1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
55 */
56 static void const *edac_mc_owner;
57
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59
edac_get_report_status(void)60 int edac_get_report_status(void)
61 {
62 return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65
edac_set_report_status(int new)66 void edac_set_report_status(int new)
67 {
68 if (new == EDAC_REPORTING_ENABLED ||
69 new == EDAC_REPORTING_DISABLED ||
70 new == EDAC_REPORTING_FORCE)
71 edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74
edac_report_set(const char * str,const struct kernel_param * kp)75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77 if (!str)
78 return -EINVAL;
79
80 if (!strncmp(str, "on", 2))
81 edac_report = EDAC_REPORTING_ENABLED;
82 else if (!strncmp(str, "off", 3))
83 edac_report = EDAC_REPORTING_DISABLED;
84 else if (!strncmp(str, "force", 5))
85 edac_report = EDAC_REPORTING_FORCE;
86
87 return 0;
88 }
89
edac_report_get(char * buffer,const struct kernel_param * kp)90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92 int ret = 0;
93
94 switch (edac_report) {
95 case EDAC_REPORTING_ENABLED:
96 ret = sprintf(buffer, "on");
97 break;
98 case EDAC_REPORTING_DISABLED:
99 ret = sprintf(buffer, "off");
100 break;
101 case EDAC_REPORTING_FORCE:
102 ret = sprintf(buffer, "force");
103 break;
104 default:
105 ret = -EINVAL;
106 break;
107 }
108
109 return ret;
110 }
111
112 static const struct kernel_param_ops edac_report_ops = {
113 .set = edac_report_set,
114 .get = edac_report_get,
115 };
116
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned len)119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 unsigned len)
121 {
122 struct mem_ctl_info *mci = dimm->mci;
123 int i, n, count = 0;
124 char *p = buf;
125
126 for (i = 0; i < mci->n_layers; i++) {
127 n = snprintf(p, len, "%s %d ",
128 edac_layer_name[mci->layers[i].type],
129 dimm->location[i]);
130 p += n;
131 len -= n;
132 count += n;
133 if (!len)
134 break;
135 }
136
137 return count;
138 }
139
140 #ifdef CONFIG_EDAC_DEBUG
141
edac_mc_dump_channel(struct rank_info * chan)142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
145 edac_dbg(4, " channel = %p\n", chan);
146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
148 }
149
edac_mc_dump_dimm(struct dimm_info * dimm,int number)150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152 char location[80];
153
154 edac_dimm_info_location(dimm, location, sizeof(location));
155
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm->mci->csbased ? "rank" : "dimm",
158 number, location, dimm->csrow, dimm->cschannel);
159 edac_dbg(4, " dimm = %p\n", dimm);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165
edac_mc_dump_csrow(struct csrow_info * csrow)166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 edac_dbg(4, " csrow = %p\n", csrow);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
176 }
177
edac_mc_dump_mci(struct mem_ctl_info * mci)178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180 edac_dbg(3, "\tmci = %p\n", mci);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci->nr_csrows, mci->csrows);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci->tot_dimms, mci->dimms);
189 edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci->mod_name, mci->ctl_name);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194
195 #endif /* CONFIG_EDAC_DEBUG */
196
197 const char * const edac_mem_types[] = {
198 [MEM_EMPTY] = "Empty csrow",
199 [MEM_RESERVED] = "Reserved csrow type",
200 [MEM_UNKNOWN] = "Unknown csrow type",
201 [MEM_FPM] = "Fast page mode RAM",
202 [MEM_EDO] = "Extended data out RAM",
203 [MEM_BEDO] = "Burst Extended data out RAM",
204 [MEM_SDR] = "Single data rate SDRAM",
205 [MEM_RDR] = "Registered single data rate SDRAM",
206 [MEM_DDR] = "Double data rate SDRAM",
207 [MEM_RDDR] = "Registered Double data rate SDRAM",
208 [MEM_RMBS] = "Rambus DRAM",
209 [MEM_DDR2] = "Unbuffered DDR2 RAM",
210 [MEM_FB_DDR2] = "Fully buffered DDR2",
211 [MEM_RDDR2] = "Registered DDR2 RAM",
212 [MEM_XDR] = "Rambus XDR",
213 [MEM_DDR3] = "Unbuffered DDR3 RAM",
214 [MEM_RDDR3] = "Registered DDR3 RAM",
215 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
216 [MEM_DDR4] = "Unbuffered DDR4 RAM",
217 [MEM_RDDR4] = "Registered DDR4 RAM",
218 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
219 };
220 EXPORT_SYMBOL_GPL(edac_mem_types);
221
222 /**
223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224 * @p: pointer to a pointer with the memory offset to be used. At
225 * return, this will be incremented to point to the next offset
226 * @size: Size of the data structure to be reserved
227 * @n_elems: Number of elements that should be reserved
228 *
229 * If 'size' is a constant, the compiler will optimize this whole function
230 * down to either a no-op or the addition of a constant to the value of '*p'.
231 *
232 * The 'p' pointer is absolutely needed to keep the proper advancing
233 * further in memory to the proper offsets when allocating the struct along
234 * with its embedded structs, as edac_device_alloc_ctl_info() does it
235 * above, for example.
236 *
237 * At return, the pointer 'p' will be incremented to be used on a next call
238 * to this function.
239 */
edac_align_ptr(void ** p,unsigned size,int n_elems)240 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 {
242 unsigned align, r;
243 void *ptr = *p;
244
245 *p += size * n_elems;
246
247 /*
248 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 * 'size'. Adjust 'p' so that its alignment is at least as
250 * stringent as what the compiler would provide for X and return
251 * the aligned result.
252 * Here we assume that the alignment of a "long long" is the most
253 * stringent alignment that the compiler will ever provide by default.
254 * As far as I know, this is a reasonable assumption.
255 */
256 if (size > sizeof(long))
257 align = sizeof(long long);
258 else if (size > sizeof(int))
259 align = sizeof(long);
260 else if (size > sizeof(short))
261 align = sizeof(int);
262 else if (size > sizeof(char))
263 align = sizeof(short);
264 else
265 return (char *)ptr;
266
267 r = (unsigned long)p % align;
268
269 if (r == 0)
270 return (char *)ptr;
271
272 *p += align - r;
273
274 return (void *)(((unsigned long)ptr) + align - r);
275 }
276
_edac_mc_free(struct mem_ctl_info * mci)277 static void _edac_mc_free(struct mem_ctl_info *mci)
278 {
279 int i, chn, row;
280 struct csrow_info *csr;
281 const unsigned int tot_dimms = mci->tot_dimms;
282 const unsigned int tot_channels = mci->num_cschannel;
283 const unsigned int tot_csrows = mci->nr_csrows;
284
285 if (mci->dimms) {
286 for (i = 0; i < tot_dimms; i++)
287 kfree(mci->dimms[i]);
288 kfree(mci->dimms);
289 }
290 if (mci->csrows) {
291 for (row = 0; row < tot_csrows; row++) {
292 csr = mci->csrows[row];
293 if (csr) {
294 if (csr->channels) {
295 for (chn = 0; chn < tot_channels; chn++)
296 kfree(csr->channels[chn]);
297 kfree(csr->channels);
298 }
299 kfree(csr);
300 }
301 }
302 kfree(mci->csrows);
303 }
304 kfree(mci);
305 }
306
edac_mc_alloc(unsigned mc_num,unsigned n_layers,struct edac_mc_layer * layers,unsigned sz_pvt)307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308 unsigned n_layers,
309 struct edac_mc_layer *layers,
310 unsigned sz_pvt)
311 {
312 struct mem_ctl_info *mci;
313 struct edac_mc_layer *layer;
314 struct csrow_info *csr;
315 struct rank_info *chan;
316 struct dimm_info *dimm;
317 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318 unsigned pos[EDAC_MAX_LAYERS];
319 unsigned size, tot_dimms = 1, count = 1;
320 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
321 void *pvt, *p, *ptr = NULL;
322 int i, j, row, chn, n, len, off;
323 bool per_rank = false;
324
325 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 /*
327 * Calculate the total amount of dimms and csrows/cschannels while
328 * in the old API emulation mode
329 */
330 for (i = 0; i < n_layers; i++) {
331 tot_dimms *= layers[i].size;
332 if (layers[i].is_virt_csrow)
333 tot_csrows *= layers[i].size;
334 else
335 tot_channels *= layers[i].size;
336
337 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338 per_rank = true;
339 }
340
341 /* Figure out the offsets of the various items from the start of an mc
342 * structure. We want the alignment of each item to be at least as
343 * stringent as what the compiler would provide if we could simply
344 * hardcode everything into a single struct.
345 */
346 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
347 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
348 for (i = 0; i < n_layers; i++) {
349 count *= layers[i].size;
350 edac_dbg(4, "errcount layer %d size %d\n", i, count);
351 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 tot_errcount += 2 * count;
354 }
355
356 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
357 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
358 size = ((unsigned long)pvt) + sz_pvt;
359
360 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361 size,
362 tot_dimms,
363 per_rank ? "ranks" : "dimms",
364 tot_csrows * tot_channels);
365
366 mci = kzalloc(size, GFP_KERNEL);
367 if (mci == NULL)
368 return NULL;
369
370 /* Adjust pointers so they point within the memory we just allocated
371 * rather than an imaginary chunk of memory located at address 0.
372 */
373 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
374 for (i = 0; i < n_layers; i++) {
375 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 }
378 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379
380 /* setup index and various internal pointers */
381 mci->mc_idx = mc_num;
382 mci->tot_dimms = tot_dimms;
383 mci->pvt_info = pvt;
384 mci->n_layers = n_layers;
385 mci->layers = layer;
386 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387 mci->nr_csrows = tot_csrows;
388 mci->num_cschannel = tot_channels;
389 mci->csbased = per_rank;
390
391 /*
392 * Alocate and fill the csrow/channels structs
393 */
394 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
395 if (!mci->csrows)
396 goto error;
397 for (row = 0; row < tot_csrows; row++) {
398 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399 if (!csr)
400 goto error;
401 mci->csrows[row] = csr;
402 csr->csrow_idx = row;
403 csr->mci = mci;
404 csr->nr_channels = tot_channels;
405 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
406 GFP_KERNEL);
407 if (!csr->channels)
408 goto error;
409
410 for (chn = 0; chn < tot_channels; chn++) {
411 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412 if (!chan)
413 goto error;
414 csr->channels[chn] = chan;
415 chan->chan_idx = chn;
416 chan->csrow = csr;
417 }
418 }
419
420 /*
421 * Allocate and fill the dimm structs
422 */
423 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
424 if (!mci->dimms)
425 goto error;
426
427 memset(&pos, 0, sizeof(pos));
428 row = 0;
429 chn = 0;
430 for (i = 0; i < tot_dimms; i++) {
431 chan = mci->csrows[row]->channels[chn];
432 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433 if (off < 0 || off >= tot_dimms) {
434 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435 goto error;
436 }
437
438 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
439 if (!dimm)
440 goto error;
441 mci->dimms[off] = dimm;
442 dimm->mci = mci;
443
444 /*
445 * Copy DIMM location and initialize it.
446 */
447 len = sizeof(dimm->label);
448 p = dimm->label;
449 n = snprintf(p, len, "mc#%u", mc_num);
450 p += n;
451 len -= n;
452 for (j = 0; j < n_layers; j++) {
453 n = snprintf(p, len, "%s#%u",
454 edac_layer_name[layers[j].type],
455 pos[j]);
456 p += n;
457 len -= n;
458 dimm->location[j] = pos[j];
459
460 if (len <= 0)
461 break;
462 }
463
464 /* Link it to the csrows old API data */
465 chan->dimm = dimm;
466 dimm->csrow = row;
467 dimm->cschannel = chn;
468
469 /* Increment csrow location */
470 if (layers[0].is_virt_csrow) {
471 chn++;
472 if (chn == tot_channels) {
473 chn = 0;
474 row++;
475 }
476 } else {
477 row++;
478 if (row == tot_csrows) {
479 row = 0;
480 chn++;
481 }
482 }
483
484 /* Increment dimm location */
485 for (j = n_layers - 1; j >= 0; j--) {
486 pos[j]++;
487 if (pos[j] < layers[j].size)
488 break;
489 pos[j] = 0;
490 }
491 }
492
493 mci->op_state = OP_ALLOC;
494
495 return mci;
496
497 error:
498 _edac_mc_free(mci);
499
500 return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503
edac_mc_free(struct mem_ctl_info * mci)504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506 edac_dbg(1, "\n");
507
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
510 */
511 if (!device_is_registered(&mci->dev)) {
512 _edac_mc_free(mci);
513 return;
514 }
515
516 /* the mci instance is freed here, when the sysfs object is dropped */
517 edac_unregister_sysfs(mci);
518 }
519 EXPORT_SYMBOL_GPL(edac_mc_free);
520
edac_has_mcs(void)521 bool edac_has_mcs(void)
522 {
523 bool ret;
524
525 mutex_lock(&mem_ctls_mutex);
526
527 ret = list_empty(&mc_devices);
528
529 mutex_unlock(&mem_ctls_mutex);
530
531 return !ret;
532 }
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
534
535 /* Caller must hold mem_ctls_mutex */
__find_mci_by_dev(struct device * dev)536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 {
538 struct mem_ctl_info *mci;
539 struct list_head *item;
540
541 edac_dbg(3, "\n");
542
543 list_for_each(item, &mc_devices) {
544 mci = list_entry(item, struct mem_ctl_info, link);
545
546 if (mci->pdev == dev)
547 return mci;
548 }
549
550 return NULL;
551 }
552
553 /**
554 * find_mci_by_dev
555 *
556 * scan list of controllers looking for the one that manages
557 * the 'dev' device
558 * @dev: pointer to a struct device related with the MCI
559 */
find_mci_by_dev(struct device * dev)560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 {
562 struct mem_ctl_info *ret;
563
564 mutex_lock(&mem_ctls_mutex);
565 ret = __find_mci_by_dev(dev);
566 mutex_unlock(&mem_ctls_mutex);
567
568 return ret;
569 }
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
571
572 /*
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
575 */
edac_mc_workq_function(struct work_struct * work_req)576 static void edac_mc_workq_function(struct work_struct *work_req)
577 {
578 struct delayed_work *d_work = to_delayed_work(work_req);
579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580
581 mutex_lock(&mem_ctls_mutex);
582
583 if (mci->op_state != OP_RUNNING_POLL) {
584 mutex_unlock(&mem_ctls_mutex);
585 return;
586 }
587
588 if (edac_op_state == EDAC_OPSTATE_POLL)
589 mci->edac_check(mci);
590
591 mutex_unlock(&mem_ctls_mutex);
592
593 /* Queue ourselves again. */
594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
595 }
596
597 /*
598 * edac_mc_reset_delay_period(unsigned long value)
599 *
600 * user space has updated our poll period value, need to
601 * reset our workq delays
602 */
edac_mc_reset_delay_period(unsigned long value)603 void edac_mc_reset_delay_period(unsigned long value)
604 {
605 struct mem_ctl_info *mci;
606 struct list_head *item;
607
608 mutex_lock(&mem_ctls_mutex);
609
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
612
613 if (mci->op_state == OP_RUNNING_POLL)
614 edac_mod_work(&mci->work, value);
615 }
616 mutex_unlock(&mem_ctls_mutex);
617 }
618
619
620
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
624 *
625 * locking model:
626 *
627 * called with the mem_ctls_mutex lock held
628 */
add_mc_to_global_list(struct mem_ctl_info * mci)629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
633
634 insert_before = &mc_devices;
635
636 p = __find_mci_by_dev(mci->pdev);
637 if (unlikely(p != NULL))
638 goto fail0;
639
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
642
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
646
647 insert_before = item;
648 break;
649 }
650 }
651
652 list_add_tail_rcu(&mci->link, insert_before);
653 return 0;
654
655 fail0:
656 edac_printk(KERN_WARNING, EDAC_MC,
657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659 return 1;
660
661 fail1:
662 edac_printk(KERN_WARNING, EDAC_MC,
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665 return 1;
666 }
667
del_mc_from_global_list(struct mem_ctl_info * mci)668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 {
670 list_del_rcu(&mci->link);
671
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
674 */
675 synchronize_rcu();
676 INIT_LIST_HEAD(&mci->link);
677
678 return list_empty(&mc_devices);
679 }
680
edac_mc_find(int idx)681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683 struct mem_ctl_info *mci;
684 struct list_head *item;
685
686 mutex_lock(&mem_ctls_mutex);
687
688 list_for_each(item, &mc_devices) {
689 mci = list_entry(item, struct mem_ctl_info, link);
690 if (mci->mc_idx == idx)
691 goto unlock;
692 }
693
694 mci = NULL;
695 unlock:
696 mutex_unlock(&mem_ctls_mutex);
697 return mci;
698 }
699 EXPORT_SYMBOL(edac_mc_find);
700
701
702 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc_with_groups(struct mem_ctl_info * mci,const struct attribute_group ** groups)703 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
704 const struct attribute_group **groups)
705 {
706 int ret = -EINVAL;
707 edac_dbg(0, "\n");
708
709 if (mci->mc_idx >= EDAC_MAX_MCS) {
710 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
711 return -ENODEV;
712 }
713
714 #ifdef CONFIG_EDAC_DEBUG
715 if (edac_debug_level >= 3)
716 edac_mc_dump_mci(mci);
717
718 if (edac_debug_level >= 4) {
719 int i;
720
721 for (i = 0; i < mci->nr_csrows; i++) {
722 struct csrow_info *csrow = mci->csrows[i];
723 u32 nr_pages = 0;
724 int j;
725
726 for (j = 0; j < csrow->nr_channels; j++)
727 nr_pages += csrow->channels[j]->dimm->nr_pages;
728 if (!nr_pages)
729 continue;
730 edac_mc_dump_csrow(csrow);
731 for (j = 0; j < csrow->nr_channels; j++)
732 if (csrow->channels[j]->dimm->nr_pages)
733 edac_mc_dump_channel(csrow->channels[j]);
734 }
735 for (i = 0; i < mci->tot_dimms; i++)
736 if (mci->dimms[i]->nr_pages)
737 edac_mc_dump_dimm(mci->dimms[i], i);
738 }
739 #endif
740 mutex_lock(&mem_ctls_mutex);
741
742 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
743 ret = -EPERM;
744 goto fail0;
745 }
746
747 if (add_mc_to_global_list(mci))
748 goto fail0;
749
750 /* set load time so that error rate can be tracked */
751 mci->start_time = jiffies;
752
753 mci->bus = &mc_bus[mci->mc_idx];
754
755 if (edac_create_sysfs_mci_device(mci, groups)) {
756 edac_mc_printk(mci, KERN_WARNING,
757 "failed to create sysfs device\n");
758 goto fail1;
759 }
760
761 if (mci->edac_check) {
762 mci->op_state = OP_RUNNING_POLL;
763
764 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
765 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
766
767 } else {
768 mci->op_state = OP_RUNNING_INTERRUPT;
769 }
770
771 /* Report action taken */
772 edac_mc_printk(mci, KERN_INFO,
773 "Giving out device to module %s controller %s: DEV %s (%s)\n",
774 mci->mod_name, mci->ctl_name, mci->dev_name,
775 edac_op_state_to_string(mci->op_state));
776
777 edac_mc_owner = mci->mod_name;
778
779 mutex_unlock(&mem_ctls_mutex);
780 return 0;
781
782 fail1:
783 del_mc_from_global_list(mci);
784
785 fail0:
786 mutex_unlock(&mem_ctls_mutex);
787 return ret;
788 }
789 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
790
edac_mc_del_mc(struct device * dev)791 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
792 {
793 struct mem_ctl_info *mci;
794
795 edac_dbg(0, "\n");
796
797 mutex_lock(&mem_ctls_mutex);
798
799 /* find the requested mci struct in the global list */
800 mci = __find_mci_by_dev(dev);
801 if (mci == NULL) {
802 mutex_unlock(&mem_ctls_mutex);
803 return NULL;
804 }
805
806 /* mark MCI offline: */
807 mci->op_state = OP_OFFLINE;
808
809 if (del_mc_from_global_list(mci))
810 edac_mc_owner = NULL;
811
812 mutex_unlock(&mem_ctls_mutex);
813
814 if (mci->edac_check)
815 edac_stop_work(&mci->work);
816
817 /* remove from sysfs */
818 edac_remove_sysfs_mci_device(mci);
819
820 edac_printk(KERN_INFO, EDAC_MC,
821 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
822 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
823
824 return mci;
825 }
826 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
827
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)828 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
829 u32 size)
830 {
831 struct page *pg;
832 void *virt_addr;
833 unsigned long flags = 0;
834
835 edac_dbg(3, "\n");
836
837 /* ECC error page was not in our memory. Ignore it. */
838 if (!pfn_valid(page))
839 return;
840
841 /* Find the actual page structure then map it and fix */
842 pg = pfn_to_page(page);
843
844 if (PageHighMem(pg))
845 local_irq_save(flags);
846
847 virt_addr = kmap_atomic(pg);
848
849 /* Perform architecture specific atomic scrub operation */
850 edac_atomic_scrub(virt_addr + offset, size);
851
852 /* Unmap and complete */
853 kunmap_atomic(virt_addr);
854
855 if (PageHighMem(pg))
856 local_irq_restore(flags);
857 }
858
859 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)860 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
861 {
862 struct csrow_info **csrows = mci->csrows;
863 int row, i, j, n;
864
865 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
866 row = -1;
867
868 for (i = 0; i < mci->nr_csrows; i++) {
869 struct csrow_info *csrow = csrows[i];
870 n = 0;
871 for (j = 0; j < csrow->nr_channels; j++) {
872 struct dimm_info *dimm = csrow->channels[j]->dimm;
873 n += dimm->nr_pages;
874 }
875 if (n == 0)
876 continue;
877
878 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
879 mci->mc_idx,
880 csrow->first_page, page, csrow->last_page,
881 csrow->page_mask);
882
883 if ((page >= csrow->first_page) &&
884 (page <= csrow->last_page) &&
885 ((page & csrow->page_mask) ==
886 (csrow->first_page & csrow->page_mask))) {
887 row = i;
888 break;
889 }
890 }
891
892 if (row == -1)
893 edac_mc_printk(mci, KERN_ERR,
894 "could not look up page error address %lx\n",
895 (unsigned long)page);
896
897 return row;
898 }
899 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
900
901 const char *edac_layer_name[] = {
902 [EDAC_MC_LAYER_BRANCH] = "branch",
903 [EDAC_MC_LAYER_CHANNEL] = "channel",
904 [EDAC_MC_LAYER_SLOT] = "slot",
905 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
906 [EDAC_MC_LAYER_ALL_MEM] = "memory",
907 };
908 EXPORT_SYMBOL_GPL(edac_layer_name);
909
edac_inc_ce_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)910 static void edac_inc_ce_error(struct mem_ctl_info *mci,
911 bool enable_per_layer_report,
912 const int pos[EDAC_MAX_LAYERS],
913 const u16 count)
914 {
915 int i, index = 0;
916
917 mci->ce_mc += count;
918
919 if (!enable_per_layer_report) {
920 mci->ce_noinfo_count += count;
921 return;
922 }
923
924 for (i = 0; i < mci->n_layers; i++) {
925 if (pos[i] < 0)
926 break;
927 index += pos[i];
928 mci->ce_per_layer[i][index] += count;
929
930 if (i < mci->n_layers - 1)
931 index *= mci->layers[i + 1].size;
932 }
933 }
934
edac_inc_ue_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)935 static void edac_inc_ue_error(struct mem_ctl_info *mci,
936 bool enable_per_layer_report,
937 const int pos[EDAC_MAX_LAYERS],
938 const u16 count)
939 {
940 int i, index = 0;
941
942 mci->ue_mc += count;
943
944 if (!enable_per_layer_report) {
945 mci->ue_noinfo_count += count;
946 return;
947 }
948
949 for (i = 0; i < mci->n_layers; i++) {
950 if (pos[i] < 0)
951 break;
952 index += pos[i];
953 mci->ue_per_layer[i][index] += count;
954
955 if (i < mci->n_layers - 1)
956 index *= mci->layers[i + 1].size;
957 }
958 }
959
edac_ce_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report,const unsigned long page_frame_number,const unsigned long offset_in_page,long grain)960 static void edac_ce_error(struct mem_ctl_info *mci,
961 const u16 error_count,
962 const int pos[EDAC_MAX_LAYERS],
963 const char *msg,
964 const char *location,
965 const char *label,
966 const char *detail,
967 const char *other_detail,
968 const bool enable_per_layer_report,
969 const unsigned long page_frame_number,
970 const unsigned long offset_in_page,
971 long grain)
972 {
973 unsigned long remapped_page;
974 char *msg_aux = "";
975
976 if (*msg)
977 msg_aux = " ";
978
979 if (edac_mc_get_log_ce()) {
980 if (other_detail && *other_detail)
981 edac_mc_printk(mci, KERN_WARNING,
982 "%d CE %s%son %s (%s %s - %s)\n",
983 error_count, msg, msg_aux, label,
984 location, detail, other_detail);
985 else
986 edac_mc_printk(mci, KERN_WARNING,
987 "%d CE %s%son %s (%s %s)\n",
988 error_count, msg, msg_aux, label,
989 location, detail);
990 }
991 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
992
993 if (mci->scrub_mode == SCRUB_SW_SRC) {
994 /*
995 * Some memory controllers (called MCs below) can remap
996 * memory so that it is still available at a different
997 * address when PCI devices map into memory.
998 * MC's that can't do this, lose the memory where PCI
999 * devices are mapped. This mapping is MC-dependent
1000 * and so we call back into the MC driver for it to
1001 * map the MC page to a physical (CPU) page which can
1002 * then be mapped to a virtual page - which can then
1003 * be scrubbed.
1004 */
1005 remapped_page = mci->ctl_page_to_phys ?
1006 mci->ctl_page_to_phys(mci, page_frame_number) :
1007 page_frame_number;
1008
1009 edac_mc_scrub_block(remapped_page,
1010 offset_in_page, grain);
1011 }
1012 }
1013
edac_ue_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report)1014 static void edac_ue_error(struct mem_ctl_info *mci,
1015 const u16 error_count,
1016 const int pos[EDAC_MAX_LAYERS],
1017 const char *msg,
1018 const char *location,
1019 const char *label,
1020 const char *detail,
1021 const char *other_detail,
1022 const bool enable_per_layer_report)
1023 {
1024 char *msg_aux = "";
1025
1026 if (*msg)
1027 msg_aux = " ";
1028
1029 if (edac_mc_get_log_ue()) {
1030 if (other_detail && *other_detail)
1031 edac_mc_printk(mci, KERN_WARNING,
1032 "%d UE %s%son %s (%s %s - %s)\n",
1033 error_count, msg, msg_aux, label,
1034 location, detail, other_detail);
1035 else
1036 edac_mc_printk(mci, KERN_WARNING,
1037 "%d UE %s%son %s (%s %s)\n",
1038 error_count, msg, msg_aux, label,
1039 location, detail);
1040 }
1041
1042 if (edac_mc_get_panic_on_ue()) {
1043 if (other_detail && *other_detail)
1044 panic("UE %s%son %s (%s%s - %s)\n",
1045 msg, msg_aux, label, location, detail, other_detail);
1046 else
1047 panic("UE %s%son %s (%s%s)\n",
1048 msg, msg_aux, label, location, detail);
1049 }
1050
1051 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1052 }
1053
edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,struct edac_raw_error_desc * e)1054 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1055 struct mem_ctl_info *mci,
1056 struct edac_raw_error_desc *e)
1057 {
1058 char detail[80];
1059 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1060
1061 /* Memory type dependent details about the error */
1062 if (type == HW_EVENT_ERR_CORRECTED) {
1063 snprintf(detail, sizeof(detail),
1064 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1065 e->page_frame_number, e->offset_in_page,
1066 e->grain, e->syndrome);
1067 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1068 detail, e->other_detail, e->enable_per_layer_report,
1069 e->page_frame_number, e->offset_in_page, e->grain);
1070 } else {
1071 snprintf(detail, sizeof(detail),
1072 "page:0x%lx offset:0x%lx grain:%ld",
1073 e->page_frame_number, e->offset_in_page, e->grain);
1074
1075 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1076 detail, e->other_detail, e->enable_per_layer_report);
1077 }
1078
1079
1080 }
1081 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1082
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)1083 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1084 struct mem_ctl_info *mci,
1085 const u16 error_count,
1086 const unsigned long page_frame_number,
1087 const unsigned long offset_in_page,
1088 const unsigned long syndrome,
1089 const int top_layer,
1090 const int mid_layer,
1091 const int low_layer,
1092 const char *msg,
1093 const char *other_detail)
1094 {
1095 char *p;
1096 int row = -1, chan = -1;
1097 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1098 int i, n_labels = 0;
1099 u8 grain_bits;
1100 struct edac_raw_error_desc *e = &mci->error_desc;
1101
1102 edac_dbg(3, "MC%d\n", mci->mc_idx);
1103
1104 /* Fills the error report buffer */
1105 memset(e, 0, sizeof (*e));
1106 e->error_count = error_count;
1107 e->top_layer = top_layer;
1108 e->mid_layer = mid_layer;
1109 e->low_layer = low_layer;
1110 e->page_frame_number = page_frame_number;
1111 e->offset_in_page = offset_in_page;
1112 e->syndrome = syndrome;
1113 e->msg = msg;
1114 e->other_detail = other_detail;
1115
1116 /*
1117 * Check if the event report is consistent and if the memory
1118 * location is known. If it is known, enable_per_layer_report will be
1119 * true, the DIMM(s) label info will be filled and the per-layer
1120 * error counters will be incremented.
1121 */
1122 for (i = 0; i < mci->n_layers; i++) {
1123 if (pos[i] >= (int)mci->layers[i].size) {
1124
1125 edac_mc_printk(mci, KERN_ERR,
1126 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1127 edac_layer_name[mci->layers[i].type],
1128 pos[i], mci->layers[i].size);
1129 /*
1130 * Instead of just returning it, let's use what's
1131 * known about the error. The increment routines and
1132 * the DIMM filter logic will do the right thing by
1133 * pointing the likely damaged DIMMs.
1134 */
1135 pos[i] = -1;
1136 }
1137 if (pos[i] >= 0)
1138 e->enable_per_layer_report = true;
1139 }
1140
1141 /*
1142 * Get the dimm label/grain that applies to the match criteria.
1143 * As the error algorithm may not be able to point to just one memory
1144 * stick, the logic here will get all possible labels that could
1145 * pottentially be affected by the error.
1146 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1147 * to have only the MC channel and the MC dimm (also called "branch")
1148 * but the channel is not known, as the memory is arranged in pairs,
1149 * where each memory belongs to a separate channel within the same
1150 * branch.
1151 */
1152 p = e->label;
1153 *p = '\0';
1154
1155 for (i = 0; i < mci->tot_dimms; i++) {
1156 struct dimm_info *dimm = mci->dimms[i];
1157
1158 if (top_layer >= 0 && top_layer != dimm->location[0])
1159 continue;
1160 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1161 continue;
1162 if (low_layer >= 0 && low_layer != dimm->location[2])
1163 continue;
1164
1165 /* get the max grain, over the error match range */
1166 if (dimm->grain > e->grain)
1167 e->grain = dimm->grain;
1168
1169 /*
1170 * If the error is memory-controller wide, there's no need to
1171 * seek for the affected DIMMs because the whole
1172 * channel/memory controller/... may be affected.
1173 * Also, don't show errors for empty DIMM slots.
1174 */
1175 if (e->enable_per_layer_report && dimm->nr_pages) {
1176 if (n_labels >= EDAC_MAX_LABELS) {
1177 e->enable_per_layer_report = false;
1178 break;
1179 }
1180 n_labels++;
1181 if (p != e->label) {
1182 strcpy(p, OTHER_LABEL);
1183 p += strlen(OTHER_LABEL);
1184 }
1185 strcpy(p, dimm->label);
1186 p += strlen(p);
1187 *p = '\0';
1188
1189 /*
1190 * get csrow/channel of the DIMM, in order to allow
1191 * incrementing the compat API counters
1192 */
1193 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1194 mci->csbased ? "rank" : "dimm",
1195 dimm->csrow, dimm->cschannel);
1196 if (row == -1)
1197 row = dimm->csrow;
1198 else if (row >= 0 && row != dimm->csrow)
1199 row = -2;
1200
1201 if (chan == -1)
1202 chan = dimm->cschannel;
1203 else if (chan >= 0 && chan != dimm->cschannel)
1204 chan = -2;
1205 }
1206 }
1207
1208 if (!e->enable_per_layer_report) {
1209 strcpy(e->label, "any memory");
1210 } else {
1211 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1212 if (p == e->label)
1213 strcpy(e->label, "unknown memory");
1214 if (type == HW_EVENT_ERR_CORRECTED) {
1215 if (row >= 0) {
1216 mci->csrows[row]->ce_count += error_count;
1217 if (chan >= 0)
1218 mci->csrows[row]->channels[chan]->ce_count += error_count;
1219 }
1220 } else
1221 if (row >= 0)
1222 mci->csrows[row]->ue_count += error_count;
1223 }
1224
1225 /* Fill the RAM location data */
1226 p = e->location;
1227
1228 for (i = 0; i < mci->n_layers; i++) {
1229 if (pos[i] < 0)
1230 continue;
1231
1232 p += sprintf(p, "%s:%d ",
1233 edac_layer_name[mci->layers[i].type],
1234 pos[i]);
1235 }
1236 if (p > e->location)
1237 *(p - 1) = '\0';
1238
1239 /* Sanity-check driver-supplied grain value. */
1240 if (WARN_ON_ONCE(!e->grain))
1241 e->grain = 1;
1242
1243 grain_bits = fls_long(e->grain - 1);
1244
1245 /* Report the error via the trace interface */
1246 if (IS_ENABLED(CONFIG_RAS))
1247 trace_mc_event(type, e->msg, e->label, e->error_count,
1248 mci->mc_idx, e->top_layer, e->mid_layer,
1249 e->low_layer,
1250 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1251 grain_bits, e->syndrome, e->other_detail);
1252
1253 edac_raw_mc_handle_error(type, mci, e);
1254 }
1255 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1256