• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 /*
70  * Low level drivers may need that to know if they can schedule in
71  * their unblank() callback or not. So let's export it.
72  */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75 
76 /*
77  * console_sem protects the console_drivers list, and also
78  * provides serialisation for access to the entire console
79  * driver system.
80  */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84 
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 	.name = "console_lock"
88 };
89 #endif
90 
91 enum devkmsg_log_bits {
92 	__DEVKMSG_LOG_BIT_ON = 0,
93 	__DEVKMSG_LOG_BIT_OFF,
94 	__DEVKMSG_LOG_BIT_LOCK,
95 };
96 
97 enum devkmsg_log_masks {
98 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
99 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
100 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102 
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT	0
105 
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107 
__control_devkmsg(char * str)108 static int __control_devkmsg(char *str)
109 {
110 	if (!str)
111 		return -EINVAL;
112 
113 	if (!strncmp(str, "on", 2)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 		return 2;
116 	} else if (!strncmp(str, "off", 3)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 		return 3;
119 	} else if (!strncmp(str, "ratelimit", 9)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 		return 9;
122 	}
123 	return -EINVAL;
124 }
125 
control_devkmsg(char * str)126 static int __init control_devkmsg(char *str)
127 {
128 	if (__control_devkmsg(str) < 0)
129 		return 1;
130 
131 	/*
132 	 * Set sysctl string accordingly:
133 	 */
134 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "on", 2);
137 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 		strncpy(devkmsg_log_str, "off", 3);
140 	}
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * Number of registered extended console drivers.
198  *
199  * If extended consoles are present, in-kernel cont reassembly is disabled
200  * and each fragment is stored as a separate log entry with proper
201  * continuation flag so that every emitted message has full metadata.  This
202  * doesn't change the result for regular consoles or /proc/kmsg.  For
203  * /dev/kmsg, as long as the reader concatenates messages according to
204  * consecutive continuation flags, the end result should be the same too.
205  */
206 static int nr_ext_console_drivers;
207 
208 /*
209  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210  * macros instead of functions so that _RET_IP_ contains useful information.
211  */
212 #define down_console_sem() do { \
213 	down(&console_sem);\
214 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216 
__down_trylock_console_sem(unsigned long ip)217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 	int lock_failed;
220 	unsigned long flags;
221 
222 	/*
223 	 * Here and in __up_console_sem() we need to be in safe mode,
224 	 * because spindump/WARN/etc from under console ->lock will
225 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 	 */
227 	printk_safe_enter_irqsave(flags);
228 	lock_failed = down_trylock(&console_sem);
229 	printk_safe_exit_irqrestore(flags);
230 
231 	if (lock_failed)
232 		return 1;
233 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 	return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237 
__up_console_sem(unsigned long ip)238 static void __up_console_sem(unsigned long ip)
239 {
240 	unsigned long flags;
241 
242 	mutex_release(&console_lock_dep_map, 1, ip);
243 
244 	printk_safe_enter_irqsave(flags);
245 	up(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249 
250 /*
251  * This is used for debugging the mess that is the VT code by
252  * keeping track if we have the console semaphore held. It's
253  * definitely not the perfect debug tool (we don't know if _WE_
254  * hold it and are racing, but it helps tracking those weird code
255  * paths in the console code where we end up in places I want
256  * locked without the console sempahore held).
257  */
258 static int console_locked, console_suspended;
259 
260 /*
261  * If exclusive_console is non-NULL then only this console is to be printed to.
262  */
263 static struct console *exclusive_console;
264 
265 /*
266  *	Array of consoles built from command line options (console=)
267  */
268 
269 #define MAX_CMDLINECONSOLES 8
270 
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276 
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279 
280 /*
281  * The printk log buffer consists of a chain of concatenated variable
282  * length records. Every record starts with a record header, containing
283  * the overall length of the record.
284  *
285  * The heads to the first and last entry in the buffer, as well as the
286  * sequence numbers of these entries are maintained when messages are
287  * stored.
288  *
289  * If the heads indicate available messages, the length in the header
290  * tells the start next message. A length == 0 for the next message
291  * indicates a wrap-around to the beginning of the buffer.
292  *
293  * Every record carries the monotonic timestamp in microseconds, as well as
294  * the standard userspace syslog level and syslog facility. The usual
295  * kernel messages use LOG_KERN; userspace-injected messages always carry
296  * a matching syslog facility, by default LOG_USER. The origin of every
297  * message can be reliably determined that way.
298  *
299  * The human readable log message directly follows the message header. The
300  * length of the message text is stored in the header, the stored message
301  * is not terminated.
302  *
303  * Optionally, a message can carry a dictionary of properties (key/value pairs),
304  * to provide userspace with a machine-readable message context.
305  *
306  * Examples for well-defined, commonly used property names are:
307  *   DEVICE=b12:8               device identifier
308  *                                b12:8         block dev_t
309  *                                c127:3        char dev_t
310  *                                n8            netdev ifindex
311  *                                +sound:card0  subsystem:devname
312  *   SUBSYSTEM=pci              driver-core subsystem name
313  *
314  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315  * follows directly after a '=' character. Every property is terminated by
316  * a '\0' character. The last property is not terminated.
317  *
318  * Example of a message structure:
319  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
320  *   0008  34 00                        record is 52 bytes long
321  *   000a        0b 00                  text is 11 bytes long
322  *   000c              1f 00            dictionary is 23 bytes long
323  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
324  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
325  *         69 6e 65                     "ine"
326  *   001b           44 45 56 49 43      "DEVIC"
327  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
328  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
329  *         67                           "g"
330  *   0032     00 00 00                  padding to next message header
331  *
332  * The 'struct printk_log' buffer header must never be directly exported to
333  * userspace, it is a kernel-private implementation detail that might
334  * need to be changed in the future, when the requirements change.
335  *
336  * /dev/kmsg exports the structured data in the following line format:
337  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338  *
339  * Users of the export format should ignore possible additional values
340  * separated by ',', and find the message after the ';' character.
341  *
342  * The optional key/value pairs are attached as continuation lines starting
343  * with a space character and terminated by a newline. All possible
344  * non-prinatable characters are escaped in the "\xff" notation.
345  */
346 
347 enum log_flags {
348 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
349 	LOG_NEWLINE	= 2,	/* text ended with a newline */
350 	LOG_PREFIX	= 4,	/* text started with a prefix */
351 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
352 };
353 
354 struct printk_log {
355 	u64 ts_nsec;		/* timestamp in nanoseconds */
356 	u16 len;		/* length of entire record */
357 	u16 text_len;		/* length of text buffer */
358 	u16 dict_len;		/* length of dictionary buffer */
359 	u8 facility;		/* syslog facility */
360 	u8 flags:5;		/* internal record flags */
361 	u8 level:3;		/* syslog level */
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367 
368 /*
369  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
370  * within the scheduler's rq lock. It must be released before calling
371  * console_unlock() or anything else that might wake up a process.
372  */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374 
375 /*
376  * Helper macros to lock/unlock logbuf_lock and switch between
377  * printk-safe/unsafe modes.
378  */
379 #define logbuf_lock_irq()				\
380 	do {						\
381 		printk_safe_enter_irq();		\
382 		raw_spin_lock(&logbuf_lock);		\
383 	} while (0)
384 
385 #define logbuf_unlock_irq()				\
386 	do {						\
387 		raw_spin_unlock(&logbuf_lock);		\
388 		printk_safe_exit_irq();			\
389 	} while (0)
390 
391 #define logbuf_lock_irqsave(flags)			\
392 	do {						\
393 		printk_safe_enter_irqsave(flags);	\
394 		raw_spin_lock(&logbuf_lock);		\
395 	} while (0)
396 
397 #define logbuf_unlock_irqrestore(flags)		\
398 	do {						\
399 		raw_spin_unlock(&logbuf_lock);		\
400 		printk_safe_exit_irqrestore(flags);	\
401 	} while (0)
402 
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409 
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413 
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417 
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421 
422 /* the next printk record to read after the last 'clear' command */
423 static u64 clear_seq;
424 static u32 clear_idx;
425 
426 #define PREFIX_MAX		32
427 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
428 
429 #define LOG_LEVEL(v)		((v) & 0x07)
430 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
431 
432 /* record buffer */
433 #define LOG_ALIGN __alignof__(struct printk_log)
434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
436 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
437 static char *log_buf = __log_buf;
438 static u32 log_buf_len = __LOG_BUF_LEN;
439 
440 /* Return log buffer address */
log_buf_addr_get(void)441 char *log_buf_addr_get(void)
442 {
443 	return log_buf;
444 }
445 
446 /* Return log buffer size */
log_buf_len_get(void)447 u32 log_buf_len_get(void)
448 {
449 	return log_buf_len;
450 }
451 
452 /* human readable text of the record */
log_text(const struct printk_log * msg)453 static char *log_text(const struct printk_log *msg)
454 {
455 	return (char *)msg + sizeof(struct printk_log);
456 }
457 
458 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)459 static char *log_dict(const struct printk_log *msg)
460 {
461 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
462 }
463 
464 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)465 static struct printk_log *log_from_idx(u32 idx)
466 {
467 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
468 
469 	/*
470 	 * A length == 0 record is the end of buffer marker. Wrap around and
471 	 * read the message at the start of the buffer.
472 	 */
473 	if (!msg->len)
474 		return (struct printk_log *)log_buf;
475 	return msg;
476 }
477 
478 /* get next record; idx must point to valid msg */
log_next(u32 idx)479 static u32 log_next(u32 idx)
480 {
481 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
482 
483 	/* length == 0 indicates the end of the buffer; wrap */
484 	/*
485 	 * A length == 0 record is the end of buffer marker. Wrap around and
486 	 * read the message at the start of the buffer as *this* one, and
487 	 * return the one after that.
488 	 */
489 	if (!msg->len) {
490 		msg = (struct printk_log *)log_buf;
491 		return msg->len;
492 	}
493 	return idx + msg->len;
494 }
495 
496 /*
497  * Check whether there is enough free space for the given message.
498  *
499  * The same values of first_idx and next_idx mean that the buffer
500  * is either empty or full.
501  *
502  * If the buffer is empty, we must respect the position of the indexes.
503  * They cannot be reset to the beginning of the buffer.
504  */
logbuf_has_space(u32 msg_size,bool empty)505 static int logbuf_has_space(u32 msg_size, bool empty)
506 {
507 	u32 free;
508 
509 	if (log_next_idx > log_first_idx || empty)
510 		free = max(log_buf_len - log_next_idx, log_first_idx);
511 	else
512 		free = log_first_idx - log_next_idx;
513 
514 	/*
515 	 * We need space also for an empty header that signalizes wrapping
516 	 * of the buffer.
517 	 */
518 	return free >= msg_size + sizeof(struct printk_log);
519 }
520 
log_make_free_space(u32 msg_size)521 static int log_make_free_space(u32 msg_size)
522 {
523 	while (log_first_seq < log_next_seq &&
524 	       !logbuf_has_space(msg_size, false)) {
525 		/* drop old messages until we have enough contiguous space */
526 		log_first_idx = log_next(log_first_idx);
527 		log_first_seq++;
528 	}
529 
530 	if (clear_seq < log_first_seq) {
531 		clear_seq = log_first_seq;
532 		clear_idx = log_first_idx;
533 	}
534 
535 	/* sequence numbers are equal, so the log buffer is empty */
536 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
537 		return 0;
538 
539 	return -ENOMEM;
540 }
541 
542 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)543 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
544 {
545 	u32 size;
546 
547 	size = sizeof(struct printk_log) + text_len + dict_len;
548 	*pad_len = (-size) & (LOG_ALIGN - 1);
549 	size += *pad_len;
550 
551 	return size;
552 }
553 
554 /*
555  * Define how much of the log buffer we could take at maximum. The value
556  * must be greater than two. Note that only half of the buffer is available
557  * when the index points to the middle.
558  */
559 #define MAX_LOG_TAKE_PART 4
560 static const char trunc_msg[] = "<truncated>";
561 
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)562 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
563 			u16 *dict_len, u32 *pad_len)
564 {
565 	/*
566 	 * The message should not take the whole buffer. Otherwise, it might
567 	 * get removed too soon.
568 	 */
569 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
570 	if (*text_len > max_text_len)
571 		*text_len = max_text_len;
572 	/* enable the warning message */
573 	*trunc_msg_len = strlen(trunc_msg);
574 	/* disable the "dict" completely */
575 	*dict_len = 0;
576 	/* compute the size again, count also the warning message */
577 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
578 }
579 
580 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)581 static int log_store(int facility, int level,
582 		     enum log_flags flags, u64 ts_nsec,
583 		     const char *dict, u16 dict_len,
584 		     const char *text, u16 text_len)
585 {
586 	struct printk_log *msg;
587 	u32 size, pad_len;
588 	u16 trunc_msg_len = 0;
589 
590 	/* number of '\0' padding bytes to next message */
591 	size = msg_used_size(text_len, dict_len, &pad_len);
592 
593 	if (log_make_free_space(size)) {
594 		/* truncate the message if it is too long for empty buffer */
595 		size = truncate_msg(&text_len, &trunc_msg_len,
596 				    &dict_len, &pad_len);
597 		/* survive when the log buffer is too small for trunc_msg */
598 		if (log_make_free_space(size))
599 			return 0;
600 	}
601 
602 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
603 		/*
604 		 * This message + an additional empty header does not fit
605 		 * at the end of the buffer. Add an empty header with len == 0
606 		 * to signify a wrap around.
607 		 */
608 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
609 		log_next_idx = 0;
610 	}
611 
612 	/* fill message */
613 	msg = (struct printk_log *)(log_buf + log_next_idx);
614 	memcpy(log_text(msg), text, text_len);
615 	msg->text_len = text_len;
616 	if (trunc_msg_len) {
617 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
618 		msg->text_len += trunc_msg_len;
619 	}
620 	memcpy(log_dict(msg), dict, dict_len);
621 	msg->dict_len = dict_len;
622 	msg->facility = facility;
623 	msg->level = level & 7;
624 	msg->flags = flags & 0x1f;
625 	if (ts_nsec > 0)
626 		msg->ts_nsec = ts_nsec;
627 	else
628 		msg->ts_nsec = local_clock();
629 	memset(log_dict(msg) + dict_len, 0, pad_len);
630 	msg->len = size;
631 
632 	/* insert message */
633 	log_next_idx += msg->len;
634 	log_next_seq++;
635 
636 	return msg->text_len;
637 }
638 
639 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
640 
syslog_action_restricted(int type)641 static int syslog_action_restricted(int type)
642 {
643 	if (dmesg_restrict)
644 		return 1;
645 	/*
646 	 * Unless restricted, we allow "read all" and "get buffer size"
647 	 * for everybody.
648 	 */
649 	return type != SYSLOG_ACTION_READ_ALL &&
650 	       type != SYSLOG_ACTION_SIZE_BUFFER;
651 }
652 
check_syslog_permissions(int type,int source)653 static int check_syslog_permissions(int type, int source)
654 {
655 	/*
656 	 * If this is from /proc/kmsg and we've already opened it, then we've
657 	 * already done the capabilities checks at open time.
658 	 */
659 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
660 		goto ok;
661 
662 	if (syslog_action_restricted(type)) {
663 		if (capable(CAP_SYSLOG))
664 			goto ok;
665 		/*
666 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
667 		 * a warning.
668 		 */
669 		if (capable(CAP_SYS_ADMIN)) {
670 			pr_warn_once("%s (%d): Attempt to access syslog with "
671 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
672 				     "(deprecated).\n",
673 				 current->comm, task_pid_nr(current));
674 			goto ok;
675 		}
676 		return -EPERM;
677 	}
678 ok:
679 	return security_syslog(type);
680 }
681 
append_char(char ** pp,char * e,char c)682 static void append_char(char **pp, char *e, char c)
683 {
684 	if (*pp < e)
685 		*(*pp)++ = c;
686 }
687 
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)688 static ssize_t msg_print_ext_header(char *buf, size_t size,
689 				    struct printk_log *msg, u64 seq)
690 {
691 	u64 ts_usec = msg->ts_nsec;
692 
693 	do_div(ts_usec, 1000);
694 
695 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
696 		       (msg->facility << 3) | msg->level, seq, ts_usec,
697 		       msg->flags & LOG_CONT ? 'c' : '-');
698 }
699 
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)700 static ssize_t msg_print_ext_body(char *buf, size_t size,
701 				  char *dict, size_t dict_len,
702 				  char *text, size_t text_len)
703 {
704 	char *p = buf, *e = buf + size;
705 	size_t i;
706 
707 	/* escape non-printable characters */
708 	for (i = 0; i < text_len; i++) {
709 		unsigned char c = text[i];
710 
711 		if (c < ' ' || c >= 127 || c == '\\')
712 			p += scnprintf(p, e - p, "\\x%02x", c);
713 		else
714 			append_char(&p, e, c);
715 	}
716 	append_char(&p, e, '\n');
717 
718 	if (dict_len) {
719 		bool line = true;
720 
721 		for (i = 0; i < dict_len; i++) {
722 			unsigned char c = dict[i];
723 
724 			if (line) {
725 				append_char(&p, e, ' ');
726 				line = false;
727 			}
728 
729 			if (c == '\0') {
730 				append_char(&p, e, '\n');
731 				line = true;
732 				continue;
733 			}
734 
735 			if (c < ' ' || c >= 127 || c == '\\') {
736 				p += scnprintf(p, e - p, "\\x%02x", c);
737 				continue;
738 			}
739 
740 			append_char(&p, e, c);
741 		}
742 		append_char(&p, e, '\n');
743 	}
744 
745 	return p - buf;
746 }
747 
748 /* /dev/kmsg - userspace message inject/listen interface */
749 struct devkmsg_user {
750 	u64 seq;
751 	u32 idx;
752 	struct ratelimit_state rs;
753 	struct mutex lock;
754 	char buf[CONSOLE_EXT_LOG_MAX];
755 };
756 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)757 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
758 {
759 	char *buf, *line;
760 	int level = default_message_loglevel;
761 	int facility = 1;	/* LOG_USER */
762 	struct file *file = iocb->ki_filp;
763 	struct devkmsg_user *user = file->private_data;
764 	size_t len = iov_iter_count(from);
765 	ssize_t ret = len;
766 
767 	if (!user || len > LOG_LINE_MAX)
768 		return -EINVAL;
769 
770 	/* Ignore when user logging is disabled. */
771 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
772 		return len;
773 
774 	/* Ratelimit when not explicitly enabled. */
775 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
776 		if (!___ratelimit(&user->rs, current->comm))
777 			return ret;
778 	}
779 
780 	buf = kmalloc(len+1, GFP_KERNEL);
781 	if (buf == NULL)
782 		return -ENOMEM;
783 
784 	buf[len] = '\0';
785 	if (!copy_from_iter_full(buf, len, from)) {
786 		kfree(buf);
787 		return -EFAULT;
788 	}
789 
790 	/*
791 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
792 	 * the decimal value represents 32bit, the lower 3 bit are the log
793 	 * level, the rest are the log facility.
794 	 *
795 	 * If no prefix or no userspace facility is specified, we
796 	 * enforce LOG_USER, to be able to reliably distinguish
797 	 * kernel-generated messages from userspace-injected ones.
798 	 */
799 	line = buf;
800 	if (line[0] == '<') {
801 		char *endp = NULL;
802 		unsigned int u;
803 
804 		u = simple_strtoul(line + 1, &endp, 10);
805 		if (endp && endp[0] == '>') {
806 			level = LOG_LEVEL(u);
807 			if (LOG_FACILITY(u) != 0)
808 				facility = LOG_FACILITY(u);
809 			endp++;
810 			len -= endp - line;
811 			line = endp;
812 		}
813 	}
814 
815 	printk_emit(facility, level, NULL, 0, "%s", line);
816 	kfree(buf);
817 	return ret;
818 }
819 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)820 static ssize_t devkmsg_read(struct file *file, char __user *buf,
821 			    size_t count, loff_t *ppos)
822 {
823 	struct devkmsg_user *user = file->private_data;
824 	struct printk_log *msg;
825 	size_t len;
826 	ssize_t ret;
827 
828 	if (!user)
829 		return -EBADF;
830 
831 	ret = mutex_lock_interruptible(&user->lock);
832 	if (ret)
833 		return ret;
834 
835 	logbuf_lock_irq();
836 	while (user->seq == log_next_seq) {
837 		if (file->f_flags & O_NONBLOCK) {
838 			ret = -EAGAIN;
839 			logbuf_unlock_irq();
840 			goto out;
841 		}
842 
843 		logbuf_unlock_irq();
844 		ret = wait_event_interruptible(log_wait,
845 					       user->seq != log_next_seq);
846 		if (ret)
847 			goto out;
848 		logbuf_lock_irq();
849 	}
850 
851 	if (user->seq < log_first_seq) {
852 		/* our last seen message is gone, return error and reset */
853 		user->idx = log_first_idx;
854 		user->seq = log_first_seq;
855 		ret = -EPIPE;
856 		logbuf_unlock_irq();
857 		goto out;
858 	}
859 
860 	msg = log_from_idx(user->idx);
861 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
862 				   msg, user->seq);
863 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
864 				  log_dict(msg), msg->dict_len,
865 				  log_text(msg), msg->text_len);
866 
867 	user->idx = log_next(user->idx);
868 	user->seq++;
869 	logbuf_unlock_irq();
870 
871 	if (len > count) {
872 		ret = -EINVAL;
873 		goto out;
874 	}
875 
876 	if (copy_to_user(buf, user->buf, len)) {
877 		ret = -EFAULT;
878 		goto out;
879 	}
880 	ret = len;
881 out:
882 	mutex_unlock(&user->lock);
883 	return ret;
884 }
885 
devkmsg_llseek(struct file * file,loff_t offset,int whence)886 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
887 {
888 	struct devkmsg_user *user = file->private_data;
889 	loff_t ret = 0;
890 
891 	if (!user)
892 		return -EBADF;
893 	if (offset)
894 		return -ESPIPE;
895 
896 	logbuf_lock_irq();
897 	switch (whence) {
898 	case SEEK_SET:
899 		/* the first record */
900 		user->idx = log_first_idx;
901 		user->seq = log_first_seq;
902 		break;
903 	case SEEK_DATA:
904 		/*
905 		 * The first record after the last SYSLOG_ACTION_CLEAR,
906 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
907 		 * changes no global state, and does not clear anything.
908 		 */
909 		user->idx = clear_idx;
910 		user->seq = clear_seq;
911 		break;
912 	case SEEK_END:
913 		/* after the last record */
914 		user->idx = log_next_idx;
915 		user->seq = log_next_seq;
916 		break;
917 	default:
918 		ret = -EINVAL;
919 	}
920 	logbuf_unlock_irq();
921 	return ret;
922 }
923 
devkmsg_poll(struct file * file,poll_table * wait)924 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
925 {
926 	struct devkmsg_user *user = file->private_data;
927 	int ret = 0;
928 
929 	if (!user)
930 		return POLLERR|POLLNVAL;
931 
932 	poll_wait(file, &log_wait, wait);
933 
934 	logbuf_lock_irq();
935 	if (user->seq < log_next_seq) {
936 		/* return error when data has vanished underneath us */
937 		if (user->seq < log_first_seq)
938 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
939 		else
940 			ret = POLLIN|POLLRDNORM;
941 	}
942 	logbuf_unlock_irq();
943 
944 	return ret;
945 }
946 
devkmsg_open(struct inode * inode,struct file * file)947 static int devkmsg_open(struct inode *inode, struct file *file)
948 {
949 	struct devkmsg_user *user;
950 	int err;
951 
952 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
953 		return -EPERM;
954 
955 	/* write-only does not need any file context */
956 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
957 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
958 					       SYSLOG_FROM_READER);
959 		if (err)
960 			return err;
961 	}
962 
963 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
964 	if (!user)
965 		return -ENOMEM;
966 
967 	ratelimit_default_init(&user->rs);
968 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
969 
970 	mutex_init(&user->lock);
971 
972 	logbuf_lock_irq();
973 	user->idx = log_first_idx;
974 	user->seq = log_first_seq;
975 	logbuf_unlock_irq();
976 
977 	file->private_data = user;
978 	return 0;
979 }
980 
devkmsg_release(struct inode * inode,struct file * file)981 static int devkmsg_release(struct inode *inode, struct file *file)
982 {
983 	struct devkmsg_user *user = file->private_data;
984 
985 	if (!user)
986 		return 0;
987 
988 	ratelimit_state_exit(&user->rs);
989 
990 	mutex_destroy(&user->lock);
991 	kfree(user);
992 	return 0;
993 }
994 
995 const struct file_operations kmsg_fops = {
996 	.open = devkmsg_open,
997 	.read = devkmsg_read,
998 	.write_iter = devkmsg_write,
999 	.llseek = devkmsg_llseek,
1000 	.poll = devkmsg_poll,
1001 	.release = devkmsg_release,
1002 };
1003 
1004 #ifdef CONFIG_CRASH_CORE
1005 /*
1006  * This appends the listed symbols to /proc/vmcore
1007  *
1008  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1009  * obtain access to symbols that are otherwise very difficult to locate.  These
1010  * symbols are specifically used so that utilities can access and extract the
1011  * dmesg log from a vmcore file after a crash.
1012  */
log_buf_vmcoreinfo_setup(void)1013 void log_buf_vmcoreinfo_setup(void)
1014 {
1015 	VMCOREINFO_SYMBOL(log_buf);
1016 	VMCOREINFO_SYMBOL(log_buf_len);
1017 	VMCOREINFO_SYMBOL(log_first_idx);
1018 	VMCOREINFO_SYMBOL(clear_idx);
1019 	VMCOREINFO_SYMBOL(log_next_idx);
1020 	/*
1021 	 * Export struct printk_log size and field offsets. User space tools can
1022 	 * parse it and detect any changes to structure down the line.
1023 	 */
1024 	VMCOREINFO_STRUCT_SIZE(printk_log);
1025 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1026 	VMCOREINFO_OFFSET(printk_log, len);
1027 	VMCOREINFO_OFFSET(printk_log, text_len);
1028 	VMCOREINFO_OFFSET(printk_log, dict_len);
1029 }
1030 #endif
1031 
1032 /* requested log_buf_len from kernel cmdline */
1033 static unsigned long __initdata new_log_buf_len;
1034 
1035 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1036 static void __init log_buf_len_update(u64 size)
1037 {
1038 	if (size > (u64)LOG_BUF_LEN_MAX) {
1039 		size = (u64)LOG_BUF_LEN_MAX;
1040 		pr_err("log_buf over 2G is not supported.\n");
1041 	}
1042 
1043 	if (size)
1044 		size = roundup_pow_of_two(size);
1045 	if (size > log_buf_len)
1046 		new_log_buf_len = (unsigned long)size;
1047 }
1048 
1049 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1050 static int __init log_buf_len_setup(char *str)
1051 {
1052 	u64 size;
1053 
1054 	if (!str)
1055 		return -EINVAL;
1056 
1057 	size = memparse(str, &str);
1058 
1059 	log_buf_len_update(size);
1060 
1061 	return 0;
1062 }
1063 early_param("log_buf_len", log_buf_len_setup);
1064 
1065 #ifdef CONFIG_SMP
1066 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1067 
log_buf_add_cpu(void)1068 static void __init log_buf_add_cpu(void)
1069 {
1070 	unsigned int cpu_extra;
1071 
1072 	/*
1073 	 * archs should set up cpu_possible_bits properly with
1074 	 * set_cpu_possible() after setup_arch() but just in
1075 	 * case lets ensure this is valid.
1076 	 */
1077 	if (num_possible_cpus() == 1)
1078 		return;
1079 
1080 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1081 
1082 	/* by default this will only continue through for large > 64 CPUs */
1083 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1084 		return;
1085 
1086 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1087 		__LOG_CPU_MAX_BUF_LEN);
1088 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1089 		cpu_extra);
1090 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1091 
1092 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1093 }
1094 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1095 static inline void log_buf_add_cpu(void) {}
1096 #endif /* CONFIG_SMP */
1097 
setup_log_buf(int early)1098 void __init setup_log_buf(int early)
1099 {
1100 	unsigned long flags;
1101 	char *new_log_buf;
1102 	unsigned int free;
1103 
1104 	if (log_buf != __log_buf)
1105 		return;
1106 
1107 	if (!early && !new_log_buf_len)
1108 		log_buf_add_cpu();
1109 
1110 	if (!new_log_buf_len)
1111 		return;
1112 
1113 	if (early) {
1114 		new_log_buf =
1115 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1116 	} else {
1117 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1118 							  LOG_ALIGN);
1119 	}
1120 
1121 	if (unlikely(!new_log_buf)) {
1122 		pr_err("log_buf_len: %lu bytes not available\n",
1123 			new_log_buf_len);
1124 		return;
1125 	}
1126 
1127 	logbuf_lock_irqsave(flags);
1128 	log_buf_len = new_log_buf_len;
1129 	log_buf = new_log_buf;
1130 	new_log_buf_len = 0;
1131 	free = __LOG_BUF_LEN - log_next_idx;
1132 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1133 	logbuf_unlock_irqrestore(flags);
1134 
1135 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1136 	pr_info("early log buf free: %u(%u%%)\n",
1137 		free, (free * 100) / __LOG_BUF_LEN);
1138 }
1139 
1140 static bool __read_mostly ignore_loglevel;
1141 
ignore_loglevel_setup(char * str)1142 static int __init ignore_loglevel_setup(char *str)
1143 {
1144 	ignore_loglevel = true;
1145 	pr_info("debug: ignoring loglevel setting.\n");
1146 
1147 	return 0;
1148 }
1149 
1150 early_param("ignore_loglevel", ignore_loglevel_setup);
1151 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1152 MODULE_PARM_DESC(ignore_loglevel,
1153 		 "ignore loglevel setting (prints all kernel messages to the console)");
1154 
suppress_message_printing(int level)1155 static bool suppress_message_printing(int level)
1156 {
1157 	return (level >= console_loglevel && !ignore_loglevel);
1158 }
1159 
1160 #ifdef CONFIG_BOOT_PRINTK_DELAY
1161 
1162 static int boot_delay; /* msecs delay after each printk during bootup */
1163 static unsigned long long loops_per_msec;	/* based on boot_delay */
1164 
boot_delay_setup(char * str)1165 static int __init boot_delay_setup(char *str)
1166 {
1167 	unsigned long lpj;
1168 
1169 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1170 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1171 
1172 	get_option(&str, &boot_delay);
1173 	if (boot_delay > 10 * 1000)
1174 		boot_delay = 0;
1175 
1176 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1177 		"HZ: %d, loops_per_msec: %llu\n",
1178 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1179 	return 0;
1180 }
1181 early_param("boot_delay", boot_delay_setup);
1182 
boot_delay_msec(int level)1183 static void boot_delay_msec(int level)
1184 {
1185 	unsigned long long k;
1186 	unsigned long timeout;
1187 
1188 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1189 		|| suppress_message_printing(level)) {
1190 		return;
1191 	}
1192 
1193 	k = (unsigned long long)loops_per_msec * boot_delay;
1194 
1195 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1196 	while (k) {
1197 		k--;
1198 		cpu_relax();
1199 		/*
1200 		 * use (volatile) jiffies to prevent
1201 		 * compiler reduction; loop termination via jiffies
1202 		 * is secondary and may or may not happen.
1203 		 */
1204 		if (time_after(jiffies, timeout))
1205 			break;
1206 		touch_nmi_watchdog();
1207 	}
1208 }
1209 #else
boot_delay_msec(int level)1210 static inline void boot_delay_msec(int level)
1211 {
1212 }
1213 #endif
1214 
1215 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1216 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1217 
print_time(u64 ts,char * buf)1218 static size_t print_time(u64 ts, char *buf)
1219 {
1220 	unsigned long rem_nsec;
1221 
1222 	if (!printk_time)
1223 		return 0;
1224 
1225 	rem_nsec = do_div(ts, 1000000000);
1226 
1227 	if (!buf)
1228 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1229 
1230 	return sprintf(buf, "[%5lu.%06lu] ",
1231 		       (unsigned long)ts, rem_nsec / 1000);
1232 }
1233 
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1234 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1235 {
1236 	size_t len = 0;
1237 	unsigned int prefix = (msg->facility << 3) | msg->level;
1238 
1239 	if (syslog) {
1240 		if (buf) {
1241 			len += sprintf(buf, "<%u>", prefix);
1242 		} else {
1243 			len += 3;
1244 			if (prefix > 999)
1245 				len += 3;
1246 			else if (prefix > 99)
1247 				len += 2;
1248 			else if (prefix > 9)
1249 				len++;
1250 		}
1251 	}
1252 
1253 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1254 	return len;
1255 }
1256 
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)1257 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1258 {
1259 	const char *text = log_text(msg);
1260 	size_t text_size = msg->text_len;
1261 	size_t len = 0;
1262 
1263 	do {
1264 		const char *next = memchr(text, '\n', text_size);
1265 		size_t text_len;
1266 
1267 		if (next) {
1268 			text_len = next - text;
1269 			next++;
1270 			text_size -= next - text;
1271 		} else {
1272 			text_len = text_size;
1273 		}
1274 
1275 		if (buf) {
1276 			if (print_prefix(msg, syslog, NULL) +
1277 			    text_len + 1 >= size - len)
1278 				break;
1279 
1280 			len += print_prefix(msg, syslog, buf + len);
1281 			memcpy(buf + len, text, text_len);
1282 			len += text_len;
1283 			buf[len++] = '\n';
1284 		} else {
1285 			/* SYSLOG_ACTION_* buffer size only calculation */
1286 			len += print_prefix(msg, syslog, NULL);
1287 			len += text_len;
1288 			len++;
1289 		}
1290 
1291 		text = next;
1292 	} while (text);
1293 
1294 	return len;
1295 }
1296 
syslog_print(char __user * buf,int size)1297 static int syslog_print(char __user *buf, int size)
1298 {
1299 	char *text;
1300 	struct printk_log *msg;
1301 	int len = 0;
1302 
1303 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1304 	if (!text)
1305 		return -ENOMEM;
1306 
1307 	while (size > 0) {
1308 		size_t n;
1309 		size_t skip;
1310 
1311 		logbuf_lock_irq();
1312 		if (syslog_seq < log_first_seq) {
1313 			/* messages are gone, move to first one */
1314 			syslog_seq = log_first_seq;
1315 			syslog_idx = log_first_idx;
1316 			syslog_partial = 0;
1317 		}
1318 		if (syslog_seq == log_next_seq) {
1319 			logbuf_unlock_irq();
1320 			break;
1321 		}
1322 
1323 		skip = syslog_partial;
1324 		msg = log_from_idx(syslog_idx);
1325 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1326 		if (n - syslog_partial <= size) {
1327 			/* message fits into buffer, move forward */
1328 			syslog_idx = log_next(syslog_idx);
1329 			syslog_seq++;
1330 			n -= syslog_partial;
1331 			syslog_partial = 0;
1332 		} else if (!len){
1333 			/* partial read(), remember position */
1334 			n = size;
1335 			syslog_partial += n;
1336 		} else
1337 			n = 0;
1338 		logbuf_unlock_irq();
1339 
1340 		if (!n)
1341 			break;
1342 
1343 		if (copy_to_user(buf, text + skip, n)) {
1344 			if (!len)
1345 				len = -EFAULT;
1346 			break;
1347 		}
1348 
1349 		len += n;
1350 		size -= n;
1351 		buf += n;
1352 	}
1353 
1354 	kfree(text);
1355 	return len;
1356 }
1357 
syslog_print_all(char __user * buf,int size,bool clear)1358 static int syslog_print_all(char __user *buf, int size, bool clear)
1359 {
1360 	char *text;
1361 	int len = 0;
1362 
1363 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1364 	if (!text)
1365 		return -ENOMEM;
1366 
1367 	logbuf_lock_irq();
1368 	if (buf) {
1369 		u64 next_seq;
1370 		u64 seq;
1371 		u32 idx;
1372 
1373 		/*
1374 		 * Find first record that fits, including all following records,
1375 		 * into the user-provided buffer for this dump.
1376 		 */
1377 		seq = clear_seq;
1378 		idx = clear_idx;
1379 		while (seq < log_next_seq) {
1380 			struct printk_log *msg = log_from_idx(idx);
1381 
1382 			len += msg_print_text(msg, true, NULL, 0);
1383 			idx = log_next(idx);
1384 			seq++;
1385 		}
1386 
1387 		/* move first record forward until length fits into the buffer */
1388 		seq = clear_seq;
1389 		idx = clear_idx;
1390 		while (len > size && seq < log_next_seq) {
1391 			struct printk_log *msg = log_from_idx(idx);
1392 
1393 			len -= msg_print_text(msg, true, NULL, 0);
1394 			idx = log_next(idx);
1395 			seq++;
1396 		}
1397 
1398 		/* last message fitting into this dump */
1399 		next_seq = log_next_seq;
1400 
1401 		len = 0;
1402 		while (len >= 0 && seq < next_seq) {
1403 			struct printk_log *msg = log_from_idx(idx);
1404 			int textlen;
1405 
1406 			textlen = msg_print_text(msg, true, text,
1407 						 LOG_LINE_MAX + PREFIX_MAX);
1408 			if (textlen < 0) {
1409 				len = textlen;
1410 				break;
1411 			}
1412 			idx = log_next(idx);
1413 			seq++;
1414 
1415 			logbuf_unlock_irq();
1416 			if (copy_to_user(buf + len, text, textlen))
1417 				len = -EFAULT;
1418 			else
1419 				len += textlen;
1420 			logbuf_lock_irq();
1421 
1422 			if (seq < log_first_seq) {
1423 				/* messages are gone, move to next one */
1424 				seq = log_first_seq;
1425 				idx = log_first_idx;
1426 			}
1427 		}
1428 	}
1429 
1430 	if (clear) {
1431 		clear_seq = log_next_seq;
1432 		clear_idx = log_next_idx;
1433 	}
1434 	logbuf_unlock_irq();
1435 
1436 	kfree(text);
1437 	return len;
1438 }
1439 
do_syslog(int type,char __user * buf,int len,int source)1440 int do_syslog(int type, char __user *buf, int len, int source)
1441 {
1442 	bool clear = false;
1443 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1444 	int error;
1445 
1446 	error = check_syslog_permissions(type, source);
1447 	if (error)
1448 		return error;
1449 
1450 	switch (type) {
1451 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1452 		break;
1453 	case SYSLOG_ACTION_OPEN:	/* Open log */
1454 		break;
1455 	case SYSLOG_ACTION_READ:	/* Read from log */
1456 		if (!buf || len < 0)
1457 			return -EINVAL;
1458 		if (!len)
1459 			return 0;
1460 		if (!access_ok(VERIFY_WRITE, buf, len))
1461 			return -EFAULT;
1462 		error = wait_event_interruptible(log_wait,
1463 						 syslog_seq != log_next_seq);
1464 		if (error)
1465 			return error;
1466 		error = syslog_print(buf, len);
1467 		break;
1468 	/* Read/clear last kernel messages */
1469 	case SYSLOG_ACTION_READ_CLEAR:
1470 		clear = true;
1471 		/* FALL THRU */
1472 	/* Read last kernel messages */
1473 	case SYSLOG_ACTION_READ_ALL:
1474 		if (!buf || len < 0)
1475 			return -EINVAL;
1476 		if (!len)
1477 			return 0;
1478 		if (!access_ok(VERIFY_WRITE, buf, len))
1479 			return -EFAULT;
1480 		error = syslog_print_all(buf, len, clear);
1481 		break;
1482 	/* Clear ring buffer */
1483 	case SYSLOG_ACTION_CLEAR:
1484 		syslog_print_all(NULL, 0, true);
1485 		break;
1486 	/* Disable logging to console */
1487 	case SYSLOG_ACTION_CONSOLE_OFF:
1488 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1489 			saved_console_loglevel = console_loglevel;
1490 		console_loglevel = minimum_console_loglevel;
1491 		break;
1492 	/* Enable logging to console */
1493 	case SYSLOG_ACTION_CONSOLE_ON:
1494 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1495 			console_loglevel = saved_console_loglevel;
1496 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 		}
1498 		break;
1499 	/* Set level of messages printed to console */
1500 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1501 		if (len < 1 || len > 8)
1502 			return -EINVAL;
1503 		if (len < minimum_console_loglevel)
1504 			len = minimum_console_loglevel;
1505 		console_loglevel = len;
1506 		/* Implicitly re-enable logging to console */
1507 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 		break;
1509 	/* Number of chars in the log buffer */
1510 	case SYSLOG_ACTION_SIZE_UNREAD:
1511 		logbuf_lock_irq();
1512 		if (syslog_seq < log_first_seq) {
1513 			/* messages are gone, move to first one */
1514 			syslog_seq = log_first_seq;
1515 			syslog_idx = log_first_idx;
1516 			syslog_partial = 0;
1517 		}
1518 		if (source == SYSLOG_FROM_PROC) {
1519 			/*
1520 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 			 * for pending data, not the size; return the count of
1522 			 * records, not the length.
1523 			 */
1524 			error = log_next_seq - syslog_seq;
1525 		} else {
1526 			u64 seq = syslog_seq;
1527 			u32 idx = syslog_idx;
1528 
1529 			while (seq < log_next_seq) {
1530 				struct printk_log *msg = log_from_idx(idx);
1531 
1532 				error += msg_print_text(msg, true, NULL, 0);
1533 				idx = log_next(idx);
1534 				seq++;
1535 			}
1536 			error -= syslog_partial;
1537 		}
1538 		logbuf_unlock_irq();
1539 		break;
1540 	/* Size of the log buffer */
1541 	case SYSLOG_ACTION_SIZE_BUFFER:
1542 		error = log_buf_len;
1543 		break;
1544 	default:
1545 		error = -EINVAL;
1546 		break;
1547 	}
1548 
1549 	return error;
1550 }
1551 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1552 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1553 {
1554 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1555 }
1556 
1557 /*
1558  * Special console_lock variants that help to reduce the risk of soft-lockups.
1559  * They allow to pass console_lock to another printk() call using a busy wait.
1560  */
1561 
1562 #ifdef CONFIG_LOCKDEP
1563 static struct lockdep_map console_owner_dep_map = {
1564 	.name = "console_owner"
1565 };
1566 #endif
1567 
1568 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1569 static struct task_struct *console_owner;
1570 static bool console_waiter;
1571 
1572 /**
1573  * console_lock_spinning_enable - mark beginning of code where another
1574  *	thread might safely busy wait
1575  *
1576  * This basically converts console_lock into a spinlock. This marks
1577  * the section where the console_lock owner can not sleep, because
1578  * there may be a waiter spinning (like a spinlock). Also it must be
1579  * ready to hand over the lock at the end of the section.
1580  */
console_lock_spinning_enable(void)1581 static void console_lock_spinning_enable(void)
1582 {
1583 	raw_spin_lock(&console_owner_lock);
1584 	console_owner = current;
1585 	raw_spin_unlock(&console_owner_lock);
1586 
1587 	/* The waiter may spin on us after setting console_owner */
1588 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1589 }
1590 
1591 /**
1592  * console_lock_spinning_disable_and_check - mark end of code where another
1593  *	thread was able to busy wait and check if there is a waiter
1594  *
1595  * This is called at the end of the section where spinning is allowed.
1596  * It has two functions. First, it is a signal that it is no longer
1597  * safe to start busy waiting for the lock. Second, it checks if
1598  * there is a busy waiter and passes the lock rights to her.
1599  *
1600  * Important: Callers lose the lock if there was a busy waiter.
1601  *	They must not touch items synchronized by console_lock
1602  *	in this case.
1603  *
1604  * Return: 1 if the lock rights were passed, 0 otherwise.
1605  */
console_lock_spinning_disable_and_check(void)1606 static int console_lock_spinning_disable_and_check(void)
1607 {
1608 	int waiter;
1609 
1610 	raw_spin_lock(&console_owner_lock);
1611 	waiter = READ_ONCE(console_waiter);
1612 	console_owner = NULL;
1613 	raw_spin_unlock(&console_owner_lock);
1614 
1615 	if (!waiter) {
1616 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617 		return 0;
1618 	}
1619 
1620 	/* The waiter is now free to continue */
1621 	WRITE_ONCE(console_waiter, false);
1622 
1623 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1624 
1625 	/*
1626 	 * Hand off console_lock to waiter. The waiter will perform
1627 	 * the up(). After this, the waiter is the console_lock owner.
1628 	 */
1629 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1630 	return 1;
1631 }
1632 
1633 /**
1634  * console_trylock_spinning - try to get console_lock by busy waiting
1635  *
1636  * This allows to busy wait for the console_lock when the current
1637  * owner is running in specially marked sections. It means that
1638  * the current owner is running and cannot reschedule until it
1639  * is ready to lose the lock.
1640  *
1641  * Return: 1 if we got the lock, 0 othrewise
1642  */
console_trylock_spinning(void)1643 static int console_trylock_spinning(void)
1644 {
1645 	struct task_struct *owner = NULL;
1646 	bool waiter;
1647 	bool spin = false;
1648 	unsigned long flags;
1649 
1650 	if (console_trylock())
1651 		return 1;
1652 
1653 	printk_safe_enter_irqsave(flags);
1654 
1655 	raw_spin_lock(&console_owner_lock);
1656 	owner = READ_ONCE(console_owner);
1657 	waiter = READ_ONCE(console_waiter);
1658 	if (!waiter && owner && owner != current) {
1659 		WRITE_ONCE(console_waiter, true);
1660 		spin = true;
1661 	}
1662 	raw_spin_unlock(&console_owner_lock);
1663 
1664 	/*
1665 	 * If there is an active printk() writing to the
1666 	 * consoles, instead of having it write our data too,
1667 	 * see if we can offload that load from the active
1668 	 * printer, and do some printing ourselves.
1669 	 * Go into a spin only if there isn't already a waiter
1670 	 * spinning, and there is an active printer, and
1671 	 * that active printer isn't us (recursive printk?).
1672 	 */
1673 	if (!spin) {
1674 		printk_safe_exit_irqrestore(flags);
1675 		return 0;
1676 	}
1677 
1678 	/* We spin waiting for the owner to release us */
1679 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1680 	/* Owner will clear console_waiter on hand off */
1681 	while (READ_ONCE(console_waiter))
1682 		cpu_relax();
1683 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1684 
1685 	printk_safe_exit_irqrestore(flags);
1686 	/*
1687 	 * The owner passed the console lock to us.
1688 	 * Since we did not spin on console lock, annotate
1689 	 * this as a trylock. Otherwise lockdep will
1690 	 * complain.
1691 	 */
1692 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1693 
1694 	return 1;
1695 }
1696 
1697 /*
1698  * Call the console drivers, asking them to write out
1699  * log_buf[start] to log_buf[end - 1].
1700  * The console_lock must be held.
1701  */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1702 static void call_console_drivers(const char *ext_text, size_t ext_len,
1703 				 const char *text, size_t len)
1704 {
1705 	struct console *con;
1706 
1707 	trace_console_rcuidle(text, len);
1708 
1709 	if (!console_drivers)
1710 		return;
1711 
1712 	for_each_console(con) {
1713 		if (exclusive_console && con != exclusive_console)
1714 			continue;
1715 		if (!(con->flags & CON_ENABLED))
1716 			continue;
1717 		if (!con->write)
1718 			continue;
1719 		if (!cpu_online(smp_processor_id()) &&
1720 		    !(con->flags & CON_ANYTIME))
1721 			continue;
1722 		if (con->flags & CON_EXTENDED)
1723 			con->write(con, ext_text, ext_len);
1724 		else
1725 			con->write(con, text, len);
1726 	}
1727 }
1728 
1729 int printk_delay_msec __read_mostly;
1730 
printk_delay(void)1731 static inline void printk_delay(void)
1732 {
1733 	if (unlikely(printk_delay_msec)) {
1734 		int m = printk_delay_msec;
1735 
1736 		while (m--) {
1737 			mdelay(1);
1738 			touch_nmi_watchdog();
1739 		}
1740 	}
1741 }
1742 
1743 /*
1744  * Continuation lines are buffered, and not committed to the record buffer
1745  * until the line is complete, or a race forces it. The line fragments
1746  * though, are printed immediately to the consoles to ensure everything has
1747  * reached the console in case of a kernel crash.
1748  */
1749 static struct cont {
1750 	char buf[LOG_LINE_MAX];
1751 	size_t len;			/* length == 0 means unused buffer */
1752 	struct task_struct *owner;	/* task of first print*/
1753 	u64 ts_nsec;			/* time of first print */
1754 	u8 level;			/* log level of first message */
1755 	u8 facility;			/* log facility of first message */
1756 	enum log_flags flags;		/* prefix, newline flags */
1757 } cont;
1758 
cont_flush(void)1759 static void cont_flush(void)
1760 {
1761 	if (cont.len == 0)
1762 		return;
1763 
1764 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1765 		  NULL, 0, cont.buf, cont.len);
1766 	cont.len = 0;
1767 }
1768 
cont_add(int facility,int level,enum log_flags flags,const char * text,size_t len)1769 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1770 {
1771 	/*
1772 	 * If ext consoles are present, flush and skip in-kernel
1773 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1774 	 * the line gets too long, split it up in separate records.
1775 	 */
1776 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1777 		cont_flush();
1778 		return false;
1779 	}
1780 
1781 	if (!cont.len) {
1782 		cont.facility = facility;
1783 		cont.level = level;
1784 		cont.owner = current;
1785 		cont.ts_nsec = local_clock();
1786 		cont.flags = flags;
1787 	}
1788 
1789 	memcpy(cont.buf + cont.len, text, len);
1790 	cont.len += len;
1791 
1792 	// The original flags come from the first line,
1793 	// but later continuations can add a newline.
1794 	if (flags & LOG_NEWLINE) {
1795 		cont.flags |= LOG_NEWLINE;
1796 		cont_flush();
1797 	}
1798 
1799 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1800 		cont_flush();
1801 
1802 	return true;
1803 }
1804 
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1805 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1806 {
1807 	/*
1808 	 * If an earlier line was buffered, and we're a continuation
1809 	 * write from the same process, try to add it to the buffer.
1810 	 */
1811 	if (cont.len) {
1812 		if (cont.owner == current && (lflags & LOG_CONT)) {
1813 			if (cont_add(facility, level, lflags, text, text_len))
1814 				return text_len;
1815 		}
1816 		/* Otherwise, make sure it's flushed */
1817 		cont_flush();
1818 	}
1819 
1820 	/* Skip empty continuation lines that couldn't be added - they just flush */
1821 	if (!text_len && (lflags & LOG_CONT))
1822 		return 0;
1823 
1824 	/* If it doesn't end in a newline, try to buffer the current line */
1825 	if (!(lflags & LOG_NEWLINE)) {
1826 		if (cont_add(facility, level, lflags, text, text_len))
1827 			return text_len;
1828 	}
1829 
1830 	/* Store it in the record log */
1831 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1832 }
1833 
1834 /* Must be called under logbuf_lock. */
vprintk_store(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1835 int vprintk_store(int facility, int level,
1836 		  const char *dict, size_t dictlen,
1837 		  const char *fmt, va_list args)
1838 {
1839 	static char textbuf[LOG_LINE_MAX];
1840 	char *text = textbuf;
1841 	size_t text_len;
1842 	enum log_flags lflags = 0;
1843 
1844 	/*
1845 	 * The printf needs to come first; we need the syslog
1846 	 * prefix which might be passed-in as a parameter.
1847 	 */
1848 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1849 
1850 	/* mark and strip a trailing newline */
1851 	if (text_len && text[text_len-1] == '\n') {
1852 		text_len--;
1853 		lflags |= LOG_NEWLINE;
1854 	}
1855 
1856 	/* strip kernel syslog prefix and extract log level or control flags */
1857 	if (facility == 0) {
1858 		int kern_level;
1859 
1860 		while ((kern_level = printk_get_level(text)) != 0) {
1861 			switch (kern_level) {
1862 			case '0' ... '7':
1863 				if (level == LOGLEVEL_DEFAULT)
1864 					level = kern_level - '0';
1865 				/* fallthrough */
1866 			case 'd':	/* KERN_DEFAULT */
1867 				lflags |= LOG_PREFIX;
1868 				break;
1869 			case 'c':	/* KERN_CONT */
1870 				lflags |= LOG_CONT;
1871 			}
1872 
1873 			text_len -= 2;
1874 			text += 2;
1875 		}
1876 	}
1877 
1878 	if (level == LOGLEVEL_DEFAULT)
1879 		level = default_message_loglevel;
1880 
1881 	if (dict)
1882 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1883 
1884 	return log_output(facility, level, lflags,
1885 			  dict, dictlen, text, text_len);
1886 }
1887 
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1888 asmlinkage int vprintk_emit(int facility, int level,
1889 			    const char *dict, size_t dictlen,
1890 			    const char *fmt, va_list args)
1891 {
1892 	int printed_len;
1893 	bool in_sched = false;
1894 	unsigned long flags;
1895 
1896 	if (level == LOGLEVEL_SCHED) {
1897 		level = LOGLEVEL_DEFAULT;
1898 		in_sched = true;
1899 	}
1900 
1901 	boot_delay_msec(level);
1902 	printk_delay();
1903 
1904 	/* This stops the holder of console_sem just where we want him */
1905 	logbuf_lock_irqsave(flags);
1906 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1907 	logbuf_unlock_irqrestore(flags);
1908 
1909 	/* If called from the scheduler, we can not call up(). */
1910 	if (!in_sched) {
1911 		/*
1912 		 * Disable preemption to avoid being preempted while holding
1913 		 * console_sem which would prevent anyone from printing to
1914 		 * console
1915 		 */
1916 		preempt_disable();
1917 		/*
1918 		 * Try to acquire and then immediately release the console
1919 		 * semaphore.  The release will print out buffers and wake up
1920 		 * /dev/kmsg and syslog() users.
1921 		 */
1922 		if (console_trylock_spinning())
1923 			console_unlock();
1924 		preempt_enable();
1925 	}
1926 
1927 	return printed_len;
1928 }
1929 EXPORT_SYMBOL(vprintk_emit);
1930 
vprintk(const char * fmt,va_list args)1931 asmlinkage int vprintk(const char *fmt, va_list args)
1932 {
1933 	return vprintk_func(fmt, args);
1934 }
1935 EXPORT_SYMBOL(vprintk);
1936 
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1937 asmlinkage int printk_emit(int facility, int level,
1938 			   const char *dict, size_t dictlen,
1939 			   const char *fmt, ...)
1940 {
1941 	va_list args;
1942 	int r;
1943 
1944 	va_start(args, fmt);
1945 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1946 	va_end(args);
1947 
1948 	return r;
1949 }
1950 EXPORT_SYMBOL(printk_emit);
1951 
vprintk_default(const char * fmt,va_list args)1952 int vprintk_default(const char *fmt, va_list args)
1953 {
1954 	int r;
1955 
1956 #ifdef CONFIG_KGDB_KDB
1957 	/* Allow to pass printk() to kdb but avoid a recursion. */
1958 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1959 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 		return r;
1961 	}
1962 #endif
1963 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964 
1965 	return r;
1966 }
1967 EXPORT_SYMBOL_GPL(vprintk_default);
1968 
1969 /**
1970  * printk - print a kernel message
1971  * @fmt: format string
1972  *
1973  * This is printk(). It can be called from any context. We want it to work.
1974  *
1975  * We try to grab the console_lock. If we succeed, it's easy - we log the
1976  * output and call the console drivers.  If we fail to get the semaphore, we
1977  * place the output into the log buffer and return. The current holder of
1978  * the console_sem will notice the new output in console_unlock(); and will
1979  * send it to the consoles before releasing the lock.
1980  *
1981  * One effect of this deferred printing is that code which calls printk() and
1982  * then changes console_loglevel may break. This is because console_loglevel
1983  * is inspected when the actual printing occurs.
1984  *
1985  * See also:
1986  * printf(3)
1987  *
1988  * See the vsnprintf() documentation for format string extensions over C99.
1989  */
printk(const char * fmt,...)1990 asmlinkage __visible int printk(const char *fmt, ...)
1991 {
1992 	va_list args;
1993 	int r;
1994 
1995 	va_start(args, fmt);
1996 	r = vprintk_func(fmt, args);
1997 	va_end(args);
1998 
1999 	return r;
2000 }
2001 EXPORT_SYMBOL(printk);
2002 
2003 #else /* CONFIG_PRINTK */
2004 
2005 #define LOG_LINE_MAX		0
2006 #define PREFIX_MAX		0
2007 
2008 static u64 syslog_seq;
2009 static u32 syslog_idx;
2010 static u64 console_seq;
2011 static u32 console_idx;
2012 static u64 log_first_seq;
2013 static u32 log_first_idx;
2014 static u64 log_next_seq;
log_text(const struct printk_log * msg)2015 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2016 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2017 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2018 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)2019 static ssize_t msg_print_ext_header(char *buf, size_t size,
2020 				    struct printk_log *msg,
2021 				    u64 seq) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2022 static ssize_t msg_print_ext_body(char *buf, size_t size,
2023 				  char *dict, size_t dict_len,
2024 				  char *text, size_t text_len) { return 0; }
console_lock_spinning_enable(void)2025 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2026 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2027 static void call_console_drivers(const char *ext_text, size_t ext_len,
2028 				 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)2029 static size_t msg_print_text(const struct printk_log *msg,
2030 			     bool syslog, char *buf, size_t size) { return 0; }
suppress_message_printing(int level)2031 static bool suppress_message_printing(int level) { return false; }
2032 
2033 #endif /* CONFIG_PRINTK */
2034 
2035 #ifdef CONFIG_EARLY_PRINTK
2036 struct console *early_console;
2037 
early_printk(const char * fmt,...)2038 asmlinkage __visible void early_printk(const char *fmt, ...)
2039 {
2040 	va_list ap;
2041 	char buf[512];
2042 	int n;
2043 
2044 	if (!early_console)
2045 		return;
2046 
2047 	va_start(ap, fmt);
2048 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2049 	va_end(ap);
2050 
2051 	early_console->write(early_console, buf, n);
2052 }
2053 #endif
2054 
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2055 static int __add_preferred_console(char *name, int idx, char *options,
2056 				   char *brl_options)
2057 {
2058 	struct console_cmdline *c;
2059 	int i;
2060 
2061 	/*
2062 	 *	See if this tty is not yet registered, and
2063 	 *	if we have a slot free.
2064 	 */
2065 	for (i = 0, c = console_cmdline;
2066 	     i < MAX_CMDLINECONSOLES && c->name[0];
2067 	     i++, c++) {
2068 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2069 			if (!brl_options)
2070 				preferred_console = i;
2071 			return 0;
2072 		}
2073 	}
2074 	if (i == MAX_CMDLINECONSOLES)
2075 		return -E2BIG;
2076 	if (!brl_options)
2077 		preferred_console = i;
2078 	strlcpy(c->name, name, sizeof(c->name));
2079 	c->options = options;
2080 	braille_set_options(c, brl_options);
2081 
2082 	c->index = idx;
2083 	return 0;
2084 }
2085 /*
2086  * Set up a console.  Called via do_early_param() in init/main.c
2087  * for each "console=" parameter in the boot command line.
2088  */
console_setup(char * str)2089 static int __init console_setup(char *str)
2090 {
2091 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2092 	char *s, *options, *brl_options = NULL;
2093 	int idx;
2094 
2095 	if (_braille_console_setup(&str, &brl_options))
2096 		return 1;
2097 
2098 	/*
2099 	 * Decode str into name, index, options.
2100 	 */
2101 	if (str[0] >= '0' && str[0] <= '9') {
2102 		strcpy(buf, "ttyS");
2103 		strncpy(buf + 4, str, sizeof(buf) - 5);
2104 	} else {
2105 		strncpy(buf, str, sizeof(buf) - 1);
2106 	}
2107 	buf[sizeof(buf) - 1] = 0;
2108 	options = strchr(str, ',');
2109 	if (options)
2110 		*(options++) = 0;
2111 #ifdef __sparc__
2112 	if (!strcmp(str, "ttya"))
2113 		strcpy(buf, "ttyS0");
2114 	if (!strcmp(str, "ttyb"))
2115 		strcpy(buf, "ttyS1");
2116 #endif
2117 	for (s = buf; *s; s++)
2118 		if (isdigit(*s) || *s == ',')
2119 			break;
2120 	idx = simple_strtoul(s, NULL, 10);
2121 	*s = 0;
2122 
2123 	__add_preferred_console(buf, idx, options, brl_options);
2124 	console_set_on_cmdline = 1;
2125 	return 1;
2126 }
2127 __setup("console=", console_setup);
2128 
2129 /**
2130  * add_preferred_console - add a device to the list of preferred consoles.
2131  * @name: device name
2132  * @idx: device index
2133  * @options: options for this console
2134  *
2135  * The last preferred console added will be used for kernel messages
2136  * and stdin/out/err for init.  Normally this is used by console_setup
2137  * above to handle user-supplied console arguments; however it can also
2138  * be used by arch-specific code either to override the user or more
2139  * commonly to provide a default console (ie from PROM variables) when
2140  * the user has not supplied one.
2141  */
add_preferred_console(char * name,int idx,char * options)2142 int add_preferred_console(char *name, int idx, char *options)
2143 {
2144 	return __add_preferred_console(name, idx, options, NULL);
2145 }
2146 
2147 bool console_suspend_enabled = true;
2148 EXPORT_SYMBOL(console_suspend_enabled);
2149 
console_suspend_disable(char * str)2150 static int __init console_suspend_disable(char *str)
2151 {
2152 	console_suspend_enabled = false;
2153 	return 1;
2154 }
2155 __setup("no_console_suspend", console_suspend_disable);
2156 module_param_named(console_suspend, console_suspend_enabled,
2157 		bool, S_IRUGO | S_IWUSR);
2158 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2159 	" and hibernate operations");
2160 
2161 /**
2162  * suspend_console - suspend the console subsystem
2163  *
2164  * This disables printk() while we go into suspend states
2165  */
suspend_console(void)2166 void suspend_console(void)
2167 {
2168 	if (!console_suspend_enabled)
2169 		return;
2170 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2171 	console_lock();
2172 	console_suspended = 1;
2173 	up_console_sem();
2174 }
2175 
resume_console(void)2176 void resume_console(void)
2177 {
2178 	if (!console_suspend_enabled)
2179 		return;
2180 	down_console_sem();
2181 	console_suspended = 0;
2182 	console_unlock();
2183 }
2184 
2185 /**
2186  * console_cpu_notify - print deferred console messages after CPU hotplug
2187  * @cpu: unused
2188  *
2189  * If printk() is called from a CPU that is not online yet, the messages
2190  * will be printed on the console only if there are CON_ANYTIME consoles.
2191  * This function is called when a new CPU comes online (or fails to come
2192  * up) or goes offline.
2193  */
console_cpu_notify(unsigned int cpu)2194 static int console_cpu_notify(unsigned int cpu)
2195 {
2196 	if (!cpuhp_tasks_frozen) {
2197 		/* If trylock fails, someone else is doing the printing */
2198 		if (console_trylock())
2199 			console_unlock();
2200 	}
2201 	return 0;
2202 }
2203 
2204 /**
2205  * console_lock - lock the console system for exclusive use.
2206  *
2207  * Acquires a lock which guarantees that the caller has
2208  * exclusive access to the console system and the console_drivers list.
2209  *
2210  * Can sleep, returns nothing.
2211  */
console_lock(void)2212 void console_lock(void)
2213 {
2214 	might_sleep();
2215 
2216 	down_console_sem();
2217 	if (console_suspended)
2218 		return;
2219 	console_locked = 1;
2220 	console_may_schedule = 1;
2221 }
2222 EXPORT_SYMBOL(console_lock);
2223 
2224 /**
2225  * console_trylock - try to lock the console system for exclusive use.
2226  *
2227  * Try to acquire a lock which guarantees that the caller has exclusive
2228  * access to the console system and the console_drivers list.
2229  *
2230  * returns 1 on success, and 0 on failure to acquire the lock.
2231  */
console_trylock(void)2232 int console_trylock(void)
2233 {
2234 	if (down_trylock_console_sem())
2235 		return 0;
2236 	if (console_suspended) {
2237 		up_console_sem();
2238 		return 0;
2239 	}
2240 	console_locked = 1;
2241 	console_may_schedule = 0;
2242 	return 1;
2243 }
2244 EXPORT_SYMBOL(console_trylock);
2245 
is_console_locked(void)2246 int is_console_locked(void)
2247 {
2248 	return console_locked;
2249 }
2250 
2251 /*
2252  * Check if we have any console that is capable of printing while cpu is
2253  * booting or shutting down. Requires console_sem.
2254  */
have_callable_console(void)2255 static int have_callable_console(void)
2256 {
2257 	struct console *con;
2258 
2259 	for_each_console(con)
2260 		if ((con->flags & CON_ENABLED) &&
2261 				(con->flags & CON_ANYTIME))
2262 			return 1;
2263 
2264 	return 0;
2265 }
2266 
2267 /*
2268  * Can we actually use the console at this time on this cpu?
2269  *
2270  * Console drivers may assume that per-cpu resources have been allocated. So
2271  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2272  * call them until this CPU is officially up.
2273  */
can_use_console(void)2274 static inline int can_use_console(void)
2275 {
2276 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2277 }
2278 
2279 /**
2280  * console_unlock - unlock the console system
2281  *
2282  * Releases the console_lock which the caller holds on the console system
2283  * and the console driver list.
2284  *
2285  * While the console_lock was held, console output may have been buffered
2286  * by printk().  If this is the case, console_unlock(); emits
2287  * the output prior to releasing the lock.
2288  *
2289  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2290  *
2291  * console_unlock(); may be called from any context.
2292  */
console_unlock(void)2293 void console_unlock(void)
2294 {
2295 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2296 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2297 	static u64 seen_seq;
2298 	unsigned long flags;
2299 	bool wake_klogd = false;
2300 	bool do_cond_resched, retry;
2301 
2302 	if (console_suspended) {
2303 		up_console_sem();
2304 		return;
2305 	}
2306 
2307 	/*
2308 	 * Console drivers are called with interrupts disabled, so
2309 	 * @console_may_schedule should be cleared before; however, we may
2310 	 * end up dumping a lot of lines, for example, if called from
2311 	 * console registration path, and should invoke cond_resched()
2312 	 * between lines if allowable.  Not doing so can cause a very long
2313 	 * scheduling stall on a slow console leading to RCU stall and
2314 	 * softlockup warnings which exacerbate the issue with more
2315 	 * messages practically incapacitating the system.
2316 	 *
2317 	 * console_trylock() is not able to detect the preemptive
2318 	 * context reliably. Therefore the value must be stored before
2319 	 * and cleared after the the "again" goto label.
2320 	 */
2321 	do_cond_resched = console_may_schedule;
2322 again:
2323 	console_may_schedule = 0;
2324 
2325 	/*
2326 	 * We released the console_sem lock, so we need to recheck if
2327 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2328 	 * console.
2329 	 */
2330 	if (!can_use_console()) {
2331 		console_locked = 0;
2332 		up_console_sem();
2333 		return;
2334 	}
2335 
2336 	for (;;) {
2337 		struct printk_log *msg;
2338 		size_t ext_len = 0;
2339 		size_t len;
2340 
2341 		printk_safe_enter_irqsave(flags);
2342 		raw_spin_lock(&logbuf_lock);
2343 		if (seen_seq != log_next_seq) {
2344 			wake_klogd = true;
2345 			seen_seq = log_next_seq;
2346 		}
2347 
2348 		if (console_seq < log_first_seq) {
2349 			len = sprintf(text, "** %u printk messages dropped ** ",
2350 				      (unsigned)(log_first_seq - console_seq));
2351 
2352 			/* messages are gone, move to first one */
2353 			console_seq = log_first_seq;
2354 			console_idx = log_first_idx;
2355 		} else {
2356 			len = 0;
2357 		}
2358 skip:
2359 		if (console_seq == log_next_seq)
2360 			break;
2361 
2362 		msg = log_from_idx(console_idx);
2363 		if (suppress_message_printing(msg->level)) {
2364 			/*
2365 			 * Skip record we have buffered and already printed
2366 			 * directly to the console when we received it, and
2367 			 * record that has level above the console loglevel.
2368 			 */
2369 			console_idx = log_next(console_idx);
2370 			console_seq++;
2371 			goto skip;
2372 		}
2373 
2374 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2375 		if (nr_ext_console_drivers) {
2376 			ext_len = msg_print_ext_header(ext_text,
2377 						sizeof(ext_text),
2378 						msg, console_seq);
2379 			ext_len += msg_print_ext_body(ext_text + ext_len,
2380 						sizeof(ext_text) - ext_len,
2381 						log_dict(msg), msg->dict_len,
2382 						log_text(msg), msg->text_len);
2383 		}
2384 		console_idx = log_next(console_idx);
2385 		console_seq++;
2386 		raw_spin_unlock(&logbuf_lock);
2387 
2388 		/*
2389 		 * While actively printing out messages, if another printk()
2390 		 * were to occur on another CPU, it may wait for this one to
2391 		 * finish. This task can not be preempted if there is a
2392 		 * waiter waiting to take over.
2393 		 */
2394 		console_lock_spinning_enable();
2395 
2396 		stop_critical_timings();	/* don't trace print latency */
2397 		call_console_drivers(ext_text, ext_len, text, len);
2398 		start_critical_timings();
2399 
2400 		if (console_lock_spinning_disable_and_check()) {
2401 			printk_safe_exit_irqrestore(flags);
2402 			goto out;
2403 		}
2404 
2405 		printk_safe_exit_irqrestore(flags);
2406 
2407 		if (do_cond_resched)
2408 			cond_resched();
2409 	}
2410 
2411 	console_locked = 0;
2412 
2413 	/* Release the exclusive_console once it is used */
2414 	if (unlikely(exclusive_console))
2415 		exclusive_console = NULL;
2416 
2417 	raw_spin_unlock(&logbuf_lock);
2418 
2419 	up_console_sem();
2420 
2421 	/*
2422 	 * Someone could have filled up the buffer again, so re-check if there's
2423 	 * something to flush. In case we cannot trylock the console_sem again,
2424 	 * there's a new owner and the console_unlock() from them will do the
2425 	 * flush, no worries.
2426 	 */
2427 	raw_spin_lock(&logbuf_lock);
2428 	retry = console_seq != log_next_seq;
2429 	raw_spin_unlock(&logbuf_lock);
2430 	printk_safe_exit_irqrestore(flags);
2431 
2432 	if (retry && console_trylock())
2433 		goto again;
2434 
2435 out:
2436 	if (wake_klogd)
2437 		wake_up_klogd();
2438 }
2439 EXPORT_SYMBOL(console_unlock);
2440 
2441 /**
2442  * console_conditional_schedule - yield the CPU if required
2443  *
2444  * If the console code is currently allowed to sleep, and
2445  * if this CPU should yield the CPU to another task, do
2446  * so here.
2447  *
2448  * Must be called within console_lock();.
2449  */
console_conditional_schedule(void)2450 void __sched console_conditional_schedule(void)
2451 {
2452 	if (console_may_schedule)
2453 		cond_resched();
2454 }
2455 EXPORT_SYMBOL(console_conditional_schedule);
2456 
console_unblank(void)2457 void console_unblank(void)
2458 {
2459 	struct console *c;
2460 
2461 	/*
2462 	 * console_unblank can no longer be called in interrupt context unless
2463 	 * oops_in_progress is set to 1..
2464 	 */
2465 	if (oops_in_progress) {
2466 		if (down_trylock_console_sem() != 0)
2467 			return;
2468 	} else
2469 		console_lock();
2470 
2471 	console_locked = 1;
2472 	console_may_schedule = 0;
2473 	for_each_console(c)
2474 		if ((c->flags & CON_ENABLED) && c->unblank)
2475 			c->unblank();
2476 	console_unlock();
2477 }
2478 
2479 /**
2480  * console_flush_on_panic - flush console content on panic
2481  *
2482  * Immediately output all pending messages no matter what.
2483  */
console_flush_on_panic(void)2484 void console_flush_on_panic(void)
2485 {
2486 	/*
2487 	 * If someone else is holding the console lock, trylock will fail
2488 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2489 	 * that messages are flushed out.  As this can be called from any
2490 	 * context and we don't want to get preempted while flushing,
2491 	 * ensure may_schedule is cleared.
2492 	 */
2493 	console_trylock();
2494 	console_may_schedule = 0;
2495 	console_unlock();
2496 }
2497 
2498 /*
2499  * Return the console tty driver structure and its associated index
2500  */
console_device(int * index)2501 struct tty_driver *console_device(int *index)
2502 {
2503 	struct console *c;
2504 	struct tty_driver *driver = NULL;
2505 
2506 	console_lock();
2507 	for_each_console(c) {
2508 		if (!c->device)
2509 			continue;
2510 		driver = c->device(c, index);
2511 		if (driver)
2512 			break;
2513 	}
2514 	console_unlock();
2515 	return driver;
2516 }
2517 
2518 /*
2519  * Prevent further output on the passed console device so that (for example)
2520  * serial drivers can disable console output before suspending a port, and can
2521  * re-enable output afterwards.
2522  */
console_stop(struct console * console)2523 void console_stop(struct console *console)
2524 {
2525 	console_lock();
2526 	console->flags &= ~CON_ENABLED;
2527 	console_unlock();
2528 }
2529 EXPORT_SYMBOL(console_stop);
2530 
console_start(struct console * console)2531 void console_start(struct console *console)
2532 {
2533 	console_lock();
2534 	console->flags |= CON_ENABLED;
2535 	console_unlock();
2536 }
2537 EXPORT_SYMBOL(console_start);
2538 
2539 static int __read_mostly keep_bootcon;
2540 
keep_bootcon_setup(char * str)2541 static int __init keep_bootcon_setup(char *str)
2542 {
2543 	keep_bootcon = 1;
2544 	pr_info("debug: skip boot console de-registration.\n");
2545 
2546 	return 0;
2547 }
2548 
2549 early_param("keep_bootcon", keep_bootcon_setup);
2550 
2551 /*
2552  * The console driver calls this routine during kernel initialization
2553  * to register the console printing procedure with printk() and to
2554  * print any messages that were printed by the kernel before the
2555  * console driver was initialized.
2556  *
2557  * This can happen pretty early during the boot process (because of
2558  * early_printk) - sometimes before setup_arch() completes - be careful
2559  * of what kernel features are used - they may not be initialised yet.
2560  *
2561  * There are two types of consoles - bootconsoles (early_printk) and
2562  * "real" consoles (everything which is not a bootconsole) which are
2563  * handled differently.
2564  *  - Any number of bootconsoles can be registered at any time.
2565  *  - As soon as a "real" console is registered, all bootconsoles
2566  *    will be unregistered automatically.
2567  *  - Once a "real" console is registered, any attempt to register a
2568  *    bootconsoles will be rejected
2569  */
register_console(struct console * newcon)2570 void register_console(struct console *newcon)
2571 {
2572 	int i;
2573 	unsigned long flags;
2574 	struct console *bcon = NULL;
2575 	struct console_cmdline *c;
2576 	static bool has_preferred;
2577 
2578 	if (console_drivers)
2579 		for_each_console(bcon)
2580 			if (WARN(bcon == newcon,
2581 					"console '%s%d' already registered\n",
2582 					bcon->name, bcon->index))
2583 				return;
2584 
2585 	/*
2586 	 * before we register a new CON_BOOT console, make sure we don't
2587 	 * already have a valid console
2588 	 */
2589 	if (console_drivers && newcon->flags & CON_BOOT) {
2590 		/* find the last or real console */
2591 		for_each_console(bcon) {
2592 			if (!(bcon->flags & CON_BOOT)) {
2593 				pr_info("Too late to register bootconsole %s%d\n",
2594 					newcon->name, newcon->index);
2595 				return;
2596 			}
2597 		}
2598 	}
2599 
2600 	if (console_drivers && console_drivers->flags & CON_BOOT)
2601 		bcon = console_drivers;
2602 
2603 	if (!has_preferred || bcon || !console_drivers)
2604 		has_preferred = preferred_console >= 0;
2605 
2606 	/*
2607 	 *	See if we want to use this console driver. If we
2608 	 *	didn't select a console we take the first one
2609 	 *	that registers here.
2610 	 */
2611 	if (!has_preferred) {
2612 		if (newcon->index < 0)
2613 			newcon->index = 0;
2614 		if (newcon->setup == NULL ||
2615 		    newcon->setup(newcon, NULL) == 0) {
2616 			newcon->flags |= CON_ENABLED;
2617 			if (newcon->device) {
2618 				newcon->flags |= CON_CONSDEV;
2619 				has_preferred = true;
2620 			}
2621 		}
2622 	}
2623 
2624 	/*
2625 	 *	See if this console matches one we selected on
2626 	 *	the command line.
2627 	 */
2628 	for (i = 0, c = console_cmdline;
2629 	     i < MAX_CMDLINECONSOLES && c->name[0];
2630 	     i++, c++) {
2631 		if (!newcon->match ||
2632 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2633 			/* default matching */
2634 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2635 			if (strcmp(c->name, newcon->name) != 0)
2636 				continue;
2637 			if (newcon->index >= 0 &&
2638 			    newcon->index != c->index)
2639 				continue;
2640 			if (newcon->index < 0)
2641 				newcon->index = c->index;
2642 
2643 			if (_braille_register_console(newcon, c))
2644 				return;
2645 
2646 			if (newcon->setup &&
2647 			    newcon->setup(newcon, c->options) != 0)
2648 				break;
2649 		}
2650 
2651 		newcon->flags |= CON_ENABLED;
2652 		if (i == preferred_console) {
2653 			newcon->flags |= CON_CONSDEV;
2654 			has_preferred = true;
2655 		}
2656 		break;
2657 	}
2658 
2659 	if (!(newcon->flags & CON_ENABLED))
2660 		return;
2661 
2662 	/*
2663 	 * If we have a bootconsole, and are switching to a real console,
2664 	 * don't print everything out again, since when the boot console, and
2665 	 * the real console are the same physical device, it's annoying to
2666 	 * see the beginning boot messages twice
2667 	 */
2668 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2669 		newcon->flags &= ~CON_PRINTBUFFER;
2670 
2671 	/*
2672 	 *	Put this console in the list - keep the
2673 	 *	preferred driver at the head of the list.
2674 	 */
2675 	console_lock();
2676 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2677 		newcon->next = console_drivers;
2678 		console_drivers = newcon;
2679 		if (newcon->next)
2680 			newcon->next->flags &= ~CON_CONSDEV;
2681 	} else {
2682 		newcon->next = console_drivers->next;
2683 		console_drivers->next = newcon;
2684 	}
2685 
2686 	if (newcon->flags & CON_EXTENDED)
2687 		if (!nr_ext_console_drivers++)
2688 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2689 
2690 	if (newcon->flags & CON_PRINTBUFFER) {
2691 		/*
2692 		 * console_unlock(); will print out the buffered messages
2693 		 * for us.
2694 		 */
2695 		logbuf_lock_irqsave(flags);
2696 		console_seq = syslog_seq;
2697 		console_idx = syslog_idx;
2698 		logbuf_unlock_irqrestore(flags);
2699 		/*
2700 		 * We're about to replay the log buffer.  Only do this to the
2701 		 * just-registered console to avoid excessive message spam to
2702 		 * the already-registered consoles.
2703 		 */
2704 		exclusive_console = newcon;
2705 	}
2706 	console_unlock();
2707 	console_sysfs_notify();
2708 
2709 	/*
2710 	 * By unregistering the bootconsoles after we enable the real console
2711 	 * we get the "console xxx enabled" message on all the consoles -
2712 	 * boot consoles, real consoles, etc - this is to ensure that end
2713 	 * users know there might be something in the kernel's log buffer that
2714 	 * went to the bootconsole (that they do not see on the real console)
2715 	 */
2716 	pr_info("%sconsole [%s%d] enabled\n",
2717 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2718 		newcon->name, newcon->index);
2719 	if (bcon &&
2720 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2721 	    !keep_bootcon) {
2722 		/* We need to iterate through all boot consoles, to make
2723 		 * sure we print everything out, before we unregister them.
2724 		 */
2725 		for_each_console(bcon)
2726 			if (bcon->flags & CON_BOOT)
2727 				unregister_console(bcon);
2728 	}
2729 }
2730 EXPORT_SYMBOL(register_console);
2731 
unregister_console(struct console * console)2732 int unregister_console(struct console *console)
2733 {
2734         struct console *a, *b;
2735 	int res;
2736 
2737 	pr_info("%sconsole [%s%d] disabled\n",
2738 		(console->flags & CON_BOOT) ? "boot" : "" ,
2739 		console->name, console->index);
2740 
2741 	res = _braille_unregister_console(console);
2742 	if (res)
2743 		return res;
2744 
2745 	res = 1;
2746 	console_lock();
2747 	if (console_drivers == console) {
2748 		console_drivers=console->next;
2749 		res = 0;
2750 	} else if (console_drivers) {
2751 		for (a=console_drivers->next, b=console_drivers ;
2752 		     a; b=a, a=b->next) {
2753 			if (a == console) {
2754 				b->next = a->next;
2755 				res = 0;
2756 				break;
2757 			}
2758 		}
2759 	}
2760 
2761 	if (!res && (console->flags & CON_EXTENDED))
2762 		nr_ext_console_drivers--;
2763 
2764 	/*
2765 	 * If this isn't the last console and it has CON_CONSDEV set, we
2766 	 * need to set it on the next preferred console.
2767 	 */
2768 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2769 		console_drivers->flags |= CON_CONSDEV;
2770 
2771 	console->flags &= ~CON_ENABLED;
2772 	console_unlock();
2773 	console_sysfs_notify();
2774 	return res;
2775 }
2776 EXPORT_SYMBOL(unregister_console);
2777 
2778 /*
2779  * Initialize the console device. This is called *early*, so
2780  * we can't necessarily depend on lots of kernel help here.
2781  * Just do some early initializations, and do the complex setup
2782  * later.
2783  */
console_init(void)2784 void __init console_init(void)
2785 {
2786 	initcall_t *call;
2787 
2788 	/* Setup the default TTY line discipline. */
2789 	n_tty_init();
2790 
2791 	/*
2792 	 * set up the console device so that later boot sequences can
2793 	 * inform about problems etc..
2794 	 */
2795 	call = __con_initcall_start;
2796 	while (call < __con_initcall_end) {
2797 		(*call)();
2798 		call++;
2799 	}
2800 }
2801 
2802 /*
2803  * Some boot consoles access data that is in the init section and which will
2804  * be discarded after the initcalls have been run. To make sure that no code
2805  * will access this data, unregister the boot consoles in a late initcall.
2806  *
2807  * If for some reason, such as deferred probe or the driver being a loadable
2808  * module, the real console hasn't registered yet at this point, there will
2809  * be a brief interval in which no messages are logged to the console, which
2810  * makes it difficult to diagnose problems that occur during this time.
2811  *
2812  * To mitigate this problem somewhat, only unregister consoles whose memory
2813  * intersects with the init section. Note that all other boot consoles will
2814  * get unregistred when the real preferred console is registered.
2815  */
printk_late_init(void)2816 static int __init printk_late_init(void)
2817 {
2818 	struct console *con;
2819 	int ret;
2820 
2821 	for_each_console(con) {
2822 		if (!(con->flags & CON_BOOT))
2823 			continue;
2824 
2825 		/* Check addresses that might be used for enabled consoles. */
2826 		if (init_section_intersects(con, sizeof(*con)) ||
2827 		    init_section_contains(con->write, 0) ||
2828 		    init_section_contains(con->read, 0) ||
2829 		    init_section_contains(con->device, 0) ||
2830 		    init_section_contains(con->unblank, 0) ||
2831 		    init_section_contains(con->data, 0)) {
2832 			/*
2833 			 * Please, consider moving the reported consoles out
2834 			 * of the init section.
2835 			 */
2836 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2837 				con->name, con->index);
2838 			unregister_console(con);
2839 		}
2840 	}
2841 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2842 					console_cpu_notify);
2843 	WARN_ON(ret < 0);
2844 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2845 					console_cpu_notify, NULL);
2846 	WARN_ON(ret < 0);
2847 	return 0;
2848 }
2849 late_initcall(printk_late_init);
2850 
2851 #if defined CONFIG_PRINTK
2852 /*
2853  * Delayed printk version, for scheduler-internal messages:
2854  */
2855 #define PRINTK_PENDING_WAKEUP	0x01
2856 #define PRINTK_PENDING_OUTPUT	0x02
2857 
2858 static DEFINE_PER_CPU(int, printk_pending);
2859 
wake_up_klogd_work_func(struct irq_work * irq_work)2860 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2861 {
2862 	int pending = __this_cpu_xchg(printk_pending, 0);
2863 
2864 	if (pending & PRINTK_PENDING_OUTPUT) {
2865 		/* If trylock fails, someone else is doing the printing */
2866 		if (console_trylock())
2867 			console_unlock();
2868 	}
2869 
2870 	if (pending & PRINTK_PENDING_WAKEUP)
2871 		wake_up_interruptible(&log_wait);
2872 }
2873 
2874 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2875 	.func = wake_up_klogd_work_func,
2876 	.flags = IRQ_WORK_LAZY,
2877 };
2878 
wake_up_klogd(void)2879 void wake_up_klogd(void)
2880 {
2881 	preempt_disable();
2882 	if (waitqueue_active(&log_wait)) {
2883 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2884 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2885 	}
2886 	preempt_enable();
2887 }
2888 
defer_console_output(void)2889 void defer_console_output(void)
2890 {
2891 	preempt_disable();
2892 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2893 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2894 	preempt_enable();
2895 }
2896 
vprintk_deferred(const char * fmt,va_list args)2897 int vprintk_deferred(const char *fmt, va_list args)
2898 {
2899 	int r;
2900 
2901 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2902 	defer_console_output();
2903 
2904 	return r;
2905 }
2906 
printk_deferred(const char * fmt,...)2907 int printk_deferred(const char *fmt, ...)
2908 {
2909 	va_list args;
2910 	int r;
2911 
2912 	va_start(args, fmt);
2913 	r = vprintk_deferred(fmt, args);
2914 	va_end(args);
2915 
2916 	return r;
2917 }
2918 
2919 /*
2920  * printk rate limiting, lifted from the networking subsystem.
2921  *
2922  * This enforces a rate limit: not more than 10 kernel messages
2923  * every 5s to make a denial-of-service attack impossible.
2924  */
2925 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2926 
__printk_ratelimit(const char * func)2927 int __printk_ratelimit(const char *func)
2928 {
2929 	return ___ratelimit(&printk_ratelimit_state, func);
2930 }
2931 EXPORT_SYMBOL(__printk_ratelimit);
2932 
2933 /**
2934  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2935  * @caller_jiffies: pointer to caller's state
2936  * @interval_msecs: minimum interval between prints
2937  *
2938  * printk_timed_ratelimit() returns true if more than @interval_msecs
2939  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2940  * returned true.
2941  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2942 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2943 			unsigned int interval_msecs)
2944 {
2945 	unsigned long elapsed = jiffies - *caller_jiffies;
2946 
2947 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2948 		return false;
2949 
2950 	*caller_jiffies = jiffies;
2951 	return true;
2952 }
2953 EXPORT_SYMBOL(printk_timed_ratelimit);
2954 
2955 static DEFINE_SPINLOCK(dump_list_lock);
2956 static LIST_HEAD(dump_list);
2957 
2958 /**
2959  * kmsg_dump_register - register a kernel log dumper.
2960  * @dumper: pointer to the kmsg_dumper structure
2961  *
2962  * Adds a kernel log dumper to the system. The dump callback in the
2963  * structure will be called when the kernel oopses or panics and must be
2964  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2965  */
kmsg_dump_register(struct kmsg_dumper * dumper)2966 int kmsg_dump_register(struct kmsg_dumper *dumper)
2967 {
2968 	unsigned long flags;
2969 	int err = -EBUSY;
2970 
2971 	/* The dump callback needs to be set */
2972 	if (!dumper->dump)
2973 		return -EINVAL;
2974 
2975 	spin_lock_irqsave(&dump_list_lock, flags);
2976 	/* Don't allow registering multiple times */
2977 	if (!dumper->registered) {
2978 		dumper->registered = 1;
2979 		list_add_tail_rcu(&dumper->list, &dump_list);
2980 		err = 0;
2981 	}
2982 	spin_unlock_irqrestore(&dump_list_lock, flags);
2983 
2984 	return err;
2985 }
2986 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2987 
2988 /**
2989  * kmsg_dump_unregister - unregister a kmsg dumper.
2990  * @dumper: pointer to the kmsg_dumper structure
2991  *
2992  * Removes a dump device from the system. Returns zero on success and
2993  * %-EINVAL otherwise.
2994  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2995 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2996 {
2997 	unsigned long flags;
2998 	int err = -EINVAL;
2999 
3000 	spin_lock_irqsave(&dump_list_lock, flags);
3001 	if (dumper->registered) {
3002 		dumper->registered = 0;
3003 		list_del_rcu(&dumper->list);
3004 		err = 0;
3005 	}
3006 	spin_unlock_irqrestore(&dump_list_lock, flags);
3007 	synchronize_rcu();
3008 
3009 	return err;
3010 }
3011 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3012 
3013 static bool always_kmsg_dump;
3014 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3015 
3016 /**
3017  * kmsg_dump - dump kernel log to kernel message dumpers.
3018  * @reason: the reason (oops, panic etc) for dumping
3019  *
3020  * Call each of the registered dumper's dump() callback, which can
3021  * retrieve the kmsg records with kmsg_dump_get_line() or
3022  * kmsg_dump_get_buffer().
3023  */
kmsg_dump(enum kmsg_dump_reason reason)3024 void kmsg_dump(enum kmsg_dump_reason reason)
3025 {
3026 	struct kmsg_dumper *dumper;
3027 	unsigned long flags;
3028 
3029 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3030 		return;
3031 
3032 	rcu_read_lock();
3033 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3034 		if (dumper->max_reason && reason > dumper->max_reason)
3035 			continue;
3036 
3037 		/* initialize iterator with data about the stored records */
3038 		dumper->active = true;
3039 
3040 		logbuf_lock_irqsave(flags);
3041 		dumper->cur_seq = clear_seq;
3042 		dumper->cur_idx = clear_idx;
3043 		dumper->next_seq = log_next_seq;
3044 		dumper->next_idx = log_next_idx;
3045 		logbuf_unlock_irqrestore(flags);
3046 
3047 		/* invoke dumper which will iterate over records */
3048 		dumper->dump(dumper, reason);
3049 
3050 		/* reset iterator */
3051 		dumper->active = false;
3052 	}
3053 	rcu_read_unlock();
3054 }
3055 
3056 /**
3057  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3058  * @dumper: registered kmsg dumper
3059  * @syslog: include the "<4>" prefixes
3060  * @line: buffer to copy the line to
3061  * @size: maximum size of the buffer
3062  * @len: length of line placed into buffer
3063  *
3064  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3065  * record, and copy one record into the provided buffer.
3066  *
3067  * Consecutive calls will return the next available record moving
3068  * towards the end of the buffer with the youngest messages.
3069  *
3070  * A return value of FALSE indicates that there are no more records to
3071  * read.
3072  *
3073  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3074  */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3075 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3076 			       char *line, size_t size, size_t *len)
3077 {
3078 	struct printk_log *msg;
3079 	size_t l = 0;
3080 	bool ret = false;
3081 
3082 	if (!dumper->active)
3083 		goto out;
3084 
3085 	if (dumper->cur_seq < log_first_seq) {
3086 		/* messages are gone, move to first available one */
3087 		dumper->cur_seq = log_first_seq;
3088 		dumper->cur_idx = log_first_idx;
3089 	}
3090 
3091 	/* last entry */
3092 	if (dumper->cur_seq >= log_next_seq)
3093 		goto out;
3094 
3095 	msg = log_from_idx(dumper->cur_idx);
3096 	l = msg_print_text(msg, syslog, line, size);
3097 
3098 	dumper->cur_idx = log_next(dumper->cur_idx);
3099 	dumper->cur_seq++;
3100 	ret = true;
3101 out:
3102 	if (len)
3103 		*len = l;
3104 	return ret;
3105 }
3106 
3107 /**
3108  * kmsg_dump_get_line - retrieve one kmsg log line
3109  * @dumper: registered kmsg dumper
3110  * @syslog: include the "<4>" prefixes
3111  * @line: buffer to copy the line to
3112  * @size: maximum size of the buffer
3113  * @len: length of line placed into buffer
3114  *
3115  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3116  * record, and copy one record into the provided buffer.
3117  *
3118  * Consecutive calls will return the next available record moving
3119  * towards the end of the buffer with the youngest messages.
3120  *
3121  * A return value of FALSE indicates that there are no more records to
3122  * read.
3123  */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3124 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3125 			char *line, size_t size, size_t *len)
3126 {
3127 	unsigned long flags;
3128 	bool ret;
3129 
3130 	logbuf_lock_irqsave(flags);
3131 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3132 	logbuf_unlock_irqrestore(flags);
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3137 
3138 /**
3139  * kmsg_dump_get_buffer - copy kmsg log lines
3140  * @dumper: registered kmsg dumper
3141  * @syslog: include the "<4>" prefixes
3142  * @buf: buffer to copy the line to
3143  * @size: maximum size of the buffer
3144  * @len: length of line placed into buffer
3145  *
3146  * Start at the end of the kmsg buffer and fill the provided buffer
3147  * with as many of the the *youngest* kmsg records that fit into it.
3148  * If the buffer is large enough, all available kmsg records will be
3149  * copied with a single call.
3150  *
3151  * Consecutive calls will fill the buffer with the next block of
3152  * available older records, not including the earlier retrieved ones.
3153  *
3154  * A return value of FALSE indicates that there are no more records to
3155  * read.
3156  */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3157 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3158 			  char *buf, size_t size, size_t *len)
3159 {
3160 	unsigned long flags;
3161 	u64 seq;
3162 	u32 idx;
3163 	u64 next_seq;
3164 	u32 next_idx;
3165 	size_t l = 0;
3166 	bool ret = false;
3167 
3168 	if (!dumper->active)
3169 		goto out;
3170 
3171 	logbuf_lock_irqsave(flags);
3172 	if (dumper->cur_seq < log_first_seq) {
3173 		/* messages are gone, move to first available one */
3174 		dumper->cur_seq = log_first_seq;
3175 		dumper->cur_idx = log_first_idx;
3176 	}
3177 
3178 	/* last entry */
3179 	if (dumper->cur_seq >= dumper->next_seq) {
3180 		logbuf_unlock_irqrestore(flags);
3181 		goto out;
3182 	}
3183 
3184 	/* calculate length of entire buffer */
3185 	seq = dumper->cur_seq;
3186 	idx = dumper->cur_idx;
3187 	while (seq < dumper->next_seq) {
3188 		struct printk_log *msg = log_from_idx(idx);
3189 
3190 		l += msg_print_text(msg, true, NULL, 0);
3191 		idx = log_next(idx);
3192 		seq++;
3193 	}
3194 
3195 	/* move first record forward until length fits into the buffer */
3196 	seq = dumper->cur_seq;
3197 	idx = dumper->cur_idx;
3198 	while (l >= size && seq < dumper->next_seq) {
3199 		struct printk_log *msg = log_from_idx(idx);
3200 
3201 		l -= msg_print_text(msg, true, NULL, 0);
3202 		idx = log_next(idx);
3203 		seq++;
3204 	}
3205 
3206 	/* last message in next interation */
3207 	next_seq = seq;
3208 	next_idx = idx;
3209 
3210 	l = 0;
3211 	while (seq < dumper->next_seq) {
3212 		struct printk_log *msg = log_from_idx(idx);
3213 
3214 		l += msg_print_text(msg, syslog, buf + l, size - l);
3215 		idx = log_next(idx);
3216 		seq++;
3217 	}
3218 
3219 	dumper->next_seq = next_seq;
3220 	dumper->next_idx = next_idx;
3221 	ret = true;
3222 	logbuf_unlock_irqrestore(flags);
3223 out:
3224 	if (len)
3225 		*len = l;
3226 	return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3229 
3230 /**
3231  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3232  * @dumper: registered kmsg dumper
3233  *
3234  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3235  * kmsg_dump_get_buffer() can be called again and used multiple
3236  * times within the same dumper.dump() callback.
3237  *
3238  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3239  */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3240 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3241 {
3242 	dumper->cur_seq = clear_seq;
3243 	dumper->cur_idx = clear_idx;
3244 	dumper->next_seq = log_next_seq;
3245 	dumper->next_idx = log_next_idx;
3246 }
3247 
3248 /**
3249  * kmsg_dump_rewind - reset the interator
3250  * @dumper: registered kmsg dumper
3251  *
3252  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3253  * kmsg_dump_get_buffer() can be called again and used multiple
3254  * times within the same dumper.dump() callback.
3255  */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3256 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3257 {
3258 	unsigned long flags;
3259 
3260 	logbuf_lock_irqsave(flags);
3261 	kmsg_dump_rewind_nolock(dumper);
3262 	logbuf_unlock_irqrestore(flags);
3263 }
3264 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3265 
3266 static char dump_stack_arch_desc_str[128];
3267 
3268 /**
3269  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3270  * @fmt: printf-style format string
3271  * @...: arguments for the format string
3272  *
3273  * The configured string will be printed right after utsname during task
3274  * dumps.  Usually used to add arch-specific system identifiers.  If an
3275  * arch wants to make use of such an ID string, it should initialize this
3276  * as soon as possible during boot.
3277  */
dump_stack_set_arch_desc(const char * fmt,...)3278 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3279 {
3280 	va_list args;
3281 
3282 	va_start(args, fmt);
3283 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3284 		  fmt, args);
3285 	va_end(args);
3286 }
3287 
3288 /**
3289  * dump_stack_print_info - print generic debug info for dump_stack()
3290  * @log_lvl: log level
3291  *
3292  * Arch-specific dump_stack() implementations can use this function to
3293  * print out the same debug information as the generic dump_stack().
3294  */
dump_stack_print_info(const char * log_lvl)3295 void dump_stack_print_info(const char *log_lvl)
3296 {
3297 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3298 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3299 	       print_tainted(), init_utsname()->release,
3300 	       (int)strcspn(init_utsname()->version, " "),
3301 	       init_utsname()->version);
3302 
3303 	if (dump_stack_arch_desc_str[0] != '\0')
3304 		printk("%sHardware name: %s\n",
3305 		       log_lvl, dump_stack_arch_desc_str);
3306 
3307 	print_worker_info(log_lvl, current);
3308 }
3309 
3310 /**
3311  * show_regs_print_info - print generic debug info for show_regs()
3312  * @log_lvl: log level
3313  *
3314  * show_regs() implementations can use this function to print out generic
3315  * debug information.
3316  */
show_regs_print_info(const char * log_lvl)3317 void show_regs_print_info(const char *log_lvl)
3318 {
3319 	dump_stack_print_info(log_lvl);
3320 
3321 	printk("%stask: %p task.stack: %p\n",
3322 	       log_lvl, current, task_stack_page(current));
3323 }
3324 
3325 #endif
3326