• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 static int edac_report = EDAC_REPORTING_ENABLED;
47 
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51 
52 /*
53  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54  *	apei/ghes and i7core_edac to be used at the same time.
55  */
56 static void const *edac_mc_owner;
57 
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59 
edac_get_report_status(void)60 int edac_get_report_status(void)
61 {
62 	return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65 
edac_set_report_status(int new)66 void edac_set_report_status(int new)
67 {
68 	if (new == EDAC_REPORTING_ENABLED ||
69 	    new == EDAC_REPORTING_DISABLED ||
70 	    new == EDAC_REPORTING_FORCE)
71 		edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74 
edac_report_set(const char * str,const struct kernel_param * kp)75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77 	if (!str)
78 		return -EINVAL;
79 
80 	if (!strncmp(str, "on", 2))
81 		edac_report = EDAC_REPORTING_ENABLED;
82 	else if (!strncmp(str, "off", 3))
83 		edac_report = EDAC_REPORTING_DISABLED;
84 	else if (!strncmp(str, "force", 5))
85 		edac_report = EDAC_REPORTING_FORCE;
86 
87 	return 0;
88 }
89 
edac_report_get(char * buffer,const struct kernel_param * kp)90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92 	int ret = 0;
93 
94 	switch (edac_report) {
95 	case EDAC_REPORTING_ENABLED:
96 		ret = sprintf(buffer, "on");
97 		break;
98 	case EDAC_REPORTING_DISABLED:
99 		ret = sprintf(buffer, "off");
100 		break;
101 	case EDAC_REPORTING_FORCE:
102 		ret = sprintf(buffer, "force");
103 		break;
104 	default:
105 		ret = -EINVAL;
106 		break;
107 	}
108 
109 	return ret;
110 }
111 
112 static const struct kernel_param_ops edac_report_ops = {
113 	.set = edac_report_set,
114 	.get = edac_report_get,
115 };
116 
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118 
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned len)119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 			         unsigned len)
121 {
122 	struct mem_ctl_info *mci = dimm->mci;
123 	int i, n, count = 0;
124 	char *p = buf;
125 
126 	for (i = 0; i < mci->n_layers; i++) {
127 		n = snprintf(p, len, "%s %d ",
128 			      edac_layer_name[mci->layers[i].type],
129 			      dimm->location[i]);
130 		p += n;
131 		len -= n;
132 		count += n;
133 		if (!len)
134 			break;
135 	}
136 
137 	return count;
138 }
139 
140 #ifdef CONFIG_EDAC_DEBUG
141 
edac_mc_dump_channel(struct rank_info * chan)142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
145 	edac_dbg(4, "    channel = %p\n", chan);
146 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
147 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
148 }
149 
edac_mc_dump_dimm(struct dimm_info * dimm,int number)150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152 	char location[80];
153 
154 	edac_dimm_info_location(dimm, location, sizeof(location));
155 
156 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 		 dimm->mci->csbased ? "rank" : "dimm",
158 		 number, location, dimm->csrow, dimm->cschannel);
159 	edac_dbg(4, "  dimm = %p\n", dimm);
160 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
161 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
163 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165 
edac_mc_dump_csrow(struct csrow_info * csrow)166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 	edac_dbg(4, "  csrow = %p\n", csrow);
170 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
171 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
172 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
174 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
175 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
176 }
177 
edac_mc_dump_mci(struct mem_ctl_info * mci)178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180 	edac_dbg(3, "\tmci = %p\n", mci);
181 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 		 mci->nr_csrows, mci->csrows);
187 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 		 mci->tot_dimms, mci->dimms);
189 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 		 mci->mod_name, mci->ctl_name);
192 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194 
195 #endif				/* CONFIG_EDAC_DEBUG */
196 
197 const char * const edac_mem_types[] = {
198 	[MEM_EMPTY]	= "Empty csrow",
199 	[MEM_RESERVED]	= "Reserved csrow type",
200 	[MEM_UNKNOWN]	= "Unknown csrow type",
201 	[MEM_FPM]	= "Fast page mode RAM",
202 	[MEM_EDO]	= "Extended data out RAM",
203 	[MEM_BEDO]	= "Burst Extended data out RAM",
204 	[MEM_SDR]	= "Single data rate SDRAM",
205 	[MEM_RDR]	= "Registered single data rate SDRAM",
206 	[MEM_DDR]	= "Double data rate SDRAM",
207 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
208 	[MEM_RMBS]	= "Rambus DRAM",
209 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
210 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
211 	[MEM_RDDR2]	= "Registered DDR2 RAM",
212 	[MEM_XDR]	= "Rambus XDR",
213 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
214 	[MEM_RDDR3]	= "Registered DDR3 RAM",
215 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
216 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
217 	[MEM_RDDR4]	= "Registered DDR4 RAM",
218 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
219 };
220 EXPORT_SYMBOL_GPL(edac_mem_types);
221 
222 /**
223  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224  * @p:		pointer to a pointer with the memory offset to be used. At
225  *		return, this will be incremented to point to the next offset
226  * @size:	Size of the data structure to be reserved
227  * @n_elems:	Number of elements that should be reserved
228  *
229  * If 'size' is a constant, the compiler will optimize this whole function
230  * down to either a no-op or the addition of a constant to the value of '*p'.
231  *
232  * The 'p' pointer is absolutely needed to keep the proper advancing
233  * further in memory to the proper offsets when allocating the struct along
234  * with its embedded structs, as edac_device_alloc_ctl_info() does it
235  * above, for example.
236  *
237  * At return, the pointer 'p' will be incremented to be used on a next call
238  * to this function.
239  */
edac_align_ptr(void ** p,unsigned size,int n_elems)240 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 {
242 	unsigned align, r;
243 	void *ptr = *p;
244 
245 	*p += size * n_elems;
246 
247 	/*
248 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 	 * 'size'.  Adjust 'p' so that its alignment is at least as
250 	 * stringent as what the compiler would provide for X and return
251 	 * the aligned result.
252 	 * Here we assume that the alignment of a "long long" is the most
253 	 * stringent alignment that the compiler will ever provide by default.
254 	 * As far as I know, this is a reasonable assumption.
255 	 */
256 	if (size > sizeof(long))
257 		align = sizeof(long long);
258 	else if (size > sizeof(int))
259 		align = sizeof(long);
260 	else if (size > sizeof(short))
261 		align = sizeof(int);
262 	else if (size > sizeof(char))
263 		align = sizeof(short);
264 	else
265 		return (char *)ptr;
266 
267 	r = (unsigned long)p % align;
268 
269 	if (r == 0)
270 		return (char *)ptr;
271 
272 	*p += align - r;
273 
274 	return (void *)(((unsigned long)ptr) + align - r);
275 }
276 
_edac_mc_free(struct mem_ctl_info * mci)277 static void _edac_mc_free(struct mem_ctl_info *mci)
278 {
279 	int i, chn, row;
280 	struct csrow_info *csr;
281 	const unsigned int tot_dimms = mci->tot_dimms;
282 	const unsigned int tot_channels = mci->num_cschannel;
283 	const unsigned int tot_csrows = mci->nr_csrows;
284 
285 	if (mci->dimms) {
286 		for (i = 0; i < tot_dimms; i++)
287 			kfree(mci->dimms[i]);
288 		kfree(mci->dimms);
289 	}
290 	if (mci->csrows) {
291 		for (row = 0; row < tot_csrows; row++) {
292 			csr = mci->csrows[row];
293 			if (csr) {
294 				if (csr->channels) {
295 					for (chn = 0; chn < tot_channels; chn++)
296 						kfree(csr->channels[chn]);
297 					kfree(csr->channels);
298 				}
299 				kfree(csr);
300 			}
301 		}
302 		kfree(mci->csrows);
303 	}
304 	kfree(mci);
305 }
306 
edac_mc_alloc(unsigned mc_num,unsigned n_layers,struct edac_mc_layer * layers,unsigned sz_pvt)307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308 				   unsigned n_layers,
309 				   struct edac_mc_layer *layers,
310 				   unsigned sz_pvt)
311 {
312 	struct mem_ctl_info *mci;
313 	struct edac_mc_layer *layer;
314 	struct csrow_info *csr;
315 	struct rank_info *chan;
316 	struct dimm_info *dimm;
317 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318 	unsigned pos[EDAC_MAX_LAYERS];
319 	unsigned size, tot_dimms = 1, count = 1;
320 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
321 	void *pvt, *p, *ptr = NULL;
322 	int i, j, row, chn, n, len, off;
323 	bool per_rank = false;
324 
325 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 	/*
327 	 * Calculate the total amount of dimms and csrows/cschannels while
328 	 * in the old API emulation mode
329 	 */
330 	for (i = 0; i < n_layers; i++) {
331 		tot_dimms *= layers[i].size;
332 		if (layers[i].is_virt_csrow)
333 			tot_csrows *= layers[i].size;
334 		else
335 			tot_channels *= layers[i].size;
336 
337 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338 			per_rank = true;
339 	}
340 
341 	/* Figure out the offsets of the various items from the start of an mc
342 	 * structure.  We want the alignment of each item to be at least as
343 	 * stringent as what the compiler would provide if we could simply
344 	 * hardcode everything into a single struct.
345 	 */
346 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
347 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
348 	for (i = 0; i < n_layers; i++) {
349 		count *= layers[i].size;
350 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
351 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 		tot_errcount += 2 * count;
354 	}
355 
356 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
357 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
358 	size = ((unsigned long)pvt) + sz_pvt;
359 
360 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361 		 size,
362 		 tot_dimms,
363 		 per_rank ? "ranks" : "dimms",
364 		 tot_csrows * tot_channels);
365 
366 	mci = kzalloc(size, GFP_KERNEL);
367 	if (mci == NULL)
368 		return NULL;
369 
370 	/* Adjust pointers so they point within the memory we just allocated
371 	 * rather than an imaginary chunk of memory located at address 0.
372 	 */
373 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
374 	for (i = 0; i < n_layers; i++) {
375 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 	}
378 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379 
380 	/* setup index and various internal pointers */
381 	mci->mc_idx = mc_num;
382 	mci->tot_dimms = tot_dimms;
383 	mci->pvt_info = pvt;
384 	mci->n_layers = n_layers;
385 	mci->layers = layer;
386 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387 	mci->nr_csrows = tot_csrows;
388 	mci->num_cschannel = tot_channels;
389 	mci->csbased = per_rank;
390 
391 	/*
392 	 * Alocate and fill the csrow/channels structs
393 	 */
394 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
395 	if (!mci->csrows)
396 		goto error;
397 	for (row = 0; row < tot_csrows; row++) {
398 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399 		if (!csr)
400 			goto error;
401 		mci->csrows[row] = csr;
402 		csr->csrow_idx = row;
403 		csr->mci = mci;
404 		csr->nr_channels = tot_channels;
405 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
406 					GFP_KERNEL);
407 		if (!csr->channels)
408 			goto error;
409 
410 		for (chn = 0; chn < tot_channels; chn++) {
411 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412 			if (!chan)
413 				goto error;
414 			csr->channels[chn] = chan;
415 			chan->chan_idx = chn;
416 			chan->csrow = csr;
417 		}
418 	}
419 
420 	/*
421 	 * Allocate and fill the dimm structs
422 	 */
423 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
424 	if (!mci->dimms)
425 		goto error;
426 
427 	memset(&pos, 0, sizeof(pos));
428 	row = 0;
429 	chn = 0;
430 	for (i = 0; i < tot_dimms; i++) {
431 		chan = mci->csrows[row]->channels[chn];
432 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433 		if (off < 0 || off >= tot_dimms) {
434 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435 			goto error;
436 		}
437 
438 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
439 		if (!dimm)
440 			goto error;
441 		mci->dimms[off] = dimm;
442 		dimm->mci = mci;
443 
444 		/*
445 		 * Copy DIMM location and initialize it.
446 		 */
447 		len = sizeof(dimm->label);
448 		p = dimm->label;
449 		n = snprintf(p, len, "mc#%u", mc_num);
450 		p += n;
451 		len -= n;
452 		for (j = 0; j < n_layers; j++) {
453 			n = snprintf(p, len, "%s#%u",
454 				     edac_layer_name[layers[j].type],
455 				     pos[j]);
456 			p += n;
457 			len -= n;
458 			dimm->location[j] = pos[j];
459 
460 			if (len <= 0)
461 				break;
462 		}
463 
464 		/* Link it to the csrows old API data */
465 		chan->dimm = dimm;
466 		dimm->csrow = row;
467 		dimm->cschannel = chn;
468 
469 		/* Increment csrow location */
470 		if (layers[0].is_virt_csrow) {
471 			chn++;
472 			if (chn == tot_channels) {
473 				chn = 0;
474 				row++;
475 			}
476 		} else {
477 			row++;
478 			if (row == tot_csrows) {
479 				row = 0;
480 				chn++;
481 			}
482 		}
483 
484 		/* Increment dimm location */
485 		for (j = n_layers - 1; j >= 0; j--) {
486 			pos[j]++;
487 			if (pos[j] < layers[j].size)
488 				break;
489 			pos[j] = 0;
490 		}
491 	}
492 
493 	mci->op_state = OP_ALLOC;
494 
495 	return mci;
496 
497 error:
498 	_edac_mc_free(mci);
499 
500 	return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503 
edac_mc_free(struct mem_ctl_info * mci)504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506 	edac_dbg(1, "\n");
507 
508 	/* If we're not yet registered with sysfs free only what was allocated
509 	 * in edac_mc_alloc().
510 	 */
511 	if (!device_is_registered(&mci->dev)) {
512 		_edac_mc_free(mci);
513 		return;
514 	}
515 
516 	/* the mci instance is freed here, when the sysfs object is dropped */
517 	edac_unregister_sysfs(mci);
518 }
519 EXPORT_SYMBOL_GPL(edac_mc_free);
520 
edac_has_mcs(void)521 bool edac_has_mcs(void)
522 {
523 	bool ret;
524 
525 	mutex_lock(&mem_ctls_mutex);
526 
527 	ret = list_empty(&mc_devices);
528 
529 	mutex_unlock(&mem_ctls_mutex);
530 
531 	return !ret;
532 }
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
534 
535 /* Caller must hold mem_ctls_mutex */
__find_mci_by_dev(struct device * dev)536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 {
538 	struct mem_ctl_info *mci;
539 	struct list_head *item;
540 
541 	edac_dbg(3, "\n");
542 
543 	list_for_each(item, &mc_devices) {
544 		mci = list_entry(item, struct mem_ctl_info, link);
545 
546 		if (mci->pdev == dev)
547 			return mci;
548 	}
549 
550 	return NULL;
551 }
552 
553 /**
554  * find_mci_by_dev
555  *
556  *	scan list of controllers looking for the one that manages
557  *	the 'dev' device
558  * @dev: pointer to a struct device related with the MCI
559  */
find_mci_by_dev(struct device * dev)560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 {
562 	struct mem_ctl_info *ret;
563 
564 	mutex_lock(&mem_ctls_mutex);
565 	ret = __find_mci_by_dev(dev);
566 	mutex_unlock(&mem_ctls_mutex);
567 
568 	return ret;
569 }
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
571 
572 /*
573  * edac_mc_workq_function
574  *	performs the operation scheduled by a workq request
575  */
edac_mc_workq_function(struct work_struct * work_req)576 static void edac_mc_workq_function(struct work_struct *work_req)
577 {
578 	struct delayed_work *d_work = to_delayed_work(work_req);
579 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580 
581 	mutex_lock(&mem_ctls_mutex);
582 
583 	if (mci->op_state != OP_RUNNING_POLL) {
584 		mutex_unlock(&mem_ctls_mutex);
585 		return;
586 	}
587 
588 	if (edac_op_state == EDAC_OPSTATE_POLL)
589 		mci->edac_check(mci);
590 
591 	mutex_unlock(&mem_ctls_mutex);
592 
593 	/* Queue ourselves again. */
594 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
595 }
596 
597 /*
598  * edac_mc_reset_delay_period(unsigned long value)
599  *
600  *	user space has updated our poll period value, need to
601  *	reset our workq delays
602  */
edac_mc_reset_delay_period(unsigned long value)603 void edac_mc_reset_delay_period(unsigned long value)
604 {
605 	struct mem_ctl_info *mci;
606 	struct list_head *item;
607 
608 	mutex_lock(&mem_ctls_mutex);
609 
610 	list_for_each(item, &mc_devices) {
611 		mci = list_entry(item, struct mem_ctl_info, link);
612 
613 		if (mci->op_state == OP_RUNNING_POLL)
614 			edac_mod_work(&mci->work, value);
615 	}
616 	mutex_unlock(&mem_ctls_mutex);
617 }
618 
619 
620 
621 /* Return 0 on success, 1 on failure.
622  * Before calling this function, caller must
623  * assign a unique value to mci->mc_idx.
624  *
625  *	locking model:
626  *
627  *		called with the mem_ctls_mutex lock held
628  */
add_mc_to_global_list(struct mem_ctl_info * mci)629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631 	struct list_head *item, *insert_before;
632 	struct mem_ctl_info *p;
633 
634 	insert_before = &mc_devices;
635 
636 	p = __find_mci_by_dev(mci->pdev);
637 	if (unlikely(p != NULL))
638 		goto fail0;
639 
640 	list_for_each(item, &mc_devices) {
641 		p = list_entry(item, struct mem_ctl_info, link);
642 
643 		if (p->mc_idx >= mci->mc_idx) {
644 			if (unlikely(p->mc_idx == mci->mc_idx))
645 				goto fail1;
646 
647 			insert_before = item;
648 			break;
649 		}
650 	}
651 
652 	list_add_tail_rcu(&mci->link, insert_before);
653 	return 0;
654 
655 fail0:
656 	edac_printk(KERN_WARNING, EDAC_MC,
657 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659 	return 1;
660 
661 fail1:
662 	edac_printk(KERN_WARNING, EDAC_MC,
663 		"bug in low-level driver: attempt to assign\n"
664 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665 	return 1;
666 }
667 
del_mc_from_global_list(struct mem_ctl_info * mci)668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 {
670 	list_del_rcu(&mci->link);
671 
672 	/* these are for safe removal of devices from global list while
673 	 * NMI handlers may be traversing list
674 	 */
675 	synchronize_rcu();
676 	INIT_LIST_HEAD(&mci->link);
677 
678 	return list_empty(&mc_devices);
679 }
680 
edac_mc_find(int idx)681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683 	struct mem_ctl_info *mci;
684 	struct list_head *item;
685 
686 	mutex_lock(&mem_ctls_mutex);
687 
688 	list_for_each(item, &mc_devices) {
689 		mci = list_entry(item, struct mem_ctl_info, link);
690 		if (mci->mc_idx == idx)
691 			goto unlock;
692 	}
693 
694 	mci = NULL;
695 unlock:
696 	mutex_unlock(&mem_ctls_mutex);
697 	return mci;
698 }
699 EXPORT_SYMBOL(edac_mc_find);
700 
701 
702 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc_with_groups(struct mem_ctl_info * mci,const struct attribute_group ** groups)703 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
704 			       const struct attribute_group **groups)
705 {
706 	int ret = -EINVAL;
707 	edac_dbg(0, "\n");
708 
709 	if (mci->mc_idx >= EDAC_MAX_MCS) {
710 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
711 		return -ENODEV;
712 	}
713 
714 #ifdef CONFIG_EDAC_DEBUG
715 	if (edac_debug_level >= 3)
716 		edac_mc_dump_mci(mci);
717 
718 	if (edac_debug_level >= 4) {
719 		int i;
720 
721 		for (i = 0; i < mci->nr_csrows; i++) {
722 			struct csrow_info *csrow = mci->csrows[i];
723 			u32 nr_pages = 0;
724 			int j;
725 
726 			for (j = 0; j < csrow->nr_channels; j++)
727 				nr_pages += csrow->channels[j]->dimm->nr_pages;
728 			if (!nr_pages)
729 				continue;
730 			edac_mc_dump_csrow(csrow);
731 			for (j = 0; j < csrow->nr_channels; j++)
732 				if (csrow->channels[j]->dimm->nr_pages)
733 					edac_mc_dump_channel(csrow->channels[j]);
734 		}
735 		for (i = 0; i < mci->tot_dimms; i++)
736 			if (mci->dimms[i]->nr_pages)
737 				edac_mc_dump_dimm(mci->dimms[i], i);
738 	}
739 #endif
740 	mutex_lock(&mem_ctls_mutex);
741 
742 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
743 		ret = -EPERM;
744 		goto fail0;
745 	}
746 
747 	if (add_mc_to_global_list(mci))
748 		goto fail0;
749 
750 	/* set load time so that error rate can be tracked */
751 	mci->start_time = jiffies;
752 
753 	mci->bus = &mc_bus[mci->mc_idx];
754 
755 	if (edac_create_sysfs_mci_device(mci, groups)) {
756 		edac_mc_printk(mci, KERN_WARNING,
757 			"failed to create sysfs device\n");
758 		goto fail1;
759 	}
760 
761 	if (mci->edac_check) {
762 		mci->op_state = OP_RUNNING_POLL;
763 
764 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
765 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
766 
767 	} else {
768 		mci->op_state = OP_RUNNING_INTERRUPT;
769 	}
770 
771 	/* Report action taken */
772 	edac_mc_printk(mci, KERN_INFO,
773 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
774 		mci->mod_name, mci->ctl_name, mci->dev_name,
775 		edac_op_state_to_string(mci->op_state));
776 
777 	edac_mc_owner = mci->mod_name;
778 
779 	mutex_unlock(&mem_ctls_mutex);
780 	return 0;
781 
782 fail1:
783 	del_mc_from_global_list(mci);
784 
785 fail0:
786 	mutex_unlock(&mem_ctls_mutex);
787 	return ret;
788 }
789 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
790 
edac_mc_del_mc(struct device * dev)791 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
792 {
793 	struct mem_ctl_info *mci;
794 
795 	edac_dbg(0, "\n");
796 
797 	mutex_lock(&mem_ctls_mutex);
798 
799 	/* find the requested mci struct in the global list */
800 	mci = __find_mci_by_dev(dev);
801 	if (mci == NULL) {
802 		mutex_unlock(&mem_ctls_mutex);
803 		return NULL;
804 	}
805 
806 	/* mark MCI offline: */
807 	mci->op_state = OP_OFFLINE;
808 
809 	if (del_mc_from_global_list(mci))
810 		edac_mc_owner = NULL;
811 
812 	mutex_unlock(&mem_ctls_mutex);
813 
814 	if (mci->edac_check)
815 		edac_stop_work(&mci->work);
816 
817 	/* remove from sysfs */
818 	edac_remove_sysfs_mci_device(mci);
819 
820 	edac_printk(KERN_INFO, EDAC_MC,
821 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
822 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
823 
824 	return mci;
825 }
826 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
827 
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)828 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
829 				u32 size)
830 {
831 	struct page *pg;
832 	void *virt_addr;
833 	unsigned long flags = 0;
834 
835 	edac_dbg(3, "\n");
836 
837 	/* ECC error page was not in our memory. Ignore it. */
838 	if (!pfn_valid(page))
839 		return;
840 
841 	/* Find the actual page structure then map it and fix */
842 	pg = pfn_to_page(page);
843 
844 	if (PageHighMem(pg))
845 		local_irq_save(flags);
846 
847 	virt_addr = kmap_atomic(pg);
848 
849 	/* Perform architecture specific atomic scrub operation */
850 	edac_atomic_scrub(virt_addr + offset, size);
851 
852 	/* Unmap and complete */
853 	kunmap_atomic(virt_addr);
854 
855 	if (PageHighMem(pg))
856 		local_irq_restore(flags);
857 }
858 
859 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)860 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
861 {
862 	struct csrow_info **csrows = mci->csrows;
863 	int row, i, j, n;
864 
865 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
866 	row = -1;
867 
868 	for (i = 0; i < mci->nr_csrows; i++) {
869 		struct csrow_info *csrow = csrows[i];
870 		n = 0;
871 		for (j = 0; j < csrow->nr_channels; j++) {
872 			struct dimm_info *dimm = csrow->channels[j]->dimm;
873 			n += dimm->nr_pages;
874 		}
875 		if (n == 0)
876 			continue;
877 
878 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
879 			 mci->mc_idx,
880 			 csrow->first_page, page, csrow->last_page,
881 			 csrow->page_mask);
882 
883 		if ((page >= csrow->first_page) &&
884 		    (page <= csrow->last_page) &&
885 		    ((page & csrow->page_mask) ==
886 		     (csrow->first_page & csrow->page_mask))) {
887 			row = i;
888 			break;
889 		}
890 	}
891 
892 	if (row == -1)
893 		edac_mc_printk(mci, KERN_ERR,
894 			"could not look up page error address %lx\n",
895 			(unsigned long)page);
896 
897 	return row;
898 }
899 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
900 
901 const char *edac_layer_name[] = {
902 	[EDAC_MC_LAYER_BRANCH] = "branch",
903 	[EDAC_MC_LAYER_CHANNEL] = "channel",
904 	[EDAC_MC_LAYER_SLOT] = "slot",
905 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
906 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
907 };
908 EXPORT_SYMBOL_GPL(edac_layer_name);
909 
edac_inc_ce_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)910 static void edac_inc_ce_error(struct mem_ctl_info *mci,
911 			      bool enable_per_layer_report,
912 			      const int pos[EDAC_MAX_LAYERS],
913 			      const u16 count)
914 {
915 	int i, index = 0;
916 
917 	mci->ce_mc += count;
918 
919 	if (!enable_per_layer_report) {
920 		mci->ce_noinfo_count += count;
921 		return;
922 	}
923 
924 	for (i = 0; i < mci->n_layers; i++) {
925 		if (pos[i] < 0)
926 			break;
927 		index += pos[i];
928 		mci->ce_per_layer[i][index] += count;
929 
930 		if (i < mci->n_layers - 1)
931 			index *= mci->layers[i + 1].size;
932 	}
933 }
934 
edac_inc_ue_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)935 static void edac_inc_ue_error(struct mem_ctl_info *mci,
936 				    bool enable_per_layer_report,
937 				    const int pos[EDAC_MAX_LAYERS],
938 				    const u16 count)
939 {
940 	int i, index = 0;
941 
942 	mci->ue_mc += count;
943 
944 	if (!enable_per_layer_report) {
945 		mci->ue_noinfo_count += count;
946 		return;
947 	}
948 
949 	for (i = 0; i < mci->n_layers; i++) {
950 		if (pos[i] < 0)
951 			break;
952 		index += pos[i];
953 		mci->ue_per_layer[i][index] += count;
954 
955 		if (i < mci->n_layers - 1)
956 			index *= mci->layers[i + 1].size;
957 	}
958 }
959 
edac_ce_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report,const unsigned long page_frame_number,const unsigned long offset_in_page,long grain)960 static void edac_ce_error(struct mem_ctl_info *mci,
961 			  const u16 error_count,
962 			  const int pos[EDAC_MAX_LAYERS],
963 			  const char *msg,
964 			  const char *location,
965 			  const char *label,
966 			  const char *detail,
967 			  const char *other_detail,
968 			  const bool enable_per_layer_report,
969 			  const unsigned long page_frame_number,
970 			  const unsigned long offset_in_page,
971 			  long grain)
972 {
973 	unsigned long remapped_page;
974 	char *msg_aux = "";
975 
976 	if (*msg)
977 		msg_aux = " ";
978 
979 	if (edac_mc_get_log_ce()) {
980 		if (other_detail && *other_detail)
981 			edac_mc_printk(mci, KERN_WARNING,
982 				       "%d CE %s%son %s (%s %s - %s)\n",
983 				       error_count, msg, msg_aux, label,
984 				       location, detail, other_detail);
985 		else
986 			edac_mc_printk(mci, KERN_WARNING,
987 				       "%d CE %s%son %s (%s %s)\n",
988 				       error_count, msg, msg_aux, label,
989 				       location, detail);
990 	}
991 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
992 
993 	if (mci->scrub_mode == SCRUB_SW_SRC) {
994 		/*
995 			* Some memory controllers (called MCs below) can remap
996 			* memory so that it is still available at a different
997 			* address when PCI devices map into memory.
998 			* MC's that can't do this, lose the memory where PCI
999 			* devices are mapped. This mapping is MC-dependent
1000 			* and so we call back into the MC driver for it to
1001 			* map the MC page to a physical (CPU) page which can
1002 			* then be mapped to a virtual page - which can then
1003 			* be scrubbed.
1004 			*/
1005 		remapped_page = mci->ctl_page_to_phys ?
1006 			mci->ctl_page_to_phys(mci, page_frame_number) :
1007 			page_frame_number;
1008 
1009 		edac_mc_scrub_block(remapped_page,
1010 					offset_in_page, grain);
1011 	}
1012 }
1013 
edac_ue_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report)1014 static void edac_ue_error(struct mem_ctl_info *mci,
1015 			  const u16 error_count,
1016 			  const int pos[EDAC_MAX_LAYERS],
1017 			  const char *msg,
1018 			  const char *location,
1019 			  const char *label,
1020 			  const char *detail,
1021 			  const char *other_detail,
1022 			  const bool enable_per_layer_report)
1023 {
1024 	char *msg_aux = "";
1025 
1026 	if (*msg)
1027 		msg_aux = " ";
1028 
1029 	if (edac_mc_get_log_ue()) {
1030 		if (other_detail && *other_detail)
1031 			edac_mc_printk(mci, KERN_WARNING,
1032 				       "%d UE %s%son %s (%s %s - %s)\n",
1033 				       error_count, msg, msg_aux, label,
1034 				       location, detail, other_detail);
1035 		else
1036 			edac_mc_printk(mci, KERN_WARNING,
1037 				       "%d UE %s%son %s (%s %s)\n",
1038 				       error_count, msg, msg_aux, label,
1039 				       location, detail);
1040 	}
1041 
1042 	if (edac_mc_get_panic_on_ue()) {
1043 		if (other_detail && *other_detail)
1044 			panic("UE %s%son %s (%s%s - %s)\n",
1045 			      msg, msg_aux, label, location, detail, other_detail);
1046 		else
1047 			panic("UE %s%son %s (%s%s)\n",
1048 			      msg, msg_aux, label, location, detail);
1049 	}
1050 
1051 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1052 }
1053 
edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,struct edac_raw_error_desc * e)1054 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1055 			      struct mem_ctl_info *mci,
1056 			      struct edac_raw_error_desc *e)
1057 {
1058 	char detail[80];
1059 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1060 
1061 	/* Memory type dependent details about the error */
1062 	if (type == HW_EVENT_ERR_CORRECTED) {
1063 		snprintf(detail, sizeof(detail),
1064 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1065 			e->page_frame_number, e->offset_in_page,
1066 			e->grain, e->syndrome);
1067 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1068 			      detail, e->other_detail, e->enable_per_layer_report,
1069 			      e->page_frame_number, e->offset_in_page, e->grain);
1070 	} else {
1071 		snprintf(detail, sizeof(detail),
1072 			"page:0x%lx offset:0x%lx grain:%ld",
1073 			e->page_frame_number, e->offset_in_page, e->grain);
1074 
1075 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1076 			      detail, e->other_detail, e->enable_per_layer_report);
1077 	}
1078 
1079 
1080 }
1081 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1082 
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)1083 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1084 			  struct mem_ctl_info *mci,
1085 			  const u16 error_count,
1086 			  const unsigned long page_frame_number,
1087 			  const unsigned long offset_in_page,
1088 			  const unsigned long syndrome,
1089 			  const int top_layer,
1090 			  const int mid_layer,
1091 			  const int low_layer,
1092 			  const char *msg,
1093 			  const char *other_detail)
1094 {
1095 	char *p;
1096 	int row = -1, chan = -1;
1097 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1098 	int i, n_labels = 0;
1099 	u8 grain_bits;
1100 	struct edac_raw_error_desc *e = &mci->error_desc;
1101 
1102 	edac_dbg(3, "MC%d\n", mci->mc_idx);
1103 
1104 	/* Fills the error report buffer */
1105 	memset(e, 0, sizeof (*e));
1106 	e->error_count = error_count;
1107 	e->top_layer = top_layer;
1108 	e->mid_layer = mid_layer;
1109 	e->low_layer = low_layer;
1110 	e->page_frame_number = page_frame_number;
1111 	e->offset_in_page = offset_in_page;
1112 	e->syndrome = syndrome;
1113 	e->msg = msg;
1114 	e->other_detail = other_detail;
1115 
1116 	/*
1117 	 * Check if the event report is consistent and if the memory
1118 	 * location is known. If it is known, enable_per_layer_report will be
1119 	 * true, the DIMM(s) label info will be filled and the per-layer
1120 	 * error counters will be incremented.
1121 	 */
1122 	for (i = 0; i < mci->n_layers; i++) {
1123 		if (pos[i] >= (int)mci->layers[i].size) {
1124 
1125 			edac_mc_printk(mci, KERN_ERR,
1126 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1127 				       edac_layer_name[mci->layers[i].type],
1128 				       pos[i], mci->layers[i].size);
1129 			/*
1130 			 * Instead of just returning it, let's use what's
1131 			 * known about the error. The increment routines and
1132 			 * the DIMM filter logic will do the right thing by
1133 			 * pointing the likely damaged DIMMs.
1134 			 */
1135 			pos[i] = -1;
1136 		}
1137 		if (pos[i] >= 0)
1138 			e->enable_per_layer_report = true;
1139 	}
1140 
1141 	/*
1142 	 * Get the dimm label/grain that applies to the match criteria.
1143 	 * As the error algorithm may not be able to point to just one memory
1144 	 * stick, the logic here will get all possible labels that could
1145 	 * pottentially be affected by the error.
1146 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1147 	 * to have only the MC channel and the MC dimm (also called "branch")
1148 	 * but the channel is not known, as the memory is arranged in pairs,
1149 	 * where each memory belongs to a separate channel within the same
1150 	 * branch.
1151 	 */
1152 	p = e->label;
1153 	*p = '\0';
1154 
1155 	for (i = 0; i < mci->tot_dimms; i++) {
1156 		struct dimm_info *dimm = mci->dimms[i];
1157 
1158 		if (top_layer >= 0 && top_layer != dimm->location[0])
1159 			continue;
1160 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1161 			continue;
1162 		if (low_layer >= 0 && low_layer != dimm->location[2])
1163 			continue;
1164 
1165 		/* get the max grain, over the error match range */
1166 		if (dimm->grain > e->grain)
1167 			e->grain = dimm->grain;
1168 
1169 		/*
1170 		 * If the error is memory-controller wide, there's no need to
1171 		 * seek for the affected DIMMs because the whole
1172 		 * channel/memory controller/...  may be affected.
1173 		 * Also, don't show errors for empty DIMM slots.
1174 		 */
1175 		if (e->enable_per_layer_report && dimm->nr_pages) {
1176 			if (n_labels >= EDAC_MAX_LABELS) {
1177 				e->enable_per_layer_report = false;
1178 				break;
1179 			}
1180 			n_labels++;
1181 			if (p != e->label) {
1182 				strcpy(p, OTHER_LABEL);
1183 				p += strlen(OTHER_LABEL);
1184 			}
1185 			strcpy(p, dimm->label);
1186 			p += strlen(p);
1187 			*p = '\0';
1188 
1189 			/*
1190 			 * get csrow/channel of the DIMM, in order to allow
1191 			 * incrementing the compat API counters
1192 			 */
1193 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
1194 				 mci->csbased ? "rank" : "dimm",
1195 				 dimm->csrow, dimm->cschannel);
1196 			if (row == -1)
1197 				row = dimm->csrow;
1198 			else if (row >= 0 && row != dimm->csrow)
1199 				row = -2;
1200 
1201 			if (chan == -1)
1202 				chan = dimm->cschannel;
1203 			else if (chan >= 0 && chan != dimm->cschannel)
1204 				chan = -2;
1205 		}
1206 	}
1207 
1208 	if (!e->enable_per_layer_report) {
1209 		strcpy(e->label, "any memory");
1210 	} else {
1211 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1212 		if (p == e->label)
1213 			strcpy(e->label, "unknown memory");
1214 		if (type == HW_EVENT_ERR_CORRECTED) {
1215 			if (row >= 0) {
1216 				mci->csrows[row]->ce_count += error_count;
1217 				if (chan >= 0)
1218 					mci->csrows[row]->channels[chan]->ce_count += error_count;
1219 			}
1220 		} else
1221 			if (row >= 0)
1222 				mci->csrows[row]->ue_count += error_count;
1223 	}
1224 
1225 	/* Fill the RAM location data */
1226 	p = e->location;
1227 
1228 	for (i = 0; i < mci->n_layers; i++) {
1229 		if (pos[i] < 0)
1230 			continue;
1231 
1232 		p += sprintf(p, "%s:%d ",
1233 			     edac_layer_name[mci->layers[i].type],
1234 			     pos[i]);
1235 	}
1236 	if (p > e->location)
1237 		*(p - 1) = '\0';
1238 
1239 	/* Sanity-check driver-supplied grain value. */
1240 	if (WARN_ON_ONCE(!e->grain))
1241 		e->grain = 1;
1242 
1243 	grain_bits = fls_long(e->grain - 1);
1244 
1245 	/* Report the error via the trace interface */
1246 	if (IS_ENABLED(CONFIG_RAS))
1247 		trace_mc_event(type, e->msg, e->label, e->error_count,
1248 			       mci->mc_idx, e->top_layer, e->mid_layer,
1249 			       e->low_layer,
1250 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1251 			       grain_bits, e->syndrome, e->other_detail);
1252 
1253 	edac_raw_mc_handle_error(type, mci, e);
1254 }
1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1256