1 /*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
dmam_release(struct device * dev,void * res)28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
dmam_match(struct device * dev,void * res,void * match_data)36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_alloc_coherent - Managed dma_alloc_coherent()
50 * @dev: Device to allocate coherent memory for
51 * @size: Size of allocation
52 * @dma_handle: Out argument for allocated DMA handle
53 * @gfp: Allocation flags
54 *
55 * Managed dma_alloc_coherent(). Memory allocated using this function
56 * will be automatically released on driver detach.
57 *
58 * RETURNS:
59 * Pointer to allocated memory on success, NULL on failure.
60 */
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)61 void *dmam_alloc_coherent(struct device *dev, size_t size,
62 dma_addr_t *dma_handle, gfp_t gfp)
63 {
64 struct dma_devres *dr;
65 void *vaddr;
66
67 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
68 if (!dr)
69 return NULL;
70
71 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
72 if (!vaddr) {
73 devres_free(dr);
74 return NULL;
75 }
76
77 dr->vaddr = vaddr;
78 dr->dma_handle = *dma_handle;
79 dr->size = size;
80
81 devres_add(dev, dr);
82
83 return vaddr;
84 }
85 EXPORT_SYMBOL(dmam_alloc_coherent);
86
87 /**
88 * dmam_free_coherent - Managed dma_free_coherent()
89 * @dev: Device to free coherent memory for
90 * @size: Size of allocation
91 * @vaddr: Virtual address of the memory to free
92 * @dma_handle: DMA handle of the memory to free
93 *
94 * Managed dma_free_coherent().
95 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)96 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
97 dma_addr_t dma_handle)
98 {
99 struct dma_devres match_data = { size, vaddr, dma_handle };
100
101 dma_free_coherent(dev, size, vaddr, dma_handle);
102 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
103 }
104 EXPORT_SYMBOL(dmam_free_coherent);
105
106 /**
107 * dmam_alloc_attrs - Managed dma_alloc_attrs()
108 * @dev: Device to allocate non_coherent memory for
109 * @size: Size of allocation
110 * @dma_handle: Out argument for allocated DMA handle
111 * @gfp: Allocation flags
112 * @attrs: Flags in the DMA_ATTR_* namespace.
113 *
114 * Managed dma_alloc_attrs(). Memory allocated using this function will be
115 * automatically released on driver detach.
116 *
117 * RETURNS:
118 * Pointer to allocated memory on success, NULL on failure.
119 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)120 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
121 gfp_t gfp, unsigned long attrs)
122 {
123 struct dma_devres *dr;
124 void *vaddr;
125
126 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
127 if (!dr)
128 return NULL;
129
130 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
131 if (!vaddr) {
132 devres_free(dr);
133 return NULL;
134 }
135
136 dr->vaddr = vaddr;
137 dr->dma_handle = *dma_handle;
138 dr->size = size;
139 dr->attrs = attrs;
140
141 devres_add(dev, dr);
142
143 return vaddr;
144 }
145 EXPORT_SYMBOL(dmam_alloc_attrs);
146
147 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
148
dmam_coherent_decl_release(struct device * dev,void * res)149 static void dmam_coherent_decl_release(struct device *dev, void *res)
150 {
151 dma_release_declared_memory(dev);
152 }
153
154 /**
155 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
156 * @dev: Device to declare coherent memory for
157 * @phys_addr: Physical address of coherent memory to be declared
158 * @device_addr: Device address of coherent memory to be declared
159 * @size: Size of coherent memory to be declared
160 * @flags: Flags
161 *
162 * Managed dma_declare_coherent_memory().
163 *
164 * RETURNS:
165 * 0 on success, -errno on failure.
166 */
dmam_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags)167 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
168 dma_addr_t device_addr, size_t size, int flags)
169 {
170 void *res;
171 int rc;
172
173 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
174 if (!res)
175 return -ENOMEM;
176
177 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
178 flags);
179 if (!rc)
180 devres_add(dev, res);
181 else
182 devres_free(res);
183
184 return rc;
185 }
186 EXPORT_SYMBOL(dmam_declare_coherent_memory);
187
188 /**
189 * dmam_release_declared_memory - Managed dma_release_declared_memory().
190 * @dev: Device to release declared coherent memory for
191 *
192 * Managed dmam_release_declared_memory().
193 */
dmam_release_declared_memory(struct device * dev)194 void dmam_release_declared_memory(struct device *dev)
195 {
196 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
197 }
198 EXPORT_SYMBOL(dmam_release_declared_memory);
199
200 #endif
201
202 /*
203 * Create scatter-list for the already allocated DMA buffer.
204 */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size)205 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
206 void *cpu_addr, dma_addr_t handle, size_t size)
207 {
208 struct page *page = virt_to_page(cpu_addr);
209 int ret;
210
211 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
212 if (unlikely(ret))
213 return ret;
214
215 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
216 return 0;
217 }
218 EXPORT_SYMBOL(dma_common_get_sgtable);
219
220 /*
221 * Create userspace mapping for the DMA-coherent memory.
222 */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)223 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
224 void *cpu_addr, dma_addr_t dma_addr, size_t size)
225 {
226 int ret = -ENXIO;
227 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
228 unsigned long user_count = vma_pages(vma);
229 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
230 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
231 unsigned long off = vma->vm_pgoff;
232
233 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
234
235 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
236 return ret;
237
238 if (off < count && user_count <= (count - off)) {
239 ret = remap_pfn_range(vma, vma->vm_start,
240 pfn + off,
241 user_count << PAGE_SHIFT,
242 vma->vm_page_prot);
243 }
244 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
245
246 return ret;
247 }
248 EXPORT_SYMBOL(dma_common_mmap);
249
250 #ifdef CONFIG_MMU
__dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)251 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
252 size_t size, unsigned long vm_flags, pgprot_t prot,
253 const void *caller)
254 {
255 struct vm_struct *area;
256
257 area = get_vm_area_caller(size, vm_flags, caller);
258 if (!area)
259 return NULL;
260
261 if (map_vm_area(area, prot, pages)) {
262 vunmap(area->addr);
263 return NULL;
264 }
265
266 return area;
267 }
268
269 /*
270 * remaps an array of PAGE_SIZE pages into another vm_area
271 * Cannot be used in non-sleeping contexts
272 */
dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)273 void *dma_common_pages_remap(struct page **pages, size_t size,
274 unsigned long vm_flags, pgprot_t prot,
275 const void *caller)
276 {
277 struct vm_struct *area;
278
279 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
280 if (!area)
281 return NULL;
282
283 area->pages = pages;
284
285 return area->addr;
286 }
287
288 /*
289 * remaps an allocated contiguous region into another vm_area.
290 * Cannot be used in non-sleeping contexts
291 */
292
dma_common_contiguous_remap(struct page * page,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)293 void *dma_common_contiguous_remap(struct page *page, size_t size,
294 unsigned long vm_flags,
295 pgprot_t prot, const void *caller)
296 {
297 int i;
298 struct page **pages;
299 struct vm_struct *area;
300
301 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
302 if (!pages)
303 return NULL;
304
305 for (i = 0; i < (size >> PAGE_SHIFT); i++)
306 pages[i] = nth_page(page, i);
307
308 area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
309
310 kfree(pages);
311
312 if (!area)
313 return NULL;
314 return area->addr;
315 }
316
317 /*
318 * unmaps a range previously mapped by dma_common_*_remap
319 */
dma_common_free_remap(void * cpu_addr,size_t size,unsigned long vm_flags)320 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
321 {
322 struct vm_struct *area = find_vm_area(cpu_addr);
323
324 if (!area || (area->flags & vm_flags) != vm_flags) {
325 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
326 return;
327 }
328
329 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
330 vunmap(cpu_addr);
331 }
332 #endif
333
334 /*
335 * Common configuration to enable DMA API use for a device
336 */
337 #include <linux/pci.h>
338
dma_configure(struct device * dev)339 int dma_configure(struct device *dev)
340 {
341 struct device *bridge = NULL, *dma_dev = dev;
342 enum dev_dma_attr attr;
343 int ret = 0;
344
345 if (dev_is_pci(dev)) {
346 bridge = pci_get_host_bridge_device(to_pci_dev(dev));
347 dma_dev = bridge;
348 if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
349 dma_dev->parent->of_node)
350 dma_dev = dma_dev->parent;
351 }
352
353 if (dma_dev->of_node) {
354 ret = of_dma_configure(dev, dma_dev->of_node);
355 } else if (has_acpi_companion(dma_dev)) {
356 attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
357 if (attr != DEV_DMA_NOT_SUPPORTED)
358 ret = acpi_dma_configure(dev, attr);
359 }
360
361 if (bridge)
362 pci_put_host_bridge_device(bridge);
363
364 return ret;
365 }
366
dma_deconfigure(struct device * dev)367 void dma_deconfigure(struct device *dev)
368 {
369 of_dma_deconfigure(dev);
370 acpi_dma_deconfigure(dev);
371 }
372