• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 struct dm_table {
33 	struct mapped_device *md;
34 	enum dm_queue_mode type;
35 
36 	/* btree table */
37 	unsigned int depth;
38 	unsigned int counts[MAX_DEPTH];	/* in nodes */
39 	sector_t *index[MAX_DEPTH];
40 
41 	unsigned int num_targets;
42 	unsigned int num_allocated;
43 	sector_t *highs;
44 	struct dm_target *targets;
45 
46 	struct target_type *immutable_target_type;
47 
48 	bool integrity_supported:1;
49 	bool singleton:1;
50 	bool all_blk_mq:1;
51 	unsigned integrity_added:1;
52 
53 	/*
54 	 * Indicates the rw permissions for the new logical
55 	 * device.  This should be a combination of FMODE_READ
56 	 * and FMODE_WRITE.
57 	 */
58 	fmode_t mode;
59 
60 	/* a list of devices used by this table */
61 	struct list_head devices;
62 
63 	/* events get handed up using this callback */
64 	void (*event_fn)(void *);
65 	void *event_context;
66 
67 	struct dm_md_mempools *mempools;
68 
69 	struct list_head target_callbacks;
70 };
71 
72 /*
73  * Similar to ceiling(log_size(n))
74  */
int_log(unsigned int n,unsigned int base)75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 	int result = 0;
78 
79 	while (n > 1) {
80 		n = dm_div_up(n, base);
81 		result++;
82 	}
83 
84 	return result;
85 }
86 
87 /*
88  * Calculate the index of the child node of the n'th node k'th key.
89  */
get_child(unsigned int n,unsigned int k)90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 	return (n * CHILDREN_PER_NODE) + k;
93 }
94 
95 /*
96  * Return the n'th node of level l from table t.
97  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)98 static inline sector_t *get_node(struct dm_table *t,
99 				 unsigned int l, unsigned int n)
100 {
101 	return t->index[l] + (n * KEYS_PER_NODE);
102 }
103 
104 /*
105  * Return the highest key that you could lookup from the n'th
106  * node on level l of the btree.
107  */
high(struct dm_table * t,unsigned int l,unsigned int n)108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 	for (; l < t->depth - 1; l++)
111 		n = get_child(n, CHILDREN_PER_NODE - 1);
112 
113 	if (n >= t->counts[l])
114 		return (sector_t) - 1;
115 
116 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118 
119 /*
120  * Fills in a level of the btree based on the highs of the level
121  * below it.
122  */
setup_btree_index(unsigned int l,struct dm_table * t)123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 	unsigned int n, k;
126 	sector_t *node;
127 
128 	for (n = 0U; n < t->counts[l]; n++) {
129 		node = get_node(t, l, n);
130 
131 		for (k = 0U; k < KEYS_PER_NODE; k++)
132 			node[k] = high(t, l + 1, get_child(n, k));
133 	}
134 
135 	return 0;
136 }
137 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 	unsigned long size;
141 	void *addr;
142 
143 	/*
144 	 * Check that we're not going to overflow.
145 	 */
146 	if (nmemb > (ULONG_MAX / elem_size))
147 		return NULL;
148 
149 	size = nmemb * elem_size;
150 	addr = vzalloc(size);
151 
152 	return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155 
156 /*
157  * highs, and targets are managed as dynamic arrays during a
158  * table load.
159  */
alloc_targets(struct dm_table * t,unsigned int num)160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 	sector_t *n_highs;
163 	struct dm_target *n_targets;
164 
165 	/*
166 	 * Allocate both the target array and offset array at once.
167 	 * Append an empty entry to catch sectors beyond the end of
168 	 * the device.
169 	 */
170 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 					  sizeof(sector_t));
172 	if (!n_highs)
173 		return -ENOMEM;
174 
175 	n_targets = (struct dm_target *) (n_highs + num);
176 
177 	memset(n_highs, -1, sizeof(*n_highs) * num);
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (!num_targets) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	if (alloc_targets(t, num_targets)) {
209 		kfree(t);
210 		return -ENOMEM;
211 	}
212 
213 	t->type = DM_TYPE_NONE;
214 	t->mode = mode;
215 	t->md = md;
216 	*result = t;
217 	return 0;
218 }
219 
free_devices(struct list_head * devices,struct mapped_device * md)220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 	struct list_head *tmp, *next;
223 
224 	list_for_each_safe(tmp, next, devices) {
225 		struct dm_dev_internal *dd =
226 		    list_entry(tmp, struct dm_dev_internal, list);
227 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 		       dm_device_name(md), dd->dm_dev->name);
229 		dm_put_table_device(md, dd->dm_dev);
230 		kfree(dd);
231 	}
232 }
233 
dm_table_destroy(struct dm_table * t)234 void dm_table_destroy(struct dm_table *t)
235 {
236 	unsigned int i;
237 
238 	if (!t)
239 		return;
240 
241 	/* free the indexes */
242 	if (t->depth >= 2)
243 		vfree(t->index[t->depth - 2]);
244 
245 	/* free the targets */
246 	for (i = 0; i < t->num_targets; i++) {
247 		struct dm_target *tgt = t->targets + i;
248 
249 		if (tgt->type->dtr)
250 			tgt->type->dtr(tgt);
251 
252 		dm_put_target_type(tgt->type);
253 	}
254 
255 	vfree(t->highs);
256 
257 	/* free the device list */
258 	free_devices(&t->devices, t->md);
259 
260 	dm_free_md_mempools(t->mempools);
261 
262 	kfree(t);
263 }
264 
265 /*
266  * See if we've already got a device in the list.
267  */
find_device(struct list_head * l,dev_t dev)268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 	struct dm_dev_internal *dd;
271 
272 	list_for_each_entry (dd, l, list)
273 		if (dd->dm_dev->bdev->bd_dev == dev)
274 			return dd;
275 
276 	return NULL;
277 }
278 
279 /*
280  * If possible, this checks an area of a destination device is invalid.
281  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 				  sector_t start, sector_t len, void *data)
284 {
285 	struct request_queue *q;
286 	struct queue_limits *limits = data;
287 	struct block_device *bdev = dev->bdev;
288 	sector_t dev_size =
289 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 	unsigned short logical_block_size_sectors =
291 		limits->logical_block_size >> SECTOR_SHIFT;
292 	char b[BDEVNAME_SIZE];
293 
294 	/*
295 	 * Some devices exist without request functions,
296 	 * such as loop devices not yet bound to backing files.
297 	 * Forbid the use of such devices.
298 	 */
299 	q = bdev_get_queue(bdev);
300 	if (!q || !q->make_request_fn) {
301 		DMWARN("%s: %s is not yet initialised: "
302 		       "start=%llu, len=%llu, dev_size=%llu",
303 		       dm_device_name(ti->table->md), bdevname(bdev, b),
304 		       (unsigned long long)start,
305 		       (unsigned long long)len,
306 		       (unsigned long long)dev_size);
307 		return 1;
308 	}
309 
310 	if (!dev_size)
311 		return 0;
312 
313 	if ((start >= dev_size) || (start + len > dev_size)) {
314 		DMWARN("%s: %s too small for target: "
315 		       "start=%llu, len=%llu, dev_size=%llu",
316 		       dm_device_name(ti->table->md), bdevname(bdev, b),
317 		       (unsigned long long)start,
318 		       (unsigned long long)len,
319 		       (unsigned long long)dev_size);
320 		return 1;
321 	}
322 
323 	/*
324 	 * If the target is mapped to zoned block device(s), check
325 	 * that the zones are not partially mapped.
326 	 */
327 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
329 
330 		if (start & (zone_sectors - 1)) {
331 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 			       dm_device_name(ti->table->md),
333 			       (unsigned long long)start,
334 			       zone_sectors, bdevname(bdev, b));
335 			return 1;
336 		}
337 
338 		/*
339 		 * Note: The last zone of a zoned block device may be smaller
340 		 * than other zones. So for a target mapping the end of a
341 		 * zoned block device with such a zone, len would not be zone
342 		 * aligned. We do not allow such last smaller zone to be part
343 		 * of the mapping here to ensure that mappings with multiple
344 		 * devices do not end up with a smaller zone in the middle of
345 		 * the sector range.
346 		 */
347 		if (len & (zone_sectors - 1)) {
348 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 			       dm_device_name(ti->table->md),
350 			       (unsigned long long)len,
351 			       zone_sectors, bdevname(bdev, b));
352 			return 1;
353 		}
354 	}
355 
356 	if (logical_block_size_sectors <= 1)
357 		return 0;
358 
359 	if (start & (logical_block_size_sectors - 1)) {
360 		DMWARN("%s: start=%llu not aligned to h/w "
361 		       "logical block size %u of %s",
362 		       dm_device_name(ti->table->md),
363 		       (unsigned long long)start,
364 		       limits->logical_block_size, bdevname(bdev, b));
365 		return 1;
366 	}
367 
368 	if (len & (logical_block_size_sectors - 1)) {
369 		DMWARN("%s: len=%llu not aligned to h/w "
370 		       "logical block size %u of %s",
371 		       dm_device_name(ti->table->md),
372 		       (unsigned long long)len,
373 		       limits->logical_block_size, bdevname(bdev, b));
374 		return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * This upgrades the mode on an already open dm_dev, being
382  * careful to leave things as they were if we fail to reopen the
383  * device and not to touch the existing bdev field in case
384  * it is accessed concurrently inside dm_table_any_congested().
385  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 			struct mapped_device *md)
388 {
389 	int r;
390 	struct dm_dev *old_dev, *new_dev;
391 
392 	old_dev = dd->dm_dev;
393 
394 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 				dd->dm_dev->mode | new_mode, &new_dev);
396 	if (r)
397 		return r;
398 
399 	dd->dm_dev = new_dev;
400 	dm_put_table_device(md, old_dev);
401 
402 	return 0;
403 }
404 
405 /*
406  * Convert the path to a device
407  */
dm_get_dev_t(const char * path)408 dev_t dm_get_dev_t(const char *path)
409 {
410 	dev_t dev;
411 	struct block_device *bdev;
412 
413 	bdev = lookup_bdev(path);
414 	if (IS_ERR(bdev))
415 		dev = name_to_dev_t(path);
416 	else {
417 		dev = bdev->bd_dev;
418 		bdput(bdev);
419 	}
420 
421 	return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424 
425 /*
426  * Add a device to the list, or just increment the usage count if
427  * it's already present.
428  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 		  struct dm_dev **result)
431 {
432 	int r;
433 	dev_t dev;
434 	struct dm_dev_internal *dd;
435 	struct dm_table *t = ti->table;
436 
437 	BUG_ON(!t);
438 
439 	dev = dm_get_dev_t(path);
440 	if (!dev)
441 		return -ENODEV;
442 
443 	dd = find_device(&t->devices, dev);
444 	if (!dd) {
445 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 		if (!dd)
447 			return -ENOMEM;
448 
449 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 			kfree(dd);
451 			return r;
452 		}
453 
454 		atomic_set(&dd->count, 0);
455 		list_add(&dd->list, &t->devices);
456 
457 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
458 		r = upgrade_mode(dd, mode, t->md);
459 		if (r)
460 			return r;
461 	}
462 	atomic_inc(&dd->count);
463 
464 	*result = dd->dm_dev;
465 	return 0;
466 }
467 EXPORT_SYMBOL(dm_get_device);
468 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
470 				sector_t start, sector_t len, void *data)
471 {
472 	struct queue_limits *limits = data;
473 	struct block_device *bdev = dev->bdev;
474 	struct request_queue *q = bdev_get_queue(bdev);
475 	char b[BDEVNAME_SIZE];
476 
477 	if (unlikely(!q)) {
478 		DMWARN("%s: Cannot set limits for nonexistent device %s",
479 		       dm_device_name(ti->table->md), bdevname(bdev, b));
480 		return 0;
481 	}
482 
483 	if (bdev_stack_limits(limits, bdev, start) < 0)
484 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 		       "physical_block_size=%u, logical_block_size=%u, "
486 		       "alignment_offset=%u, start=%llu",
487 		       dm_device_name(ti->table->md), bdevname(bdev, b),
488 		       q->limits.physical_block_size,
489 		       q->limits.logical_block_size,
490 		       q->limits.alignment_offset,
491 		       (unsigned long long) start << SECTOR_SHIFT);
492 
493 	limits->zoned = blk_queue_zoned_model(q);
494 
495 	return 0;
496 }
497 
498 /*
499  * Decrement a device's use count and remove it if necessary.
500  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)501 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
502 {
503 	int found = 0;
504 	struct list_head *devices = &ti->table->devices;
505 	struct dm_dev_internal *dd;
506 
507 	list_for_each_entry(dd, devices, list) {
508 		if (dd->dm_dev == d) {
509 			found = 1;
510 			break;
511 		}
512 	}
513 	if (!found) {
514 		DMWARN("%s: device %s not in table devices list",
515 		       dm_device_name(ti->table->md), d->name);
516 		return;
517 	}
518 	if (atomic_dec_and_test(&dd->count)) {
519 		dm_put_table_device(ti->table->md, d);
520 		list_del(&dd->list);
521 		kfree(dd);
522 	}
523 }
524 EXPORT_SYMBOL(dm_put_device);
525 
526 /*
527  * Checks to see if the target joins onto the end of the table.
528  */
adjoin(struct dm_table * table,struct dm_target * ti)529 static int adjoin(struct dm_table *table, struct dm_target *ti)
530 {
531 	struct dm_target *prev;
532 
533 	if (!table->num_targets)
534 		return !ti->begin;
535 
536 	prev = &table->targets[table->num_targets - 1];
537 	return (ti->begin == (prev->begin + prev->len));
538 }
539 
540 /*
541  * Used to dynamically allocate the arg array.
542  *
543  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544  * process messages even if some device is suspended. These messages have a
545  * small fixed number of arguments.
546  *
547  * On the other hand, dm-switch needs to process bulk data using messages and
548  * excessive use of GFP_NOIO could cause trouble.
549  */
realloc_argv(unsigned * size,char ** old_argv)550 static char **realloc_argv(unsigned *size, char **old_argv)
551 {
552 	char **argv;
553 	unsigned new_size;
554 	gfp_t gfp;
555 
556 	if (*size) {
557 		new_size = *size * 2;
558 		gfp = GFP_KERNEL;
559 	} else {
560 		new_size = 8;
561 		gfp = GFP_NOIO;
562 	}
563 	argv = kmalloc(new_size * sizeof(*argv), gfp);
564 	if (argv) {
565 		memcpy(argv, old_argv, *size * sizeof(*argv));
566 		*size = new_size;
567 	}
568 
569 	kfree(old_argv);
570 	return argv;
571 }
572 
573 /*
574  * Destructively splits up the argument list to pass to ctr.
575  */
dm_split_args(int * argc,char *** argvp,char * input)576 int dm_split_args(int *argc, char ***argvp, char *input)
577 {
578 	char *start, *end = input, *out, **argv = NULL;
579 	unsigned array_size = 0;
580 
581 	*argc = 0;
582 
583 	if (!input) {
584 		*argvp = NULL;
585 		return 0;
586 	}
587 
588 	argv = realloc_argv(&array_size, argv);
589 	if (!argv)
590 		return -ENOMEM;
591 
592 	while (1) {
593 		/* Skip whitespace */
594 		start = skip_spaces(end);
595 
596 		if (!*start)
597 			break;	/* success, we hit the end */
598 
599 		/* 'out' is used to remove any back-quotes */
600 		end = out = start;
601 		while (*end) {
602 			/* Everything apart from '\0' can be quoted */
603 			if (*end == '\\' && *(end + 1)) {
604 				*out++ = *(end + 1);
605 				end += 2;
606 				continue;
607 			}
608 
609 			if (isspace(*end))
610 				break;	/* end of token */
611 
612 			*out++ = *end++;
613 		}
614 
615 		/* have we already filled the array ? */
616 		if ((*argc + 1) > array_size) {
617 			argv = realloc_argv(&array_size, argv);
618 			if (!argv)
619 				return -ENOMEM;
620 		}
621 
622 		/* we know this is whitespace */
623 		if (*end)
624 			end++;
625 
626 		/* terminate the string and put it in the array */
627 		*out = '\0';
628 		argv[*argc] = start;
629 		(*argc)++;
630 	}
631 
632 	*argvp = argv;
633 	return 0;
634 }
635 
636 /*
637  * Impose necessary and sufficient conditions on a devices's table such
638  * that any incoming bio which respects its logical_block_size can be
639  * processed successfully.  If it falls across the boundary between
640  * two or more targets, the size of each piece it gets split into must
641  * be compatible with the logical_block_size of the target processing it.
642  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)643 static int validate_hardware_logical_block_alignment(struct dm_table *table,
644 						 struct queue_limits *limits)
645 {
646 	/*
647 	 * This function uses arithmetic modulo the logical_block_size
648 	 * (in units of 512-byte sectors).
649 	 */
650 	unsigned short device_logical_block_size_sects =
651 		limits->logical_block_size >> SECTOR_SHIFT;
652 
653 	/*
654 	 * Offset of the start of the next table entry, mod logical_block_size.
655 	 */
656 	unsigned short next_target_start = 0;
657 
658 	/*
659 	 * Given an aligned bio that extends beyond the end of a
660 	 * target, how many sectors must the next target handle?
661 	 */
662 	unsigned short remaining = 0;
663 
664 	struct dm_target *uninitialized_var(ti);
665 	struct queue_limits ti_limits;
666 	unsigned i;
667 
668 	/*
669 	 * Check each entry in the table in turn.
670 	 */
671 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
672 		ti = dm_table_get_target(table, i);
673 
674 		blk_set_stacking_limits(&ti_limits);
675 
676 		/* combine all target devices' limits */
677 		if (ti->type->iterate_devices)
678 			ti->type->iterate_devices(ti, dm_set_device_limits,
679 						  &ti_limits);
680 
681 		/*
682 		 * If the remaining sectors fall entirely within this
683 		 * table entry are they compatible with its logical_block_size?
684 		 */
685 		if (remaining < ti->len &&
686 		    remaining & ((ti_limits.logical_block_size >>
687 				  SECTOR_SHIFT) - 1))
688 			break;	/* Error */
689 
690 		next_target_start =
691 		    (unsigned short) ((next_target_start + ti->len) &
692 				      (device_logical_block_size_sects - 1));
693 		remaining = next_target_start ?
694 		    device_logical_block_size_sects - next_target_start : 0;
695 	}
696 
697 	if (remaining) {
698 		DMWARN("%s: table line %u (start sect %llu len %llu) "
699 		       "not aligned to h/w logical block size %u",
700 		       dm_device_name(table->md), i,
701 		       (unsigned long long) ti->begin,
702 		       (unsigned long long) ti->len,
703 		       limits->logical_block_size);
704 		return -EINVAL;
705 	}
706 
707 	return 0;
708 }
709 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)710 int dm_table_add_target(struct dm_table *t, const char *type,
711 			sector_t start, sector_t len, char *params)
712 {
713 	int r = -EINVAL, argc;
714 	char **argv;
715 	struct dm_target *tgt;
716 
717 	if (t->singleton) {
718 		DMERR("%s: target type %s must appear alone in table",
719 		      dm_device_name(t->md), t->targets->type->name);
720 		return -EINVAL;
721 	}
722 
723 	BUG_ON(t->num_targets >= t->num_allocated);
724 
725 	tgt = t->targets + t->num_targets;
726 	memset(tgt, 0, sizeof(*tgt));
727 
728 	if (!len) {
729 		DMERR("%s: zero-length target", dm_device_name(t->md));
730 		return -EINVAL;
731 	}
732 
733 	tgt->type = dm_get_target_type(type);
734 	if (!tgt->type) {
735 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
736 		return -EINVAL;
737 	}
738 
739 	if (dm_target_needs_singleton(tgt->type)) {
740 		if (t->num_targets) {
741 			tgt->error = "singleton target type must appear alone in table";
742 			goto bad;
743 		}
744 		t->singleton = true;
745 	}
746 
747 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
748 		tgt->error = "target type may not be included in a read-only table";
749 		goto bad;
750 	}
751 
752 	if (t->immutable_target_type) {
753 		if (t->immutable_target_type != tgt->type) {
754 			tgt->error = "immutable target type cannot be mixed with other target types";
755 			goto bad;
756 		}
757 	} else if (dm_target_is_immutable(tgt->type)) {
758 		if (t->num_targets) {
759 			tgt->error = "immutable target type cannot be mixed with other target types";
760 			goto bad;
761 		}
762 		t->immutable_target_type = tgt->type;
763 	}
764 
765 	if (dm_target_has_integrity(tgt->type))
766 		t->integrity_added = 1;
767 
768 	tgt->table = t;
769 	tgt->begin = start;
770 	tgt->len = len;
771 	tgt->error = "Unknown error";
772 
773 	/*
774 	 * Does this target adjoin the previous one ?
775 	 */
776 	if (!adjoin(t, tgt)) {
777 		tgt->error = "Gap in table";
778 		goto bad;
779 	}
780 
781 	r = dm_split_args(&argc, &argv, params);
782 	if (r) {
783 		tgt->error = "couldn't split parameters (insufficient memory)";
784 		goto bad;
785 	}
786 
787 	r = tgt->type->ctr(tgt, argc, argv);
788 	kfree(argv);
789 	if (r)
790 		goto bad;
791 
792 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793 
794 	if (!tgt->num_discard_bios && tgt->discards_supported)
795 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 		       dm_device_name(t->md), type);
797 
798 	return 0;
799 
800  bad:
801 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
802 	dm_put_target_type(tgt->type);
803 	return r;
804 }
805 
806 /*
807  * Target argument parsing helpers.
808  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)809 static int validate_next_arg(const struct dm_arg *arg,
810 			     struct dm_arg_set *arg_set,
811 			     unsigned *value, char **error, unsigned grouped)
812 {
813 	const char *arg_str = dm_shift_arg(arg_set);
814 	char dummy;
815 
816 	if (!arg_str ||
817 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
818 	    (*value < arg->min) ||
819 	    (*value > arg->max) ||
820 	    (grouped && arg_set->argc < *value)) {
821 		*error = arg->error;
822 		return -EINVAL;
823 	}
824 
825 	return 0;
826 }
827 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)828 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
829 		unsigned *value, char **error)
830 {
831 	return validate_next_arg(arg, arg_set, value, error, 0);
832 }
833 EXPORT_SYMBOL(dm_read_arg);
834 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)835 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
836 		      unsigned *value, char **error)
837 {
838 	return validate_next_arg(arg, arg_set, value, error, 1);
839 }
840 EXPORT_SYMBOL(dm_read_arg_group);
841 
dm_shift_arg(struct dm_arg_set * as)842 const char *dm_shift_arg(struct dm_arg_set *as)
843 {
844 	char *r;
845 
846 	if (as->argc) {
847 		as->argc--;
848 		r = *as->argv;
849 		as->argv++;
850 		return r;
851 	}
852 
853 	return NULL;
854 }
855 EXPORT_SYMBOL(dm_shift_arg);
856 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)857 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
858 {
859 	BUG_ON(as->argc < num_args);
860 	as->argc -= num_args;
861 	as->argv += num_args;
862 }
863 EXPORT_SYMBOL(dm_consume_args);
864 
__table_type_bio_based(enum dm_queue_mode table_type)865 static bool __table_type_bio_based(enum dm_queue_mode table_type)
866 {
867 	return (table_type == DM_TYPE_BIO_BASED ||
868 		table_type == DM_TYPE_DAX_BIO_BASED);
869 }
870 
__table_type_request_based(enum dm_queue_mode table_type)871 static bool __table_type_request_based(enum dm_queue_mode table_type)
872 {
873 	return (table_type == DM_TYPE_REQUEST_BASED ||
874 		table_type == DM_TYPE_MQ_REQUEST_BASED);
875 }
876 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)877 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
878 {
879 	t->type = type;
880 }
881 EXPORT_SYMBOL_GPL(dm_table_set_type);
882 
device_supports_dax(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)883 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
884 			       sector_t start, sector_t len, void *data)
885 {
886 	return bdev_dax_supported(dev->bdev, PAGE_SIZE);
887 }
888 
dm_table_supports_dax(struct dm_table * t)889 static bool dm_table_supports_dax(struct dm_table *t)
890 {
891 	struct dm_target *ti;
892 	unsigned i;
893 
894 	/* Ensure that all targets support DAX. */
895 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
896 		ti = dm_table_get_target(t, i);
897 
898 		if (!ti->type->direct_access)
899 			return false;
900 
901 		if (!ti->type->iterate_devices ||
902 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
903 			return false;
904 	}
905 
906 	return true;
907 }
908 
dm_table_determine_type(struct dm_table * t)909 static int dm_table_determine_type(struct dm_table *t)
910 {
911 	unsigned i;
912 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
913 	unsigned sq_count = 0, mq_count = 0;
914 	struct dm_target *tgt;
915 	struct dm_dev_internal *dd;
916 	struct list_head *devices = dm_table_get_devices(t);
917 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
918 
919 	if (t->type != DM_TYPE_NONE) {
920 		/* target already set the table's type */
921 		if (t->type == DM_TYPE_BIO_BASED)
922 			return 0;
923 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
924 		goto verify_rq_based;
925 	}
926 
927 	for (i = 0; i < t->num_targets; i++) {
928 		tgt = t->targets + i;
929 		if (dm_target_hybrid(tgt))
930 			hybrid = 1;
931 		else if (dm_target_request_based(tgt))
932 			request_based = 1;
933 		else
934 			bio_based = 1;
935 
936 		if (bio_based && request_based) {
937 			DMWARN("Inconsistent table: different target types"
938 			       " can't be mixed up");
939 			return -EINVAL;
940 		}
941 	}
942 
943 	if (hybrid && !bio_based && !request_based) {
944 		/*
945 		 * The targets can work either way.
946 		 * Determine the type from the live device.
947 		 * Default to bio-based if device is new.
948 		 */
949 		if (__table_type_request_based(live_md_type))
950 			request_based = 1;
951 		else
952 			bio_based = 1;
953 	}
954 
955 	if (bio_based) {
956 		/* We must use this table as bio-based */
957 		t->type = DM_TYPE_BIO_BASED;
958 		if (dm_table_supports_dax(t) ||
959 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
960 			t->type = DM_TYPE_DAX_BIO_BASED;
961 		return 0;
962 	}
963 
964 	BUG_ON(!request_based); /* No targets in this table */
965 
966 	/*
967 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
968 	 * having a compatible target use dm_table_set_type.
969 	 */
970 	t->type = DM_TYPE_REQUEST_BASED;
971 
972 verify_rq_based:
973 	/*
974 	 * Request-based dm supports only tables that have a single target now.
975 	 * To support multiple targets, request splitting support is needed,
976 	 * and that needs lots of changes in the block-layer.
977 	 * (e.g. request completion process for partial completion.)
978 	 */
979 	if (t->num_targets > 1) {
980 		DMWARN("Request-based dm doesn't support multiple targets yet");
981 		return -EINVAL;
982 	}
983 
984 	if (list_empty(devices)) {
985 		int srcu_idx;
986 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
987 
988 		/* inherit live table's type and all_blk_mq */
989 		if (live_table) {
990 			t->type = live_table->type;
991 			t->all_blk_mq = live_table->all_blk_mq;
992 		}
993 		dm_put_live_table(t->md, srcu_idx);
994 		return 0;
995 	}
996 
997 	/* Non-request-stackable devices can't be used for request-based dm */
998 	list_for_each_entry(dd, devices, list) {
999 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1000 
1001 		if (!blk_queue_stackable(q)) {
1002 			DMERR("table load rejected: including"
1003 			      " non-request-stackable devices");
1004 			return -EINVAL;
1005 		}
1006 
1007 		if (q->mq_ops)
1008 			mq_count++;
1009 		else
1010 			sq_count++;
1011 	}
1012 	if (sq_count && mq_count) {
1013 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1014 		return -EINVAL;
1015 	}
1016 	t->all_blk_mq = mq_count > 0;
1017 
1018 	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1019 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1020 		return -EINVAL;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
dm_table_get_type(struct dm_table * t)1026 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1027 {
1028 	return t->type;
1029 }
1030 
dm_table_get_immutable_target_type(struct dm_table * t)1031 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1032 {
1033 	return t->immutable_target_type;
1034 }
1035 
dm_table_get_immutable_target(struct dm_table * t)1036 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1037 {
1038 	/* Immutable target is implicitly a singleton */
1039 	if (t->num_targets > 1 ||
1040 	    !dm_target_is_immutable(t->targets[0].type))
1041 		return NULL;
1042 
1043 	return t->targets;
1044 }
1045 
dm_table_get_wildcard_target(struct dm_table * t)1046 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1047 {
1048 	struct dm_target *ti;
1049 	unsigned i;
1050 
1051 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1052 		ti = dm_table_get_target(t, i);
1053 		if (dm_target_is_wildcard(ti->type))
1054 			return ti;
1055 	}
1056 
1057 	return NULL;
1058 }
1059 
dm_table_bio_based(struct dm_table * t)1060 bool dm_table_bio_based(struct dm_table *t)
1061 {
1062 	return __table_type_bio_based(dm_table_get_type(t));
1063 }
1064 
dm_table_request_based(struct dm_table * t)1065 bool dm_table_request_based(struct dm_table *t)
1066 {
1067 	return __table_type_request_based(dm_table_get_type(t));
1068 }
1069 
dm_table_all_blk_mq_devices(struct dm_table * t)1070 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1071 {
1072 	return t->all_blk_mq;
1073 }
1074 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1075 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076 {
1077 	enum dm_queue_mode type = dm_table_get_type(t);
1078 	unsigned per_io_data_size = 0;
1079 	struct dm_target *tgt;
1080 	unsigned i;
1081 
1082 	if (unlikely(type == DM_TYPE_NONE)) {
1083 		DMWARN("no table type is set, can't allocate mempools");
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (__table_type_bio_based(type))
1088 		for (i = 0; i < t->num_targets; i++) {
1089 			tgt = t->targets + i;
1090 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1091 		}
1092 
1093 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1094 	if (!t->mempools)
1095 		return -ENOMEM;
1096 
1097 	return 0;
1098 }
1099 
dm_table_free_md_mempools(struct dm_table * t)1100 void dm_table_free_md_mempools(struct dm_table *t)
1101 {
1102 	dm_free_md_mempools(t->mempools);
1103 	t->mempools = NULL;
1104 }
1105 
dm_table_get_md_mempools(struct dm_table * t)1106 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1107 {
1108 	return t->mempools;
1109 }
1110 
setup_indexes(struct dm_table * t)1111 static int setup_indexes(struct dm_table *t)
1112 {
1113 	int i;
1114 	unsigned int total = 0;
1115 	sector_t *indexes;
1116 
1117 	/* allocate the space for *all* the indexes */
1118 	for (i = t->depth - 2; i >= 0; i--) {
1119 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1120 		total += t->counts[i];
1121 	}
1122 
1123 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1124 	if (!indexes)
1125 		return -ENOMEM;
1126 
1127 	/* set up internal nodes, bottom-up */
1128 	for (i = t->depth - 2; i >= 0; i--) {
1129 		t->index[i] = indexes;
1130 		indexes += (KEYS_PER_NODE * t->counts[i]);
1131 		setup_btree_index(i, t);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Builds the btree to index the map.
1139  */
dm_table_build_index(struct dm_table * t)1140 static int dm_table_build_index(struct dm_table *t)
1141 {
1142 	int r = 0;
1143 	unsigned int leaf_nodes;
1144 
1145 	/* how many indexes will the btree have ? */
1146 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1147 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1148 
1149 	/* leaf layer has already been set up */
1150 	t->counts[t->depth - 1] = leaf_nodes;
1151 	t->index[t->depth - 1] = t->highs;
1152 
1153 	if (t->depth >= 2)
1154 		r = setup_indexes(t);
1155 
1156 	return r;
1157 }
1158 
integrity_profile_exists(struct gendisk * disk)1159 static bool integrity_profile_exists(struct gendisk *disk)
1160 {
1161 	return !!blk_get_integrity(disk);
1162 }
1163 
1164 /*
1165  * Get a disk whose integrity profile reflects the table's profile.
1166  * Returns NULL if integrity support was inconsistent or unavailable.
1167  */
dm_table_get_integrity_disk(struct dm_table * t)1168 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1169 {
1170 	struct list_head *devices = dm_table_get_devices(t);
1171 	struct dm_dev_internal *dd = NULL;
1172 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1173 	unsigned i;
1174 
1175 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1176 		struct dm_target *ti = dm_table_get_target(t, i);
1177 		if (!dm_target_passes_integrity(ti->type))
1178 			goto no_integrity;
1179 	}
1180 
1181 	list_for_each_entry(dd, devices, list) {
1182 		template_disk = dd->dm_dev->bdev->bd_disk;
1183 		if (!integrity_profile_exists(template_disk))
1184 			goto no_integrity;
1185 		else if (prev_disk &&
1186 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1187 			goto no_integrity;
1188 		prev_disk = template_disk;
1189 	}
1190 
1191 	return template_disk;
1192 
1193 no_integrity:
1194 	if (prev_disk)
1195 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1196 		       dm_device_name(t->md),
1197 		       prev_disk->disk_name,
1198 		       template_disk->disk_name);
1199 	return NULL;
1200 }
1201 
1202 /*
1203  * Register the mapped device for blk_integrity support if the
1204  * underlying devices have an integrity profile.  But all devices may
1205  * not have matching profiles (checking all devices isn't reliable
1206  * during table load because this table may use other DM device(s) which
1207  * must be resumed before they will have an initialized integity
1208  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1209  * profile validation: First pass during table load, final pass during
1210  * resume.
1211  */
dm_table_register_integrity(struct dm_table * t)1212 static int dm_table_register_integrity(struct dm_table *t)
1213 {
1214 	struct mapped_device *md = t->md;
1215 	struct gendisk *template_disk = NULL;
1216 
1217 	/* If target handles integrity itself do not register it here. */
1218 	if (t->integrity_added)
1219 		return 0;
1220 
1221 	template_disk = dm_table_get_integrity_disk(t);
1222 	if (!template_disk)
1223 		return 0;
1224 
1225 	if (!integrity_profile_exists(dm_disk(md))) {
1226 		t->integrity_supported = true;
1227 		/*
1228 		 * Register integrity profile during table load; we can do
1229 		 * this because the final profile must match during resume.
1230 		 */
1231 		blk_integrity_register(dm_disk(md),
1232 				       blk_get_integrity(template_disk));
1233 		return 0;
1234 	}
1235 
1236 	/*
1237 	 * If DM device already has an initialized integrity
1238 	 * profile the new profile should not conflict.
1239 	 */
1240 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1241 		DMWARN("%s: conflict with existing integrity profile: "
1242 		       "%s profile mismatch",
1243 		       dm_device_name(t->md),
1244 		       template_disk->disk_name);
1245 		return 1;
1246 	}
1247 
1248 	/* Preserve existing integrity profile */
1249 	t->integrity_supported = true;
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Prepares the table for use by building the indices,
1255  * setting the type, and allocating mempools.
1256  */
dm_table_complete(struct dm_table * t)1257 int dm_table_complete(struct dm_table *t)
1258 {
1259 	int r;
1260 
1261 	r = dm_table_determine_type(t);
1262 	if (r) {
1263 		DMERR("unable to determine table type");
1264 		return r;
1265 	}
1266 
1267 	r = dm_table_build_index(t);
1268 	if (r) {
1269 		DMERR("unable to build btrees");
1270 		return r;
1271 	}
1272 
1273 	r = dm_table_register_integrity(t);
1274 	if (r) {
1275 		DMERR("could not register integrity profile.");
1276 		return r;
1277 	}
1278 
1279 	r = dm_table_alloc_md_mempools(t, t->md);
1280 	if (r)
1281 		DMERR("unable to allocate mempools");
1282 
1283 	return r;
1284 }
1285 
1286 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1287 void dm_table_event_callback(struct dm_table *t,
1288 			     void (*fn)(void *), void *context)
1289 {
1290 	mutex_lock(&_event_lock);
1291 	t->event_fn = fn;
1292 	t->event_context = context;
1293 	mutex_unlock(&_event_lock);
1294 }
1295 
dm_table_event(struct dm_table * t)1296 void dm_table_event(struct dm_table *t)
1297 {
1298 	/*
1299 	 * You can no longer call dm_table_event() from interrupt
1300 	 * context, use a bottom half instead.
1301 	 */
1302 	BUG_ON(in_interrupt());
1303 
1304 	mutex_lock(&_event_lock);
1305 	if (t->event_fn)
1306 		t->event_fn(t->event_context);
1307 	mutex_unlock(&_event_lock);
1308 }
1309 EXPORT_SYMBOL(dm_table_event);
1310 
dm_table_get_size(struct dm_table * t)1311 inline sector_t dm_table_get_size(struct dm_table *t)
1312 {
1313 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1314 }
1315 EXPORT_SYMBOL(dm_table_get_size);
1316 
dm_table_get_target(struct dm_table * t,unsigned int index)1317 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1318 {
1319 	if (index >= t->num_targets)
1320 		return NULL;
1321 
1322 	return t->targets + index;
1323 }
1324 
1325 /*
1326  * Search the btree for the correct target.
1327  *
1328  * Caller should check returned pointer with dm_target_is_valid()
1329  * to trap I/O beyond end of device.
1330  */
dm_table_find_target(struct dm_table * t,sector_t sector)1331 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1332 {
1333 	unsigned int l, n = 0, k = 0;
1334 	sector_t *node;
1335 
1336 	if (unlikely(sector >= dm_table_get_size(t)))
1337 		return &t->targets[t->num_targets];
1338 
1339 	for (l = 0; l < t->depth; l++) {
1340 		n = get_child(n, k);
1341 		node = get_node(t, l, n);
1342 
1343 		for (k = 0; k < KEYS_PER_NODE; k++)
1344 			if (node[k] >= sector)
1345 				break;
1346 	}
1347 
1348 	return &t->targets[(KEYS_PER_NODE * n) + k];
1349 }
1350 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1351 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1352 			sector_t start, sector_t len, void *data)
1353 {
1354 	unsigned *num_devices = data;
1355 
1356 	(*num_devices)++;
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Check whether a table has no data devices attached using each
1363  * target's iterate_devices method.
1364  * Returns false if the result is unknown because a target doesn't
1365  * support iterate_devices.
1366  */
dm_table_has_no_data_devices(struct dm_table * table)1367 bool dm_table_has_no_data_devices(struct dm_table *table)
1368 {
1369 	struct dm_target *ti;
1370 	unsigned i, num_devices;
1371 
1372 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1373 		ti = dm_table_get_target(table, i);
1374 
1375 		if (!ti->type->iterate_devices)
1376 			return false;
1377 
1378 		num_devices = 0;
1379 		ti->type->iterate_devices(ti, count_device, &num_devices);
1380 		if (num_devices)
1381 			return false;
1382 	}
1383 
1384 	return true;
1385 }
1386 
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1387 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1388 				 sector_t start, sector_t len, void *data)
1389 {
1390 	struct request_queue *q = bdev_get_queue(dev->bdev);
1391 	enum blk_zoned_model *zoned_model = data;
1392 
1393 	return q && blk_queue_zoned_model(q) == *zoned_model;
1394 }
1395 
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1396 static bool dm_table_supports_zoned_model(struct dm_table *t,
1397 					  enum blk_zoned_model zoned_model)
1398 {
1399 	struct dm_target *ti;
1400 	unsigned i;
1401 
1402 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1403 		ti = dm_table_get_target(t, i);
1404 
1405 		if (zoned_model == BLK_ZONED_HM &&
1406 		    !dm_target_supports_zoned_hm(ti->type))
1407 			return false;
1408 
1409 		if (!ti->type->iterate_devices ||
1410 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1411 			return false;
1412 	}
1413 
1414 	return true;
1415 }
1416 
device_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1417 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1418 				       sector_t start, sector_t len, void *data)
1419 {
1420 	struct request_queue *q = bdev_get_queue(dev->bdev);
1421 	unsigned int *zone_sectors = data;
1422 
1423 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1424 }
1425 
dm_table_matches_zone_sectors(struct dm_table * t,unsigned int zone_sectors)1426 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1427 					  unsigned int zone_sectors)
1428 {
1429 	struct dm_target *ti;
1430 	unsigned i;
1431 
1432 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1433 		ti = dm_table_get_target(t, i);
1434 
1435 		if (!ti->type->iterate_devices ||
1436 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1437 			return false;
1438 	}
1439 
1440 	return true;
1441 }
1442 
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1443 static int validate_hardware_zoned_model(struct dm_table *table,
1444 					 enum blk_zoned_model zoned_model,
1445 					 unsigned int zone_sectors)
1446 {
1447 	if (zoned_model == BLK_ZONED_NONE)
1448 		return 0;
1449 
1450 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1451 		DMERR("%s: zoned model is not consistent across all devices",
1452 		      dm_device_name(table->md));
1453 		return -EINVAL;
1454 	}
1455 
1456 	/* Check zone size validity and compatibility */
1457 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1458 		return -EINVAL;
1459 
1460 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1461 		DMERR("%s: zone sectors is not consistent across all devices",
1462 		      dm_device_name(table->md));
1463 		return -EINVAL;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Establish the new table's queue_limits and validate them.
1471  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1472 int dm_calculate_queue_limits(struct dm_table *table,
1473 			      struct queue_limits *limits)
1474 {
1475 	struct dm_target *ti;
1476 	struct queue_limits ti_limits;
1477 	unsigned i;
1478 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1479 	unsigned int zone_sectors = 0;
1480 
1481 	blk_set_stacking_limits(limits);
1482 
1483 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1484 		blk_set_stacking_limits(&ti_limits);
1485 
1486 		ti = dm_table_get_target(table, i);
1487 
1488 		if (!ti->type->iterate_devices)
1489 			goto combine_limits;
1490 
1491 		/*
1492 		 * Combine queue limits of all the devices this target uses.
1493 		 */
1494 		ti->type->iterate_devices(ti, dm_set_device_limits,
1495 					  &ti_limits);
1496 
1497 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1498 			/*
1499 			 * After stacking all limits, validate all devices
1500 			 * in table support this zoned model and zone sectors.
1501 			 */
1502 			zoned_model = ti_limits.zoned;
1503 			zone_sectors = ti_limits.chunk_sectors;
1504 		}
1505 
1506 		/* Set I/O hints portion of queue limits */
1507 		if (ti->type->io_hints)
1508 			ti->type->io_hints(ti, &ti_limits);
1509 
1510 		/*
1511 		 * Check each device area is consistent with the target's
1512 		 * overall queue limits.
1513 		 */
1514 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1515 					      &ti_limits))
1516 			return -EINVAL;
1517 
1518 combine_limits:
1519 		/*
1520 		 * Merge this target's queue limits into the overall limits
1521 		 * for the table.
1522 		 */
1523 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1524 			DMWARN("%s: adding target device "
1525 			       "(start sect %llu len %llu) "
1526 			       "caused an alignment inconsistency",
1527 			       dm_device_name(table->md),
1528 			       (unsigned long long) ti->begin,
1529 			       (unsigned long long) ti->len);
1530 
1531 		/*
1532 		 * FIXME: this should likely be moved to blk_stack_limits(), would
1533 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1534 		 */
1535 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 			/*
1537 			 * By default, the stacked limits zoned model is set to
1538 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1539 			 * this model using the first target model reported
1540 			 * that is not BLK_ZONED_NONE. This will be either the
1541 			 * first target device zoned model or the model reported
1542 			 * by the target .io_hints.
1543 			 */
1544 			limits->zoned = ti_limits.zoned;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Verify that the zoned model and zone sectors, as determined before
1550 	 * any .io_hints override, are the same across all devices in the table.
1551 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1552 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1553 	 * BUT...
1554 	 */
1555 	if (limits->zoned != BLK_ZONED_NONE) {
1556 		/*
1557 		 * ...IF the above limits stacking determined a zoned model
1558 		 * validate that all of the table's devices conform to it.
1559 		 */
1560 		zoned_model = limits->zoned;
1561 		zone_sectors = limits->chunk_sectors;
1562 	}
1563 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1564 		return -EINVAL;
1565 
1566 	return validate_hardware_logical_block_alignment(table, limits);
1567 }
1568 
1569 /*
1570  * Verify that all devices have an integrity profile that matches the
1571  * DM device's registered integrity profile.  If the profiles don't
1572  * match then unregister the DM device's integrity profile.
1573  */
dm_table_verify_integrity(struct dm_table * t)1574 static void dm_table_verify_integrity(struct dm_table *t)
1575 {
1576 	struct gendisk *template_disk = NULL;
1577 
1578 	if (t->integrity_added)
1579 		return;
1580 
1581 	if (t->integrity_supported) {
1582 		/*
1583 		 * Verify that the original integrity profile
1584 		 * matches all the devices in this table.
1585 		 */
1586 		template_disk = dm_table_get_integrity_disk(t);
1587 		if (template_disk &&
1588 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1589 			return;
1590 	}
1591 
1592 	if (integrity_profile_exists(dm_disk(t->md))) {
1593 		DMWARN("%s: unable to establish an integrity profile",
1594 		       dm_device_name(t->md));
1595 		blk_integrity_unregister(dm_disk(t->md));
1596 	}
1597 }
1598 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1599 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1600 				sector_t start, sector_t len, void *data)
1601 {
1602 	unsigned long flush = (unsigned long) data;
1603 	struct request_queue *q = bdev_get_queue(dev->bdev);
1604 
1605 	return q && (q->queue_flags & flush);
1606 }
1607 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1608 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1609 {
1610 	struct dm_target *ti;
1611 	unsigned i;
1612 
1613 	/*
1614 	 * Require at least one underlying device to support flushes.
1615 	 * t->devices includes internal dm devices such as mirror logs
1616 	 * so we need to use iterate_devices here, which targets
1617 	 * supporting flushes must provide.
1618 	 */
1619 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1620 		ti = dm_table_get_target(t, i);
1621 
1622 		if (!ti->num_flush_bios)
1623 			continue;
1624 
1625 		if (ti->flush_supported)
1626 			return true;
1627 
1628 		if (ti->type->iterate_devices &&
1629 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1630 			return true;
1631 	}
1632 
1633 	return false;
1634 }
1635 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1636 static int device_dax_write_cache_enabled(struct dm_target *ti,
1637 					  struct dm_dev *dev, sector_t start,
1638 					  sector_t len, void *data)
1639 {
1640 	struct dax_device *dax_dev = dev->dax_dev;
1641 
1642 	if (!dax_dev)
1643 		return false;
1644 
1645 	if (dax_write_cache_enabled(dax_dev))
1646 		return true;
1647 	return false;
1648 }
1649 
dm_table_supports_dax_write_cache(struct dm_table * t)1650 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1651 {
1652 	struct dm_target *ti;
1653 	unsigned i;
1654 
1655 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1656 		ti = dm_table_get_target(t, i);
1657 
1658 		if (ti->type->iterate_devices &&
1659 		    ti->type->iterate_devices(ti,
1660 				device_dax_write_cache_enabled, NULL))
1661 			return true;
1662 	}
1663 
1664 	return false;
1665 }
1666 
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1667 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1668 			    sector_t start, sector_t len, void *data)
1669 {
1670 	struct request_queue *q = bdev_get_queue(dev->bdev);
1671 
1672 	return q && blk_queue_nonrot(q);
1673 }
1674 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1675 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1676 			     sector_t start, sector_t len, void *data)
1677 {
1678 	struct request_queue *q = bdev_get_queue(dev->bdev);
1679 
1680 	return q && !blk_queue_add_random(q);
1681 }
1682 
queue_supports_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1683 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1684 				   sector_t start, sector_t len, void *data)
1685 {
1686 	struct request_queue *q = bdev_get_queue(dev->bdev);
1687 
1688 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1689 }
1690 
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1691 static bool dm_table_all_devices_attribute(struct dm_table *t,
1692 					   iterate_devices_callout_fn func)
1693 {
1694 	struct dm_target *ti;
1695 	unsigned i;
1696 
1697 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1698 		ti = dm_table_get_target(t, i);
1699 
1700 		if (!ti->type->iterate_devices ||
1701 		    !ti->type->iterate_devices(ti, func, NULL))
1702 			return false;
1703 	}
1704 
1705 	return true;
1706 }
1707 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1708 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1709 					 sector_t start, sector_t len, void *data)
1710 {
1711 	struct request_queue *q = bdev_get_queue(dev->bdev);
1712 
1713 	return q && !q->limits.max_write_same_sectors;
1714 }
1715 
dm_table_supports_write_same(struct dm_table * t)1716 static bool dm_table_supports_write_same(struct dm_table *t)
1717 {
1718 	struct dm_target *ti;
1719 	unsigned i;
1720 
1721 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 		ti = dm_table_get_target(t, i);
1723 
1724 		if (!ti->num_write_same_bios)
1725 			return false;
1726 
1727 		if (!ti->type->iterate_devices ||
1728 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1729 			return false;
1730 	}
1731 
1732 	return true;
1733 }
1734 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1735 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1736 					   sector_t start, sector_t len, void *data)
1737 {
1738 	struct request_queue *q = bdev_get_queue(dev->bdev);
1739 
1740 	return q && !q->limits.max_write_zeroes_sectors;
1741 }
1742 
dm_table_supports_write_zeroes(struct dm_table * t)1743 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1744 {
1745 	struct dm_target *ti;
1746 	unsigned i = 0;
1747 
1748 	while (i < dm_table_get_num_targets(t)) {
1749 		ti = dm_table_get_target(t, i++);
1750 
1751 		if (!ti->num_write_zeroes_bios)
1752 			return false;
1753 
1754 		if (!ti->type->iterate_devices ||
1755 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1756 			return false;
1757 	}
1758 
1759 	return true;
1760 }
1761 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1762 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1763 				      sector_t start, sector_t len, void *data)
1764 {
1765 	struct request_queue *q = bdev_get_queue(dev->bdev);
1766 
1767 	return q && !blk_queue_discard(q);
1768 }
1769 
dm_table_supports_discards(struct dm_table * t)1770 static bool dm_table_supports_discards(struct dm_table *t)
1771 {
1772 	struct dm_target *ti;
1773 	unsigned i;
1774 
1775 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 		ti = dm_table_get_target(t, i);
1777 
1778 		if (!ti->num_discard_bios)
1779 			return false;
1780 
1781 		/*
1782 		 * Either the target provides discard support (as implied by setting
1783 		 * 'discards_supported') or it relies on _all_ data devices having
1784 		 * discard support.
1785 		 */
1786 		if (!ti->discards_supported &&
1787 		    (!ti->type->iterate_devices ||
1788 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1789 			return false;
1790 	}
1791 
1792 	return true;
1793 }
1794 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1795 static int device_requires_stable_pages(struct dm_target *ti,
1796 					struct dm_dev *dev, sector_t start,
1797 					sector_t len, void *data)
1798 {
1799 	struct request_queue *q = bdev_get_queue(dev->bdev);
1800 
1801 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1802 }
1803 
1804 /*
1805  * If any underlying device requires stable pages, a table must require
1806  * them as well.  Only targets that support iterate_devices are considered:
1807  * don't want error, zero, etc to require stable pages.
1808  */
dm_table_requires_stable_pages(struct dm_table * t)1809 static bool dm_table_requires_stable_pages(struct dm_table *t)
1810 {
1811 	struct dm_target *ti;
1812 	unsigned i;
1813 
1814 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1815 		ti = dm_table_get_target(t, i);
1816 
1817 		if (ti->type->iterate_devices &&
1818 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1819 			return true;
1820 	}
1821 
1822 	return false;
1823 }
1824 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1825 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1826 			       struct queue_limits *limits)
1827 {
1828 	bool wc = false, fua = false;
1829 
1830 	/*
1831 	 * Copy table's limits to the DM device's request_queue
1832 	 */
1833 	q->limits = *limits;
1834 
1835 	if (!dm_table_supports_discards(t))
1836 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1837 	else
1838 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1839 
1840 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1841 		wc = true;
1842 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1843 			fua = true;
1844 	}
1845 	blk_queue_write_cache(q, wc, fua);
1846 
1847 	if (dm_table_supports_dax(t))
1848 		queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
1849 	else
1850 		queue_flag_clear_unlocked(QUEUE_FLAG_DAX, q);
1851 
1852 	if (dm_table_supports_dax_write_cache(t))
1853 		dax_write_cache(t->md->dax_dev, true);
1854 
1855 	/* Ensure that all underlying devices are non-rotational. */
1856 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1857 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1858 	else
1859 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1860 
1861 	if (!dm_table_supports_write_same(t))
1862 		q->limits.max_write_same_sectors = 0;
1863 	if (!dm_table_supports_write_zeroes(t))
1864 		q->limits.max_write_zeroes_sectors = 0;
1865 
1866 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1867 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1868 	else
1869 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1870 
1871 	dm_table_verify_integrity(t);
1872 
1873 	/*
1874 	 * Some devices don't use blk_integrity but still want stable pages
1875 	 * because they do their own checksumming.
1876 	 */
1877 	if (dm_table_requires_stable_pages(t))
1878 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1879 	else
1880 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1881 
1882 	/*
1883 	 * Determine whether or not this queue's I/O timings contribute
1884 	 * to the entropy pool, Only request-based targets use this.
1885 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1886 	 * have it set.
1887 	 */
1888 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1889 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1890 
1891 	/*
1892 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1893 	 * visible to other CPUs because, once the flag is set, incoming bios
1894 	 * are processed by request-based dm, which refers to the queue
1895 	 * settings.
1896 	 * Until the flag set, bios are passed to bio-based dm and queued to
1897 	 * md->deferred where queue settings are not needed yet.
1898 	 * Those bios are passed to request-based dm at the resume time.
1899 	 */
1900 	smp_mb();
1901 	if (dm_table_request_based(t))
1902 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1903 
1904 	/* io_pages is used for readahead */
1905 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1906 }
1907 
dm_table_get_num_targets(struct dm_table * t)1908 unsigned int dm_table_get_num_targets(struct dm_table *t)
1909 {
1910 	return t->num_targets;
1911 }
1912 
dm_table_get_devices(struct dm_table * t)1913 struct list_head *dm_table_get_devices(struct dm_table *t)
1914 {
1915 	return &t->devices;
1916 }
1917 
dm_table_get_mode(struct dm_table * t)1918 fmode_t dm_table_get_mode(struct dm_table *t)
1919 {
1920 	return t->mode;
1921 }
1922 EXPORT_SYMBOL(dm_table_get_mode);
1923 
1924 enum suspend_mode {
1925 	PRESUSPEND,
1926 	PRESUSPEND_UNDO,
1927 	POSTSUSPEND,
1928 };
1929 
suspend_targets(struct dm_table * t,enum suspend_mode mode)1930 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1931 {
1932 	int i = t->num_targets;
1933 	struct dm_target *ti = t->targets;
1934 
1935 	lockdep_assert_held(&t->md->suspend_lock);
1936 
1937 	while (i--) {
1938 		switch (mode) {
1939 		case PRESUSPEND:
1940 			if (ti->type->presuspend)
1941 				ti->type->presuspend(ti);
1942 			break;
1943 		case PRESUSPEND_UNDO:
1944 			if (ti->type->presuspend_undo)
1945 				ti->type->presuspend_undo(ti);
1946 			break;
1947 		case POSTSUSPEND:
1948 			if (ti->type->postsuspend)
1949 				ti->type->postsuspend(ti);
1950 			break;
1951 		}
1952 		ti++;
1953 	}
1954 }
1955 
dm_table_presuspend_targets(struct dm_table * t)1956 void dm_table_presuspend_targets(struct dm_table *t)
1957 {
1958 	if (!t)
1959 		return;
1960 
1961 	suspend_targets(t, PRESUSPEND);
1962 }
1963 
dm_table_presuspend_undo_targets(struct dm_table * t)1964 void dm_table_presuspend_undo_targets(struct dm_table *t)
1965 {
1966 	if (!t)
1967 		return;
1968 
1969 	suspend_targets(t, PRESUSPEND_UNDO);
1970 }
1971 
dm_table_postsuspend_targets(struct dm_table * t)1972 void dm_table_postsuspend_targets(struct dm_table *t)
1973 {
1974 	if (!t)
1975 		return;
1976 
1977 	suspend_targets(t, POSTSUSPEND);
1978 }
1979 
dm_table_resume_targets(struct dm_table * t)1980 int dm_table_resume_targets(struct dm_table *t)
1981 {
1982 	int i, r = 0;
1983 
1984 	lockdep_assert_held(&t->md->suspend_lock);
1985 
1986 	for (i = 0; i < t->num_targets; i++) {
1987 		struct dm_target *ti = t->targets + i;
1988 
1989 		if (!ti->type->preresume)
1990 			continue;
1991 
1992 		r = ti->type->preresume(ti);
1993 		if (r) {
1994 			DMERR("%s: %s: preresume failed, error = %d",
1995 			      dm_device_name(t->md), ti->type->name, r);
1996 			return r;
1997 		}
1998 	}
1999 
2000 	for (i = 0; i < t->num_targets; i++) {
2001 		struct dm_target *ti = t->targets + i;
2002 
2003 		if (ti->type->resume)
2004 			ti->type->resume(ti);
2005 	}
2006 
2007 	return 0;
2008 }
2009 
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)2010 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2011 {
2012 	list_add(&cb->list, &t->target_callbacks);
2013 }
2014 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2015 
dm_table_any_congested(struct dm_table * t,int bdi_bits)2016 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2017 {
2018 	struct dm_dev_internal *dd;
2019 	struct list_head *devices = dm_table_get_devices(t);
2020 	struct dm_target_callbacks *cb;
2021 	int r = 0;
2022 
2023 	list_for_each_entry(dd, devices, list) {
2024 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2025 		char b[BDEVNAME_SIZE];
2026 
2027 		if (likely(q))
2028 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2029 		else
2030 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2031 				     dm_device_name(t->md),
2032 				     bdevname(dd->dm_dev->bdev, b));
2033 	}
2034 
2035 	list_for_each_entry(cb, &t->target_callbacks, list)
2036 		if (cb->congested_fn)
2037 			r |= cb->congested_fn(cb, bdi_bits);
2038 
2039 	return r;
2040 }
2041 
dm_table_get_md(struct dm_table * t)2042 struct mapped_device *dm_table_get_md(struct dm_table *t)
2043 {
2044 	return t->md;
2045 }
2046 EXPORT_SYMBOL(dm_table_get_md);
2047 
dm_table_run_md_queue_async(struct dm_table * t)2048 void dm_table_run_md_queue_async(struct dm_table *t)
2049 {
2050 	struct mapped_device *md;
2051 	struct request_queue *queue;
2052 	unsigned long flags;
2053 
2054 	if (!dm_table_request_based(t))
2055 		return;
2056 
2057 	md = dm_table_get_md(t);
2058 	queue = dm_get_md_queue(md);
2059 	if (queue) {
2060 		if (queue->mq_ops)
2061 			blk_mq_run_hw_queues(queue, true);
2062 		else {
2063 			spin_lock_irqsave(queue->queue_lock, flags);
2064 			blk_run_queue_async(queue);
2065 			spin_unlock_irqrestore(queue->queue_lock, flags);
2066 		}
2067 	}
2068 }
2069 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2070 
2071