• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/ras.h>
39 #include <linux/smp.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/debugfs.h>
43 #include <linux/irq_work.h>
44 #include <linux/export.h>
45 #include <linux/jump_label.h>
46 
47 #include <asm/intel-family.h>
48 #include <asm/processor.h>
49 #include <asm/traps.h>
50 #include <asm/tlbflush.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/reboot.h>
54 #include <asm/set_memory.h>
55 
56 #include "mce-internal.h"
57 
58 static DEFINE_MUTEX(mce_log_mutex);
59 
60 /* sysfs synchronization */
61 static DEFINE_MUTEX(mce_sysfs_mutex);
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/mce.h>
65 
66 #define SPINUNIT		100	/* 100ns */
67 
68 DEFINE_PER_CPU(unsigned, mce_exception_count);
69 
70 struct mce_bank *mce_banks __read_mostly;
71 struct mce_vendor_flags mce_flags __read_mostly;
72 
73 struct mca_config mca_cfg __read_mostly = {
74 	.bootlog  = -1,
75 	/*
76 	 * Tolerant levels:
77 	 * 0: always panic on uncorrected errors, log corrected errors
78 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
79 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
80 	 * 3: never panic or SIGBUS, log all errors (for testing only)
81 	 */
82 	.tolerant = 1,
83 	.monarch_timeout = -1
84 };
85 
86 static DEFINE_PER_CPU(struct mce, mces_seen);
87 static unsigned long mce_need_notify;
88 static int cpu_missing;
89 
90 /*
91  * MCA banks polled by the period polling timer for corrected events.
92  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
93  */
94 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
95 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
96 };
97 
98 /*
99  * MCA banks controlled through firmware first for corrected errors.
100  * This is a global list of banks for which we won't enable CMCI and we
101  * won't poll. Firmware controls these banks and is responsible for
102  * reporting corrected errors through GHES. Uncorrected/recoverable
103  * errors are still notified through a machine check.
104  */
105 mce_banks_t mce_banks_ce_disabled;
106 
107 static struct work_struct mce_work;
108 static struct irq_work mce_irq_work;
109 
110 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
111 
112 #ifndef mce_unmap_kpfn
113 static void mce_unmap_kpfn(unsigned long pfn);
114 #endif
115 
116 /*
117  * CPU/chipset specific EDAC code can register a notifier call here to print
118  * MCE errors in a human-readable form.
119  */
120 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
121 
122 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)123 void mce_setup(struct mce *m)
124 {
125 	memset(m, 0, sizeof(struct mce));
126 	m->cpu = m->extcpu = smp_processor_id();
127 	/* We hope get_seconds stays lockless */
128 	m->time = get_seconds();
129 	m->cpuvendor = boot_cpu_data.x86_vendor;
130 	m->cpuid = cpuid_eax(1);
131 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
132 	m->apicid = cpu_data(m->extcpu).initial_apicid;
133 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
134 
135 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
136 		rdmsrl(MSR_PPIN, m->ppin);
137 
138 	m->microcode = boot_cpu_data.microcode;
139 }
140 
141 DEFINE_PER_CPU(struct mce, injectm);
142 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
143 
mce_log(struct mce * m)144 void mce_log(struct mce *m)
145 {
146 	if (!mce_gen_pool_add(m))
147 		irq_work_queue(&mce_irq_work);
148 }
149 
mce_inject_log(struct mce * m)150 void mce_inject_log(struct mce *m)
151 {
152 	mutex_lock(&mce_log_mutex);
153 	mce_log(m);
154 	mutex_unlock(&mce_log_mutex);
155 }
156 EXPORT_SYMBOL_GPL(mce_inject_log);
157 
158 static struct notifier_block mce_srao_nb;
159 
160 /*
161  * We run the default notifier if we have only the SRAO, the first and the
162  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
163  * notifiers registered on the chain.
164  */
165 #define NUM_DEFAULT_NOTIFIERS	3
166 static atomic_t num_notifiers;
167 
mce_register_decode_chain(struct notifier_block * nb)168 void mce_register_decode_chain(struct notifier_block *nb)
169 {
170 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
171 		return;
172 
173 	atomic_inc(&num_notifiers);
174 
175 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
178 
mce_unregister_decode_chain(struct notifier_block * nb)179 void mce_unregister_decode_chain(struct notifier_block *nb)
180 {
181 	atomic_dec(&num_notifiers);
182 
183 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
184 }
185 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
186 
ctl_reg(int bank)187 static inline u32 ctl_reg(int bank)
188 {
189 	return MSR_IA32_MCx_CTL(bank);
190 }
191 
status_reg(int bank)192 static inline u32 status_reg(int bank)
193 {
194 	return MSR_IA32_MCx_STATUS(bank);
195 }
196 
addr_reg(int bank)197 static inline u32 addr_reg(int bank)
198 {
199 	return MSR_IA32_MCx_ADDR(bank);
200 }
201 
misc_reg(int bank)202 static inline u32 misc_reg(int bank)
203 {
204 	return MSR_IA32_MCx_MISC(bank);
205 }
206 
smca_ctl_reg(int bank)207 static inline u32 smca_ctl_reg(int bank)
208 {
209 	return MSR_AMD64_SMCA_MCx_CTL(bank);
210 }
211 
smca_status_reg(int bank)212 static inline u32 smca_status_reg(int bank)
213 {
214 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
215 }
216 
smca_addr_reg(int bank)217 static inline u32 smca_addr_reg(int bank)
218 {
219 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
220 }
221 
smca_misc_reg(int bank)222 static inline u32 smca_misc_reg(int bank)
223 {
224 	return MSR_AMD64_SMCA_MCx_MISC(bank);
225 }
226 
227 struct mca_msr_regs msr_ops = {
228 	.ctl	= ctl_reg,
229 	.status	= status_reg,
230 	.addr	= addr_reg,
231 	.misc	= misc_reg
232 };
233 
__print_mce(struct mce * m)234 static void __print_mce(struct mce *m)
235 {
236 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
237 		 m->extcpu,
238 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
239 		 m->mcgstatus, m->bank, m->status);
240 
241 	if (m->ip) {
242 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
243 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
244 			m->cs, m->ip);
245 
246 		if (m->cs == __KERNEL_CS)
247 			print_symbol("{%s}", m->ip);
248 		pr_cont("\n");
249 	}
250 
251 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
252 	if (m->addr)
253 		pr_cont("ADDR %llx ", m->addr);
254 	if (m->misc)
255 		pr_cont("MISC %llx ", m->misc);
256 
257 	if (mce_flags.smca) {
258 		if (m->synd)
259 			pr_cont("SYND %llx ", m->synd);
260 		if (m->ipid)
261 			pr_cont("IPID %llx ", m->ipid);
262 	}
263 
264 	pr_cont("\n");
265 	/*
266 	 * Note this output is parsed by external tools and old fields
267 	 * should not be changed.
268 	 */
269 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 		m->microcode);
272 }
273 
print_mce(struct mce * m)274 static void print_mce(struct mce *m)
275 {
276 	__print_mce(m);
277 	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
278 }
279 
280 #define PANIC_TIMEOUT 5 /* 5 seconds */
281 
282 static atomic_t mce_panicked;
283 
284 static int fake_panic;
285 static atomic_t mce_fake_panicked;
286 
287 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)288 static void wait_for_panic(void)
289 {
290 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
291 
292 	preempt_disable();
293 	local_irq_enable();
294 	while (timeout-- > 0)
295 		udelay(1);
296 	if (panic_timeout == 0)
297 		panic_timeout = mca_cfg.panic_timeout;
298 	panic("Panicing machine check CPU died");
299 }
300 
mce_panic(const char * msg,struct mce * final,char * exp)301 static void mce_panic(const char *msg, struct mce *final, char *exp)
302 {
303 	int apei_err = 0;
304 	struct llist_node *pending;
305 	struct mce_evt_llist *l;
306 
307 	if (!fake_panic) {
308 		/*
309 		 * Make sure only one CPU runs in machine check panic
310 		 */
311 		if (atomic_inc_return(&mce_panicked) > 1)
312 			wait_for_panic();
313 		barrier();
314 
315 		bust_spinlocks(1);
316 		console_verbose();
317 	} else {
318 		/* Don't log too much for fake panic */
319 		if (atomic_inc_return(&mce_fake_panicked) > 1)
320 			return;
321 	}
322 	pending = mce_gen_pool_prepare_records();
323 	/* First print corrected ones that are still unlogged */
324 	llist_for_each_entry(l, pending, llnode) {
325 		struct mce *m = &l->mce;
326 		if (!(m->status & MCI_STATUS_UC)) {
327 			print_mce(m);
328 			if (!apei_err)
329 				apei_err = apei_write_mce(m);
330 		}
331 	}
332 	/* Now print uncorrected but with the final one last */
333 	llist_for_each_entry(l, pending, llnode) {
334 		struct mce *m = &l->mce;
335 		if (!(m->status & MCI_STATUS_UC))
336 			continue;
337 		if (!final || mce_cmp(m, final)) {
338 			print_mce(m);
339 			if (!apei_err)
340 				apei_err = apei_write_mce(m);
341 		}
342 	}
343 	if (final) {
344 		print_mce(final);
345 		if (!apei_err)
346 			apei_err = apei_write_mce(final);
347 	}
348 	if (cpu_missing)
349 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
350 	if (exp)
351 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
352 	if (!fake_panic) {
353 		if (panic_timeout == 0)
354 			panic_timeout = mca_cfg.panic_timeout;
355 		panic(msg);
356 	} else
357 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
358 }
359 
360 /* Support code for software error injection */
361 
msr_to_offset(u32 msr)362 static int msr_to_offset(u32 msr)
363 {
364 	unsigned bank = __this_cpu_read(injectm.bank);
365 
366 	if (msr == mca_cfg.rip_msr)
367 		return offsetof(struct mce, ip);
368 	if (msr == msr_ops.status(bank))
369 		return offsetof(struct mce, status);
370 	if (msr == msr_ops.addr(bank))
371 		return offsetof(struct mce, addr);
372 	if (msr == msr_ops.misc(bank))
373 		return offsetof(struct mce, misc);
374 	if (msr == MSR_IA32_MCG_STATUS)
375 		return offsetof(struct mce, mcgstatus);
376 	return -1;
377 }
378 
379 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)380 static u64 mce_rdmsrl(u32 msr)
381 {
382 	u64 v;
383 
384 	if (__this_cpu_read(injectm.finished)) {
385 		int offset = msr_to_offset(msr);
386 
387 		if (offset < 0)
388 			return 0;
389 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
390 	}
391 
392 	if (rdmsrl_safe(msr, &v)) {
393 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
394 		/*
395 		 * Return zero in case the access faulted. This should
396 		 * not happen normally but can happen if the CPU does
397 		 * something weird, or if the code is buggy.
398 		 */
399 		v = 0;
400 	}
401 
402 	return v;
403 }
404 
mce_wrmsrl(u32 msr,u64 v)405 static void mce_wrmsrl(u32 msr, u64 v)
406 {
407 	if (__this_cpu_read(injectm.finished)) {
408 		int offset = msr_to_offset(msr);
409 
410 		if (offset >= 0)
411 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
412 		return;
413 	}
414 	wrmsrl(msr, v);
415 }
416 
417 /*
418  * Collect all global (w.r.t. this processor) status about this machine
419  * check into our "mce" struct so that we can use it later to assess
420  * the severity of the problem as we read per-bank specific details.
421  */
mce_gather_info(struct mce * m,struct pt_regs * regs)422 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
423 {
424 	mce_setup(m);
425 
426 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
427 	if (regs) {
428 		/*
429 		 * Get the address of the instruction at the time of
430 		 * the machine check error.
431 		 */
432 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
433 			m->ip = regs->ip;
434 			m->cs = regs->cs;
435 
436 			/*
437 			 * When in VM86 mode make the cs look like ring 3
438 			 * always. This is a lie, but it's better than passing
439 			 * the additional vm86 bit around everywhere.
440 			 */
441 			if (v8086_mode(regs))
442 				m->cs |= 3;
443 		}
444 		/* Use accurate RIP reporting if available. */
445 		if (mca_cfg.rip_msr)
446 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
447 	}
448 }
449 
mce_available(struct cpuinfo_x86 * c)450 int mce_available(struct cpuinfo_x86 *c)
451 {
452 	if (mca_cfg.disabled)
453 		return 0;
454 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
455 }
456 
mce_schedule_work(void)457 static void mce_schedule_work(void)
458 {
459 	if (!mce_gen_pool_empty())
460 		schedule_work(&mce_work);
461 }
462 
mce_irq_work_cb(struct irq_work * entry)463 static void mce_irq_work_cb(struct irq_work *entry)
464 {
465 	mce_schedule_work();
466 }
467 
mce_report_event(struct pt_regs * regs)468 static void mce_report_event(struct pt_regs *regs)
469 {
470 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
471 		mce_notify_irq();
472 		/*
473 		 * Triggering the work queue here is just an insurance
474 		 * policy in case the syscall exit notify handler
475 		 * doesn't run soon enough or ends up running on the
476 		 * wrong CPU (can happen when audit sleeps)
477 		 */
478 		mce_schedule_work();
479 		return;
480 	}
481 
482 	irq_work_queue(&mce_irq_work);
483 }
484 
485 /*
486  * Check if the address reported by the CPU is in a format we can parse.
487  * It would be possible to add code for most other cases, but all would
488  * be somewhat complicated (e.g. segment offset would require an instruction
489  * parser). So only support physical addresses up to page granuality for now.
490  */
mce_usable_address(struct mce * m)491 static int mce_usable_address(struct mce *m)
492 {
493 	if (!(m->status & MCI_STATUS_ADDRV))
494 		return 0;
495 
496 	/* Checks after this one are Intel-specific: */
497 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
498 		return 1;
499 
500 	if (!(m->status & MCI_STATUS_MISCV))
501 		return 0;
502 
503 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
504 		return 0;
505 
506 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
507 		return 0;
508 
509 	return 1;
510 }
511 
mce_is_memory_error(struct mce * m)512 bool mce_is_memory_error(struct mce *m)
513 {
514 	if (m->cpuvendor == X86_VENDOR_AMD) {
515 		return amd_mce_is_memory_error(m);
516 
517 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
518 		/*
519 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
520 		 *
521 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
522 		 * indicating a memory error. Bit 8 is used for indicating a
523 		 * cache hierarchy error. The combination of bit 2 and bit 3
524 		 * is used for indicating a `generic' cache hierarchy error
525 		 * But we can't just blindly check the above bits, because if
526 		 * bit 11 is set, then it is a bus/interconnect error - and
527 		 * either way the above bits just gives more detail on what
528 		 * bus/interconnect error happened. Note that bit 12 can be
529 		 * ignored, as it's the "filter" bit.
530 		 */
531 		return (m->status & 0xef80) == BIT(7) ||
532 		       (m->status & 0xef00) == BIT(8) ||
533 		       (m->status & 0xeffc) == 0xc;
534 	}
535 
536 	return false;
537 }
538 EXPORT_SYMBOL_GPL(mce_is_memory_error);
539 
cec_add_mce(struct mce * m)540 static bool cec_add_mce(struct mce *m)
541 {
542 	if (!m)
543 		return false;
544 
545 	/* We eat only correctable DRAM errors with usable addresses. */
546 	if (mce_is_memory_error(m) &&
547 	    !(m->status & MCI_STATUS_UC) &&
548 	    mce_usable_address(m))
549 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
550 			return true;
551 
552 	return false;
553 }
554 
mce_first_notifier(struct notifier_block * nb,unsigned long val,void * data)555 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
556 			      void *data)
557 {
558 	struct mce *m = (struct mce *)data;
559 
560 	if (!m)
561 		return NOTIFY_DONE;
562 
563 	if (cec_add_mce(m))
564 		return NOTIFY_STOP;
565 
566 	/* Emit the trace record: */
567 	trace_mce_record(m);
568 
569 	set_bit(0, &mce_need_notify);
570 
571 	mce_notify_irq();
572 
573 	return NOTIFY_DONE;
574 }
575 
576 static struct notifier_block first_nb = {
577 	.notifier_call	= mce_first_notifier,
578 	.priority	= MCE_PRIO_FIRST,
579 };
580 
srao_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)581 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
582 				void *data)
583 {
584 	struct mce *mce = (struct mce *)data;
585 	unsigned long pfn;
586 
587 	if (!mce)
588 		return NOTIFY_DONE;
589 
590 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
591 		pfn = mce->addr >> PAGE_SHIFT;
592 		if (memory_failure(pfn, MCE_VECTOR, 0))
593 			mce_unmap_kpfn(pfn);
594 	}
595 
596 	return NOTIFY_OK;
597 }
598 static struct notifier_block mce_srao_nb = {
599 	.notifier_call	= srao_decode_notifier,
600 	.priority	= MCE_PRIO_SRAO,
601 };
602 
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)603 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
604 				void *data)
605 {
606 	struct mce *m = (struct mce *)data;
607 
608 	if (!m)
609 		return NOTIFY_DONE;
610 
611 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
612 		return NOTIFY_DONE;
613 
614 	__print_mce(m);
615 
616 	return NOTIFY_DONE;
617 }
618 
619 static struct notifier_block mce_default_nb = {
620 	.notifier_call	= mce_default_notifier,
621 	/* lowest prio, we want it to run last. */
622 	.priority	= MCE_PRIO_LOWEST,
623 };
624 
625 /*
626  * Read ADDR and MISC registers.
627  */
mce_read_aux(struct mce * m,int i)628 static void mce_read_aux(struct mce *m, int i)
629 {
630 	if (m->status & MCI_STATUS_MISCV)
631 		m->misc = mce_rdmsrl(msr_ops.misc(i));
632 
633 	if (m->status & MCI_STATUS_ADDRV) {
634 		m->addr = mce_rdmsrl(msr_ops.addr(i));
635 
636 		/*
637 		 * Mask the reported address by the reported granularity.
638 		 */
639 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
640 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
641 			m->addr >>= shift;
642 			m->addr <<= shift;
643 		}
644 
645 		/*
646 		 * Extract [55:<lsb>] where lsb is the least significant
647 		 * *valid* bit of the address bits.
648 		 */
649 		if (mce_flags.smca) {
650 			u8 lsb = (m->addr >> 56) & 0x3f;
651 
652 			m->addr &= GENMASK_ULL(55, lsb);
653 		}
654 	}
655 
656 	if (mce_flags.smca) {
657 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
658 
659 		if (m->status & MCI_STATUS_SYNDV)
660 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
661 	}
662 }
663 
664 DEFINE_PER_CPU(unsigned, mce_poll_count);
665 
666 /*
667  * Poll for corrected events or events that happened before reset.
668  * Those are just logged through /dev/mcelog.
669  *
670  * This is executed in standard interrupt context.
671  *
672  * Note: spec recommends to panic for fatal unsignalled
673  * errors here. However this would be quite problematic --
674  * we would need to reimplement the Monarch handling and
675  * it would mess up the exclusion between exception handler
676  * and poll hander -- * so we skip this for now.
677  * These cases should not happen anyways, or only when the CPU
678  * is already totally * confused. In this case it's likely it will
679  * not fully execute the machine check handler either.
680  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)681 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
682 {
683 	bool error_seen = false;
684 	struct mce m;
685 	int i;
686 
687 	this_cpu_inc(mce_poll_count);
688 
689 	mce_gather_info(&m, NULL);
690 
691 	if (flags & MCP_TIMESTAMP)
692 		m.tsc = rdtsc();
693 
694 	for (i = 0; i < mca_cfg.banks; i++) {
695 		if (!mce_banks[i].ctl || !test_bit(i, *b))
696 			continue;
697 
698 		m.misc = 0;
699 		m.addr = 0;
700 		m.bank = i;
701 
702 		barrier();
703 		m.status = mce_rdmsrl(msr_ops.status(i));
704 
705 		/* If this entry is not valid, ignore it */
706 		if (!(m.status & MCI_STATUS_VAL))
707 			continue;
708 
709 		/*
710 		 * If we are logging everything (at CPU online) or this
711 		 * is a corrected error, then we must log it.
712 		 */
713 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
714 			goto log_it;
715 
716 		/*
717 		 * Newer Intel systems that support software error
718 		 * recovery need to make additional checks. Other
719 		 * CPUs should skip over uncorrected errors, but log
720 		 * everything else.
721 		 */
722 		if (!mca_cfg.ser) {
723 			if (m.status & MCI_STATUS_UC)
724 				continue;
725 			goto log_it;
726 		}
727 
728 		/* Log "not enabled" (speculative) errors */
729 		if (!(m.status & MCI_STATUS_EN))
730 			goto log_it;
731 
732 		/*
733 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
734 		 * UC == 1 && PCC == 0 && S == 0
735 		 */
736 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
737 			goto log_it;
738 
739 		/*
740 		 * Skip anything else. Presumption is that our read of this
741 		 * bank is racing with a machine check. Leave the log alone
742 		 * for do_machine_check() to deal with it.
743 		 */
744 		continue;
745 
746 log_it:
747 		error_seen = true;
748 
749 		mce_read_aux(&m, i);
750 
751 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
752 
753 		/*
754 		 * Don't get the IP here because it's unlikely to
755 		 * have anything to do with the actual error location.
756 		 */
757 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
758 			mce_log(&m);
759 		else if (mce_usable_address(&m)) {
760 			/*
761 			 * Although we skipped logging this, we still want
762 			 * to take action. Add to the pool so the registered
763 			 * notifiers will see it.
764 			 */
765 			if (!mce_gen_pool_add(&m))
766 				mce_schedule_work();
767 		}
768 
769 		/*
770 		 * Clear state for this bank.
771 		 */
772 		mce_wrmsrl(msr_ops.status(i), 0);
773 	}
774 
775 	/*
776 	 * Don't clear MCG_STATUS here because it's only defined for
777 	 * exceptions.
778 	 */
779 
780 	sync_core();
781 
782 	return error_seen;
783 }
784 EXPORT_SYMBOL_GPL(machine_check_poll);
785 
786 /*
787  * Do a quick check if any of the events requires a panic.
788  * This decides if we keep the events around or clear them.
789  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)790 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
791 			  struct pt_regs *regs)
792 {
793 	char *tmp;
794 	int i;
795 
796 	for (i = 0; i < mca_cfg.banks; i++) {
797 		m->status = mce_rdmsrl(msr_ops.status(i));
798 		if (!(m->status & MCI_STATUS_VAL))
799 			continue;
800 
801 		__set_bit(i, validp);
802 		if (quirk_no_way_out)
803 			quirk_no_way_out(i, m, regs);
804 
805 		m->bank = i;
806 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
807 			mce_read_aux(m, i);
808 			*msg = tmp;
809 			return 1;
810 		}
811 	}
812 	return 0;
813 }
814 
815 /*
816  * Variable to establish order between CPUs while scanning.
817  * Each CPU spins initially until executing is equal its number.
818  */
819 static atomic_t mce_executing;
820 
821 /*
822  * Defines order of CPUs on entry. First CPU becomes Monarch.
823  */
824 static atomic_t mce_callin;
825 
826 /*
827  * Check if a timeout waiting for other CPUs happened.
828  */
mce_timed_out(u64 * t,const char * msg)829 static int mce_timed_out(u64 *t, const char *msg)
830 {
831 	/*
832 	 * The others already did panic for some reason.
833 	 * Bail out like in a timeout.
834 	 * rmb() to tell the compiler that system_state
835 	 * might have been modified by someone else.
836 	 */
837 	rmb();
838 	if (atomic_read(&mce_panicked))
839 		wait_for_panic();
840 	if (!mca_cfg.monarch_timeout)
841 		goto out;
842 	if ((s64)*t < SPINUNIT) {
843 		if (mca_cfg.tolerant <= 1)
844 			mce_panic(msg, NULL, NULL);
845 		cpu_missing = 1;
846 		return 1;
847 	}
848 	*t -= SPINUNIT;
849 out:
850 	touch_nmi_watchdog();
851 	return 0;
852 }
853 
854 /*
855  * The Monarch's reign.  The Monarch is the CPU who entered
856  * the machine check handler first. It waits for the others to
857  * raise the exception too and then grades them. When any
858  * error is fatal panic. Only then let the others continue.
859  *
860  * The other CPUs entering the MCE handler will be controlled by the
861  * Monarch. They are called Subjects.
862  *
863  * This way we prevent any potential data corruption in a unrecoverable case
864  * and also makes sure always all CPU's errors are examined.
865  *
866  * Also this detects the case of a machine check event coming from outer
867  * space (not detected by any CPUs) In this case some external agent wants
868  * us to shut down, so panic too.
869  *
870  * The other CPUs might still decide to panic if the handler happens
871  * in a unrecoverable place, but in this case the system is in a semi-stable
872  * state and won't corrupt anything by itself. It's ok to let the others
873  * continue for a bit first.
874  *
875  * All the spin loops have timeouts; when a timeout happens a CPU
876  * typically elects itself to be Monarch.
877  */
mce_reign(void)878 static void mce_reign(void)
879 {
880 	int cpu;
881 	struct mce *m = NULL;
882 	int global_worst = 0;
883 	char *msg = NULL;
884 	char *nmsg = NULL;
885 
886 	/*
887 	 * This CPU is the Monarch and the other CPUs have run
888 	 * through their handlers.
889 	 * Grade the severity of the errors of all the CPUs.
890 	 */
891 	for_each_possible_cpu(cpu) {
892 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
893 					    mca_cfg.tolerant,
894 					    &nmsg, true);
895 		if (severity > global_worst) {
896 			msg = nmsg;
897 			global_worst = severity;
898 			m = &per_cpu(mces_seen, cpu);
899 		}
900 	}
901 
902 	/*
903 	 * Cannot recover? Panic here then.
904 	 * This dumps all the mces in the log buffer and stops the
905 	 * other CPUs.
906 	 */
907 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
908 		mce_panic("Fatal machine check", m, msg);
909 
910 	/*
911 	 * For UC somewhere we let the CPU who detects it handle it.
912 	 * Also must let continue the others, otherwise the handling
913 	 * CPU could deadlock on a lock.
914 	 */
915 
916 	/*
917 	 * No machine check event found. Must be some external
918 	 * source or one CPU is hung. Panic.
919 	 */
920 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
921 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
922 
923 	/*
924 	 * Now clear all the mces_seen so that they don't reappear on
925 	 * the next mce.
926 	 */
927 	for_each_possible_cpu(cpu)
928 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
929 }
930 
931 static atomic_t global_nwo;
932 
933 /*
934  * Start of Monarch synchronization. This waits until all CPUs have
935  * entered the exception handler and then determines if any of them
936  * saw a fatal event that requires panic. Then it executes them
937  * in the entry order.
938  * TBD double check parallel CPU hotunplug
939  */
mce_start(int * no_way_out)940 static int mce_start(int *no_way_out)
941 {
942 	int order;
943 	int cpus = num_online_cpus();
944 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
945 
946 	if (!timeout)
947 		return -1;
948 
949 	atomic_add(*no_way_out, &global_nwo);
950 	/*
951 	 * Rely on the implied barrier below, such that global_nwo
952 	 * is updated before mce_callin.
953 	 */
954 	order = atomic_inc_return(&mce_callin);
955 
956 	/*
957 	 * Wait for everyone.
958 	 */
959 	while (atomic_read(&mce_callin) != cpus) {
960 		if (mce_timed_out(&timeout,
961 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
962 			atomic_set(&global_nwo, 0);
963 			return -1;
964 		}
965 		ndelay(SPINUNIT);
966 	}
967 
968 	/*
969 	 * mce_callin should be read before global_nwo
970 	 */
971 	smp_rmb();
972 
973 	if (order == 1) {
974 		/*
975 		 * Monarch: Starts executing now, the others wait.
976 		 */
977 		atomic_set(&mce_executing, 1);
978 	} else {
979 		/*
980 		 * Subject: Now start the scanning loop one by one in
981 		 * the original callin order.
982 		 * This way when there are any shared banks it will be
983 		 * only seen by one CPU before cleared, avoiding duplicates.
984 		 */
985 		while (atomic_read(&mce_executing) < order) {
986 			if (mce_timed_out(&timeout,
987 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
988 				atomic_set(&global_nwo, 0);
989 				return -1;
990 			}
991 			ndelay(SPINUNIT);
992 		}
993 	}
994 
995 	/*
996 	 * Cache the global no_way_out state.
997 	 */
998 	*no_way_out = atomic_read(&global_nwo);
999 
1000 	return order;
1001 }
1002 
1003 /*
1004  * Synchronize between CPUs after main scanning loop.
1005  * This invokes the bulk of the Monarch processing.
1006  */
mce_end(int order)1007 static int mce_end(int order)
1008 {
1009 	int ret = -1;
1010 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1011 
1012 	if (!timeout)
1013 		goto reset;
1014 	if (order < 0)
1015 		goto reset;
1016 
1017 	/*
1018 	 * Allow others to run.
1019 	 */
1020 	atomic_inc(&mce_executing);
1021 
1022 	if (order == 1) {
1023 		/* CHECKME: Can this race with a parallel hotplug? */
1024 		int cpus = num_online_cpus();
1025 
1026 		/*
1027 		 * Monarch: Wait for everyone to go through their scanning
1028 		 * loops.
1029 		 */
1030 		while (atomic_read(&mce_executing) <= cpus) {
1031 			if (mce_timed_out(&timeout,
1032 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1033 				goto reset;
1034 			ndelay(SPINUNIT);
1035 		}
1036 
1037 		mce_reign();
1038 		barrier();
1039 		ret = 0;
1040 	} else {
1041 		/*
1042 		 * Subject: Wait for Monarch to finish.
1043 		 */
1044 		while (atomic_read(&mce_executing) != 0) {
1045 			if (mce_timed_out(&timeout,
1046 					  "Timeout: Monarch CPU did not finish machine check processing"))
1047 				goto reset;
1048 			ndelay(SPINUNIT);
1049 		}
1050 
1051 		/*
1052 		 * Don't reset anything. That's done by the Monarch.
1053 		 */
1054 		return 0;
1055 	}
1056 
1057 	/*
1058 	 * Reset all global state.
1059 	 */
1060 reset:
1061 	atomic_set(&global_nwo, 0);
1062 	atomic_set(&mce_callin, 0);
1063 	barrier();
1064 
1065 	/*
1066 	 * Let others run again.
1067 	 */
1068 	atomic_set(&mce_executing, 0);
1069 	return ret;
1070 }
1071 
mce_clear_state(unsigned long * toclear)1072 static void mce_clear_state(unsigned long *toclear)
1073 {
1074 	int i;
1075 
1076 	for (i = 0; i < mca_cfg.banks; i++) {
1077 		if (test_bit(i, toclear))
1078 			mce_wrmsrl(msr_ops.status(i), 0);
1079 	}
1080 }
1081 
do_memory_failure(struct mce * m)1082 static int do_memory_failure(struct mce *m)
1083 {
1084 	int flags = MF_ACTION_REQUIRED;
1085 	int ret;
1086 
1087 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1088 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1089 		flags |= MF_MUST_KILL;
1090 	ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1091 	if (ret)
1092 		pr_err("Memory error not recovered");
1093 	else
1094 		mce_unmap_kpfn(m->addr >> PAGE_SHIFT);
1095 	return ret;
1096 }
1097 
1098 #ifndef mce_unmap_kpfn
mce_unmap_kpfn(unsigned long pfn)1099 static void mce_unmap_kpfn(unsigned long pfn)
1100 {
1101 	unsigned long decoy_addr;
1102 
1103 	/*
1104 	 * Unmap this page from the kernel 1:1 mappings to make sure
1105 	 * we don't log more errors because of speculative access to
1106 	 * the page.
1107 	 * We would like to just call:
1108 	 *	set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1);
1109 	 * but doing that would radically increase the odds of a
1110 	 * speculative access to the poison page because we'd have
1111 	 * the virtual address of the kernel 1:1 mapping sitting
1112 	 * around in registers.
1113 	 * Instead we get tricky.  We create a non-canonical address
1114 	 * that looks just like the one we want, but has bit 63 flipped.
1115 	 * This relies on set_memory_np() not checking whether we passed
1116 	 * a legal address.
1117 	 */
1118 
1119 /*
1120  * Build time check to see if we have a spare virtual bit. Don't want
1121  * to leave this until run time because most developers don't have a
1122  * system that can exercise this code path. This will only become a
1123  * problem if/when we move beyond 5-level page tables.
1124  *
1125  * Hard code "9" here because cpp doesn't grok ilog2(PTRS_PER_PGD)
1126  */
1127 #if PGDIR_SHIFT + 9 < 63
1128 	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1129 #else
1130 #error "no unused virtual bit available"
1131 #endif
1132 
1133 	if (set_memory_np(decoy_addr, 1))
1134 		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1135 }
1136 #endif
1137 
1138 /*
1139  * The actual machine check handler. This only handles real
1140  * exceptions when something got corrupted coming in through int 18.
1141  *
1142  * This is executed in NMI context not subject to normal locking rules. This
1143  * implies that most kernel services cannot be safely used. Don't even
1144  * think about putting a printk in there!
1145  *
1146  * On Intel systems this is entered on all CPUs in parallel through
1147  * MCE broadcast. However some CPUs might be broken beyond repair,
1148  * so be always careful when synchronizing with others.
1149  */
do_machine_check(struct pt_regs * regs,long error_code)1150 void do_machine_check(struct pt_regs *regs, long error_code)
1151 {
1152 	struct mca_config *cfg = &mca_cfg;
1153 	struct mce m, *final;
1154 	int i;
1155 	int worst = 0;
1156 	int severity;
1157 
1158 	/*
1159 	 * Establish sequential order between the CPUs entering the machine
1160 	 * check handler.
1161 	 */
1162 	int order = -1;
1163 	/*
1164 	 * If no_way_out gets set, there is no safe way to recover from this
1165 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1166 	 */
1167 	int no_way_out = 0;
1168 	/*
1169 	 * If kill_it gets set, there might be a way to recover from this
1170 	 * error.
1171 	 */
1172 	int kill_it = 0;
1173 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1174 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1175 	char *msg = "Unknown";
1176 
1177 	/*
1178 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1179 	 * on Intel.
1180 	 */
1181 	int lmce = 1;
1182 	int cpu = smp_processor_id();
1183 
1184 	/*
1185 	 * Cases where we avoid rendezvous handler timeout:
1186 	 * 1) If this CPU is offline.
1187 	 *
1188 	 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1189 	 *  skip those CPUs which remain looping in the 1st kernel - see
1190 	 *  crash_nmi_callback().
1191 	 *
1192 	 * Note: there still is a small window between kexec-ing and the new,
1193 	 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1194 	 * might not get handled properly.
1195 	 */
1196 	if (cpu_is_offline(cpu) ||
1197 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1198 		u64 mcgstatus;
1199 
1200 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1201 		if (mcgstatus & MCG_STATUS_RIPV) {
1202 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1203 			return;
1204 		}
1205 	}
1206 
1207 	ist_enter(regs);
1208 
1209 	this_cpu_inc(mce_exception_count);
1210 
1211 	if (!cfg->banks)
1212 		goto out;
1213 
1214 	mce_gather_info(&m, regs);
1215 	m.tsc = rdtsc();
1216 
1217 	final = this_cpu_ptr(&mces_seen);
1218 	*final = m;
1219 
1220 	memset(valid_banks, 0, sizeof(valid_banks));
1221 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1222 
1223 	barrier();
1224 
1225 	/*
1226 	 * When no restart IP might need to kill or panic.
1227 	 * Assume the worst for now, but if we find the
1228 	 * severity is MCE_AR_SEVERITY we have other options.
1229 	 */
1230 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1231 		kill_it = 1;
1232 
1233 	/*
1234 	 * Check if this MCE is signaled to only this logical processor,
1235 	 * on Intel only.
1236 	 */
1237 	if (m.cpuvendor == X86_VENDOR_INTEL)
1238 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1239 
1240 	/*
1241 	 * Local machine check may already know that we have to panic.
1242 	 * Broadcast machine check begins rendezvous in mce_start()
1243 	 * Go through all banks in exclusion of the other CPUs. This way we
1244 	 * don't report duplicated events on shared banks because the first one
1245 	 * to see it will clear it.
1246 	 */
1247 	if (lmce) {
1248 		if (no_way_out)
1249 			mce_panic("Fatal local machine check", &m, msg);
1250 	} else {
1251 		order = mce_start(&no_way_out);
1252 	}
1253 
1254 	for (i = 0; i < cfg->banks; i++) {
1255 		__clear_bit(i, toclear);
1256 		if (!test_bit(i, valid_banks))
1257 			continue;
1258 		if (!mce_banks[i].ctl)
1259 			continue;
1260 
1261 		m.misc = 0;
1262 		m.addr = 0;
1263 		m.bank = i;
1264 
1265 		m.status = mce_rdmsrl(msr_ops.status(i));
1266 		if ((m.status & MCI_STATUS_VAL) == 0)
1267 			continue;
1268 
1269 		/*
1270 		 * Non uncorrected or non signaled errors are handled by
1271 		 * machine_check_poll. Leave them alone, unless this panics.
1272 		 */
1273 		if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1274 			!no_way_out)
1275 			continue;
1276 
1277 		/*
1278 		 * Set taint even when machine check was not enabled.
1279 		 */
1280 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1281 
1282 		severity = mce_severity(&m, cfg->tolerant, NULL, true);
1283 
1284 		/*
1285 		 * When machine check was for corrected/deferred handler don't
1286 		 * touch, unless we're panicing.
1287 		 */
1288 		if ((severity == MCE_KEEP_SEVERITY ||
1289 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1290 			continue;
1291 		__set_bit(i, toclear);
1292 		if (severity == MCE_NO_SEVERITY) {
1293 			/*
1294 			 * Machine check event was not enabled. Clear, but
1295 			 * ignore.
1296 			 */
1297 			continue;
1298 		}
1299 
1300 		mce_read_aux(&m, i);
1301 
1302 		/* assuming valid severity level != 0 */
1303 		m.severity = severity;
1304 
1305 		mce_log(&m);
1306 
1307 		if (severity > worst) {
1308 			*final = m;
1309 			worst = severity;
1310 		}
1311 	}
1312 
1313 	/* mce_clear_state will clear *final, save locally for use later */
1314 	m = *final;
1315 
1316 	if (!no_way_out)
1317 		mce_clear_state(toclear);
1318 
1319 	/*
1320 	 * Do most of the synchronization with other CPUs.
1321 	 * When there's any problem use only local no_way_out state.
1322 	 */
1323 	if (!lmce) {
1324 		if (mce_end(order) < 0)
1325 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1326 	} else {
1327 		/*
1328 		 * If there was a fatal machine check we should have
1329 		 * already called mce_panic earlier in this function.
1330 		 * Since we re-read the banks, we might have found
1331 		 * something new. Check again to see if we found a
1332 		 * fatal error. We call "mce_severity()" again to
1333 		 * make sure we have the right "msg".
1334 		 */
1335 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1336 			mce_severity(&m, cfg->tolerant, &msg, true);
1337 			mce_panic("Local fatal machine check!", &m, msg);
1338 		}
1339 	}
1340 
1341 	/*
1342 	 * If tolerant is at an insane level we drop requests to kill
1343 	 * processes and continue even when there is no way out.
1344 	 */
1345 	if (cfg->tolerant == 3)
1346 		kill_it = 0;
1347 	else if (no_way_out)
1348 		mce_panic("Fatal machine check on current CPU", &m, msg);
1349 
1350 	if (worst > 0)
1351 		mce_report_event(regs);
1352 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1353 out:
1354 	sync_core();
1355 
1356 	if (worst != MCE_AR_SEVERITY && !kill_it)
1357 		goto out_ist;
1358 
1359 	/* Fault was in user mode and we need to take some action */
1360 	if ((m.cs & 3) == 3) {
1361 		ist_begin_non_atomic(regs);
1362 		local_irq_enable();
1363 
1364 		if (kill_it || do_memory_failure(&m))
1365 			force_sig(SIGBUS, current);
1366 		local_irq_disable();
1367 		ist_end_non_atomic();
1368 	} else {
1369 		if (!fixup_exception(regs, X86_TRAP_MC))
1370 			mce_panic("Failed kernel mode recovery", &m, NULL);
1371 	}
1372 
1373 out_ist:
1374 	ist_exit(regs);
1375 }
1376 EXPORT_SYMBOL_GPL(do_machine_check);
1377 
1378 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1379 int memory_failure(unsigned long pfn, int vector, int flags)
1380 {
1381 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1382 	BUG_ON(flags & MF_ACTION_REQUIRED);
1383 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1384 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1385 	       pfn);
1386 
1387 	return 0;
1388 }
1389 #endif
1390 
1391 /*
1392  * Periodic polling timer for "silent" machine check errors.  If the
1393  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1394  * errors, poll 2x slower (up to check_interval seconds).
1395  */
1396 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1397 
1398 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1399 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1400 
mce_adjust_timer_default(unsigned long interval)1401 static unsigned long mce_adjust_timer_default(unsigned long interval)
1402 {
1403 	return interval;
1404 }
1405 
1406 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1407 
__start_timer(struct timer_list * t,unsigned long interval)1408 static void __start_timer(struct timer_list *t, unsigned long interval)
1409 {
1410 	unsigned long when = jiffies + interval;
1411 	unsigned long flags;
1412 
1413 	local_irq_save(flags);
1414 
1415 	if (!timer_pending(t) || time_before(when, t->expires))
1416 		mod_timer(t, round_jiffies(when));
1417 
1418 	local_irq_restore(flags);
1419 }
1420 
mce_timer_fn(unsigned long data)1421 static void mce_timer_fn(unsigned long data)
1422 {
1423 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1424 	int cpu = smp_processor_id();
1425 	unsigned long iv;
1426 
1427 	WARN_ON(cpu != data);
1428 
1429 	iv = __this_cpu_read(mce_next_interval);
1430 
1431 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1432 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1433 
1434 		if (mce_intel_cmci_poll()) {
1435 			iv = mce_adjust_timer(iv);
1436 			goto done;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1442 	 * interval, otherwise increase the polling interval.
1443 	 */
1444 	if (mce_notify_irq())
1445 		iv = max(iv / 2, (unsigned long) HZ/100);
1446 	else
1447 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1448 
1449 done:
1450 	__this_cpu_write(mce_next_interval, iv);
1451 	__start_timer(t, iv);
1452 }
1453 
1454 /*
1455  * Ensure that the timer is firing in @interval from now.
1456  */
mce_timer_kick(unsigned long interval)1457 void mce_timer_kick(unsigned long interval)
1458 {
1459 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1460 	unsigned long iv = __this_cpu_read(mce_next_interval);
1461 
1462 	__start_timer(t, interval);
1463 
1464 	if (interval < iv)
1465 		__this_cpu_write(mce_next_interval, interval);
1466 }
1467 
1468 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1469 static void mce_timer_delete_all(void)
1470 {
1471 	int cpu;
1472 
1473 	for_each_online_cpu(cpu)
1474 		del_timer_sync(&per_cpu(mce_timer, cpu));
1475 }
1476 
1477 /*
1478  * Notify the user(s) about new machine check events.
1479  * Can be called from interrupt context, but not from machine check/NMI
1480  * context.
1481  */
mce_notify_irq(void)1482 int mce_notify_irq(void)
1483 {
1484 	/* Not more than two messages every minute */
1485 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1486 
1487 	if (test_and_clear_bit(0, &mce_need_notify)) {
1488 		mce_work_trigger();
1489 
1490 		if (__ratelimit(&ratelimit))
1491 			pr_info(HW_ERR "Machine check events logged\n");
1492 
1493 		return 1;
1494 	}
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(mce_notify_irq);
1498 
__mcheck_cpu_mce_banks_init(void)1499 static int __mcheck_cpu_mce_banks_init(void)
1500 {
1501 	int i;
1502 
1503 	mce_banks = kcalloc(MAX_NR_BANKS, sizeof(struct mce_bank), GFP_KERNEL);
1504 	if (!mce_banks)
1505 		return -ENOMEM;
1506 
1507 	for (i = 0; i < MAX_NR_BANKS; i++) {
1508 		struct mce_bank *b = &mce_banks[i];
1509 
1510 		b->ctl = -1ULL;
1511 		b->init = 1;
1512 	}
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Initialize Machine Checks for a CPU.
1518  */
__mcheck_cpu_cap_init(void)1519 static int __mcheck_cpu_cap_init(void)
1520 {
1521 	u64 cap;
1522 	u8 b;
1523 
1524 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1525 
1526 	b = cap & MCG_BANKCNT_MASK;
1527 	if (WARN_ON_ONCE(b > MAX_NR_BANKS))
1528 		b = MAX_NR_BANKS;
1529 
1530 	mca_cfg.banks = max(mca_cfg.banks, b);
1531 
1532 	if (!mce_banks) {
1533 		int err = __mcheck_cpu_mce_banks_init();
1534 		if (err)
1535 			return err;
1536 	}
1537 
1538 	/* Use accurate RIP reporting if available. */
1539 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1540 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1541 
1542 	if (cap & MCG_SER_P)
1543 		mca_cfg.ser = true;
1544 
1545 	return 0;
1546 }
1547 
__mcheck_cpu_init_generic(void)1548 static void __mcheck_cpu_init_generic(void)
1549 {
1550 	enum mcp_flags m_fl = 0;
1551 	mce_banks_t all_banks;
1552 	u64 cap;
1553 
1554 	if (!mca_cfg.bootlog)
1555 		m_fl = MCP_DONTLOG;
1556 
1557 	/*
1558 	 * Log the machine checks left over from the previous reset.
1559 	 */
1560 	bitmap_fill(all_banks, MAX_NR_BANKS);
1561 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1562 
1563 	cr4_set_bits(X86_CR4_MCE);
1564 
1565 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1566 	if (cap & MCG_CTL_P)
1567 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1568 }
1569 
__mcheck_cpu_init_clear_banks(void)1570 static void __mcheck_cpu_init_clear_banks(void)
1571 {
1572 	int i;
1573 
1574 	for (i = 0; i < mca_cfg.banks; i++) {
1575 		struct mce_bank *b = &mce_banks[i];
1576 
1577 		if (!b->init)
1578 			continue;
1579 		wrmsrl(msr_ops.ctl(i), b->ctl);
1580 		wrmsrl(msr_ops.status(i), 0);
1581 	}
1582 }
1583 
1584 /*
1585  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1586  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1587  * Vol 3B Table 15-20). But this confuses both the code that determines
1588  * whether the machine check occurred in kernel or user mode, and also
1589  * the severity assessment code. Pretend that EIPV was set, and take the
1590  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1591  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1592 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1593 {
1594 	if (bank != 0)
1595 		return;
1596 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1597 		return;
1598 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1599 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1600 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1601 			  MCACOD)) !=
1602 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1603 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1604 			  MCI_STATUS_AR|MCACOD_INSTR))
1605 		return;
1606 
1607 	m->mcgstatus |= MCG_STATUS_EIPV;
1608 	m->ip = regs->ip;
1609 	m->cs = regs->cs;
1610 }
1611 
1612 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1613 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1614 {
1615 	struct mca_config *cfg = &mca_cfg;
1616 
1617 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1618 		pr_info("unknown CPU type - not enabling MCE support\n");
1619 		return -EOPNOTSUPP;
1620 	}
1621 
1622 	/* This should be disabled by the BIOS, but isn't always */
1623 	if (c->x86_vendor == X86_VENDOR_AMD) {
1624 		if (c->x86 == 15 && cfg->banks > 4) {
1625 			/*
1626 			 * disable GART TBL walk error reporting, which
1627 			 * trips off incorrectly with the IOMMU & 3ware
1628 			 * & Cerberus:
1629 			 */
1630 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1631 		}
1632 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1633 			/*
1634 			 * Lots of broken BIOS around that don't clear them
1635 			 * by default and leave crap in there. Don't log:
1636 			 */
1637 			cfg->bootlog = 0;
1638 		}
1639 		/*
1640 		 * Various K7s with broken bank 0 around. Always disable
1641 		 * by default.
1642 		 */
1643 		if (c->x86 == 6 && cfg->banks > 0)
1644 			mce_banks[0].ctl = 0;
1645 
1646 		/*
1647 		 * overflow_recov is supported for F15h Models 00h-0fh
1648 		 * even though we don't have a CPUID bit for it.
1649 		 */
1650 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1651 			mce_flags.overflow_recov = 1;
1652 
1653 	}
1654 
1655 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1656 		/*
1657 		 * SDM documents that on family 6 bank 0 should not be written
1658 		 * because it aliases to another special BIOS controlled
1659 		 * register.
1660 		 * But it's not aliased anymore on model 0x1a+
1661 		 * Don't ignore bank 0 completely because there could be a
1662 		 * valid event later, merely don't write CTL0.
1663 		 */
1664 
1665 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1666 			mce_banks[0].init = 0;
1667 
1668 		/*
1669 		 * All newer Intel systems support MCE broadcasting. Enable
1670 		 * synchronization with a one second timeout.
1671 		 */
1672 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1673 			cfg->monarch_timeout < 0)
1674 			cfg->monarch_timeout = USEC_PER_SEC;
1675 
1676 		/*
1677 		 * There are also broken BIOSes on some Pentium M and
1678 		 * earlier systems:
1679 		 */
1680 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1681 			cfg->bootlog = 0;
1682 
1683 		if (c->x86 == 6 && c->x86_model == 45)
1684 			quirk_no_way_out = quirk_sandybridge_ifu;
1685 	}
1686 	if (cfg->monarch_timeout < 0)
1687 		cfg->monarch_timeout = 0;
1688 	if (cfg->bootlog != 0)
1689 		cfg->panic_timeout = 30;
1690 
1691 	return 0;
1692 }
1693 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1694 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1695 {
1696 	if (c->x86 != 5)
1697 		return 0;
1698 
1699 	switch (c->x86_vendor) {
1700 	case X86_VENDOR_INTEL:
1701 		intel_p5_mcheck_init(c);
1702 		return 1;
1703 		break;
1704 	case X86_VENDOR_CENTAUR:
1705 		winchip_mcheck_init(c);
1706 		return 1;
1707 		break;
1708 	default:
1709 		return 0;
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 /*
1716  * Init basic CPU features needed for early decoding of MCEs.
1717  */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1718 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1719 {
1720 	if (c->x86_vendor == X86_VENDOR_AMD) {
1721 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1722 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1723 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1724 
1725 		if (mce_flags.smca) {
1726 			msr_ops.ctl	= smca_ctl_reg;
1727 			msr_ops.status	= smca_status_reg;
1728 			msr_ops.addr	= smca_addr_reg;
1729 			msr_ops.misc	= smca_misc_reg;
1730 		}
1731 	}
1732 }
1733 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1734 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1735 {
1736 	switch (c->x86_vendor) {
1737 	case X86_VENDOR_INTEL:
1738 		mce_intel_feature_init(c);
1739 		mce_adjust_timer = cmci_intel_adjust_timer;
1740 		break;
1741 
1742 	case X86_VENDOR_AMD: {
1743 		mce_amd_feature_init(c);
1744 		break;
1745 		}
1746 
1747 	default:
1748 		break;
1749 	}
1750 }
1751 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1752 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1753 {
1754 	switch (c->x86_vendor) {
1755 	case X86_VENDOR_INTEL:
1756 		mce_intel_feature_clear(c);
1757 		break;
1758 	default:
1759 		break;
1760 	}
1761 }
1762 
mce_start_timer(struct timer_list * t)1763 static void mce_start_timer(struct timer_list *t)
1764 {
1765 	unsigned long iv = check_interval * HZ;
1766 
1767 	if (mca_cfg.ignore_ce || !iv)
1768 		return;
1769 
1770 	this_cpu_write(mce_next_interval, iv);
1771 	__start_timer(t, iv);
1772 }
1773 
__mcheck_cpu_setup_timer(void)1774 static void __mcheck_cpu_setup_timer(void)
1775 {
1776 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1777 	unsigned int cpu = smp_processor_id();
1778 
1779 	setup_pinned_timer(t, mce_timer_fn, cpu);
1780 }
1781 
__mcheck_cpu_init_timer(void)1782 static void __mcheck_cpu_init_timer(void)
1783 {
1784 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1785 	unsigned int cpu = smp_processor_id();
1786 
1787 	setup_pinned_timer(t, mce_timer_fn, cpu);
1788 	mce_start_timer(t);
1789 }
1790 
1791 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1792 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1793 {
1794 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1795 	       smp_processor_id());
1796 }
1797 
1798 /* Call the installed machine check handler for this CPU setup. */
1799 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1800 						unexpected_machine_check;
1801 
do_mce(struct pt_regs * regs,long error_code)1802 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1803 {
1804 	machine_check_vector(regs, error_code);
1805 }
1806 
1807 /*
1808  * Called for each booted CPU to set up machine checks.
1809  * Must be called with preempt off:
1810  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1811 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1812 {
1813 	if (mca_cfg.disabled)
1814 		return;
1815 
1816 	if (__mcheck_cpu_ancient_init(c))
1817 		return;
1818 
1819 	if (!mce_available(c))
1820 		return;
1821 
1822 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1823 		mca_cfg.disabled = true;
1824 		return;
1825 	}
1826 
1827 	if (mce_gen_pool_init()) {
1828 		mca_cfg.disabled = true;
1829 		pr_emerg("Couldn't allocate MCE records pool!\n");
1830 		return;
1831 	}
1832 
1833 	machine_check_vector = do_machine_check;
1834 
1835 	__mcheck_cpu_init_early(c);
1836 	__mcheck_cpu_init_generic();
1837 	__mcheck_cpu_init_vendor(c);
1838 	__mcheck_cpu_init_clear_banks();
1839 	__mcheck_cpu_setup_timer();
1840 }
1841 
1842 /*
1843  * Called for each booted CPU to clear some machine checks opt-ins
1844  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)1845 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1846 {
1847 	if (mca_cfg.disabled)
1848 		return;
1849 
1850 	if (!mce_available(c))
1851 		return;
1852 
1853 	/*
1854 	 * Possibly to clear general settings generic to x86
1855 	 * __mcheck_cpu_clear_generic(c);
1856 	 */
1857 	__mcheck_cpu_clear_vendor(c);
1858 
1859 }
1860 
__mce_disable_bank(void * arg)1861 static void __mce_disable_bank(void *arg)
1862 {
1863 	int bank = *((int *)arg);
1864 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1865 	cmci_disable_bank(bank);
1866 }
1867 
mce_disable_bank(int bank)1868 void mce_disable_bank(int bank)
1869 {
1870 	if (bank >= mca_cfg.banks) {
1871 		pr_warn(FW_BUG
1872 			"Ignoring request to disable invalid MCA bank %d.\n",
1873 			bank);
1874 		return;
1875 	}
1876 	set_bit(bank, mce_banks_ce_disabled);
1877 	on_each_cpu(__mce_disable_bank, &bank, 1);
1878 }
1879 
1880 /*
1881  * mce=off Disables machine check
1882  * mce=no_cmci Disables CMCI
1883  * mce=no_lmce Disables LMCE
1884  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1885  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1886  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1887  *	monarchtimeout is how long to wait for other CPUs on machine
1888  *	check, or 0 to not wait
1889  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1890 	and older.
1891  * mce=nobootlog Don't log MCEs from before booting.
1892  * mce=bios_cmci_threshold Don't program the CMCI threshold
1893  * mce=recovery force enable memcpy_mcsafe()
1894  */
mcheck_enable(char * str)1895 static int __init mcheck_enable(char *str)
1896 {
1897 	struct mca_config *cfg = &mca_cfg;
1898 
1899 	if (*str == 0) {
1900 		enable_p5_mce();
1901 		return 1;
1902 	}
1903 	if (*str == '=')
1904 		str++;
1905 	if (!strcmp(str, "off"))
1906 		cfg->disabled = true;
1907 	else if (!strcmp(str, "no_cmci"))
1908 		cfg->cmci_disabled = true;
1909 	else if (!strcmp(str, "no_lmce"))
1910 		cfg->lmce_disabled = true;
1911 	else if (!strcmp(str, "dont_log_ce"))
1912 		cfg->dont_log_ce = true;
1913 	else if (!strcmp(str, "ignore_ce"))
1914 		cfg->ignore_ce = true;
1915 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1916 		cfg->bootlog = (str[0] == 'b');
1917 	else if (!strcmp(str, "bios_cmci_threshold"))
1918 		cfg->bios_cmci_threshold = true;
1919 	else if (!strcmp(str, "recovery"))
1920 		cfg->recovery = true;
1921 	else if (isdigit(str[0])) {
1922 		if (get_option(&str, &cfg->tolerant) == 2)
1923 			get_option(&str, &(cfg->monarch_timeout));
1924 	} else {
1925 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1926 		return 0;
1927 	}
1928 	return 1;
1929 }
1930 __setup("mce", mcheck_enable);
1931 
mcheck_init(void)1932 int __init mcheck_init(void)
1933 {
1934 	mcheck_intel_therm_init();
1935 	mce_register_decode_chain(&first_nb);
1936 	mce_register_decode_chain(&mce_srao_nb);
1937 	mce_register_decode_chain(&mce_default_nb);
1938 	mcheck_vendor_init_severity();
1939 
1940 	INIT_WORK(&mce_work, mce_gen_pool_process);
1941 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1942 
1943 	return 0;
1944 }
1945 
1946 /*
1947  * mce_syscore: PM support
1948  */
1949 
1950 /*
1951  * Disable machine checks on suspend and shutdown. We can't really handle
1952  * them later.
1953  */
mce_disable_error_reporting(void)1954 static void mce_disable_error_reporting(void)
1955 {
1956 	int i;
1957 
1958 	for (i = 0; i < mca_cfg.banks; i++) {
1959 		struct mce_bank *b = &mce_banks[i];
1960 
1961 		if (b->init)
1962 			wrmsrl(msr_ops.ctl(i), 0);
1963 	}
1964 	return;
1965 }
1966 
vendor_disable_error_reporting(void)1967 static void vendor_disable_error_reporting(void)
1968 {
1969 	/*
1970 	 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1971 	 * Disabling them for just a single offlined CPU is bad, since it will
1972 	 * inhibit reporting for all shared resources on the socket like the
1973 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
1974 	 */
1975 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1976 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1977 		return;
1978 
1979 	mce_disable_error_reporting();
1980 }
1981 
mce_syscore_suspend(void)1982 static int mce_syscore_suspend(void)
1983 {
1984 	vendor_disable_error_reporting();
1985 	return 0;
1986 }
1987 
mce_syscore_shutdown(void)1988 static void mce_syscore_shutdown(void)
1989 {
1990 	vendor_disable_error_reporting();
1991 }
1992 
1993 /*
1994  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1995  * Only one CPU is active at this time, the others get re-added later using
1996  * CPU hotplug:
1997  */
mce_syscore_resume(void)1998 static void mce_syscore_resume(void)
1999 {
2000 	__mcheck_cpu_init_generic();
2001 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2002 	__mcheck_cpu_init_clear_banks();
2003 }
2004 
2005 static struct syscore_ops mce_syscore_ops = {
2006 	.suspend	= mce_syscore_suspend,
2007 	.shutdown	= mce_syscore_shutdown,
2008 	.resume		= mce_syscore_resume,
2009 };
2010 
2011 /*
2012  * mce_device: Sysfs support
2013  */
2014 
mce_cpu_restart(void * data)2015 static void mce_cpu_restart(void *data)
2016 {
2017 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2018 		return;
2019 	__mcheck_cpu_init_generic();
2020 	__mcheck_cpu_init_clear_banks();
2021 	__mcheck_cpu_init_timer();
2022 }
2023 
2024 /* Reinit MCEs after user configuration changes */
mce_restart(void)2025 static void mce_restart(void)
2026 {
2027 	mce_timer_delete_all();
2028 	on_each_cpu(mce_cpu_restart, NULL, 1);
2029 }
2030 
2031 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2032 static void mce_disable_cmci(void *data)
2033 {
2034 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2035 		return;
2036 	cmci_clear();
2037 }
2038 
mce_enable_ce(void * all)2039 static void mce_enable_ce(void *all)
2040 {
2041 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2042 		return;
2043 	cmci_reenable();
2044 	cmci_recheck();
2045 	if (all)
2046 		__mcheck_cpu_init_timer();
2047 }
2048 
2049 static struct bus_type mce_subsys = {
2050 	.name		= "machinecheck",
2051 	.dev_name	= "machinecheck",
2052 };
2053 
2054 DEFINE_PER_CPU(struct device *, mce_device);
2055 
attr_to_bank(struct device_attribute * attr)2056 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2057 {
2058 	return container_of(attr, struct mce_bank, attr);
2059 }
2060 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2061 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2062 			 char *buf)
2063 {
2064 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2065 }
2066 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2067 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2068 			const char *buf, size_t size)
2069 {
2070 	u64 new;
2071 
2072 	if (kstrtou64(buf, 0, &new) < 0)
2073 		return -EINVAL;
2074 
2075 	attr_to_bank(attr)->ctl = new;
2076 	mce_restart();
2077 
2078 	return size;
2079 }
2080 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2081 static ssize_t set_ignore_ce(struct device *s,
2082 			     struct device_attribute *attr,
2083 			     const char *buf, size_t size)
2084 {
2085 	u64 new;
2086 
2087 	if (kstrtou64(buf, 0, &new) < 0)
2088 		return -EINVAL;
2089 
2090 	mutex_lock(&mce_sysfs_mutex);
2091 	if (mca_cfg.ignore_ce ^ !!new) {
2092 		if (new) {
2093 			/* disable ce features */
2094 			mce_timer_delete_all();
2095 			on_each_cpu(mce_disable_cmci, NULL, 1);
2096 			mca_cfg.ignore_ce = true;
2097 		} else {
2098 			/* enable ce features */
2099 			mca_cfg.ignore_ce = false;
2100 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2101 		}
2102 	}
2103 	mutex_unlock(&mce_sysfs_mutex);
2104 
2105 	return size;
2106 }
2107 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2108 static ssize_t set_cmci_disabled(struct device *s,
2109 				 struct device_attribute *attr,
2110 				 const char *buf, size_t size)
2111 {
2112 	u64 new;
2113 
2114 	if (kstrtou64(buf, 0, &new) < 0)
2115 		return -EINVAL;
2116 
2117 	mutex_lock(&mce_sysfs_mutex);
2118 	if (mca_cfg.cmci_disabled ^ !!new) {
2119 		if (new) {
2120 			/* disable cmci */
2121 			on_each_cpu(mce_disable_cmci, NULL, 1);
2122 			mca_cfg.cmci_disabled = true;
2123 		} else {
2124 			/* enable cmci */
2125 			mca_cfg.cmci_disabled = false;
2126 			on_each_cpu(mce_enable_ce, NULL, 1);
2127 		}
2128 	}
2129 	mutex_unlock(&mce_sysfs_mutex);
2130 
2131 	return size;
2132 }
2133 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2134 static ssize_t store_int_with_restart(struct device *s,
2135 				      struct device_attribute *attr,
2136 				      const char *buf, size_t size)
2137 {
2138 	unsigned long old_check_interval = check_interval;
2139 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2140 
2141 	if (check_interval == old_check_interval)
2142 		return ret;
2143 
2144 	mutex_lock(&mce_sysfs_mutex);
2145 	mce_restart();
2146 	mutex_unlock(&mce_sysfs_mutex);
2147 
2148 	return ret;
2149 }
2150 
2151 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2152 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2153 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2154 
2155 static struct dev_ext_attribute dev_attr_check_interval = {
2156 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2157 	&check_interval
2158 };
2159 
2160 static struct dev_ext_attribute dev_attr_ignore_ce = {
2161 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2162 	&mca_cfg.ignore_ce
2163 };
2164 
2165 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2166 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2167 	&mca_cfg.cmci_disabled
2168 };
2169 
2170 static struct device_attribute *mce_device_attrs[] = {
2171 	&dev_attr_tolerant.attr,
2172 	&dev_attr_check_interval.attr,
2173 #ifdef CONFIG_X86_MCELOG_LEGACY
2174 	&dev_attr_trigger,
2175 #endif
2176 	&dev_attr_monarch_timeout.attr,
2177 	&dev_attr_dont_log_ce.attr,
2178 	&dev_attr_ignore_ce.attr,
2179 	&dev_attr_cmci_disabled.attr,
2180 	NULL
2181 };
2182 
2183 static cpumask_var_t mce_device_initialized;
2184 
mce_device_release(struct device * dev)2185 static void mce_device_release(struct device *dev)
2186 {
2187 	kfree(dev);
2188 }
2189 
2190 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2191 static int mce_device_create(unsigned int cpu)
2192 {
2193 	struct device *dev;
2194 	int err;
2195 	int i, j;
2196 
2197 	if (!mce_available(&boot_cpu_data))
2198 		return -EIO;
2199 
2200 	dev = per_cpu(mce_device, cpu);
2201 	if (dev)
2202 		return 0;
2203 
2204 	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2205 	if (!dev)
2206 		return -ENOMEM;
2207 	dev->id  = cpu;
2208 	dev->bus = &mce_subsys;
2209 	dev->release = &mce_device_release;
2210 
2211 	err = device_register(dev);
2212 	if (err) {
2213 		put_device(dev);
2214 		return err;
2215 	}
2216 
2217 	for (i = 0; mce_device_attrs[i]; i++) {
2218 		err = device_create_file(dev, mce_device_attrs[i]);
2219 		if (err)
2220 			goto error;
2221 	}
2222 	for (j = 0; j < mca_cfg.banks; j++) {
2223 		err = device_create_file(dev, &mce_banks[j].attr);
2224 		if (err)
2225 			goto error2;
2226 	}
2227 	cpumask_set_cpu(cpu, mce_device_initialized);
2228 	per_cpu(mce_device, cpu) = dev;
2229 
2230 	return 0;
2231 error2:
2232 	while (--j >= 0)
2233 		device_remove_file(dev, &mce_banks[j].attr);
2234 error:
2235 	while (--i >= 0)
2236 		device_remove_file(dev, mce_device_attrs[i]);
2237 
2238 	device_unregister(dev);
2239 
2240 	return err;
2241 }
2242 
mce_device_remove(unsigned int cpu)2243 static void mce_device_remove(unsigned int cpu)
2244 {
2245 	struct device *dev = per_cpu(mce_device, cpu);
2246 	int i;
2247 
2248 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2249 		return;
2250 
2251 	for (i = 0; mce_device_attrs[i]; i++)
2252 		device_remove_file(dev, mce_device_attrs[i]);
2253 
2254 	for (i = 0; i < mca_cfg.banks; i++)
2255 		device_remove_file(dev, &mce_banks[i].attr);
2256 
2257 	device_unregister(dev);
2258 	cpumask_clear_cpu(cpu, mce_device_initialized);
2259 	per_cpu(mce_device, cpu) = NULL;
2260 }
2261 
2262 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2263 static void mce_disable_cpu(void)
2264 {
2265 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2266 		return;
2267 
2268 	if (!cpuhp_tasks_frozen)
2269 		cmci_clear();
2270 
2271 	vendor_disable_error_reporting();
2272 }
2273 
mce_reenable_cpu(void)2274 static void mce_reenable_cpu(void)
2275 {
2276 	int i;
2277 
2278 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2279 		return;
2280 
2281 	if (!cpuhp_tasks_frozen)
2282 		cmci_reenable();
2283 	for (i = 0; i < mca_cfg.banks; i++) {
2284 		struct mce_bank *b = &mce_banks[i];
2285 
2286 		if (b->init)
2287 			wrmsrl(msr_ops.ctl(i), b->ctl);
2288 	}
2289 }
2290 
mce_cpu_dead(unsigned int cpu)2291 static int mce_cpu_dead(unsigned int cpu)
2292 {
2293 	mce_intel_hcpu_update(cpu);
2294 
2295 	/* intentionally ignoring frozen here */
2296 	if (!cpuhp_tasks_frozen)
2297 		cmci_rediscover();
2298 	return 0;
2299 }
2300 
mce_cpu_online(unsigned int cpu)2301 static int mce_cpu_online(unsigned int cpu)
2302 {
2303 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2304 	int ret;
2305 
2306 	mce_device_create(cpu);
2307 
2308 	ret = mce_threshold_create_device(cpu);
2309 	if (ret) {
2310 		mce_device_remove(cpu);
2311 		return ret;
2312 	}
2313 	mce_reenable_cpu();
2314 	mce_start_timer(t);
2315 	return 0;
2316 }
2317 
mce_cpu_pre_down(unsigned int cpu)2318 static int mce_cpu_pre_down(unsigned int cpu)
2319 {
2320 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2321 
2322 	mce_disable_cpu();
2323 	del_timer_sync(t);
2324 	mce_threshold_remove_device(cpu);
2325 	mce_device_remove(cpu);
2326 	return 0;
2327 }
2328 
mce_init_banks(void)2329 static __init void mce_init_banks(void)
2330 {
2331 	int i;
2332 
2333 	for (i = 0; i < mca_cfg.banks; i++) {
2334 		struct mce_bank *b = &mce_banks[i];
2335 		struct device_attribute *a = &b->attr;
2336 
2337 		sysfs_attr_init(&a->attr);
2338 		a->attr.name	= b->attrname;
2339 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2340 
2341 		a->attr.mode	= 0644;
2342 		a->show		= show_bank;
2343 		a->store	= set_bank;
2344 	}
2345 }
2346 
mcheck_init_device(void)2347 static __init int mcheck_init_device(void)
2348 {
2349 	int err;
2350 
2351 	if (!mce_available(&boot_cpu_data)) {
2352 		err = -EIO;
2353 		goto err_out;
2354 	}
2355 
2356 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2357 		err = -ENOMEM;
2358 		goto err_out;
2359 	}
2360 
2361 	mce_init_banks();
2362 
2363 	err = subsys_system_register(&mce_subsys, NULL);
2364 	if (err)
2365 		goto err_out_mem;
2366 
2367 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2368 				mce_cpu_dead);
2369 	if (err)
2370 		goto err_out_mem;
2371 
2372 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2373 				mce_cpu_online, mce_cpu_pre_down);
2374 	if (err < 0)
2375 		goto err_out_online;
2376 
2377 	register_syscore_ops(&mce_syscore_ops);
2378 
2379 	return 0;
2380 
2381 err_out_online:
2382 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2383 
2384 err_out_mem:
2385 	free_cpumask_var(mce_device_initialized);
2386 
2387 err_out:
2388 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2389 
2390 	return err;
2391 }
2392 device_initcall_sync(mcheck_init_device);
2393 
2394 /*
2395  * Old style boot options parsing. Only for compatibility.
2396  */
mcheck_disable(char * str)2397 static int __init mcheck_disable(char *str)
2398 {
2399 	mca_cfg.disabled = true;
2400 	return 1;
2401 }
2402 __setup("nomce", mcheck_disable);
2403 
2404 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2405 struct dentry *mce_get_debugfs_dir(void)
2406 {
2407 	static struct dentry *dmce;
2408 
2409 	if (!dmce)
2410 		dmce = debugfs_create_dir("mce", NULL);
2411 
2412 	return dmce;
2413 }
2414 
mce_reset(void)2415 static void mce_reset(void)
2416 {
2417 	cpu_missing = 0;
2418 	atomic_set(&mce_fake_panicked, 0);
2419 	atomic_set(&mce_executing, 0);
2420 	atomic_set(&mce_callin, 0);
2421 	atomic_set(&global_nwo, 0);
2422 }
2423 
fake_panic_get(void * data,u64 * val)2424 static int fake_panic_get(void *data, u64 *val)
2425 {
2426 	*val = fake_panic;
2427 	return 0;
2428 }
2429 
fake_panic_set(void * data,u64 val)2430 static int fake_panic_set(void *data, u64 val)
2431 {
2432 	mce_reset();
2433 	fake_panic = val;
2434 	return 0;
2435 }
2436 
2437 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2438 			fake_panic_set, "%llu\n");
2439 
mcheck_debugfs_init(void)2440 static int __init mcheck_debugfs_init(void)
2441 {
2442 	struct dentry *dmce, *ffake_panic;
2443 
2444 	dmce = mce_get_debugfs_dir();
2445 	if (!dmce)
2446 		return -ENOMEM;
2447 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2448 					  &fake_panic_fops);
2449 	if (!ffake_panic)
2450 		return -ENOMEM;
2451 
2452 	return 0;
2453 }
2454 #else
mcheck_debugfs_init(void)2455 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2456 #endif
2457 
2458 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2459 EXPORT_SYMBOL_GPL(mcsafe_key);
2460 
mcheck_late_init(void)2461 static int __init mcheck_late_init(void)
2462 {
2463 	pr_info("Using %d MCE banks\n", mca_cfg.banks);
2464 
2465 	if (mca_cfg.recovery)
2466 		static_branch_inc(&mcsafe_key);
2467 
2468 	mcheck_debugfs_init();
2469 	cec_init();
2470 
2471 	/*
2472 	 * Flush out everything that has been logged during early boot, now that
2473 	 * everything has been initialized (workqueues, decoders, ...).
2474 	 */
2475 	mce_schedule_work();
2476 
2477 	return 0;
2478 }
2479 late_initcall(mcheck_late_init);
2480