1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70 };
71
72 /*
73 * Similar to ceiling(log_size(n))
74 */
int_log(unsigned int n,unsigned int base)75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85 }
86
87 /*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
get_child(unsigned int n,unsigned int k)90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 return (n * CHILDREN_PER_NODE) + k;
93 }
94
95 /*
96 * Return the n'th node of level l from table t.
97 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100 {
101 return t->index[l] + (n * KEYS_PER_NODE);
102 }
103
104 /*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
high(struct dm_table * t,unsigned int l,unsigned int n)108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118
119 /*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
setup_btree_index(unsigned int l,struct dm_table * t)123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136 }
137
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155
156 /*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
alloc_targets(struct dm_table * t,unsigned int num)160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185 }
186
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189 {
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218 }
219
free_devices(struct list_head * devices,struct mapped_device * md)220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232 }
233
dm_table_destroy(struct dm_table * t)234 void dm_table_destroy(struct dm_table *t)
235 {
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263 }
264
265 /*
266 * See if we've already got a device in the list.
267 */
find_device(struct list_head * l,dev_t dev)268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277 }
278
279 /*
280 * If possible, this checks an area of a destination device is invalid.
281 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284 {
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378 }
379
380 /*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388 {
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403 }
404
405 /*
406 * Convert the path to a device
407 */
dm_get_dev_t(const char * path)408 dev_t dm_get_dev_t(const char *path)
409 {
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425 /*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431 {
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 atomic_set(&dd->count, 0);
455 list_add(&dd->list, &t->devices);
456
457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458 r = upgrade_mode(dd, mode, t->md);
459 if (r)
460 return r;
461 }
462 atomic_inc(&dd->count);
463
464 *result = dd->dm_dev;
465 return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 sector_t start, sector_t len, void *data)
471 {
472 struct queue_limits *limits = data;
473 struct block_device *bdev = dev->bdev;
474 struct request_queue *q = bdev_get_queue(bdev);
475 char b[BDEVNAME_SIZE];
476
477 if (unlikely(!q)) {
478 DMWARN("%s: Cannot set limits for nonexistent device %s",
479 dm_device_name(ti->table->md), bdevname(bdev, b));
480 return 0;
481 }
482
483 if (bdev_stack_limits(limits, bdev, start) < 0)
484 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 "physical_block_size=%u, logical_block_size=%u, "
486 "alignment_offset=%u, start=%llu",
487 dm_device_name(ti->table->md), bdevname(bdev, b),
488 q->limits.physical_block_size,
489 q->limits.logical_block_size,
490 q->limits.alignment_offset,
491 (unsigned long long) start << SECTOR_SHIFT);
492
493 limits->zoned = blk_queue_zoned_model(q);
494
495 return 0;
496 }
497
498 /*
499 * Decrement a device's use count and remove it if necessary.
500 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503 int found = 0;
504 struct list_head *devices = &ti->table->devices;
505 struct dm_dev_internal *dd;
506
507 list_for_each_entry(dd, devices, list) {
508 if (dd->dm_dev == d) {
509 found = 1;
510 break;
511 }
512 }
513 if (!found) {
514 DMWARN("%s: device %s not in table devices list",
515 dm_device_name(ti->table->md), d->name);
516 return;
517 }
518 if (atomic_dec_and_test(&dd->count)) {
519 dm_put_table_device(ti->table->md, d);
520 list_del(&dd->list);
521 kfree(dd);
522 }
523 }
524 EXPORT_SYMBOL(dm_put_device);
525
526 /*
527 * Checks to see if the target joins onto the end of the table.
528 */
adjoin(struct dm_table * table,struct dm_target * ti)529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531 struct dm_target *prev;
532
533 if (!table->num_targets)
534 return !ti->begin;
535
536 prev = &table->targets[table->num_targets - 1];
537 return (ti->begin == (prev->begin + prev->len));
538 }
539
540 /*
541 * Used to dynamically allocate the arg array.
542 *
543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544 * process messages even if some device is suspended. These messages have a
545 * small fixed number of arguments.
546 *
547 * On the other hand, dm-switch needs to process bulk data using messages and
548 * excessive use of GFP_NOIO could cause trouble.
549 */
realloc_argv(unsigned * size,char ** old_argv)550 static char **realloc_argv(unsigned *size, char **old_argv)
551 {
552 char **argv;
553 unsigned new_size;
554 gfp_t gfp;
555
556 if (*size) {
557 new_size = *size * 2;
558 gfp = GFP_KERNEL;
559 } else {
560 new_size = 8;
561 gfp = GFP_NOIO;
562 }
563 argv = kmalloc(new_size * sizeof(*argv), gfp);
564 if (argv) {
565 memcpy(argv, old_argv, *size * sizeof(*argv));
566 *size = new_size;
567 }
568
569 kfree(old_argv);
570 return argv;
571 }
572
573 /*
574 * Destructively splits up the argument list to pass to ctr.
575 */
dm_split_args(int * argc,char *** argvp,char * input)576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578 char *start, *end = input, *out, **argv = NULL;
579 unsigned array_size = 0;
580
581 *argc = 0;
582
583 if (!input) {
584 *argvp = NULL;
585 return 0;
586 }
587
588 argv = realloc_argv(&array_size, argv);
589 if (!argv)
590 return -ENOMEM;
591
592 while (1) {
593 /* Skip whitespace */
594 start = skip_spaces(end);
595
596 if (!*start)
597 break; /* success, we hit the end */
598
599 /* 'out' is used to remove any back-quotes */
600 end = out = start;
601 while (*end) {
602 /* Everything apart from '\0' can be quoted */
603 if (*end == '\\' && *(end + 1)) {
604 *out++ = *(end + 1);
605 end += 2;
606 continue;
607 }
608
609 if (isspace(*end))
610 break; /* end of token */
611
612 *out++ = *end++;
613 }
614
615 /* have we already filled the array ? */
616 if ((*argc + 1) > array_size) {
617 argv = realloc_argv(&array_size, argv);
618 if (!argv)
619 return -ENOMEM;
620 }
621
622 /* we know this is whitespace */
623 if (*end)
624 end++;
625
626 /* terminate the string and put it in the array */
627 *out = '\0';
628 argv[*argc] = start;
629 (*argc)++;
630 }
631
632 *argvp = argv;
633 return 0;
634 }
635
636 /*
637 * Impose necessary and sufficient conditions on a devices's table such
638 * that any incoming bio which respects its logical_block_size can be
639 * processed successfully. If it falls across the boundary between
640 * two or more targets, the size of each piece it gets split into must
641 * be compatible with the logical_block_size of the target processing it.
642 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 struct queue_limits *limits)
645 {
646 /*
647 * This function uses arithmetic modulo the logical_block_size
648 * (in units of 512-byte sectors).
649 */
650 unsigned short device_logical_block_size_sects =
651 limits->logical_block_size >> SECTOR_SHIFT;
652
653 /*
654 * Offset of the start of the next table entry, mod logical_block_size.
655 */
656 unsigned short next_target_start = 0;
657
658 /*
659 * Given an aligned bio that extends beyond the end of a
660 * target, how many sectors must the next target handle?
661 */
662 unsigned short remaining = 0;
663
664 struct dm_target *uninitialized_var(ti);
665 struct queue_limits ti_limits;
666 unsigned i;
667
668 /*
669 * Check each entry in the table in turn.
670 */
671 for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 ti = dm_table_get_target(table, i);
673
674 blk_set_stacking_limits(&ti_limits);
675
676 /* combine all target devices' limits */
677 if (ti->type->iterate_devices)
678 ti->type->iterate_devices(ti, dm_set_device_limits,
679 &ti_limits);
680
681 /*
682 * If the remaining sectors fall entirely within this
683 * table entry are they compatible with its logical_block_size?
684 */
685 if (remaining < ti->len &&
686 remaining & ((ti_limits.logical_block_size >>
687 SECTOR_SHIFT) - 1))
688 break; /* Error */
689
690 next_target_start =
691 (unsigned short) ((next_target_start + ti->len) &
692 (device_logical_block_size_sects - 1));
693 remaining = next_target_start ?
694 device_logical_block_size_sects - next_target_start : 0;
695 }
696
697 if (remaining) {
698 DMWARN("%s: table line %u (start sect %llu len %llu) "
699 "not aligned to h/w logical block size %u",
700 dm_device_name(table->md), i,
701 (unsigned long long) ti->begin,
702 (unsigned long long) ti->len,
703 limits->logical_block_size);
704 return -EINVAL;
705 }
706
707 return 0;
708 }
709
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)710 int dm_table_add_target(struct dm_table *t, const char *type,
711 sector_t start, sector_t len, char *params)
712 {
713 int r = -EINVAL, argc;
714 char **argv;
715 struct dm_target *tgt;
716
717 if (t->singleton) {
718 DMERR("%s: target type %s must appear alone in table",
719 dm_device_name(t->md), t->targets->type->name);
720 return -EINVAL;
721 }
722
723 BUG_ON(t->num_targets >= t->num_allocated);
724
725 tgt = t->targets + t->num_targets;
726 memset(tgt, 0, sizeof(*tgt));
727
728 if (!len) {
729 DMERR("%s: zero-length target", dm_device_name(t->md));
730 return -EINVAL;
731 }
732
733 tgt->type = dm_get_target_type(type);
734 if (!tgt->type) {
735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736 return -EINVAL;
737 }
738
739 if (dm_target_needs_singleton(tgt->type)) {
740 if (t->num_targets) {
741 tgt->error = "singleton target type must appear alone in table";
742 goto bad;
743 }
744 t->singleton = true;
745 }
746
747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748 tgt->error = "target type may not be included in a read-only table";
749 goto bad;
750 }
751
752 if (t->immutable_target_type) {
753 if (t->immutable_target_type != tgt->type) {
754 tgt->error = "immutable target type cannot be mixed with other target types";
755 goto bad;
756 }
757 } else if (dm_target_is_immutable(tgt->type)) {
758 if (t->num_targets) {
759 tgt->error = "immutable target type cannot be mixed with other target types";
760 goto bad;
761 }
762 t->immutable_target_type = tgt->type;
763 }
764
765 if (dm_target_has_integrity(tgt->type))
766 t->integrity_added = 1;
767
768 tgt->table = t;
769 tgt->begin = start;
770 tgt->len = len;
771 tgt->error = "Unknown error";
772
773 /*
774 * Does this target adjoin the previous one ?
775 */
776 if (!adjoin(t, tgt)) {
777 tgt->error = "Gap in table";
778 goto bad;
779 }
780
781 r = dm_split_args(&argc, &argv, params);
782 if (r) {
783 tgt->error = "couldn't split parameters (insufficient memory)";
784 goto bad;
785 }
786
787 r = tgt->type->ctr(tgt, argc, argv);
788 kfree(argv);
789 if (r)
790 goto bad;
791
792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793
794 if (!tgt->num_discard_bios && tgt->discards_supported)
795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 dm_device_name(t->md), type);
797
798 return 0;
799
800 bad:
801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802 dm_put_target_type(tgt->type);
803 return r;
804 }
805
806 /*
807 * Target argument parsing helpers.
808 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)809 static int validate_next_arg(const struct dm_arg *arg,
810 struct dm_arg_set *arg_set,
811 unsigned *value, char **error, unsigned grouped)
812 {
813 const char *arg_str = dm_shift_arg(arg_set);
814 char dummy;
815
816 if (!arg_str ||
817 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
818 (*value < arg->min) ||
819 (*value > arg->max) ||
820 (grouped && arg_set->argc < *value)) {
821 *error = arg->error;
822 return -EINVAL;
823 }
824
825 return 0;
826 }
827
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
829 unsigned *value, char **error)
830 {
831 return validate_next_arg(arg, arg_set, value, error, 0);
832 }
833 EXPORT_SYMBOL(dm_read_arg);
834
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
836 unsigned *value, char **error)
837 {
838 return validate_next_arg(arg, arg_set, value, error, 1);
839 }
840 EXPORT_SYMBOL(dm_read_arg_group);
841
dm_shift_arg(struct dm_arg_set * as)842 const char *dm_shift_arg(struct dm_arg_set *as)
843 {
844 char *r;
845
846 if (as->argc) {
847 as->argc--;
848 r = *as->argv;
849 as->argv++;
850 return r;
851 }
852
853 return NULL;
854 }
855 EXPORT_SYMBOL(dm_shift_arg);
856
dm_consume_args(struct dm_arg_set * as,unsigned num_args)857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
858 {
859 BUG_ON(as->argc < num_args);
860 as->argc -= num_args;
861 as->argv += num_args;
862 }
863 EXPORT_SYMBOL(dm_consume_args);
864
__table_type_bio_based(enum dm_queue_mode table_type)865 static bool __table_type_bio_based(enum dm_queue_mode table_type)
866 {
867 return (table_type == DM_TYPE_BIO_BASED ||
868 table_type == DM_TYPE_DAX_BIO_BASED);
869 }
870
__table_type_request_based(enum dm_queue_mode table_type)871 static bool __table_type_request_based(enum dm_queue_mode table_type)
872 {
873 return (table_type == DM_TYPE_REQUEST_BASED ||
874 table_type == DM_TYPE_MQ_REQUEST_BASED);
875 }
876
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
878 {
879 t->type = type;
880 }
881 EXPORT_SYMBOL_GPL(dm_table_set_type);
882
device_supports_dax(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)883 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
884 sector_t start, sector_t len, void *data)
885 {
886 return bdev_dax_supported(dev->bdev, PAGE_SIZE);
887 }
888
dm_table_supports_dax(struct dm_table * t)889 static bool dm_table_supports_dax(struct dm_table *t)
890 {
891 struct dm_target *ti;
892 unsigned i;
893
894 /* Ensure that all targets support DAX. */
895 for (i = 0; i < dm_table_get_num_targets(t); i++) {
896 ti = dm_table_get_target(t, i);
897
898 if (!ti->type->direct_access)
899 return false;
900
901 if (!ti->type->iterate_devices ||
902 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
903 return false;
904 }
905
906 return true;
907 }
908
dm_table_determine_type(struct dm_table * t)909 static int dm_table_determine_type(struct dm_table *t)
910 {
911 unsigned i;
912 unsigned bio_based = 0, request_based = 0, hybrid = 0;
913 unsigned sq_count = 0, mq_count = 0;
914 struct dm_target *tgt;
915 struct dm_dev_internal *dd;
916 struct list_head *devices = dm_table_get_devices(t);
917 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
918
919 if (t->type != DM_TYPE_NONE) {
920 /* target already set the table's type */
921 if (t->type == DM_TYPE_BIO_BASED)
922 return 0;
923 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
924 goto verify_rq_based;
925 }
926
927 for (i = 0; i < t->num_targets; i++) {
928 tgt = t->targets + i;
929 if (dm_target_hybrid(tgt))
930 hybrid = 1;
931 else if (dm_target_request_based(tgt))
932 request_based = 1;
933 else
934 bio_based = 1;
935
936 if (bio_based && request_based) {
937 DMWARN("Inconsistent table: different target types"
938 " can't be mixed up");
939 return -EINVAL;
940 }
941 }
942
943 if (hybrid && !bio_based && !request_based) {
944 /*
945 * The targets can work either way.
946 * Determine the type from the live device.
947 * Default to bio-based if device is new.
948 */
949 if (__table_type_request_based(live_md_type))
950 request_based = 1;
951 else
952 bio_based = 1;
953 }
954
955 if (bio_based) {
956 /* We must use this table as bio-based */
957 t->type = DM_TYPE_BIO_BASED;
958 if (dm_table_supports_dax(t) ||
959 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
960 t->type = DM_TYPE_DAX_BIO_BASED;
961 return 0;
962 }
963
964 BUG_ON(!request_based); /* No targets in this table */
965
966 /*
967 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
968 * having a compatible target use dm_table_set_type.
969 */
970 t->type = DM_TYPE_REQUEST_BASED;
971
972 verify_rq_based:
973 /*
974 * Request-based dm supports only tables that have a single target now.
975 * To support multiple targets, request splitting support is needed,
976 * and that needs lots of changes in the block-layer.
977 * (e.g. request completion process for partial completion.)
978 */
979 if (t->num_targets > 1) {
980 DMWARN("Request-based dm doesn't support multiple targets yet");
981 return -EINVAL;
982 }
983
984 if (list_empty(devices)) {
985 int srcu_idx;
986 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
987
988 /* inherit live table's type and all_blk_mq */
989 if (live_table) {
990 t->type = live_table->type;
991 t->all_blk_mq = live_table->all_blk_mq;
992 }
993 dm_put_live_table(t->md, srcu_idx);
994 return 0;
995 }
996
997 /* Non-request-stackable devices can't be used for request-based dm */
998 list_for_each_entry(dd, devices, list) {
999 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1000
1001 if (!blk_queue_stackable(q)) {
1002 DMERR("table load rejected: including"
1003 " non-request-stackable devices");
1004 return -EINVAL;
1005 }
1006
1007 if (q->mq_ops)
1008 mq_count++;
1009 else
1010 sq_count++;
1011 }
1012 if (sq_count && mq_count) {
1013 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1014 return -EINVAL;
1015 }
1016 t->all_blk_mq = mq_count > 0;
1017
1018 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1019 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1020 return -EINVAL;
1021 }
1022
1023 return 0;
1024 }
1025
dm_table_get_type(struct dm_table * t)1026 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1027 {
1028 return t->type;
1029 }
1030
dm_table_get_immutable_target_type(struct dm_table * t)1031 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1032 {
1033 return t->immutable_target_type;
1034 }
1035
dm_table_get_immutable_target(struct dm_table * t)1036 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1037 {
1038 /* Immutable target is implicitly a singleton */
1039 if (t->num_targets > 1 ||
1040 !dm_target_is_immutable(t->targets[0].type))
1041 return NULL;
1042
1043 return t->targets;
1044 }
1045
dm_table_get_wildcard_target(struct dm_table * t)1046 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1047 {
1048 struct dm_target *ti;
1049 unsigned i;
1050
1051 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1052 ti = dm_table_get_target(t, i);
1053 if (dm_target_is_wildcard(ti->type))
1054 return ti;
1055 }
1056
1057 return NULL;
1058 }
1059
dm_table_bio_based(struct dm_table * t)1060 bool dm_table_bio_based(struct dm_table *t)
1061 {
1062 return __table_type_bio_based(dm_table_get_type(t));
1063 }
1064
dm_table_request_based(struct dm_table * t)1065 bool dm_table_request_based(struct dm_table *t)
1066 {
1067 return __table_type_request_based(dm_table_get_type(t));
1068 }
1069
dm_table_all_blk_mq_devices(struct dm_table * t)1070 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1071 {
1072 return t->all_blk_mq;
1073 }
1074
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1075 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076 {
1077 enum dm_queue_mode type = dm_table_get_type(t);
1078 unsigned per_io_data_size = 0;
1079 struct dm_target *tgt;
1080 unsigned i;
1081
1082 if (unlikely(type == DM_TYPE_NONE)) {
1083 DMWARN("no table type is set, can't allocate mempools");
1084 return -EINVAL;
1085 }
1086
1087 if (__table_type_bio_based(type))
1088 for (i = 0; i < t->num_targets; i++) {
1089 tgt = t->targets + i;
1090 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1091 }
1092
1093 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1094 if (!t->mempools)
1095 return -ENOMEM;
1096
1097 return 0;
1098 }
1099
dm_table_free_md_mempools(struct dm_table * t)1100 void dm_table_free_md_mempools(struct dm_table *t)
1101 {
1102 dm_free_md_mempools(t->mempools);
1103 t->mempools = NULL;
1104 }
1105
dm_table_get_md_mempools(struct dm_table * t)1106 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1107 {
1108 return t->mempools;
1109 }
1110
setup_indexes(struct dm_table * t)1111 static int setup_indexes(struct dm_table *t)
1112 {
1113 int i;
1114 unsigned int total = 0;
1115 sector_t *indexes;
1116
1117 /* allocate the space for *all* the indexes */
1118 for (i = t->depth - 2; i >= 0; i--) {
1119 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1120 total += t->counts[i];
1121 }
1122
1123 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1124 if (!indexes)
1125 return -ENOMEM;
1126
1127 /* set up internal nodes, bottom-up */
1128 for (i = t->depth - 2; i >= 0; i--) {
1129 t->index[i] = indexes;
1130 indexes += (KEYS_PER_NODE * t->counts[i]);
1131 setup_btree_index(i, t);
1132 }
1133
1134 return 0;
1135 }
1136
1137 /*
1138 * Builds the btree to index the map.
1139 */
dm_table_build_index(struct dm_table * t)1140 static int dm_table_build_index(struct dm_table *t)
1141 {
1142 int r = 0;
1143 unsigned int leaf_nodes;
1144
1145 /* how many indexes will the btree have ? */
1146 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1147 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1148
1149 /* leaf layer has already been set up */
1150 t->counts[t->depth - 1] = leaf_nodes;
1151 t->index[t->depth - 1] = t->highs;
1152
1153 if (t->depth >= 2)
1154 r = setup_indexes(t);
1155
1156 return r;
1157 }
1158
integrity_profile_exists(struct gendisk * disk)1159 static bool integrity_profile_exists(struct gendisk *disk)
1160 {
1161 return !!blk_get_integrity(disk);
1162 }
1163
1164 /*
1165 * Get a disk whose integrity profile reflects the table's profile.
1166 * Returns NULL if integrity support was inconsistent or unavailable.
1167 */
dm_table_get_integrity_disk(struct dm_table * t)1168 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1169 {
1170 struct list_head *devices = dm_table_get_devices(t);
1171 struct dm_dev_internal *dd = NULL;
1172 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1173 unsigned i;
1174
1175 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1176 struct dm_target *ti = dm_table_get_target(t, i);
1177 if (!dm_target_passes_integrity(ti->type))
1178 goto no_integrity;
1179 }
1180
1181 list_for_each_entry(dd, devices, list) {
1182 template_disk = dd->dm_dev->bdev->bd_disk;
1183 if (!integrity_profile_exists(template_disk))
1184 goto no_integrity;
1185 else if (prev_disk &&
1186 blk_integrity_compare(prev_disk, template_disk) < 0)
1187 goto no_integrity;
1188 prev_disk = template_disk;
1189 }
1190
1191 return template_disk;
1192
1193 no_integrity:
1194 if (prev_disk)
1195 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1196 dm_device_name(t->md),
1197 prev_disk->disk_name,
1198 template_disk->disk_name);
1199 return NULL;
1200 }
1201
1202 /*
1203 * Register the mapped device for blk_integrity support if the
1204 * underlying devices have an integrity profile. But all devices may
1205 * not have matching profiles (checking all devices isn't reliable
1206 * during table load because this table may use other DM device(s) which
1207 * must be resumed before they will have an initialized integity
1208 * profile). Consequently, stacked DM devices force a 2 stage integrity
1209 * profile validation: First pass during table load, final pass during
1210 * resume.
1211 */
dm_table_register_integrity(struct dm_table * t)1212 static int dm_table_register_integrity(struct dm_table *t)
1213 {
1214 struct mapped_device *md = t->md;
1215 struct gendisk *template_disk = NULL;
1216
1217 /* If target handles integrity itself do not register it here. */
1218 if (t->integrity_added)
1219 return 0;
1220
1221 template_disk = dm_table_get_integrity_disk(t);
1222 if (!template_disk)
1223 return 0;
1224
1225 if (!integrity_profile_exists(dm_disk(md))) {
1226 t->integrity_supported = true;
1227 /*
1228 * Register integrity profile during table load; we can do
1229 * this because the final profile must match during resume.
1230 */
1231 blk_integrity_register(dm_disk(md),
1232 blk_get_integrity(template_disk));
1233 return 0;
1234 }
1235
1236 /*
1237 * If DM device already has an initialized integrity
1238 * profile the new profile should not conflict.
1239 */
1240 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1241 DMWARN("%s: conflict with existing integrity profile: "
1242 "%s profile mismatch",
1243 dm_device_name(t->md),
1244 template_disk->disk_name);
1245 return 1;
1246 }
1247
1248 /* Preserve existing integrity profile */
1249 t->integrity_supported = true;
1250 return 0;
1251 }
1252
1253 /*
1254 * Prepares the table for use by building the indices,
1255 * setting the type, and allocating mempools.
1256 */
dm_table_complete(struct dm_table * t)1257 int dm_table_complete(struct dm_table *t)
1258 {
1259 int r;
1260
1261 r = dm_table_determine_type(t);
1262 if (r) {
1263 DMERR("unable to determine table type");
1264 return r;
1265 }
1266
1267 r = dm_table_build_index(t);
1268 if (r) {
1269 DMERR("unable to build btrees");
1270 return r;
1271 }
1272
1273 r = dm_table_register_integrity(t);
1274 if (r) {
1275 DMERR("could not register integrity profile.");
1276 return r;
1277 }
1278
1279 r = dm_table_alloc_md_mempools(t, t->md);
1280 if (r)
1281 DMERR("unable to allocate mempools");
1282
1283 return r;
1284 }
1285
1286 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1287 void dm_table_event_callback(struct dm_table *t,
1288 void (*fn)(void *), void *context)
1289 {
1290 mutex_lock(&_event_lock);
1291 t->event_fn = fn;
1292 t->event_context = context;
1293 mutex_unlock(&_event_lock);
1294 }
1295
dm_table_event(struct dm_table * t)1296 void dm_table_event(struct dm_table *t)
1297 {
1298 /*
1299 * You can no longer call dm_table_event() from interrupt
1300 * context, use a bottom half instead.
1301 */
1302 BUG_ON(in_interrupt());
1303
1304 mutex_lock(&_event_lock);
1305 if (t->event_fn)
1306 t->event_fn(t->event_context);
1307 mutex_unlock(&_event_lock);
1308 }
1309 EXPORT_SYMBOL(dm_table_event);
1310
dm_table_get_size(struct dm_table * t)1311 inline sector_t dm_table_get_size(struct dm_table *t)
1312 {
1313 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1314 }
1315 EXPORT_SYMBOL(dm_table_get_size);
1316
dm_table_get_target(struct dm_table * t,unsigned int index)1317 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1318 {
1319 if (index >= t->num_targets)
1320 return NULL;
1321
1322 return t->targets + index;
1323 }
1324
1325 /*
1326 * Search the btree for the correct target.
1327 *
1328 * Caller should check returned pointer with dm_target_is_valid()
1329 * to trap I/O beyond end of device.
1330 */
dm_table_find_target(struct dm_table * t,sector_t sector)1331 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1332 {
1333 unsigned int l, n = 0, k = 0;
1334 sector_t *node;
1335
1336 if (unlikely(sector >= dm_table_get_size(t)))
1337 return &t->targets[t->num_targets];
1338
1339 for (l = 0; l < t->depth; l++) {
1340 n = get_child(n, k);
1341 node = get_node(t, l, n);
1342
1343 for (k = 0; k < KEYS_PER_NODE; k++)
1344 if (node[k] >= sector)
1345 break;
1346 }
1347
1348 return &t->targets[(KEYS_PER_NODE * n) + k];
1349 }
1350
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1351 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1352 sector_t start, sector_t len, void *data)
1353 {
1354 unsigned *num_devices = data;
1355
1356 (*num_devices)++;
1357
1358 return 0;
1359 }
1360
1361 /*
1362 * Check whether a table has no data devices attached using each
1363 * target's iterate_devices method.
1364 * Returns false if the result is unknown because a target doesn't
1365 * support iterate_devices.
1366 */
dm_table_has_no_data_devices(struct dm_table * table)1367 bool dm_table_has_no_data_devices(struct dm_table *table)
1368 {
1369 struct dm_target *ti;
1370 unsigned i, num_devices;
1371
1372 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1373 ti = dm_table_get_target(table, i);
1374
1375 if (!ti->type->iterate_devices)
1376 return false;
1377
1378 num_devices = 0;
1379 ti->type->iterate_devices(ti, count_device, &num_devices);
1380 if (num_devices)
1381 return false;
1382 }
1383
1384 return true;
1385 }
1386
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1387 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1388 sector_t start, sector_t len, void *data)
1389 {
1390 struct request_queue *q = bdev_get_queue(dev->bdev);
1391 enum blk_zoned_model *zoned_model = data;
1392
1393 return q && blk_queue_zoned_model(q) == *zoned_model;
1394 }
1395
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1396 static bool dm_table_supports_zoned_model(struct dm_table *t,
1397 enum blk_zoned_model zoned_model)
1398 {
1399 struct dm_target *ti;
1400 unsigned i;
1401
1402 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1403 ti = dm_table_get_target(t, i);
1404
1405 if (zoned_model == BLK_ZONED_HM &&
1406 !dm_target_supports_zoned_hm(ti->type))
1407 return false;
1408
1409 if (!ti->type->iterate_devices ||
1410 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1411 return false;
1412 }
1413
1414 return true;
1415 }
1416
device_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1417 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1418 sector_t start, sector_t len, void *data)
1419 {
1420 struct request_queue *q = bdev_get_queue(dev->bdev);
1421 unsigned int *zone_sectors = data;
1422
1423 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1424 }
1425
dm_table_matches_zone_sectors(struct dm_table * t,unsigned int zone_sectors)1426 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1427 unsigned int zone_sectors)
1428 {
1429 struct dm_target *ti;
1430 unsigned i;
1431
1432 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1433 ti = dm_table_get_target(t, i);
1434
1435 if (!ti->type->iterate_devices ||
1436 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1437 return false;
1438 }
1439
1440 return true;
1441 }
1442
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1443 static int validate_hardware_zoned_model(struct dm_table *table,
1444 enum blk_zoned_model zoned_model,
1445 unsigned int zone_sectors)
1446 {
1447 if (zoned_model == BLK_ZONED_NONE)
1448 return 0;
1449
1450 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1451 DMERR("%s: zoned model is not consistent across all devices",
1452 dm_device_name(table->md));
1453 return -EINVAL;
1454 }
1455
1456 /* Check zone size validity and compatibility */
1457 if (!zone_sectors || !is_power_of_2(zone_sectors))
1458 return -EINVAL;
1459
1460 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1461 DMERR("%s: zone sectors is not consistent across all devices",
1462 dm_device_name(table->md));
1463 return -EINVAL;
1464 }
1465
1466 return 0;
1467 }
1468
1469 /*
1470 * Establish the new table's queue_limits and validate them.
1471 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1472 int dm_calculate_queue_limits(struct dm_table *table,
1473 struct queue_limits *limits)
1474 {
1475 struct dm_target *ti;
1476 struct queue_limits ti_limits;
1477 unsigned i;
1478 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1479 unsigned int zone_sectors = 0;
1480
1481 blk_set_stacking_limits(limits);
1482
1483 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1484 blk_set_stacking_limits(&ti_limits);
1485
1486 ti = dm_table_get_target(table, i);
1487
1488 if (!ti->type->iterate_devices)
1489 goto combine_limits;
1490
1491 /*
1492 * Combine queue limits of all the devices this target uses.
1493 */
1494 ti->type->iterate_devices(ti, dm_set_device_limits,
1495 &ti_limits);
1496
1497 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1498 /*
1499 * After stacking all limits, validate all devices
1500 * in table support this zoned model and zone sectors.
1501 */
1502 zoned_model = ti_limits.zoned;
1503 zone_sectors = ti_limits.chunk_sectors;
1504 }
1505
1506 /* Set I/O hints portion of queue limits */
1507 if (ti->type->io_hints)
1508 ti->type->io_hints(ti, &ti_limits);
1509
1510 /*
1511 * Check each device area is consistent with the target's
1512 * overall queue limits.
1513 */
1514 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1515 &ti_limits))
1516 return -EINVAL;
1517
1518 combine_limits:
1519 /*
1520 * Merge this target's queue limits into the overall limits
1521 * for the table.
1522 */
1523 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1524 DMWARN("%s: adding target device "
1525 "(start sect %llu len %llu) "
1526 "caused an alignment inconsistency",
1527 dm_device_name(table->md),
1528 (unsigned long long) ti->begin,
1529 (unsigned long long) ti->len);
1530
1531 /*
1532 * FIXME: this should likely be moved to blk_stack_limits(), would
1533 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1534 */
1535 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 /*
1537 * By default, the stacked limits zoned model is set to
1538 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1539 * this model using the first target model reported
1540 * that is not BLK_ZONED_NONE. This will be either the
1541 * first target device zoned model or the model reported
1542 * by the target .io_hints.
1543 */
1544 limits->zoned = ti_limits.zoned;
1545 }
1546 }
1547
1548 /*
1549 * Verify that the zoned model and zone sectors, as determined before
1550 * any .io_hints override, are the same across all devices in the table.
1551 * - this is especially relevant if .io_hints is emulating a disk-managed
1552 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1553 * BUT...
1554 */
1555 if (limits->zoned != BLK_ZONED_NONE) {
1556 /*
1557 * ...IF the above limits stacking determined a zoned model
1558 * validate that all of the table's devices conform to it.
1559 */
1560 zoned_model = limits->zoned;
1561 zone_sectors = limits->chunk_sectors;
1562 }
1563 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1564 return -EINVAL;
1565
1566 return validate_hardware_logical_block_alignment(table, limits);
1567 }
1568
1569 /*
1570 * Verify that all devices have an integrity profile that matches the
1571 * DM device's registered integrity profile. If the profiles don't
1572 * match then unregister the DM device's integrity profile.
1573 */
dm_table_verify_integrity(struct dm_table * t)1574 static void dm_table_verify_integrity(struct dm_table *t)
1575 {
1576 struct gendisk *template_disk = NULL;
1577
1578 if (t->integrity_added)
1579 return;
1580
1581 if (t->integrity_supported) {
1582 /*
1583 * Verify that the original integrity profile
1584 * matches all the devices in this table.
1585 */
1586 template_disk = dm_table_get_integrity_disk(t);
1587 if (template_disk &&
1588 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1589 return;
1590 }
1591
1592 if (integrity_profile_exists(dm_disk(t->md))) {
1593 DMWARN("%s: unable to establish an integrity profile",
1594 dm_device_name(t->md));
1595 blk_integrity_unregister(dm_disk(t->md));
1596 }
1597 }
1598
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1599 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1600 sector_t start, sector_t len, void *data)
1601 {
1602 unsigned long flush = (unsigned long) data;
1603 struct request_queue *q = bdev_get_queue(dev->bdev);
1604
1605 return q && (q->queue_flags & flush);
1606 }
1607
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1608 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1609 {
1610 struct dm_target *ti;
1611 unsigned i;
1612
1613 /*
1614 * Require at least one underlying device to support flushes.
1615 * t->devices includes internal dm devices such as mirror logs
1616 * so we need to use iterate_devices here, which targets
1617 * supporting flushes must provide.
1618 */
1619 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1620 ti = dm_table_get_target(t, i);
1621
1622 if (!ti->num_flush_bios)
1623 continue;
1624
1625 if (ti->flush_supported)
1626 return true;
1627
1628 if (ti->type->iterate_devices &&
1629 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1636 static int device_dax_write_cache_enabled(struct dm_target *ti,
1637 struct dm_dev *dev, sector_t start,
1638 sector_t len, void *data)
1639 {
1640 struct dax_device *dax_dev = dev->dax_dev;
1641
1642 if (!dax_dev)
1643 return false;
1644
1645 if (dax_write_cache_enabled(dax_dev))
1646 return true;
1647 return false;
1648 }
1649
dm_table_supports_dax_write_cache(struct dm_table * t)1650 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1651 {
1652 struct dm_target *ti;
1653 unsigned i;
1654
1655 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1656 ti = dm_table_get_target(t, i);
1657
1658 if (ti->type->iterate_devices &&
1659 ti->type->iterate_devices(ti,
1660 device_dax_write_cache_enabled, NULL))
1661 return true;
1662 }
1663
1664 return false;
1665 }
1666
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1667 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1668 sector_t start, sector_t len, void *data)
1669 {
1670 struct request_queue *q = bdev_get_queue(dev->bdev);
1671
1672 return q && blk_queue_nonrot(q);
1673 }
1674
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1675 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1676 sector_t start, sector_t len, void *data)
1677 {
1678 struct request_queue *q = bdev_get_queue(dev->bdev);
1679
1680 return q && !blk_queue_add_random(q);
1681 }
1682
queue_supports_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1683 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1684 sector_t start, sector_t len, void *data)
1685 {
1686 struct request_queue *q = bdev_get_queue(dev->bdev);
1687
1688 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1689 }
1690
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1691 static bool dm_table_all_devices_attribute(struct dm_table *t,
1692 iterate_devices_callout_fn func)
1693 {
1694 struct dm_target *ti;
1695 unsigned i;
1696
1697 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1698 ti = dm_table_get_target(t, i);
1699
1700 if (!ti->type->iterate_devices ||
1701 !ti->type->iterate_devices(ti, func, NULL))
1702 return false;
1703 }
1704
1705 return true;
1706 }
1707
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1708 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1709 sector_t start, sector_t len, void *data)
1710 {
1711 struct request_queue *q = bdev_get_queue(dev->bdev);
1712
1713 return q && !q->limits.max_write_same_sectors;
1714 }
1715
dm_table_supports_write_same(struct dm_table * t)1716 static bool dm_table_supports_write_same(struct dm_table *t)
1717 {
1718 struct dm_target *ti;
1719 unsigned i;
1720
1721 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 ti = dm_table_get_target(t, i);
1723
1724 if (!ti->num_write_same_bios)
1725 return false;
1726
1727 if (!ti->type->iterate_devices ||
1728 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1729 return false;
1730 }
1731
1732 return true;
1733 }
1734
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1735 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1736 sector_t start, sector_t len, void *data)
1737 {
1738 struct request_queue *q = bdev_get_queue(dev->bdev);
1739
1740 return q && !q->limits.max_write_zeroes_sectors;
1741 }
1742
dm_table_supports_write_zeroes(struct dm_table * t)1743 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1744 {
1745 struct dm_target *ti;
1746 unsigned i = 0;
1747
1748 while (i < dm_table_get_num_targets(t)) {
1749 ti = dm_table_get_target(t, i++);
1750
1751 if (!ti->num_write_zeroes_bios)
1752 return false;
1753
1754 if (!ti->type->iterate_devices ||
1755 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1756 return false;
1757 }
1758
1759 return true;
1760 }
1761
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1762 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764 {
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !blk_queue_discard(q);
1768 }
1769
dm_table_supports_discards(struct dm_table * t)1770 static bool dm_table_supports_discards(struct dm_table *t)
1771 {
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_discard_bios)
1779 return false;
1780
1781 /*
1782 * Either the target provides discard support (as implied by setting
1783 * 'discards_supported') or it relies on _all_ data devices having
1784 * discard support.
1785 */
1786 if (!ti->discards_supported &&
1787 (!ti->type->iterate_devices ||
1788 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1789 return false;
1790 }
1791
1792 return true;
1793 }
1794
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1795 static int device_requires_stable_pages(struct dm_target *ti,
1796 struct dm_dev *dev, sector_t start,
1797 sector_t len, void *data)
1798 {
1799 struct request_queue *q = bdev_get_queue(dev->bdev);
1800
1801 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1802 }
1803
1804 /*
1805 * If any underlying device requires stable pages, a table must require
1806 * them as well. Only targets that support iterate_devices are considered:
1807 * don't want error, zero, etc to require stable pages.
1808 */
dm_table_requires_stable_pages(struct dm_table * t)1809 static bool dm_table_requires_stable_pages(struct dm_table *t)
1810 {
1811 struct dm_target *ti;
1812 unsigned i;
1813
1814 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1815 ti = dm_table_get_target(t, i);
1816
1817 if (ti->type->iterate_devices &&
1818 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1819 return true;
1820 }
1821
1822 return false;
1823 }
1824
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1826 struct queue_limits *limits)
1827 {
1828 bool wc = false, fua = false;
1829
1830 /*
1831 * Copy table's limits to the DM device's request_queue
1832 */
1833 q->limits = *limits;
1834
1835 if (!dm_table_supports_discards(t))
1836 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1837 else
1838 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1839
1840 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1841 wc = true;
1842 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1843 fua = true;
1844 }
1845 blk_queue_write_cache(q, wc, fua);
1846
1847 if (dm_table_supports_dax(t))
1848 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
1849 else
1850 queue_flag_clear_unlocked(QUEUE_FLAG_DAX, q);
1851
1852 if (dm_table_supports_dax_write_cache(t))
1853 dax_write_cache(t->md->dax_dev, true);
1854
1855 /* Ensure that all underlying devices are non-rotational. */
1856 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1857 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1858 else
1859 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1860
1861 if (!dm_table_supports_write_same(t))
1862 q->limits.max_write_same_sectors = 0;
1863 if (!dm_table_supports_write_zeroes(t))
1864 q->limits.max_write_zeroes_sectors = 0;
1865
1866 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1867 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1868 else
1869 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1870
1871 dm_table_verify_integrity(t);
1872
1873 /*
1874 * Some devices don't use blk_integrity but still want stable pages
1875 * because they do their own checksumming.
1876 */
1877 if (dm_table_requires_stable_pages(t))
1878 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1879 else
1880 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1881
1882 /*
1883 * Determine whether or not this queue's I/O timings contribute
1884 * to the entropy pool, Only request-based targets use this.
1885 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1886 * have it set.
1887 */
1888 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1889 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1890
1891 /*
1892 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1893 * visible to other CPUs because, once the flag is set, incoming bios
1894 * are processed by request-based dm, which refers to the queue
1895 * settings.
1896 * Until the flag set, bios are passed to bio-based dm and queued to
1897 * md->deferred where queue settings are not needed yet.
1898 * Those bios are passed to request-based dm at the resume time.
1899 */
1900 smp_mb();
1901 if (dm_table_request_based(t))
1902 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1903
1904 /* io_pages is used for readahead */
1905 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1906 }
1907
dm_table_get_num_targets(struct dm_table * t)1908 unsigned int dm_table_get_num_targets(struct dm_table *t)
1909 {
1910 return t->num_targets;
1911 }
1912
dm_table_get_devices(struct dm_table * t)1913 struct list_head *dm_table_get_devices(struct dm_table *t)
1914 {
1915 return &t->devices;
1916 }
1917
dm_table_get_mode(struct dm_table * t)1918 fmode_t dm_table_get_mode(struct dm_table *t)
1919 {
1920 return t->mode;
1921 }
1922 EXPORT_SYMBOL(dm_table_get_mode);
1923
1924 enum suspend_mode {
1925 PRESUSPEND,
1926 PRESUSPEND_UNDO,
1927 POSTSUSPEND,
1928 };
1929
suspend_targets(struct dm_table * t,enum suspend_mode mode)1930 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1931 {
1932 int i = t->num_targets;
1933 struct dm_target *ti = t->targets;
1934
1935 lockdep_assert_held(&t->md->suspend_lock);
1936
1937 while (i--) {
1938 switch (mode) {
1939 case PRESUSPEND:
1940 if (ti->type->presuspend)
1941 ti->type->presuspend(ti);
1942 break;
1943 case PRESUSPEND_UNDO:
1944 if (ti->type->presuspend_undo)
1945 ti->type->presuspend_undo(ti);
1946 break;
1947 case POSTSUSPEND:
1948 if (ti->type->postsuspend)
1949 ti->type->postsuspend(ti);
1950 break;
1951 }
1952 ti++;
1953 }
1954 }
1955
dm_table_presuspend_targets(struct dm_table * t)1956 void dm_table_presuspend_targets(struct dm_table *t)
1957 {
1958 if (!t)
1959 return;
1960
1961 suspend_targets(t, PRESUSPEND);
1962 }
1963
dm_table_presuspend_undo_targets(struct dm_table * t)1964 void dm_table_presuspend_undo_targets(struct dm_table *t)
1965 {
1966 if (!t)
1967 return;
1968
1969 suspend_targets(t, PRESUSPEND_UNDO);
1970 }
1971
dm_table_postsuspend_targets(struct dm_table * t)1972 void dm_table_postsuspend_targets(struct dm_table *t)
1973 {
1974 if (!t)
1975 return;
1976
1977 suspend_targets(t, POSTSUSPEND);
1978 }
1979
dm_table_resume_targets(struct dm_table * t)1980 int dm_table_resume_targets(struct dm_table *t)
1981 {
1982 int i, r = 0;
1983
1984 lockdep_assert_held(&t->md->suspend_lock);
1985
1986 for (i = 0; i < t->num_targets; i++) {
1987 struct dm_target *ti = t->targets + i;
1988
1989 if (!ti->type->preresume)
1990 continue;
1991
1992 r = ti->type->preresume(ti);
1993 if (r) {
1994 DMERR("%s: %s: preresume failed, error = %d",
1995 dm_device_name(t->md), ti->type->name, r);
1996 return r;
1997 }
1998 }
1999
2000 for (i = 0; i < t->num_targets; i++) {
2001 struct dm_target *ti = t->targets + i;
2002
2003 if (ti->type->resume)
2004 ti->type->resume(ti);
2005 }
2006
2007 return 0;
2008 }
2009
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)2010 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2011 {
2012 list_add(&cb->list, &t->target_callbacks);
2013 }
2014 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2015
dm_table_any_congested(struct dm_table * t,int bdi_bits)2016 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2017 {
2018 struct dm_dev_internal *dd;
2019 struct list_head *devices = dm_table_get_devices(t);
2020 struct dm_target_callbacks *cb;
2021 int r = 0;
2022
2023 list_for_each_entry(dd, devices, list) {
2024 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2025 char b[BDEVNAME_SIZE];
2026
2027 if (likely(q))
2028 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2029 else
2030 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2031 dm_device_name(t->md),
2032 bdevname(dd->dm_dev->bdev, b));
2033 }
2034
2035 list_for_each_entry(cb, &t->target_callbacks, list)
2036 if (cb->congested_fn)
2037 r |= cb->congested_fn(cb, bdi_bits);
2038
2039 return r;
2040 }
2041
dm_table_get_md(struct dm_table * t)2042 struct mapped_device *dm_table_get_md(struct dm_table *t)
2043 {
2044 return t->md;
2045 }
2046 EXPORT_SYMBOL(dm_table_get_md);
2047
dm_table_run_md_queue_async(struct dm_table * t)2048 void dm_table_run_md_queue_async(struct dm_table *t)
2049 {
2050 struct mapped_device *md;
2051 struct request_queue *queue;
2052 unsigned long flags;
2053
2054 if (!dm_table_request_based(t))
2055 return;
2056
2057 md = dm_table_get_md(t);
2058 queue = dm_get_md_queue(md);
2059 if (queue) {
2060 if (queue->mq_ops)
2061 blk_mq_run_hw_queues(queue, true);
2062 else {
2063 spin_lock_irqsave(queue->queue_lock, flags);
2064 blk_run_queue_async(queue);
2065 spin_unlock_irqrestore(queue->queue_lock, flags);
2066 }
2067 }
2068 }
2069 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2070
2071