1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include "ecryptfs_kernel.h"
40
41 #define DECRYPT 0
42 #define ENCRYPT 1
43
44 /**
45 * ecryptfs_to_hex
46 * @dst: Buffer to take hex character representation of contents of
47 * src; must be at least of size (src_size * 2)
48 * @src: Buffer to be converted to a hex string representation
49 * @src_size: number of bytes to convert
50 */
ecryptfs_to_hex(char * dst,char * src,size_t src_size)51 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
52 {
53 int x;
54
55 for (x = 0; x < src_size; x++)
56 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
57 }
58
59 /**
60 * ecryptfs_from_hex
61 * @dst: Buffer to take the bytes from src hex; must be at least of
62 * size (src_size / 2)
63 * @src: Buffer to be converted from a hex string representation to raw value
64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
65 */
ecryptfs_from_hex(char * dst,char * src,int dst_size)66 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
67 {
68 int x;
69 char tmp[3] = { 0, };
70
71 for (x = 0; x < dst_size; x++) {
72 tmp[0] = src[x * 2];
73 tmp[1] = src[x * 2 + 1];
74 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
75 }
76 }
77
ecryptfs_hash_digest(struct crypto_shash * tfm,char * src,int len,char * dst)78 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
79 char *src, int len, char *dst)
80 {
81 SHASH_DESC_ON_STACK(desc, tfm);
82 int err;
83
84 desc->tfm = tfm;
85 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
86 err = crypto_shash_digest(desc, src, len, dst);
87 shash_desc_zero(desc);
88 return err;
89 }
90
91 /**
92 * ecryptfs_calculate_md5 - calculates the md5 of @src
93 * @dst: Pointer to 16 bytes of allocated memory
94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
95 * @src: Data to be md5'd
96 * @len: Length of @src
97 *
98 * Uses the allocated crypto context that crypt_stat references to
99 * generate the MD5 sum of the contents of src.
100 */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)101 static int ecryptfs_calculate_md5(char *dst,
102 struct ecryptfs_crypt_stat *crypt_stat,
103 char *src, int len)
104 {
105 struct crypto_shash *tfm;
106 int rc = 0;
107
108 tfm = crypt_stat->hash_tfm;
109 rc = ecryptfs_hash_digest(tfm, src, len, dst);
110 if (rc) {
111 printk(KERN_ERR
112 "%s: Error computing crypto hash; rc = [%d]\n",
113 __func__, rc);
114 goto out;
115 }
116 out:
117 return rc;
118 }
119
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)120 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
121 char *cipher_name,
122 char *chaining_modifier)
123 {
124 int cipher_name_len = strlen(cipher_name);
125 int chaining_modifier_len = strlen(chaining_modifier);
126 int algified_name_len;
127 int rc;
128
129 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
130 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
131 if (!(*algified_name)) {
132 rc = -ENOMEM;
133 goto out;
134 }
135 snprintf((*algified_name), algified_name_len, "%s(%s)",
136 chaining_modifier, cipher_name);
137 rc = 0;
138 out:
139 return rc;
140 }
141
142 /**
143 * ecryptfs_derive_iv
144 * @iv: destination for the derived iv vale
145 * @crypt_stat: Pointer to crypt_stat struct for the current inode
146 * @offset: Offset of the extent whose IV we are to derive
147 *
148 * Generate the initialization vector from the given root IV and page
149 * offset.
150 *
151 * Returns zero on success; non-zero on error.
152 */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)153 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
154 loff_t offset)
155 {
156 int rc = 0;
157 char dst[MD5_DIGEST_SIZE];
158 char src[ECRYPTFS_MAX_IV_BYTES + 16];
159
160 if (unlikely(ecryptfs_verbosity > 0)) {
161 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
162 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
163 }
164 /* TODO: It is probably secure to just cast the least
165 * significant bits of the root IV into an unsigned long and
166 * add the offset to that rather than go through all this
167 * hashing business. -Halcrow */
168 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
169 memset((src + crypt_stat->iv_bytes), 0, 16);
170 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
171 if (unlikely(ecryptfs_verbosity > 0)) {
172 ecryptfs_printk(KERN_DEBUG, "source:\n");
173 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
174 }
175 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
176 (crypt_stat->iv_bytes + 16));
177 if (rc) {
178 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
179 "MD5 while generating IV for a page\n");
180 goto out;
181 }
182 memcpy(iv, dst, crypt_stat->iv_bytes);
183 if (unlikely(ecryptfs_verbosity > 0)) {
184 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
185 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
186 }
187 out:
188 return rc;
189 }
190
191 /**
192 * ecryptfs_init_crypt_stat
193 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
194 *
195 * Initialize the crypt_stat structure.
196 */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)197 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
198 {
199 struct crypto_shash *tfm;
200 int rc;
201
202 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
203 if (IS_ERR(tfm)) {
204 rc = PTR_ERR(tfm);
205 ecryptfs_printk(KERN_ERR, "Error attempting to "
206 "allocate crypto context; rc = [%d]\n",
207 rc);
208 return rc;
209 }
210
211 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
212 INIT_LIST_HEAD(&crypt_stat->keysig_list);
213 mutex_init(&crypt_stat->keysig_list_mutex);
214 mutex_init(&crypt_stat->cs_mutex);
215 mutex_init(&crypt_stat->cs_tfm_mutex);
216 crypt_stat->hash_tfm = tfm;
217 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
218
219 return 0;
220 }
221
222 /**
223 * ecryptfs_destroy_crypt_stat
224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
225 *
226 * Releases all memory associated with a crypt_stat struct.
227 */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)228 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
229 {
230 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
231
232 crypto_free_skcipher(crypt_stat->tfm);
233 crypto_free_shash(crypt_stat->hash_tfm);
234 list_for_each_entry_safe(key_sig, key_sig_tmp,
235 &crypt_stat->keysig_list, crypt_stat_list) {
236 list_del(&key_sig->crypt_stat_list);
237 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
238 }
239 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
240 }
241
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)242 void ecryptfs_destroy_mount_crypt_stat(
243 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
244 {
245 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
246
247 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
248 return;
249 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
250 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
251 &mount_crypt_stat->global_auth_tok_list,
252 mount_crypt_stat_list) {
253 list_del(&auth_tok->mount_crypt_stat_list);
254 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
255 key_put(auth_tok->global_auth_tok_key);
256 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
257 }
258 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
259 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
260 }
261
262 /**
263 * virt_to_scatterlist
264 * @addr: Virtual address
265 * @size: Size of data; should be an even multiple of the block size
266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
267 * the number of scatterlist structs required in array
268 * @sg_size: Max array size
269 *
270 * Fills in a scatterlist array with page references for a passed
271 * virtual address.
272 *
273 * Returns the number of scatterlist structs in array used
274 */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)275 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
276 int sg_size)
277 {
278 int i = 0;
279 struct page *pg;
280 int offset;
281 int remainder_of_page;
282
283 sg_init_table(sg, sg_size);
284
285 while (size > 0 && i < sg_size) {
286 pg = virt_to_page(addr);
287 offset = offset_in_page(addr);
288 sg_set_page(&sg[i], pg, 0, offset);
289 remainder_of_page = PAGE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 sg[i].length = remainder_of_page;
292 addr += remainder_of_page;
293 size -= remainder_of_page;
294 } else {
295 sg[i].length = size;
296 addr += size;
297 size = 0;
298 }
299 i++;
300 }
301 if (size > 0)
302 return -ENOMEM;
303 return i;
304 }
305
306 struct extent_crypt_result {
307 struct completion completion;
308 int rc;
309 };
310
extent_crypt_complete(struct crypto_async_request * req,int rc)311 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
312 {
313 struct extent_crypt_result *ecr = req->data;
314
315 if (rc == -EINPROGRESS)
316 return;
317
318 ecr->rc = rc;
319 complete(&ecr->completion);
320 }
321
322 /**
323 * crypt_scatterlist
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dst_sg: Destination of the data after performing the crypto operation
326 * @src_sg: Data to be encrypted or decrypted
327 * @size: Length of data
328 * @iv: IV to use
329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
330 *
331 * Returns the number of bytes encrypted or decrypted; negative value on error
332 */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)333 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
334 struct scatterlist *dst_sg,
335 struct scatterlist *src_sg, int size,
336 unsigned char *iv, int op)
337 {
338 struct skcipher_request *req = NULL;
339 struct extent_crypt_result ecr;
340 int rc = 0;
341
342 if (!crypt_stat || !crypt_stat->tfm
343 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
344 return -EINVAL;
345
346 if (unlikely(ecryptfs_verbosity > 0)) {
347 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
348 crypt_stat->key_size);
349 ecryptfs_dump_hex(crypt_stat->key,
350 crypt_stat->key_size);
351 }
352
353 init_completion(&ecr.completion);
354
355 mutex_lock(&crypt_stat->cs_tfm_mutex);
356 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
357 if (!req) {
358 mutex_unlock(&crypt_stat->cs_tfm_mutex);
359 rc = -ENOMEM;
360 goto out;
361 }
362
363 skcipher_request_set_callback(req,
364 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
365 extent_crypt_complete, &ecr);
366 /* Consider doing this once, when the file is opened */
367 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
368 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
369 crypt_stat->key_size);
370 if (rc) {
371 ecryptfs_printk(KERN_ERR,
372 "Error setting key; rc = [%d]\n",
373 rc);
374 mutex_unlock(&crypt_stat->cs_tfm_mutex);
375 rc = -EINVAL;
376 goto out;
377 }
378 crypt_stat->flags |= ECRYPTFS_KEY_SET;
379 }
380 mutex_unlock(&crypt_stat->cs_tfm_mutex);
381 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
382 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
383 crypto_skcipher_decrypt(req);
384 if (rc == -EINPROGRESS || rc == -EBUSY) {
385 struct extent_crypt_result *ecr = req->base.data;
386
387 wait_for_completion(&ecr->completion);
388 rc = ecr->rc;
389 reinit_completion(&ecr->completion);
390 }
391 out:
392 skcipher_request_free(req);
393 return rc;
394 }
395
396 /**
397 * lower_offset_for_page
398 *
399 * Convert an eCryptfs page index into a lower byte offset
400 */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)401 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
402 struct page *page)
403 {
404 return ecryptfs_lower_header_size(crypt_stat) +
405 ((loff_t)page->index << PAGE_SHIFT);
406 }
407
408 /**
409 * crypt_extent
410 * @crypt_stat: crypt_stat containing cryptographic context for the
411 * encryption operation
412 * @dst_page: The page to write the result into
413 * @src_page: The page to read from
414 * @extent_offset: Page extent offset for use in generating IV
415 * @op: ENCRYPT or DECRYPT to indicate the desired operation
416 *
417 * Encrypts or decrypts one extent of data.
418 *
419 * Return zero on success; non-zero otherwise
420 */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)421 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
422 struct page *dst_page,
423 struct page *src_page,
424 unsigned long extent_offset, int op)
425 {
426 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
427 loff_t extent_base;
428 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
429 struct scatterlist src_sg, dst_sg;
430 size_t extent_size = crypt_stat->extent_size;
431 int rc;
432
433 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
434 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
435 (extent_base + extent_offset));
436 if (rc) {
437 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
438 "extent [0x%.16llx]; rc = [%d]\n",
439 (unsigned long long)(extent_base + extent_offset), rc);
440 goto out;
441 }
442
443 sg_init_table(&src_sg, 1);
444 sg_init_table(&dst_sg, 1);
445
446 sg_set_page(&src_sg, src_page, extent_size,
447 extent_offset * extent_size);
448 sg_set_page(&dst_sg, dst_page, extent_size,
449 extent_offset * extent_size);
450
451 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
452 extent_iv, op);
453 if (rc < 0) {
454 printk(KERN_ERR "%s: Error attempting to crypt page with "
455 "page_index = [%ld], extent_offset = [%ld]; "
456 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
457 goto out;
458 }
459 rc = 0;
460 out:
461 return rc;
462 }
463
464 /**
465 * ecryptfs_encrypt_page
466 * @page: Page mapped from the eCryptfs inode for the file; contains
467 * decrypted content that needs to be encrypted (to a temporary
468 * page; not in place) and written out to the lower file
469 *
470 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
471 * that eCryptfs pages may straddle the lower pages -- for instance,
472 * if the file was created on a machine with an 8K page size
473 * (resulting in an 8K header), and then the file is copied onto a
474 * host with a 32K page size, then when reading page 0 of the eCryptfs
475 * file, 24K of page 0 of the lower file will be read and decrypted,
476 * and then 8K of page 1 of the lower file will be read and decrypted.
477 *
478 * Returns zero on success; negative on error
479 */
ecryptfs_encrypt_page(struct page * page)480 int ecryptfs_encrypt_page(struct page *page)
481 {
482 struct inode *ecryptfs_inode;
483 struct ecryptfs_crypt_stat *crypt_stat;
484 char *enc_extent_virt;
485 struct page *enc_extent_page = NULL;
486 loff_t extent_offset;
487 loff_t lower_offset;
488 int rc = 0;
489
490 ecryptfs_inode = page->mapping->host;
491 crypt_stat =
492 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
493 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
494 enc_extent_page = alloc_page(GFP_USER);
495 if (!enc_extent_page) {
496 rc = -ENOMEM;
497 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
498 "encrypted extent\n");
499 goto out;
500 }
501
502 for (extent_offset = 0;
503 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
504 extent_offset++) {
505 rc = crypt_extent(crypt_stat, enc_extent_page, page,
506 extent_offset, ENCRYPT);
507 if (rc) {
508 printk(KERN_ERR "%s: Error encrypting extent; "
509 "rc = [%d]\n", __func__, rc);
510 goto out;
511 }
512 }
513
514 lower_offset = lower_offset_for_page(crypt_stat, page);
515 enc_extent_virt = kmap(enc_extent_page);
516 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
517 PAGE_SIZE);
518 kunmap(enc_extent_page);
519 if (rc < 0) {
520 ecryptfs_printk(KERN_ERR,
521 "Error attempting to write lower page; rc = [%d]\n",
522 rc);
523 goto out;
524 }
525 rc = 0;
526 out:
527 if (enc_extent_page) {
528 __free_page(enc_extent_page);
529 }
530 return rc;
531 }
532
533 /**
534 * ecryptfs_decrypt_page
535 * @page: Page mapped from the eCryptfs inode for the file; data read
536 * and decrypted from the lower file will be written into this
537 * page
538 *
539 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
540 * that eCryptfs pages may straddle the lower pages -- for instance,
541 * if the file was created on a machine with an 8K page size
542 * (resulting in an 8K header), and then the file is copied onto a
543 * host with a 32K page size, then when reading page 0 of the eCryptfs
544 * file, 24K of page 0 of the lower file will be read and decrypted,
545 * and then 8K of page 1 of the lower file will be read and decrypted.
546 *
547 * Returns zero on success; negative on error
548 */
ecryptfs_decrypt_page(struct page * page)549 int ecryptfs_decrypt_page(struct page *page)
550 {
551 struct inode *ecryptfs_inode;
552 struct ecryptfs_crypt_stat *crypt_stat;
553 char *page_virt;
554 unsigned long extent_offset;
555 loff_t lower_offset;
556 int rc = 0;
557
558 ecryptfs_inode = page->mapping->host;
559 crypt_stat =
560 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
561 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
562
563 lower_offset = lower_offset_for_page(crypt_stat, page);
564 page_virt = kmap(page);
565 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
566 ecryptfs_inode);
567 kunmap(page);
568 if (rc < 0) {
569 ecryptfs_printk(KERN_ERR,
570 "Error attempting to read lower page; rc = [%d]\n",
571 rc);
572 goto out;
573 }
574
575 for (extent_offset = 0;
576 extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
577 extent_offset++) {
578 rc = crypt_extent(crypt_stat, page, page,
579 extent_offset, DECRYPT);
580 if (rc) {
581 printk(KERN_ERR "%s: Error encrypting extent; "
582 "rc = [%d]\n", __func__, rc);
583 goto out;
584 }
585 }
586 out:
587 return rc;
588 }
589
590 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
591
592 /**
593 * ecryptfs_init_crypt_ctx
594 * @crypt_stat: Uninitialized crypt stats structure
595 *
596 * Initialize the crypto context.
597 *
598 * TODO: Performance: Keep a cache of initialized cipher contexts;
599 * only init if needed
600 */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)601 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
602 {
603 char *full_alg_name;
604 int rc = -EINVAL;
605
606 ecryptfs_printk(KERN_DEBUG,
607 "Initializing cipher [%s]; strlen = [%d]; "
608 "key_size_bits = [%zd]\n",
609 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
610 crypt_stat->key_size << 3);
611 mutex_lock(&crypt_stat->cs_tfm_mutex);
612 if (crypt_stat->tfm) {
613 rc = 0;
614 goto out_unlock;
615 }
616 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
617 crypt_stat->cipher, "cbc");
618 if (rc)
619 goto out_unlock;
620 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
621 if (IS_ERR(crypt_stat->tfm)) {
622 rc = PTR_ERR(crypt_stat->tfm);
623 crypt_stat->tfm = NULL;
624 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
625 "Error initializing cipher [%s]\n",
626 full_alg_name);
627 goto out_free;
628 }
629 crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
630 rc = 0;
631 out_free:
632 kfree(full_alg_name);
633 out_unlock:
634 mutex_unlock(&crypt_stat->cs_tfm_mutex);
635 return rc;
636 }
637
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)638 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
639 {
640 int extent_size_tmp;
641
642 crypt_stat->extent_mask = 0xFFFFFFFF;
643 crypt_stat->extent_shift = 0;
644 if (crypt_stat->extent_size == 0)
645 return;
646 extent_size_tmp = crypt_stat->extent_size;
647 while ((extent_size_tmp & 0x01) == 0) {
648 extent_size_tmp >>= 1;
649 crypt_stat->extent_mask <<= 1;
650 crypt_stat->extent_shift++;
651 }
652 }
653
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)654 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
655 {
656 /* Default values; may be overwritten as we are parsing the
657 * packets. */
658 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
659 set_extent_mask_and_shift(crypt_stat);
660 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
661 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
662 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
663 else {
664 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
665 crypt_stat->metadata_size =
666 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
667 else
668 crypt_stat->metadata_size = PAGE_SIZE;
669 }
670 }
671
672 /**
673 * ecryptfs_compute_root_iv
674 * @crypt_stats
675 *
676 * On error, sets the root IV to all 0's.
677 */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)678 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
679 {
680 int rc = 0;
681 char dst[MD5_DIGEST_SIZE];
682
683 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
684 BUG_ON(crypt_stat->iv_bytes <= 0);
685 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
686 rc = -EINVAL;
687 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
688 "cannot generate root IV\n");
689 goto out;
690 }
691 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
692 crypt_stat->key_size);
693 if (rc) {
694 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
695 "MD5 while generating root IV\n");
696 goto out;
697 }
698 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
699 out:
700 if (rc) {
701 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
702 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
703 }
704 return rc;
705 }
706
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)707 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
708 {
709 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
710 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
711 ecryptfs_compute_root_iv(crypt_stat);
712 if (unlikely(ecryptfs_verbosity > 0)) {
713 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
714 ecryptfs_dump_hex(crypt_stat->key,
715 crypt_stat->key_size);
716 }
717 }
718
719 /**
720 * ecryptfs_copy_mount_wide_flags_to_inode_flags
721 * @crypt_stat: The inode's cryptographic context
722 * @mount_crypt_stat: The mount point's cryptographic context
723 *
724 * This function propagates the mount-wide flags to individual inode
725 * flags.
726 */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)727 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
728 struct ecryptfs_crypt_stat *crypt_stat,
729 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
730 {
731 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
732 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
733 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
734 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
735 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
736 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
737 if (mount_crypt_stat->flags
738 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
739 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
740 else if (mount_crypt_stat->flags
741 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
742 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
743 }
744 }
745
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)746 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
747 struct ecryptfs_crypt_stat *crypt_stat,
748 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
749 {
750 struct ecryptfs_global_auth_tok *global_auth_tok;
751 int rc = 0;
752
753 mutex_lock(&crypt_stat->keysig_list_mutex);
754 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
755
756 list_for_each_entry(global_auth_tok,
757 &mount_crypt_stat->global_auth_tok_list,
758 mount_crypt_stat_list) {
759 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
760 continue;
761 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
762 if (rc) {
763 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
764 goto out;
765 }
766 }
767
768 out:
769 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
770 mutex_unlock(&crypt_stat->keysig_list_mutex);
771 return rc;
772 }
773
774 /**
775 * ecryptfs_set_default_crypt_stat_vals
776 * @crypt_stat: The inode's cryptographic context
777 * @mount_crypt_stat: The mount point's cryptographic context
778 *
779 * Default values in the event that policy does not override them.
780 */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)781 static void ecryptfs_set_default_crypt_stat_vals(
782 struct ecryptfs_crypt_stat *crypt_stat,
783 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
784 {
785 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
786 mount_crypt_stat);
787 ecryptfs_set_default_sizes(crypt_stat);
788 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
789 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
790 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
791 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
792 crypt_stat->mount_crypt_stat = mount_crypt_stat;
793 }
794
795 /**
796 * ecryptfs_new_file_context
797 * @ecryptfs_inode: The eCryptfs inode
798 *
799 * If the crypto context for the file has not yet been established,
800 * this is where we do that. Establishing a new crypto context
801 * involves the following decisions:
802 * - What cipher to use?
803 * - What set of authentication tokens to use?
804 * Here we just worry about getting enough information into the
805 * authentication tokens so that we know that they are available.
806 * We associate the available authentication tokens with the new file
807 * via the set of signatures in the crypt_stat struct. Later, when
808 * the headers are actually written out, we may again defer to
809 * userspace to perform the encryption of the session key; for the
810 * foreseeable future, this will be the case with public key packets.
811 *
812 * Returns zero on success; non-zero otherwise
813 */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)814 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
815 {
816 struct ecryptfs_crypt_stat *crypt_stat =
817 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
818 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
819 &ecryptfs_superblock_to_private(
820 ecryptfs_inode->i_sb)->mount_crypt_stat;
821 int cipher_name_len;
822 int rc = 0;
823
824 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
825 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
826 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
827 mount_crypt_stat);
828 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
829 mount_crypt_stat);
830 if (rc) {
831 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
832 "to the inode key sigs; rc = [%d]\n", rc);
833 goto out;
834 }
835 cipher_name_len =
836 strlen(mount_crypt_stat->global_default_cipher_name);
837 memcpy(crypt_stat->cipher,
838 mount_crypt_stat->global_default_cipher_name,
839 cipher_name_len);
840 crypt_stat->cipher[cipher_name_len] = '\0';
841 crypt_stat->key_size =
842 mount_crypt_stat->global_default_cipher_key_size;
843 ecryptfs_generate_new_key(crypt_stat);
844 rc = ecryptfs_init_crypt_ctx(crypt_stat);
845 if (rc)
846 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
847 "context for cipher [%s]: rc = [%d]\n",
848 crypt_stat->cipher, rc);
849 out:
850 return rc;
851 }
852
853 /**
854 * ecryptfs_validate_marker - check for the ecryptfs marker
855 * @data: The data block in which to check
856 *
857 * Returns zero if marker found; -EINVAL if not found
858 */
ecryptfs_validate_marker(char * data)859 static int ecryptfs_validate_marker(char *data)
860 {
861 u32 m_1, m_2;
862
863 m_1 = get_unaligned_be32(data);
864 m_2 = get_unaligned_be32(data + 4);
865 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
866 return 0;
867 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
868 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
869 MAGIC_ECRYPTFS_MARKER);
870 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
871 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
872 return -EINVAL;
873 }
874
875 struct ecryptfs_flag_map_elem {
876 u32 file_flag;
877 u32 local_flag;
878 };
879
880 /* Add support for additional flags by adding elements here. */
881 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
882 {0x00000001, ECRYPTFS_ENABLE_HMAC},
883 {0x00000002, ECRYPTFS_ENCRYPTED},
884 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
885 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
886 };
887
888 /**
889 * ecryptfs_process_flags
890 * @crypt_stat: The cryptographic context
891 * @page_virt: Source data to be parsed
892 * @bytes_read: Updated with the number of bytes read
893 *
894 * Returns zero on success; non-zero if the flag set is invalid
895 */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)896 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
897 char *page_virt, int *bytes_read)
898 {
899 int rc = 0;
900 int i;
901 u32 flags;
902
903 flags = get_unaligned_be32(page_virt);
904 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
905 / sizeof(struct ecryptfs_flag_map_elem))); i++)
906 if (flags & ecryptfs_flag_map[i].file_flag) {
907 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
908 } else
909 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
910 /* Version is in top 8 bits of the 32-bit flag vector */
911 crypt_stat->file_version = ((flags >> 24) & 0xFF);
912 (*bytes_read) = 4;
913 return rc;
914 }
915
916 /**
917 * write_ecryptfs_marker
918 * @page_virt: The pointer to in a page to begin writing the marker
919 * @written: Number of bytes written
920 *
921 * Marker = 0x3c81b7f5
922 */
write_ecryptfs_marker(char * page_virt,size_t * written)923 static void write_ecryptfs_marker(char *page_virt, size_t *written)
924 {
925 u32 m_1, m_2;
926
927 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
928 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
929 put_unaligned_be32(m_1, page_virt);
930 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
931 put_unaligned_be32(m_2, page_virt);
932 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
933 }
934
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)935 void ecryptfs_write_crypt_stat_flags(char *page_virt,
936 struct ecryptfs_crypt_stat *crypt_stat,
937 size_t *written)
938 {
939 u32 flags = 0;
940 int i;
941
942 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
943 / sizeof(struct ecryptfs_flag_map_elem))); i++)
944 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
945 flags |= ecryptfs_flag_map[i].file_flag;
946 /* Version is in top 8 bits of the 32-bit flag vector */
947 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
948 put_unaligned_be32(flags, page_virt);
949 (*written) = 4;
950 }
951
952 struct ecryptfs_cipher_code_str_map_elem {
953 char cipher_str[16];
954 u8 cipher_code;
955 };
956
957 /* Add support for additional ciphers by adding elements here. The
958 * cipher_code is whatever OpenPGP applications use to identify the
959 * ciphers. List in order of probability. */
960 static struct ecryptfs_cipher_code_str_map_elem
961 ecryptfs_cipher_code_str_map[] = {
962 {"aes",RFC2440_CIPHER_AES_128 },
963 {"blowfish", RFC2440_CIPHER_BLOWFISH},
964 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
965 {"cast5", RFC2440_CIPHER_CAST_5},
966 {"twofish", RFC2440_CIPHER_TWOFISH},
967 {"cast6", RFC2440_CIPHER_CAST_6},
968 {"aes", RFC2440_CIPHER_AES_192},
969 {"aes", RFC2440_CIPHER_AES_256}
970 };
971
972 /**
973 * ecryptfs_code_for_cipher_string
974 * @cipher_name: The string alias for the cipher
975 * @key_bytes: Length of key in bytes; used for AES code selection
976 *
977 * Returns zero on no match, or the cipher code on match
978 */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)979 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
980 {
981 int i;
982 u8 code = 0;
983 struct ecryptfs_cipher_code_str_map_elem *map =
984 ecryptfs_cipher_code_str_map;
985
986 if (strcmp(cipher_name, "aes") == 0) {
987 switch (key_bytes) {
988 case 16:
989 code = RFC2440_CIPHER_AES_128;
990 break;
991 case 24:
992 code = RFC2440_CIPHER_AES_192;
993 break;
994 case 32:
995 code = RFC2440_CIPHER_AES_256;
996 }
997 } else {
998 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
999 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1000 code = map[i].cipher_code;
1001 break;
1002 }
1003 }
1004 return code;
1005 }
1006
1007 /**
1008 * ecryptfs_cipher_code_to_string
1009 * @str: Destination to write out the cipher name
1010 * @cipher_code: The code to convert to cipher name string
1011 *
1012 * Returns zero on success
1013 */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)1014 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1015 {
1016 int rc = 0;
1017 int i;
1018
1019 str[0] = '\0';
1020 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1021 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1022 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1023 if (str[0] == '\0') {
1024 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1025 "[%d]\n", cipher_code);
1026 rc = -EINVAL;
1027 }
1028 return rc;
1029 }
1030
ecryptfs_read_and_validate_header_region(struct inode * inode)1031 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1032 {
1033 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1034 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1035 int rc;
1036
1037 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1038 inode);
1039 if (rc < 0)
1040 return rc;
1041 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1042 return -EINVAL;
1043 rc = ecryptfs_validate_marker(marker);
1044 if (!rc)
1045 ecryptfs_i_size_init(file_size, inode);
1046 return rc;
1047 }
1048
1049 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1050 ecryptfs_write_header_metadata(char *virt,
1051 struct ecryptfs_crypt_stat *crypt_stat,
1052 size_t *written)
1053 {
1054 u32 header_extent_size;
1055 u16 num_header_extents_at_front;
1056
1057 header_extent_size = (u32)crypt_stat->extent_size;
1058 num_header_extents_at_front =
1059 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1060 put_unaligned_be32(header_extent_size, virt);
1061 virt += 4;
1062 put_unaligned_be16(num_header_extents_at_front, virt);
1063 (*written) = 6;
1064 }
1065
1066 struct kmem_cache *ecryptfs_header_cache;
1067
1068 /**
1069 * ecryptfs_write_headers_virt
1070 * @page_virt: The virtual address to write the headers to
1071 * @max: The size of memory allocated at page_virt
1072 * @size: Set to the number of bytes written by this function
1073 * @crypt_stat: The cryptographic context
1074 * @ecryptfs_dentry: The eCryptfs dentry
1075 *
1076 * Format version: 1
1077 *
1078 * Header Extent:
1079 * Octets 0-7: Unencrypted file size (big-endian)
1080 * Octets 8-15: eCryptfs special marker
1081 * Octets 16-19: Flags
1082 * Octet 16: File format version number (between 0 and 255)
1083 * Octets 17-18: Reserved
1084 * Octet 19: Bit 1 (lsb): Reserved
1085 * Bit 2: Encrypted?
1086 * Bits 3-8: Reserved
1087 * Octets 20-23: Header extent size (big-endian)
1088 * Octets 24-25: Number of header extents at front of file
1089 * (big-endian)
1090 * Octet 26: Begin RFC 2440 authentication token packet set
1091 * Data Extent 0:
1092 * Lower data (CBC encrypted)
1093 * Data Extent 1:
1094 * Lower data (CBC encrypted)
1095 * ...
1096 *
1097 * Returns zero on success
1098 */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1099 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1100 size_t *size,
1101 struct ecryptfs_crypt_stat *crypt_stat,
1102 struct dentry *ecryptfs_dentry)
1103 {
1104 int rc;
1105 size_t written;
1106 size_t offset;
1107
1108 offset = ECRYPTFS_FILE_SIZE_BYTES;
1109 write_ecryptfs_marker((page_virt + offset), &written);
1110 offset += written;
1111 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1112 &written);
1113 offset += written;
1114 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1115 &written);
1116 offset += written;
1117 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1118 ecryptfs_dentry, &written,
1119 max - offset);
1120 if (rc)
1121 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1122 "set; rc = [%d]\n", rc);
1123 if (size) {
1124 offset += written;
1125 *size = offset;
1126 }
1127 return rc;
1128 }
1129
1130 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1131 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1132 char *virt, size_t virt_len)
1133 {
1134 int rc;
1135
1136 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1137 0, virt_len);
1138 if (rc < 0)
1139 printk(KERN_ERR "%s: Error attempting to write header "
1140 "information to lower file; rc = [%d]\n", __func__, rc);
1141 else
1142 rc = 0;
1143 return rc;
1144 }
1145
1146 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1147 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1148 struct inode *ecryptfs_inode,
1149 char *page_virt, size_t size)
1150 {
1151 int rc;
1152
1153 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1154 ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1155 return rc;
1156 }
1157
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1158 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1159 unsigned int order)
1160 {
1161 struct page *page;
1162
1163 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1164 if (page)
1165 return (unsigned long) page_address(page);
1166 return 0;
1167 }
1168
1169 /**
1170 * ecryptfs_write_metadata
1171 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1172 * @ecryptfs_inode: The newly created eCryptfs inode
1173 *
1174 * Write the file headers out. This will likely involve a userspace
1175 * callout, in which the session key is encrypted with one or more
1176 * public keys and/or the passphrase necessary to do the encryption is
1177 * retrieved via a prompt. Exactly what happens at this point should
1178 * be policy-dependent.
1179 *
1180 * Returns zero on success; non-zero on error
1181 */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1182 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1183 struct inode *ecryptfs_inode)
1184 {
1185 struct ecryptfs_crypt_stat *crypt_stat =
1186 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1187 unsigned int order;
1188 char *virt;
1189 size_t virt_len;
1190 size_t size = 0;
1191 int rc = 0;
1192
1193 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1194 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1195 printk(KERN_ERR "Key is invalid; bailing out\n");
1196 rc = -EINVAL;
1197 goto out;
1198 }
1199 } else {
1200 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1201 __func__);
1202 rc = -EINVAL;
1203 goto out;
1204 }
1205 virt_len = crypt_stat->metadata_size;
1206 order = get_order(virt_len);
1207 /* Released in this function */
1208 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1209 if (!virt) {
1210 printk(KERN_ERR "%s: Out of memory\n", __func__);
1211 rc = -ENOMEM;
1212 goto out;
1213 }
1214 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1215 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1216 ecryptfs_dentry);
1217 if (unlikely(rc)) {
1218 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1219 __func__, rc);
1220 goto out_free;
1221 }
1222 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1223 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1224 virt, size);
1225 else
1226 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1227 virt_len);
1228 if (rc) {
1229 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1230 "rc = [%d]\n", __func__, rc);
1231 goto out_free;
1232 }
1233 out_free:
1234 free_pages((unsigned long)virt, order);
1235 out:
1236 return rc;
1237 }
1238
1239 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1240 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1241 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1242 char *virt, int *bytes_read,
1243 int validate_header_size)
1244 {
1245 int rc = 0;
1246 u32 header_extent_size;
1247 u16 num_header_extents_at_front;
1248
1249 header_extent_size = get_unaligned_be32(virt);
1250 virt += sizeof(__be32);
1251 num_header_extents_at_front = get_unaligned_be16(virt);
1252 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1253 * (size_t)header_extent_size));
1254 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1255 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1256 && (crypt_stat->metadata_size
1257 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1258 rc = -EINVAL;
1259 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1260 crypt_stat->metadata_size);
1261 }
1262 return rc;
1263 }
1264
1265 /**
1266 * set_default_header_data
1267 * @crypt_stat: The cryptographic context
1268 *
1269 * For version 0 file format; this function is only for backwards
1270 * compatibility for files created with the prior versions of
1271 * eCryptfs.
1272 */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1273 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1274 {
1275 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1276 }
1277
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1278 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1279 {
1280 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1281 struct ecryptfs_crypt_stat *crypt_stat;
1282 u64 file_size;
1283
1284 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1285 mount_crypt_stat =
1286 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1287 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1288 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1289 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1290 file_size += crypt_stat->metadata_size;
1291 } else
1292 file_size = get_unaligned_be64(page_virt);
1293 i_size_write(inode, (loff_t)file_size);
1294 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1295 }
1296
1297 /**
1298 * ecryptfs_read_headers_virt
1299 * @page_virt: The virtual address into which to read the headers
1300 * @crypt_stat: The cryptographic context
1301 * @ecryptfs_dentry: The eCryptfs dentry
1302 * @validate_header_size: Whether to validate the header size while reading
1303 *
1304 * Read/parse the header data. The header format is detailed in the
1305 * comment block for the ecryptfs_write_headers_virt() function.
1306 *
1307 * Returns zero on success
1308 */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1309 static int ecryptfs_read_headers_virt(char *page_virt,
1310 struct ecryptfs_crypt_stat *crypt_stat,
1311 struct dentry *ecryptfs_dentry,
1312 int validate_header_size)
1313 {
1314 int rc = 0;
1315 int offset;
1316 int bytes_read;
1317
1318 ecryptfs_set_default_sizes(crypt_stat);
1319 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1320 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1321 offset = ECRYPTFS_FILE_SIZE_BYTES;
1322 rc = ecryptfs_validate_marker(page_virt + offset);
1323 if (rc)
1324 goto out;
1325 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1326 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1327 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1328 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1329 &bytes_read);
1330 if (rc) {
1331 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1332 goto out;
1333 }
1334 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1335 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1336 "file version [%d] is supported by this "
1337 "version of eCryptfs\n",
1338 crypt_stat->file_version,
1339 ECRYPTFS_SUPPORTED_FILE_VERSION);
1340 rc = -EINVAL;
1341 goto out;
1342 }
1343 offset += bytes_read;
1344 if (crypt_stat->file_version >= 1) {
1345 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1346 &bytes_read, validate_header_size);
1347 if (rc) {
1348 ecryptfs_printk(KERN_WARNING, "Error reading header "
1349 "metadata; rc = [%d]\n", rc);
1350 }
1351 offset += bytes_read;
1352 } else
1353 set_default_header_data(crypt_stat);
1354 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1355 ecryptfs_dentry);
1356 out:
1357 return rc;
1358 }
1359
1360 /**
1361 * ecryptfs_read_xattr_region
1362 * @page_virt: The vitual address into which to read the xattr data
1363 * @ecryptfs_inode: The eCryptfs inode
1364 *
1365 * Attempts to read the crypto metadata from the extended attribute
1366 * region of the lower file.
1367 *
1368 * Returns zero on success; non-zero on error
1369 */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1370 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1371 {
1372 struct dentry *lower_dentry =
1373 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1374 ssize_t size;
1375 int rc = 0;
1376
1377 size = ecryptfs_getxattr_lower(lower_dentry,
1378 ecryptfs_inode_to_lower(ecryptfs_inode),
1379 ECRYPTFS_XATTR_NAME,
1380 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1381 if (size < 0) {
1382 if (unlikely(ecryptfs_verbosity > 0))
1383 printk(KERN_INFO "Error attempting to read the [%s] "
1384 "xattr from the lower file; return value = "
1385 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1386 rc = -EINVAL;
1387 goto out;
1388 }
1389 out:
1390 return rc;
1391 }
1392
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1393 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1394 struct inode *inode)
1395 {
1396 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1397 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1398 int rc;
1399
1400 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1401 ecryptfs_inode_to_lower(inode),
1402 ECRYPTFS_XATTR_NAME, file_size,
1403 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1404 if (rc < 0)
1405 return rc;
1406 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1407 return -EINVAL;
1408 rc = ecryptfs_validate_marker(marker);
1409 if (!rc)
1410 ecryptfs_i_size_init(file_size, inode);
1411 return rc;
1412 }
1413
1414 /**
1415 * ecryptfs_read_metadata
1416 *
1417 * Common entry point for reading file metadata. From here, we could
1418 * retrieve the header information from the header region of the file,
1419 * the xattr region of the file, or some other repository that is
1420 * stored separately from the file itself. The current implementation
1421 * supports retrieving the metadata information from the file contents
1422 * and from the xattr region.
1423 *
1424 * Returns zero if valid headers found and parsed; non-zero otherwise
1425 */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1426 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1427 {
1428 int rc;
1429 char *page_virt;
1430 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1431 struct ecryptfs_crypt_stat *crypt_stat =
1432 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1433 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1434 &ecryptfs_superblock_to_private(
1435 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1436
1437 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1438 mount_crypt_stat);
1439 /* Read the first page from the underlying file */
1440 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1441 if (!page_virt) {
1442 rc = -ENOMEM;
1443 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1444 __func__);
1445 goto out;
1446 }
1447 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1448 ecryptfs_inode);
1449 if (rc >= 0)
1450 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1451 ecryptfs_dentry,
1452 ECRYPTFS_VALIDATE_HEADER_SIZE);
1453 if (rc) {
1454 /* metadata is not in the file header, so try xattrs */
1455 memset(page_virt, 0, PAGE_SIZE);
1456 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1457 if (rc) {
1458 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1459 "file header region or xattr region, inode %lu\n",
1460 ecryptfs_inode->i_ino);
1461 rc = -EINVAL;
1462 goto out;
1463 }
1464 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1465 ecryptfs_dentry,
1466 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1467 if (rc) {
1468 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1469 "file xattr region either, inode %lu\n",
1470 ecryptfs_inode->i_ino);
1471 rc = -EINVAL;
1472 }
1473 if (crypt_stat->mount_crypt_stat->flags
1474 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1475 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1476 } else {
1477 printk(KERN_WARNING "Attempt to access file with "
1478 "crypto metadata only in the extended attribute "
1479 "region, but eCryptfs was mounted without "
1480 "xattr support enabled. eCryptfs will not treat "
1481 "this like an encrypted file, inode %lu\n",
1482 ecryptfs_inode->i_ino);
1483 rc = -EINVAL;
1484 }
1485 }
1486 out:
1487 if (page_virt) {
1488 memset(page_virt, 0, PAGE_SIZE);
1489 kmem_cache_free(ecryptfs_header_cache, page_virt);
1490 }
1491 return rc;
1492 }
1493
1494 /**
1495 * ecryptfs_encrypt_filename - encrypt filename
1496 *
1497 * CBC-encrypts the filename. We do not want to encrypt the same
1498 * filename with the same key and IV, which may happen with hard
1499 * links, so we prepend random bits to each filename.
1500 *
1501 * Returns zero on success; non-zero otherwise
1502 */
1503 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1504 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1505 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1506 {
1507 int rc = 0;
1508
1509 filename->encrypted_filename = NULL;
1510 filename->encrypted_filename_size = 0;
1511 if (mount_crypt_stat && (mount_crypt_stat->flags
1512 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1513 size_t packet_size;
1514 size_t remaining_bytes;
1515
1516 rc = ecryptfs_write_tag_70_packet(
1517 NULL, NULL,
1518 &filename->encrypted_filename_size,
1519 mount_crypt_stat, NULL,
1520 filename->filename_size);
1521 if (rc) {
1522 printk(KERN_ERR "%s: Error attempting to get packet "
1523 "size for tag 72; rc = [%d]\n", __func__,
1524 rc);
1525 filename->encrypted_filename_size = 0;
1526 goto out;
1527 }
1528 filename->encrypted_filename =
1529 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1530 if (!filename->encrypted_filename) {
1531 printk(KERN_ERR "%s: Out of memory whilst attempting "
1532 "to kmalloc [%zd] bytes\n", __func__,
1533 filename->encrypted_filename_size);
1534 rc = -ENOMEM;
1535 goto out;
1536 }
1537 remaining_bytes = filename->encrypted_filename_size;
1538 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1539 &remaining_bytes,
1540 &packet_size,
1541 mount_crypt_stat,
1542 filename->filename,
1543 filename->filename_size);
1544 if (rc) {
1545 printk(KERN_ERR "%s: Error attempting to generate "
1546 "tag 70 packet; rc = [%d]\n", __func__,
1547 rc);
1548 kfree(filename->encrypted_filename);
1549 filename->encrypted_filename = NULL;
1550 filename->encrypted_filename_size = 0;
1551 goto out;
1552 }
1553 filename->encrypted_filename_size = packet_size;
1554 } else {
1555 printk(KERN_ERR "%s: No support for requested filename "
1556 "encryption method in this release\n", __func__);
1557 rc = -EOPNOTSUPP;
1558 goto out;
1559 }
1560 out:
1561 return rc;
1562 }
1563
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1564 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1565 const char *name, size_t name_size)
1566 {
1567 int rc = 0;
1568
1569 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1570 if (!(*copied_name)) {
1571 rc = -ENOMEM;
1572 goto out;
1573 }
1574 memcpy((void *)(*copied_name), (void *)name, name_size);
1575 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1576 * in printing out the
1577 * string in debug
1578 * messages */
1579 (*copied_name_size) = name_size;
1580 out:
1581 return rc;
1582 }
1583
1584 /**
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1589 *
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1593 */
1594 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1595 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1596 char *cipher_name, size_t *key_size)
1597 {
1598 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1599 char *full_alg_name = NULL;
1600 int rc;
1601
1602 *key_tfm = NULL;
1603 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1604 rc = -EINVAL;
1605 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1606 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1607 goto out;
1608 }
1609 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1610 "ecb");
1611 if (rc)
1612 goto out;
1613 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1614 if (IS_ERR(*key_tfm)) {
1615 rc = PTR_ERR(*key_tfm);
1616 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1617 "[%s]; rc = [%d]\n", full_alg_name, rc);
1618 goto out;
1619 }
1620 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1621 if (*key_size == 0)
1622 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1623 get_random_bytes(dummy_key, *key_size);
1624 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1625 if (rc) {
1626 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1627 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1628 rc);
1629 rc = -EINVAL;
1630 goto out;
1631 }
1632 out:
1633 kfree(full_alg_name);
1634 return rc;
1635 }
1636
1637 struct kmem_cache *ecryptfs_key_tfm_cache;
1638 static struct list_head key_tfm_list;
1639 struct mutex key_tfm_list_mutex;
1640
ecryptfs_init_crypto(void)1641 int __init ecryptfs_init_crypto(void)
1642 {
1643 mutex_init(&key_tfm_list_mutex);
1644 INIT_LIST_HEAD(&key_tfm_list);
1645 return 0;
1646 }
1647
1648 /**
1649 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1650 *
1651 * Called only at module unload time
1652 */
ecryptfs_destroy_crypto(void)1653 int ecryptfs_destroy_crypto(void)
1654 {
1655 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1656
1657 mutex_lock(&key_tfm_list_mutex);
1658 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1659 key_tfm_list) {
1660 list_del(&key_tfm->key_tfm_list);
1661 crypto_free_skcipher(key_tfm->key_tfm);
1662 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1663 }
1664 mutex_unlock(&key_tfm_list_mutex);
1665 return 0;
1666 }
1667
1668 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1669 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1670 size_t key_size)
1671 {
1672 struct ecryptfs_key_tfm *tmp_tfm;
1673 int rc = 0;
1674
1675 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1676
1677 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1678 if (key_tfm != NULL)
1679 (*key_tfm) = tmp_tfm;
1680 if (!tmp_tfm) {
1681 rc = -ENOMEM;
1682 printk(KERN_ERR "Error attempting to allocate from "
1683 "ecryptfs_key_tfm_cache\n");
1684 goto out;
1685 }
1686 mutex_init(&tmp_tfm->key_tfm_mutex);
1687 strncpy(tmp_tfm->cipher_name, cipher_name,
1688 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1689 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1690 tmp_tfm->key_size = key_size;
1691 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1692 tmp_tfm->cipher_name,
1693 &tmp_tfm->key_size);
1694 if (rc) {
1695 printk(KERN_ERR "Error attempting to initialize key TFM "
1696 "cipher with name = [%s]; rc = [%d]\n",
1697 tmp_tfm->cipher_name, rc);
1698 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1699 if (key_tfm != NULL)
1700 (*key_tfm) = NULL;
1701 goto out;
1702 }
1703 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1704 out:
1705 return rc;
1706 }
1707
1708 /**
1709 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1710 * @cipher_name: the name of the cipher to search for
1711 * @key_tfm: set to corresponding tfm if found
1712 *
1713 * Searches for cached key_tfm matching @cipher_name
1714 * Must be called with &key_tfm_list_mutex held
1715 * Returns 1 if found, with @key_tfm set
1716 * Returns 0 if not found, with @key_tfm set to NULL
1717 */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1718 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1719 {
1720 struct ecryptfs_key_tfm *tmp_key_tfm;
1721
1722 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1723
1724 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1725 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1726 if (key_tfm)
1727 (*key_tfm) = tmp_key_tfm;
1728 return 1;
1729 }
1730 }
1731 if (key_tfm)
1732 (*key_tfm) = NULL;
1733 return 0;
1734 }
1735
1736 /**
1737 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1738 *
1739 * @tfm: set to cached tfm found, or new tfm created
1740 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1741 * @cipher_name: the name of the cipher to search for and/or add
1742 *
1743 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1744 * Searches for cached item first, and creates new if not found.
1745 * Returns 0 on success, non-zero if adding new cipher failed
1746 */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1747 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1748 struct mutex **tfm_mutex,
1749 char *cipher_name)
1750 {
1751 struct ecryptfs_key_tfm *key_tfm;
1752 int rc = 0;
1753
1754 (*tfm) = NULL;
1755 (*tfm_mutex) = NULL;
1756
1757 mutex_lock(&key_tfm_list_mutex);
1758 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1759 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1760 if (rc) {
1761 printk(KERN_ERR "Error adding new key_tfm to list; "
1762 "rc = [%d]\n", rc);
1763 goto out;
1764 }
1765 }
1766 (*tfm) = key_tfm->key_tfm;
1767 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1768 out:
1769 mutex_unlock(&key_tfm_list_mutex);
1770 return rc;
1771 }
1772
1773 /* 64 characters forming a 6-bit target field */
1774 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1775 "EFGHIJKLMNOPQRST"
1776 "UVWXYZabcdefghij"
1777 "klmnopqrstuvwxyz");
1778
1779 /* We could either offset on every reverse map or just pad some 0x00's
1780 * at the front here */
1781 static const unsigned char filename_rev_map[256] = {
1782 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1783 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1784 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1785 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1788 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1789 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1790 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1791 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1792 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1793 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1794 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1795 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1796 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1797 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1798 };
1799
1800 /**
1801 * ecryptfs_encode_for_filename
1802 * @dst: Destination location for encoded filename
1803 * @dst_size: Size of the encoded filename in bytes
1804 * @src: Source location for the filename to encode
1805 * @src_size: Size of the source in bytes
1806 */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1807 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1808 unsigned char *src, size_t src_size)
1809 {
1810 size_t num_blocks;
1811 size_t block_num = 0;
1812 size_t dst_offset = 0;
1813 unsigned char last_block[3];
1814
1815 if (src_size == 0) {
1816 (*dst_size) = 0;
1817 goto out;
1818 }
1819 num_blocks = (src_size / 3);
1820 if ((src_size % 3) == 0) {
1821 memcpy(last_block, (&src[src_size - 3]), 3);
1822 } else {
1823 num_blocks++;
1824 last_block[2] = 0x00;
1825 switch (src_size % 3) {
1826 case 1:
1827 last_block[0] = src[src_size - 1];
1828 last_block[1] = 0x00;
1829 break;
1830 case 2:
1831 last_block[0] = src[src_size - 2];
1832 last_block[1] = src[src_size - 1];
1833 }
1834 }
1835 (*dst_size) = (num_blocks * 4);
1836 if (!dst)
1837 goto out;
1838 while (block_num < num_blocks) {
1839 unsigned char *src_block;
1840 unsigned char dst_block[4];
1841
1842 if (block_num == (num_blocks - 1))
1843 src_block = last_block;
1844 else
1845 src_block = &src[block_num * 3];
1846 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1847 dst_block[1] = (((src_block[0] << 4) & 0x30)
1848 | ((src_block[1] >> 4) & 0x0F));
1849 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1850 | ((src_block[2] >> 6) & 0x03));
1851 dst_block[3] = (src_block[2] & 0x3F);
1852 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1853 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1854 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1855 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1856 block_num++;
1857 }
1858 out:
1859 return;
1860 }
1861
ecryptfs_max_decoded_size(size_t encoded_size)1862 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1863 {
1864 /* Not exact; conservatively long. Every block of 4
1865 * encoded characters decodes into a block of 3
1866 * decoded characters. This segment of code provides
1867 * the caller with the maximum amount of allocated
1868 * space that @dst will need to point to in a
1869 * subsequent call. */
1870 return ((encoded_size + 1) * 3) / 4;
1871 }
1872
1873 /**
1874 * ecryptfs_decode_from_filename
1875 * @dst: If NULL, this function only sets @dst_size and returns. If
1876 * non-NULL, this function decodes the encoded octets in @src
1877 * into the memory that @dst points to.
1878 * @dst_size: Set to the size of the decoded string.
1879 * @src: The encoded set of octets to decode.
1880 * @src_size: The size of the encoded set of octets to decode.
1881 */
1882 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1883 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1884 const unsigned char *src, size_t src_size)
1885 {
1886 u8 current_bit_offset = 0;
1887 size_t src_byte_offset = 0;
1888 size_t dst_byte_offset = 0;
1889
1890 if (dst == NULL) {
1891 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1892 goto out;
1893 }
1894 while (src_byte_offset < src_size) {
1895 unsigned char src_byte =
1896 filename_rev_map[(int)src[src_byte_offset]];
1897
1898 switch (current_bit_offset) {
1899 case 0:
1900 dst[dst_byte_offset] = (src_byte << 2);
1901 current_bit_offset = 6;
1902 break;
1903 case 6:
1904 dst[dst_byte_offset++] |= (src_byte >> 4);
1905 dst[dst_byte_offset] = ((src_byte & 0xF)
1906 << 4);
1907 current_bit_offset = 4;
1908 break;
1909 case 4:
1910 dst[dst_byte_offset++] |= (src_byte >> 2);
1911 dst[dst_byte_offset] = (src_byte << 6);
1912 current_bit_offset = 2;
1913 break;
1914 case 2:
1915 dst[dst_byte_offset++] |= (src_byte);
1916 current_bit_offset = 0;
1917 break;
1918 }
1919 src_byte_offset++;
1920 }
1921 (*dst_size) = dst_byte_offset;
1922 out:
1923 return;
1924 }
1925
1926 /**
1927 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1928 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1929 * @name: The plaintext name
1930 * @length: The length of the plaintext
1931 * @encoded_name: The encypted name
1932 *
1933 * Encrypts and encodes a filename into something that constitutes a
1934 * valid filename for a filesystem, with printable characters.
1935 *
1936 * We assume that we have a properly initialized crypto context,
1937 * pointed to by crypt_stat->tfm.
1938 *
1939 * Returns zero on success; non-zero on otherwise
1940 */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1941 int ecryptfs_encrypt_and_encode_filename(
1942 char **encoded_name,
1943 size_t *encoded_name_size,
1944 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1945 const char *name, size_t name_size)
1946 {
1947 size_t encoded_name_no_prefix_size;
1948 int rc = 0;
1949
1950 (*encoded_name) = NULL;
1951 (*encoded_name_size) = 0;
1952 if (mount_crypt_stat && (mount_crypt_stat->flags
1953 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1954 struct ecryptfs_filename *filename;
1955
1956 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1957 if (!filename) {
1958 printk(KERN_ERR "%s: Out of memory whilst attempting "
1959 "to kzalloc [%zd] bytes\n", __func__,
1960 sizeof(*filename));
1961 rc = -ENOMEM;
1962 goto out;
1963 }
1964 filename->filename = (char *)name;
1965 filename->filename_size = name_size;
1966 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1967 if (rc) {
1968 printk(KERN_ERR "%s: Error attempting to encrypt "
1969 "filename; rc = [%d]\n", __func__, rc);
1970 kfree(filename);
1971 goto out;
1972 }
1973 ecryptfs_encode_for_filename(
1974 NULL, &encoded_name_no_prefix_size,
1975 filename->encrypted_filename,
1976 filename->encrypted_filename_size);
1977 if (mount_crypt_stat
1978 && (mount_crypt_stat->flags
1979 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1980 (*encoded_name_size) =
1981 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1982 + encoded_name_no_prefix_size);
1983 else
1984 (*encoded_name_size) =
1985 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1986 + encoded_name_no_prefix_size);
1987 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1988 if (!(*encoded_name)) {
1989 printk(KERN_ERR "%s: Out of memory whilst attempting "
1990 "to kzalloc [%zd] bytes\n", __func__,
1991 (*encoded_name_size));
1992 rc = -ENOMEM;
1993 kfree(filename->encrypted_filename);
1994 kfree(filename);
1995 goto out;
1996 }
1997 if (mount_crypt_stat
1998 && (mount_crypt_stat->flags
1999 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
2000 memcpy((*encoded_name),
2001 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2002 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2003 ecryptfs_encode_for_filename(
2004 ((*encoded_name)
2005 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2006 &encoded_name_no_prefix_size,
2007 filename->encrypted_filename,
2008 filename->encrypted_filename_size);
2009 (*encoded_name_size) =
2010 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2011 + encoded_name_no_prefix_size);
2012 (*encoded_name)[(*encoded_name_size)] = '\0';
2013 } else {
2014 rc = -EOPNOTSUPP;
2015 }
2016 if (rc) {
2017 printk(KERN_ERR "%s: Error attempting to encode "
2018 "encrypted filename; rc = [%d]\n", __func__,
2019 rc);
2020 kfree((*encoded_name));
2021 (*encoded_name) = NULL;
2022 (*encoded_name_size) = 0;
2023 }
2024 kfree(filename->encrypted_filename);
2025 kfree(filename);
2026 } else {
2027 rc = ecryptfs_copy_filename(encoded_name,
2028 encoded_name_size,
2029 name, name_size);
2030 }
2031 out:
2032 return rc;
2033 }
2034
is_dot_dotdot(const char * name,size_t name_size)2035 static bool is_dot_dotdot(const char *name, size_t name_size)
2036 {
2037 if (name_size == 1 && name[0] == '.')
2038 return true;
2039 else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2040 return true;
2041
2042 return false;
2043 }
2044
2045 /**
2046 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2047 * @plaintext_name: The plaintext name
2048 * @plaintext_name_size: The plaintext name size
2049 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2050 * @name: The filename in cipher text
2051 * @name_size: The cipher text name size
2052 *
2053 * Decrypts and decodes the filename.
2054 *
2055 * Returns zero on error; non-zero otherwise
2056 */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2057 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2058 size_t *plaintext_name_size,
2059 struct super_block *sb,
2060 const char *name, size_t name_size)
2061 {
2062 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2063 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2064 char *decoded_name;
2065 size_t decoded_name_size;
2066 size_t packet_size;
2067 int rc = 0;
2068
2069 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2070 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2071 if (is_dot_dotdot(name, name_size)) {
2072 rc = ecryptfs_copy_filename(plaintext_name,
2073 plaintext_name_size,
2074 name, name_size);
2075 goto out;
2076 }
2077
2078 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2079 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2080 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2081 rc = -EINVAL;
2082 goto out;
2083 }
2084
2085 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2086 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2087 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2088 name, name_size);
2089 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2090 if (!decoded_name) {
2091 printk(KERN_ERR "%s: Out of memory whilst attempting "
2092 "to kmalloc [%zd] bytes\n", __func__,
2093 decoded_name_size);
2094 rc = -ENOMEM;
2095 goto out;
2096 }
2097 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2098 name, name_size);
2099 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2100 plaintext_name_size,
2101 &packet_size,
2102 mount_crypt_stat,
2103 decoded_name,
2104 decoded_name_size);
2105 if (rc) {
2106 ecryptfs_printk(KERN_DEBUG,
2107 "%s: Could not parse tag 70 packet from filename\n",
2108 __func__);
2109 goto out_free;
2110 }
2111 } else {
2112 rc = ecryptfs_copy_filename(plaintext_name,
2113 plaintext_name_size,
2114 name, name_size);
2115 goto out;
2116 }
2117 out_free:
2118 kfree(decoded_name);
2119 out:
2120 return rc;
2121 }
2122
2123 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2124
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2125 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2126 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2127 {
2128 struct crypto_skcipher *tfm;
2129 struct mutex *tfm_mutex;
2130 size_t cipher_blocksize;
2131 int rc;
2132
2133 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2134 (*namelen) = lower_namelen;
2135 return 0;
2136 }
2137
2138 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2139 mount_crypt_stat->global_default_fn_cipher_name);
2140 if (unlikely(rc)) {
2141 (*namelen) = 0;
2142 return rc;
2143 }
2144
2145 mutex_lock(tfm_mutex);
2146 cipher_blocksize = crypto_skcipher_blocksize(tfm);
2147 mutex_unlock(tfm_mutex);
2148
2149 /* Return an exact amount for the common cases */
2150 if (lower_namelen == NAME_MAX
2151 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2152 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2153 return 0;
2154 }
2155
2156 /* Return a safe estimate for the uncommon cases */
2157 (*namelen) = lower_namelen;
2158 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2159 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2160 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2161 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2162 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2163 /* Worst case is that the filename is padded nearly a full block size */
2164 (*namelen) -= cipher_blocksize - 1;
2165
2166 if ((*namelen) < 0)
2167 (*namelen) = 0;
2168
2169 return 0;
2170 }
2171