put(struct mapped_device *md)
2204 {
2205 	atomic_dec(&md->holders);
2206 }
2207 EXPORT_SYMBOL_GPL(dm_put);
2208 
dm_wait_for_completion(struct mapped_device * md,long task_state)2209 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2210 {
2211 	int r = 0;
2212 	DEFINE_WAIT(wait);
2213 
2214 	while (1) {
2215 		prepare_to_wait(&md->wait, &wait, task_state);
2216 
2217 		if (!md_in_flight(md))
2218 			break;
2219 
2220 		if (signal_pending_state(task_state, current)) {
2221 			r = -EINTR;
2222 			break;
2223 		}
2224 
2225 		io_schedule();
2226 	}
2227 	finish_wait(&md->wait, &wait);
2228 
2229 	return r;
2230 }
2231 
2232 /*
2233  * Process the deferred bios
2234  */
dm_wq_work(struct work_struct * work)2235 static void dm_wq_work(struct work_struct *work)
2236 {
2237 	struct mapped_device *md = container_of(work, struct mapped_device,
2238 						work);
2239 	struct bio *c;
2240 	int srcu_idx;
2241 	struct dm_table *map;
2242 
2243 	map = dm_get_live_table(md, &srcu_idx);
2244 
2245 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2246 		spin_lock_irq(&md->deferred_lock);
2247 		c = bio_list_pop(&md->deferred);
2248 		spin_unlock_irq(&md->deferred_lock);
2249 
2250 		if (!c)
2251 			break;
2252 
2253 		if (dm_request_based(md))
2254 			generic_make_request(c);
2255 		else
2256 			__split_and_process_bio(md, map, c);
2257 	}
2258 
2259 	dm_put_live_table(md, srcu_idx);
2260 }
2261 
dm_queue_flush(struct mapped_device * md)2262 static void dm_queue_flush(struct mapped_device *md)
2263 {
2264 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2265 	smp_mb__after_atomic();
2266 	queue_work(md->wq, &md->work);
2267 }
2268 
2269 /*
2270  * Swap in a new table, returning the old one for the caller to destroy.
2271  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2272 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2273 {
2274 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2275 	struct queue_limits limits;
2276 	int r;
2277 
2278 	mutex_lock(&md->suspend_lock);
2279 
2280 	/* device must be suspended */
2281 	if (!dm_suspended_md(md))
2282 		goto out;
2283 
2284 	/*
2285 	 * If the new table has no data devices, retain the existing limits.
2286 	 * This helps multipath with queue_if_no_path if all paths disappear,
2287 	 * then new I/O is queued based on these limits, and then some paths
2288 	 * reappear.
2289 	 */
2290 	if (dm_table_has_no_data_devices(table)) {
2291 		live_map = dm_get_live_table_fast(md);
2292 		if (live_map)
2293 			limits = md->queue->limits;
2294 		dm_put_live_table_fast(md);
2295 	}
2296 
2297 	if (!live_map) {
2298 		r = dm_calculate_queue_limits(table, &limits);
2299 		if (r) {
2300 			map = ERR_PTR(r);
2301 			goto out;
2302 		}
2303 	}
2304 
2305 	map = __bind(md, table, &limits);
2306 	dm_issue_global_event();
2307 
2308 out:
2309 	mutex_unlock(&md->suspend_lock);
2310 	return map;
2311 }
2312 
2313 /*
2314  * Functions to lock and unlock any filesystem running on the
2315  * device.
2316  */
lock_fs(struct mapped_device * md)2317 static int lock_fs(struct mapped_device *md)
2318 {
2319 	int r;
2320 
2321 	WARN_ON(md->frozen_sb);
2322 
2323 	md->frozen_sb = freeze_bdev(md->bdev);
2324 	if (IS_ERR(md->frozen_sb)) {
2325 		r = PTR_ERR(md->frozen_sb);
2326 		md->frozen_sb = NULL;
2327 		return r;
2328 	}
2329 
2330 	set_bit(DMF_FROZEN, &md->flags);
2331 
2332 	return 0;
2333 }
2334 
unlock_fs(struct mapped_device * md)2335 static void unlock_fs(struct mapped_device *md)
2336 {
2337 	if (!test_bit(DMF_FROZEN, &md->flags))
2338 		return;
2339 
2340 	thaw_bdev(md->bdev, md->frozen_sb);
2341 	md->frozen_sb = NULL;
2342 	clear_bit(DMF_FROZEN, &md->flags);
2343 }
2344 
2345 /*
2346  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2347  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2348  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2349  *
2350  * If __dm_suspend returns 0, the device is completely quiescent
2351  * now. There is no request-processing activity. All new requests
2352  * are being added to md->deferred list.
2353  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2354 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2355 			unsigned suspend_flags, long task_state,
2356 			int dmf_suspended_flag)
2357 {
2358 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2359 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2360 	int r;
2361 
2362 	lockdep_assert_held(&md->suspend_lock);
2363 
2364 	/*
2365 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2366 	 * This flag is cleared before dm_suspend returns.
2367 	 */
2368 	if (noflush)
2369 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2370 	else
2371 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2372 
2373 	/*
2374 	 * This gets reverted if there's an error later and the targets
2375 	 * provide the .presuspend_undo hook.
2376 	 */
2377 	dm_table_presuspend_targets(map);
2378 
2379 	/*
2380 	 * Flush I/O to the device.
2381 	 * Any I/O submitted after lock_fs() may not be flushed.
2382 	 * noflush takes precedence over do_lockfs.
2383 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2384 	 */
2385 	if (!noflush && do_lockfs) {
2386 		r = lock_fs(md);
2387 		if (r) {
2388 			dm_table_presuspend_undo_targets(map);
2389 			return r;
2390 		}
2391 	}
2392 
2393 	/*
2394 	 * Here we must make sure that no processes are submitting requests
2395 	 * to target drivers i.e. no one may be executing
2396 	 * __split_and_process_bio. This is called from dm_request and
2397 	 * dm_wq_work.
2398 	 *
2399 	 * To get all processes out of __split_and_process_bio in dm_request,
2400 	 * we take the write lock. To prevent any process from reentering
2401 	 * __split_and_process_bio from dm_request and quiesce the thread
2402 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2403 	 * flush_workqueue(md->wq).
2404 	 */
2405 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2406 	if (map)
2407 		synchronize_srcu(&md->io_barrier);
2408 
2409 	/*
2410 	 * Stop md->queue before flushing md->wq in case request-based
2411 	 * dm defers requests to md->wq from md->queue.
2412 	 */
2413 	if (dm_request_based(md)) {
2414 		dm_stop_queue(md->queue);
2415 		if (md->kworker_task)
2416 			kthread_flush_worker(&md->kworker);
2417 	}
2418 
2419 	flush_workqueue(md->wq);
2420 
2421 	/*
2422 	 * At this point no more requests are entering target request routines.
2423 	 * We call dm_wait_for_completion to wait for all existing requests
2424 	 * to finish.
2425 	 */
2426 	r = dm_wait_for_completion(md, task_state);
2427 	if (!r)
2428 		set_bit(dmf_suspended_flag, &md->flags);
2429 
2430 	if (noflush)
2431 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2432 	if (map)
2433 		synchronize_srcu(&md->io_barrier);
2434 
2435 	/* were we interrupted ? */
2436 	if (r < 0) {
2437 		dm_queue_flush(md);
2438 
2439 		if (dm_request_based(md))
2440 			dm_start_queue(md->queue);
2441 
2442 		unlock_fs(md);
2443 		dm_table_presuspend_undo_targets(map);
2444 		/* pushback list is already flushed, so skip flush */
2445 	}
2446 
2447 	return r;
2448 }
2449 
2450 /*
2451  * We need to be able to change a mapping table under a mounted
2452  * filesystem.  For example we might want to move some data in
2453  * the background.  Before the table can be swapped with
2454  * dm_bind_table, dm_suspend must be called to flush any in
2455  * flight bios and ensure that any further io gets deferred.
2456  */
2457 /*
2458  * Suspend mechanism in request-based dm.
2459  *
2460  * 1. Flush all I/Os by lock_fs() if needed.
2461  * 2. Stop dispatching any I/O by stopping the request_queue.
2462  * 3. Wait for all in-flight I/Os to be completed or requeued.
2463  *
2464  * To abort suspend, start the request_queue.
2465  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2466 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2467 {
2468 	struct dm_table *map = NULL;
2469 	int r = 0;
2470 
2471 retry:
2472 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2473 
2474 	if (dm_suspended_md(md)) {
2475 		r = -EINVAL;
2476 		goto out_unlock;
2477 	}
2478 
2479 	if (dm_suspended_internally_md(md)) {
2480 		/* already internally suspended, wait for internal resume */
2481 		mutex_unlock(&md->suspend_lock);
2482 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2483 		if (r)
2484 			return r;
2485 		goto retry;
2486 	}
2487 
2488 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2489 
2490 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2491 	if (r)
2492 		goto out_unlock;
2493 
2494 	dm_table_postsuspend_targets(map);
2495 
2496 out_unlock:
2497 	mutex_unlock(&md->suspend_lock);
2498 	return r;
2499 }
2500 
__dm_resume(struct mapped_device * md,struct dm_table * map)2501 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2502 {
2503 	if (map) {
2504 		int r = dm_table_resume_targets(map);
2505 		if (r)
2506 			return r;
2507 	}
2508 
2509 	dm_queue_flush(md);
2510 
2511 	/*
2512 	 * Flushing deferred I/Os must be done after targets are resumed
2513 	 * so that mapping of targets can work correctly.
2514 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2515 	 */
2516 	if (dm_request_based(md))
2517 		dm_start_queue(md->queue);
2518 
2519 	unlock_fs(md);
2520 
2521 	return 0;
2522 }
2523 
dm_resume(struct mapped_device * md)2524 int dm_resume(struct mapped_device *md)
2525 {
2526 	int r;
2527 	struct dm_table *map = NULL;
2528 
2529 retry:
2530 	r = -EINVAL;
2531 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2532 
2533 	if (!dm_suspended_md(md))
2534 		goto out;
2535 
2536 	if (dm_suspended_internally_md(md)) {
2537 		/* already internally suspended, wait for internal resume */
2538 		mutex_unlock(&md->suspend_lock);
2539 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2540 		if (r)
2541 			return r;
2542 		goto retry;
2543 	}
2544 
2545 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2546 	if (!map || !dm_table_get_size(map))
2547 		goto out;
2548 
2549 	r = __dm_resume(md, map);
2550 	if (r)
2551 		goto out;
2552 
2553 	clear_bit(DMF_SUSPENDED, &md->flags);
2554 out:
2555 	mutex_unlock(&md->suspend_lock);
2556 
2557 	return r;
2558 }
2559 
2560 /*
2561  * Internal suspend/resume works like userspace-driven suspend. It waits
2562  * until all bios finish and prevents issuing new bios to the target drivers.
2563  * It may be used only from the kernel.
2564  */
2565 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2566 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2567 {
2568 	struct dm_table *map = NULL;
2569 
2570 	lockdep_assert_held(&md->suspend_lock);
2571 
2572 	if (md->internal_suspend_count++)
2573 		return; /* nested internal suspend */
2574 
2575 	if (dm_suspended_md(md)) {
2576 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2577 		return; /* nest suspend */
2578 	}
2579 
2580 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2581 
2582 	/*
2583 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2584 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2585 	 * would require changing .presuspend to return an error -- avoid this
2586 	 * until there is a need for more elaborate variants of internal suspend.
2587 	 */
2588 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2589 			    DMF_SUSPENDED_INTERNALLY);
2590 
2591 	dm_table_postsuspend_targets(map);
2592 }
2593 
__dm_internal_resume(struct mapped_device * md)2594 static void __dm_internal_resume(struct mapped_device *md)
2595 {
2596 	BUG_ON(!md->internal_suspend_count);
2597 
2598 	if (--md->internal_suspend_count)
2599 		return; /* resume from nested internal suspend */
2600 
2601 	if (dm_suspended_md(md))
2602 		goto done; /* resume from nested suspend */
2603 
2604 	/*
2605 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2606 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2607 	 */
2608 	(void) __dm_resume(md, NULL);
2609 
2610 done:
2611 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2612 	smp_mb__after_atomic();
2613 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2614 }
2615 
dm_internal_suspend_noflush(struct mapped_device * md)2616 void dm_internal_suspend_noflush(struct mapped_device *md)
2617 {
2618 	mutex_lock(&md->suspend_lock);
2619 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2620 	mutex_unlock(&md->suspend_lock);
2621 }
2622 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2623 
dm_internal_resume(struct mapped_device * md)2624 void dm_internal_resume(struct mapped_device *md)
2625 {
2626 	mutex_lock(&md->suspend_lock);
2627 	__dm_internal_resume(md);
2628 	mutex_unlock(&md->suspend_lock);
2629 }
2630 EXPORT_SYMBOL_GPL(dm_internal_resume);
2631 
2632 /*
2633  * Fast variants of internal suspend/resume hold md->suspend_lock,
2634  * which prevents interaction with userspace-driven suspend.
2635  */
2636 
dm_internal_suspend_fast(struct mapped_device * md)2637 void dm_internal_suspend_fast(struct mapped_device *md)
2638 {
2639 	mutex_lock(&md->suspend_lock);
2640 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2641 		return;
2642 
2643 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2644 	synchronize_srcu(&md->io_barrier);
2645 	flush_workqueue(md->wq);
2646 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2647 }
2648 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2649 
dm_internal_resume_fast(struct mapped_device * md)2650 void dm_internal_resume_fast(struct mapped_device *md)
2651 {
2652 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2653 		goto done;
2654 
2655 	dm_queue_flush(md);
2656 
2657 done:
2658 	mutex_unlock(&md->suspend_lock);
2659 }
2660 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2661 
2662 /*-----------------------------------------------------------------
2663  * Event notification.
2664  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2665 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2666 		       unsigned cookie)
2667 {
2668 	char udev_cookie[DM_COOKIE_LENGTH];
2669 	char *envp[] = { udev_cookie, NULL };
2670 
2671 	if (!cookie)
2672 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2673 	else {
2674 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2675 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2676 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2677 					  action, envp);
2678 	}
2679 }
2680 
dm_next_uevent_seq(struct mapped_device * md)2681 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2682 {
2683 	return atomic_add_return(1, &md->uevent_seq);
2684 }
2685 
dm_get_event_nr(struct mapped_device * md)2686 uint32_t dm_get_event_nr(struct mapped_device *md)
2687 {
2688 	return atomic_read(&md->event_nr);
2689 }
2690 
dm_wait_event(struct mapped_device * md,int event_nr)2691 int dm_wait_event(struct mapped_device *md, int event_nr)
2692 {
2693 	return wait_event_interruptible(md->eventq,
2694 			(event_nr != atomic_read(&md->event_nr)));
2695 }
2696 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2697 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2698 {
2699 	unsigned long flags;
2700 
2701 	spin_lock_irqsave(&md->uevent_lock, flags);
2702 	list_add(elist, &md->uevent_list);
2703 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2704 }
2705 
2706 /*
2707  * The gendisk is only valid as long as you have a reference
2708  * count on 'md'.
2709  */
dm_disk(struct mapped_device * md)2710 struct gendisk *dm_disk(struct mapped_device *md)
2711 {
2712 	return md->disk;
2713 }
2714 EXPORT_SYMBOL_GPL(dm_disk);
2715 
dm_kobject(struct mapped_device * md)2716 struct kobject *dm_kobject(struct mapped_device *md)
2717 {
2718 	return &md->kobj_holder.kobj;
2719 }
2720 
dm_get_from_kobject(struct kobject * kobj)2721 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2722 {
2723 	struct mapped_device *md;
2724 
2725 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2726 
2727 	spin_lock(&_minor_lock);
2728 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2729 		md = NULL;
2730 		goto out;
2731 	}
2732 	dm_get(md);
2733 out:
2734 	spin_unlock(&_minor_lock);
2735 
2736 	return md;
2737 }
2738 
dm_suspended_md(struct mapped_device * md)2739 int dm_suspended_md(struct mapped_device *md)
2740 {
2741 	return test_bit(DMF_SUSPENDED, &md->flags);
2742 }
2743 
dm_suspended_internally_md(struct mapped_device * md)2744 int dm_suspended_internally_md(struct mapped_device *md)
2745 {
2746 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747 }
2748 
dm_test_deferred_remove_flag(struct mapped_device * md)2749 int dm_test_deferred_remove_flag(struct mapped_device *md)
2750 {
2751 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2752 }
2753 
dm_suspended(struct dm_target * ti)2754 int dm_suspended(struct dm_target *ti)
2755 {
2756 	return dm_suspended_md(dm_table_get_md(ti->table));
2757 }
2758 EXPORT_SYMBOL_GPL(dm_suspended);
2759 
dm_noflush_suspending(struct dm_target * ti)2760 int dm_noflush_suspending(struct dm_target *ti)
2761 {
2762 	return __noflush_suspending(dm_table_get_md(ti->table));
2763 }
2764 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2765 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size)2766 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2767 					    unsigned integrity, unsigned per_io_data_size)
2768 {
2769 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2770 	unsigned int pool_size = 0;
2771 	unsigned int front_pad;
2772 
2773 	if (!pools)
2774 		return NULL;
2775 
2776 	switch (type) {
2777 	case DM_TYPE_BIO_BASED:
2778 	case DM_TYPE_DAX_BIO_BASED:
2779 		pool_size = dm_get_reserved_bio_based_ios();
2780 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2781 
2782 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2783 		if (!pools->io_pool)
2784 			goto out;
2785 		break;
2786 	case DM_TYPE_REQUEST_BASED:
2787 	case DM_TYPE_MQ_REQUEST_BASED:
2788 		pool_size = dm_get_reserved_rq_based_ios();
2789 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2790 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2791 		break;
2792 	default:
2793 		BUG();
2794 	}
2795 
2796 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2797 	if (!pools->bs)
2798 		goto out;
2799 
2800 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2801 		goto out;
2802 
2803 	return pools;
2804 
2805 out:
2806 	dm_free_md_mempools(pools);
2807 
2808 	return NULL;
2809 }
2810 
dm_free_md_mempools(struct dm_md_mempools * pools)2811 void dm_free_md_mempools(struct dm_md_mempools *pools)
2812 {
2813 	if (!pools)
2814 		return;
2815 
2816 	mempool_destroy(pools->io_pool);
2817 
2818 	if (pools->bs)
2819 		bioset_free(pools->bs);
2820 
2821 	kfree(pools);
2822 }
2823 
2824 struct dm_pr {
2825 	u64	old_key;
2826 	u64	new_key;
2827 	u32	flags;
2828 	bool	fail_early;
2829 };
2830 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2831 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2832 		      void *data)
2833 {
2834 	struct mapped_device *md = bdev->bd_disk->private_data;
2835 	struct dm_table *table;
2836 	struct dm_target *ti;
2837 	int ret = -ENOTTY, srcu_idx;
2838 
2839 	table = dm_get_live_table(md, &srcu_idx);
2840 	if (!table || !dm_table_get_size(table))
2841 		goto out;
2842 
2843 	/* We only support devices that have a single target */
2844 	if (dm_table_get_num_targets(table) != 1)
2845 		goto out;
2846 	ti = dm_table_get_target(table, 0);
2847 
2848 	ret = -EINVAL;
2849 	if (!ti->type->iterate_devices)
2850 		goto out;
2851 
2852 	ret = ti->type->iterate_devices(ti, fn, data);
2853 out:
2854 	dm_put_live_table(md, srcu_idx);
2855 	return ret;
2856 }
2857 
2858 /*
2859  * For register / unregister we need to manually call out to every path.
2860  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2861 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2862 			    sector_t start, sector_t len, void *data)
2863 {
2864 	struct dm_pr *pr = data;
2865 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2866 
2867 	if (!ops || !ops->pr_register)
2868 		return -EOPNOTSUPP;
2869 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2870 }
2871 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2872 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2873 			  u32 flags)
2874 {
2875 	struct dm_pr pr = {
2876 		.old_key	= old_key,
2877 		.new_key	= new_key,
2878 		.flags		= flags,
2879 		.fail_early	= true,
2880 	};
2881 	int ret;
2882 
2883 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2884 	if (ret && new_key) {
2885 		/* unregister all paths if we failed to register any path */
2886 		pr.old_key = new_key;
2887 		pr.new_key = 0;
2888 		pr.flags = 0;
2889 		pr.fail_early = false;
2890 		dm_call_pr(bdev, __dm_pr_register, &pr);
2891 	}
2892 
2893 	return ret;
2894 }
2895 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2896 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2897 			 u32 flags)
2898 {
2899 	struct mapped_device *md = bdev->bd_disk->private_data;
2900 	const struct pr_ops *ops;
2901 	fmode_t mode;
2902 	int r;
2903 
2904 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2905 	if (r < 0)
2906 		return r;
2907 
2908 	ops = bdev->bd_disk->fops->pr_ops;
2909 	if (ops && ops->pr_reserve)
2910 		r = ops->pr_reserve(bdev, key, type, flags);
2911 	else
2912 		r = -EOPNOTSUPP;
2913 
2914 	bdput(bdev);
2915 	return r;
2916 }
2917 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2918 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2919 {
2920 	struct mapped_device *md = bdev->bd_disk->private_data;
2921 	const struct pr_ops *ops;
2922 	fmode_t mode;
2923 	int r;
2924 
2925 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2926 	if (r < 0)
2927 		return r;
2928 
2929 	ops = bdev->bd_disk->fops->pr_ops;
2930 	if (ops && ops->pr_release)
2931 		r = ops->pr_release(bdev, key, type);
2932 	else
2933 		r = -EOPNOTSUPP;
2934 
2935 	bdput(bdev);
2936 	return r;
2937 }
2938 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2939 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2940 			 enum pr_type type, bool abort)
2941 {
2942 	struct mapped_device *md = bdev->bd_disk->private_data;
2943 	const struct pr_ops *ops;
2944 	fmode_t mode;
2945 	int r;
2946 
2947 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2948 	if (r < 0)
2949 		return r;
2950 
2951 	ops = bdev->bd_disk->fops->pr_ops;
2952 	if (ops && ops->pr_preempt)
2953 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2954 	else
2955 		r = -EOPNOTSUPP;
2956 
2957 	bdput(bdev);
2958 	return r;
2959 }
2960 
dm_pr_clear(struct block_device * bdev,u64 key)2961 static int dm_pr_clear(struct block_device *bdev, u64 key)
2962 {
2963 	struct mapped_device *md = bdev->bd_disk->private_data;
2964 	const struct pr_ops *ops;
2965 	fmode_t mode;
2966 	int r;
2967 
2968 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2969 	if (r < 0)
2970 		return r;
2971 
2972 	ops = bdev->bd_disk->fops->pr_ops;
2973 	if (ops && ops->pr_clear)
2974 		r = ops->pr_clear(bdev, key);
2975 	else
2976 		r = -EOPNOTSUPP;
2977 
2978 	bdput(bdev);
2979 	return r;
2980 }
2981 
2982 static const struct pr_ops dm_pr_ops = {
2983 	.pr_register	= dm_pr_register,
2984 	.pr_reserve	= dm_pr_reserve,
2985 	.pr_release	= dm_pr_release,
2986 	.pr_preempt	= dm_pr_preempt,
2987 	.pr_clear	= dm_pr_clear,
2988 };
2989 
2990 static const struct block_device_operations dm_blk_dops = {
2991 	.open = dm_blk_open,
2992 	.release = dm_blk_close,
2993 	.ioctl = dm_blk_ioctl,
2994 	.getgeo = dm_blk_getgeo,
2995 	.pr_ops = &dm_pr_ops,
2996 	.owner = THIS_MODULE
2997 };
2998 
2999 static const struct dax_operations dm_dax_ops = {
3000 	.direct_access = dm_dax_direct_access,
3001 	.copy_from_iter = dm_dax_copy_from_iter,
3002 };
3003 
3004 /*
3005  * module hooks
3006  */
3007 module_init(dm_init);
3008 module_exit(dm_exit);
3009 
3010 module_param(major, uint, 0);
3011 MODULE_PARM_DESC(major, "The major number of the device mapper");
3012 
3013 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3014 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3015 
3016 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3017 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3018 
3019 MODULE_DESCRIPTION(DM_NAME " driver");
3020 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3021 MODULE_LICENSE("GPL");
3022