• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
edac_mc_get_log_ue(void)32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
edac_mc_get_log_ce(void)37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
edac_mc_get_panic_on_ue(void)42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
edac_mc_get_poll_msec(void)48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
edac_set_poll_msec(const char * val,const struct kernel_param * kp)53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3",
112 	[MEM_DDR4] = "Unbuffered-DDR4",
113 	[MEM_RDDR4] = "Registered-DDR4"
114 };
115 
116 static const char * const dev_types[] = {
117 	[DEV_UNKNOWN] = "Unknown",
118 	[DEV_X1] = "x1",
119 	[DEV_X2] = "x2",
120 	[DEV_X4] = "x4",
121 	[DEV_X8] = "x8",
122 	[DEV_X16] = "x16",
123 	[DEV_X32] = "x32",
124 	[DEV_X64] = "x64"
125 };
126 
127 static const char * const edac_caps[] = {
128 	[EDAC_UNKNOWN] = "Unknown",
129 	[EDAC_NONE] = "None",
130 	[EDAC_RESERVED] = "Reserved",
131 	[EDAC_PARITY] = "PARITY",
132 	[EDAC_EC] = "EC",
133 	[EDAC_SECDED] = "SECDED",
134 	[EDAC_S2ECD2ED] = "S2ECD2ED",
135 	[EDAC_S4ECD4ED] = "S4ECD4ED",
136 	[EDAC_S8ECD8ED] = "S8ECD8ED",
137 	[EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139 
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144 
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146 
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153 
154 struct dev_ch_attribute {
155 	struct device_attribute attr;
156 	int channel;
157 };
158 
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 		{ __ATTR(_name, _mode, _show, _store), (_var) }
162 
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164 
165 /* Set of more default csrow<id> attribute show/store functions */
csrow_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)166 static ssize_t csrow_ue_count_show(struct device *dev,
167 				   struct device_attribute *mattr, char *data)
168 {
169 	struct csrow_info *csrow = to_csrow(dev);
170 
171 	return sprintf(data, "%u\n", csrow->ue_count);
172 }
173 
csrow_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)174 static ssize_t csrow_ce_count_show(struct device *dev,
175 				   struct device_attribute *mattr, char *data)
176 {
177 	struct csrow_info *csrow = to_csrow(dev);
178 
179 	return sprintf(data, "%u\n", csrow->ce_count);
180 }
181 
csrow_size_show(struct device * dev,struct device_attribute * mattr,char * data)182 static ssize_t csrow_size_show(struct device *dev,
183 			       struct device_attribute *mattr, char *data)
184 {
185 	struct csrow_info *csrow = to_csrow(dev);
186 	int i;
187 	u32 nr_pages = 0;
188 
189 	for (i = 0; i < csrow->nr_channels; i++)
190 		nr_pages += csrow->channels[i]->dimm->nr_pages;
191 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193 
csrow_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)194 static ssize_t csrow_mem_type_show(struct device *dev,
195 				   struct device_attribute *mattr, char *data)
196 {
197 	struct csrow_info *csrow = to_csrow(dev);
198 
199 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201 
csrow_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)202 static ssize_t csrow_dev_type_show(struct device *dev,
203 				   struct device_attribute *mattr, char *data)
204 {
205 	struct csrow_info *csrow = to_csrow(dev);
206 
207 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209 
csrow_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 				    struct device_attribute *mattr,
212 				    char *data)
213 {
214 	struct csrow_info *csrow = to_csrow(dev);
215 
216 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218 
219 /* show/store functions for DIMM Label attributes */
channel_dimm_label_show(struct device * dev,struct device_attribute * mattr,char * data)220 static ssize_t channel_dimm_label_show(struct device *dev,
221 				       struct device_attribute *mattr,
222 				       char *data)
223 {
224 	struct csrow_info *csrow = to_csrow(dev);
225 	unsigned chan = to_channel(mattr);
226 	struct rank_info *rank = csrow->channels[chan];
227 
228 	/* if field has not been initialized, there is nothing to send */
229 	if (!rank->dimm->label[0])
230 		return 0;
231 
232 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233 			rank->dimm->label);
234 }
235 
channel_dimm_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)236 static ssize_t channel_dimm_label_store(struct device *dev,
237 					struct device_attribute *mattr,
238 					const char *data, size_t count)
239 {
240 	struct csrow_info *csrow = to_csrow(dev);
241 	unsigned chan = to_channel(mattr);
242 	struct rank_info *rank = csrow->channels[chan];
243 	size_t copy_count = count;
244 
245 	if (count == 0)
246 		return -EINVAL;
247 
248 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
249 		copy_count -= 1;
250 
251 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252 		return -EINVAL;
253 
254 	strncpy(rank->dimm->label, data, copy_count);
255 	rank->dimm->label[copy_count] = '\0';
256 
257 	return count;
258 }
259 
260 /* show function for dynamic chX_ce_count attribute */
channel_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)261 static ssize_t channel_ce_count_show(struct device *dev,
262 				     struct device_attribute *mattr, char *data)
263 {
264 	struct csrow_info *csrow = to_csrow(dev);
265 	unsigned chan = to_channel(mattr);
266 	struct rank_info *rank = csrow->channels[chan];
267 
268 	return sprintf(data, "%u\n", rank->ce_count);
269 }
270 
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
278 
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281 	&dev_attr_legacy_dev_type.attr,
282 	&dev_attr_legacy_mem_type.attr,
283 	&dev_attr_legacy_edac_mode.attr,
284 	&dev_attr_legacy_size_mb.attr,
285 	&dev_attr_legacy_ue_count.attr,
286 	&dev_attr_legacy_ce_count.attr,
287 	NULL,
288 };
289 
290 static const struct attribute_group csrow_attr_grp = {
291 	.attrs	= csrow_attrs,
292 };
293 
294 static const struct attribute_group *csrow_attr_groups[] = {
295 	&csrow_attr_grp,
296 	NULL
297 };
298 
csrow_attr_release(struct device * dev)299 static void csrow_attr_release(struct device *dev)
300 {
301 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
302 
303 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304 	kfree(csrow);
305 }
306 
307 static const struct device_type csrow_attr_type = {
308 	.groups		= csrow_attr_groups,
309 	.release	= csrow_attr_release,
310 };
311 
312 /*
313  * possible dynamic channel DIMM Label attribute files
314  *
315  */
316 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 0);
318 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 1);
320 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
321 	channel_dimm_label_show, channel_dimm_label_store, 2);
322 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
323 	channel_dimm_label_show, channel_dimm_label_store, 3);
324 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
325 	channel_dimm_label_show, channel_dimm_label_store, 4);
326 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
327 	channel_dimm_label_show, channel_dimm_label_store, 5);
328 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
329 	channel_dimm_label_show, channel_dimm_label_store, 6);
330 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
331 	channel_dimm_label_show, channel_dimm_label_store, 7);
332 
333 /* Total possible dynamic DIMM Label attribute file table */
334 static struct attribute *dynamic_csrow_dimm_attr[] = {
335 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
336 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
337 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
338 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
339 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
340 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
341 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
342 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
343 	NULL
344 };
345 
346 /* possible dynamic channel ce_count attribute files */
347 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
348 		   channel_ce_count_show, NULL, 0);
349 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
350 		   channel_ce_count_show, NULL, 1);
351 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
352 		   channel_ce_count_show, NULL, 2);
353 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
354 		   channel_ce_count_show, NULL, 3);
355 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
356 		   channel_ce_count_show, NULL, 4);
357 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
358 		   channel_ce_count_show, NULL, 5);
359 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
360 		   channel_ce_count_show, NULL, 6);
361 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
362 		   channel_ce_count_show, NULL, 7);
363 
364 /* Total possible dynamic ce_count attribute file table */
365 static struct attribute *dynamic_csrow_ce_count_attr[] = {
366 	&dev_attr_legacy_ch0_ce_count.attr.attr,
367 	&dev_attr_legacy_ch1_ce_count.attr.attr,
368 	&dev_attr_legacy_ch2_ce_count.attr.attr,
369 	&dev_attr_legacy_ch3_ce_count.attr.attr,
370 	&dev_attr_legacy_ch4_ce_count.attr.attr,
371 	&dev_attr_legacy_ch5_ce_count.attr.attr,
372 	&dev_attr_legacy_ch6_ce_count.attr.attr,
373 	&dev_attr_legacy_ch7_ce_count.attr.attr,
374 	NULL
375 };
376 
csrow_dev_is_visible(struct kobject * kobj,struct attribute * attr,int idx)377 static umode_t csrow_dev_is_visible(struct kobject *kobj,
378 				    struct attribute *attr, int idx)
379 {
380 	struct device *dev = kobj_to_dev(kobj);
381 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
382 
383 	if (idx >= csrow->nr_channels)
384 		return 0;
385 
386 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
387 		WARN_ONCE(1, "idx: %d\n", idx);
388 		return 0;
389 	}
390 
391 	/* Only expose populated DIMMs */
392 	if (!csrow->channels[idx]->dimm->nr_pages)
393 		return 0;
394 
395 	return attr->mode;
396 }
397 
398 
399 static const struct attribute_group csrow_dev_dimm_group = {
400 	.attrs = dynamic_csrow_dimm_attr,
401 	.is_visible = csrow_dev_is_visible,
402 };
403 
404 static const struct attribute_group csrow_dev_ce_count_group = {
405 	.attrs = dynamic_csrow_ce_count_attr,
406 	.is_visible = csrow_dev_is_visible,
407 };
408 
409 static const struct attribute_group *csrow_dev_groups[] = {
410 	&csrow_dev_dimm_group,
411 	&csrow_dev_ce_count_group,
412 	NULL
413 };
414 
nr_pages_per_csrow(struct csrow_info * csrow)415 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
416 {
417 	int chan, nr_pages = 0;
418 
419 	for (chan = 0; chan < csrow->nr_channels; chan++)
420 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
421 
422 	return nr_pages;
423 }
424 
425 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_object(struct mem_ctl_info * mci,struct csrow_info * csrow,int index)426 static int edac_create_csrow_object(struct mem_ctl_info *mci,
427 				    struct csrow_info *csrow, int index)
428 {
429 	int err;
430 
431 	csrow->dev.type = &csrow_attr_type;
432 	csrow->dev.bus = mci->bus;
433 	csrow->dev.groups = csrow_dev_groups;
434 	device_initialize(&csrow->dev);
435 	csrow->dev.parent = &mci->dev;
436 	csrow->mci = mci;
437 	dev_set_name(&csrow->dev, "csrow%d", index);
438 	dev_set_drvdata(&csrow->dev, csrow);
439 
440 	edac_dbg(0, "creating (virtual) csrow node %s\n",
441 		 dev_name(&csrow->dev));
442 
443 	err = device_add(&csrow->dev);
444 	if (err)
445 		put_device(&csrow->dev);
446 
447 	return err;
448 }
449 
450 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_objects(struct mem_ctl_info * mci)451 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
452 {
453 	int err, i;
454 	struct csrow_info *csrow;
455 
456 	for (i = 0; i < mci->nr_csrows; i++) {
457 		csrow = mci->csrows[i];
458 		if (!nr_pages_per_csrow(csrow))
459 			continue;
460 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
461 		if (err < 0) {
462 			edac_dbg(1,
463 				 "failure: create csrow objects for csrow %d\n",
464 				 i);
465 			goto error;
466 		}
467 	}
468 	return 0;
469 
470 error:
471 	for (--i; i >= 0; i--) {
472 		csrow = mci->csrows[i];
473 		if (!nr_pages_per_csrow(csrow))
474 			continue;
475 		put_device(&mci->csrows[i]->dev);
476 	}
477 
478 	return err;
479 }
480 
edac_delete_csrow_objects(struct mem_ctl_info * mci)481 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
482 {
483 	int i;
484 	struct csrow_info *csrow;
485 
486 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
487 		csrow = mci->csrows[i];
488 		if (!nr_pages_per_csrow(csrow))
489 			continue;
490 		device_unregister(&mci->csrows[i]->dev);
491 	}
492 }
493 #endif
494 
495 /*
496  * Per-dimm (or per-rank) devices
497  */
498 
499 #define to_dimm(k) container_of(k, struct dimm_info, dev)
500 
501 /* show/store functions for DIMM Label attributes */
dimmdev_location_show(struct device * dev,struct device_attribute * mattr,char * data)502 static ssize_t dimmdev_location_show(struct device *dev,
503 				     struct device_attribute *mattr, char *data)
504 {
505 	struct dimm_info *dimm = to_dimm(dev);
506 
507 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
508 }
509 
dimmdev_label_show(struct device * dev,struct device_attribute * mattr,char * data)510 static ssize_t dimmdev_label_show(struct device *dev,
511 				  struct device_attribute *mattr, char *data)
512 {
513 	struct dimm_info *dimm = to_dimm(dev);
514 
515 	/* if field has not been initialized, there is nothing to send */
516 	if (!dimm->label[0])
517 		return 0;
518 
519 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
520 }
521 
dimmdev_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)522 static ssize_t dimmdev_label_store(struct device *dev,
523 				   struct device_attribute *mattr,
524 				   const char *data,
525 				   size_t count)
526 {
527 	struct dimm_info *dimm = to_dimm(dev);
528 	size_t copy_count = count;
529 
530 	if (count == 0)
531 		return -EINVAL;
532 
533 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
534 		copy_count -= 1;
535 
536 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
537 		return -EINVAL;
538 
539 	strncpy(dimm->label, data, copy_count);
540 	dimm->label[copy_count] = '\0';
541 
542 	return count;
543 }
544 
dimmdev_size_show(struct device * dev,struct device_attribute * mattr,char * data)545 static ssize_t dimmdev_size_show(struct device *dev,
546 				 struct device_attribute *mattr, char *data)
547 {
548 	struct dimm_info *dimm = to_dimm(dev);
549 
550 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
551 }
552 
dimmdev_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)553 static ssize_t dimmdev_mem_type_show(struct device *dev,
554 				     struct device_attribute *mattr, char *data)
555 {
556 	struct dimm_info *dimm = to_dimm(dev);
557 
558 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
559 }
560 
dimmdev_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)561 static ssize_t dimmdev_dev_type_show(struct device *dev,
562 				     struct device_attribute *mattr, char *data)
563 {
564 	struct dimm_info *dimm = to_dimm(dev);
565 
566 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
567 }
568 
dimmdev_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)569 static ssize_t dimmdev_edac_mode_show(struct device *dev,
570 				      struct device_attribute *mattr,
571 				      char *data)
572 {
573 	struct dimm_info *dimm = to_dimm(dev);
574 
575 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
576 }
577 
dimmdev_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)578 static ssize_t dimmdev_ce_count_show(struct device *dev,
579 				      struct device_attribute *mattr,
580 				      char *data)
581 {
582 	struct dimm_info *dimm = to_dimm(dev);
583 	u32 count;
584 	int off;
585 
586 	off = EDAC_DIMM_OFF(dimm->mci->layers,
587 			    dimm->mci->n_layers,
588 			    dimm->location[0],
589 			    dimm->location[1],
590 			    dimm->location[2]);
591 	count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
592 	return sprintf(data, "%u\n", count);
593 }
594 
dimmdev_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)595 static ssize_t dimmdev_ue_count_show(struct device *dev,
596 				      struct device_attribute *mattr,
597 				      char *data)
598 {
599 	struct dimm_info *dimm = to_dimm(dev);
600 	u32 count;
601 	int off;
602 
603 	off = EDAC_DIMM_OFF(dimm->mci->layers,
604 			    dimm->mci->n_layers,
605 			    dimm->location[0],
606 			    dimm->location[1],
607 			    dimm->location[2]);
608 	count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
609 	return sprintf(data, "%u\n", count);
610 }
611 
612 /* dimm/rank attribute files */
613 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
614 		   dimmdev_label_show, dimmdev_label_store);
615 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
616 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
617 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
618 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
619 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
620 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
621 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
622 
623 /* attributes of the dimm<id>/rank<id> object */
624 static struct attribute *dimm_attrs[] = {
625 	&dev_attr_dimm_label.attr,
626 	&dev_attr_dimm_location.attr,
627 	&dev_attr_size.attr,
628 	&dev_attr_dimm_mem_type.attr,
629 	&dev_attr_dimm_dev_type.attr,
630 	&dev_attr_dimm_edac_mode.attr,
631 	&dev_attr_dimm_ce_count.attr,
632 	&dev_attr_dimm_ue_count.attr,
633 	NULL,
634 };
635 
636 static const struct attribute_group dimm_attr_grp = {
637 	.attrs	= dimm_attrs,
638 };
639 
640 static const struct attribute_group *dimm_attr_groups[] = {
641 	&dimm_attr_grp,
642 	NULL
643 };
644 
dimm_attr_release(struct device * dev)645 static void dimm_attr_release(struct device *dev)
646 {
647 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
648 
649 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
650 	kfree(dimm);
651 }
652 
653 static const struct device_type dimm_attr_type = {
654 	.groups		= dimm_attr_groups,
655 	.release	= dimm_attr_release,
656 };
657 
658 /* Create a DIMM object under specifed memory controller device */
edac_create_dimm_object(struct mem_ctl_info * mci,struct dimm_info * dimm,int index)659 static int edac_create_dimm_object(struct mem_ctl_info *mci,
660 				   struct dimm_info *dimm,
661 				   int index)
662 {
663 	int err;
664 	dimm->mci = mci;
665 
666 	dimm->dev.type = &dimm_attr_type;
667 	dimm->dev.bus = mci->bus;
668 	device_initialize(&dimm->dev);
669 
670 	dimm->dev.parent = &mci->dev;
671 	if (mci->csbased)
672 		dev_set_name(&dimm->dev, "rank%d", index);
673 	else
674 		dev_set_name(&dimm->dev, "dimm%d", index);
675 	dev_set_drvdata(&dimm->dev, dimm);
676 	pm_runtime_forbid(&mci->dev);
677 
678 	err =  device_add(&dimm->dev);
679 
680 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
681 
682 	return err;
683 }
684 
685 /*
686  * Memory controller device
687  */
688 
689 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
690 
mci_reset_counters_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)691 static ssize_t mci_reset_counters_store(struct device *dev,
692 					struct device_attribute *mattr,
693 					const char *data, size_t count)
694 {
695 	struct mem_ctl_info *mci = to_mci(dev);
696 	int cnt, row, chan, i;
697 	mci->ue_mc = 0;
698 	mci->ce_mc = 0;
699 	mci->ue_noinfo_count = 0;
700 	mci->ce_noinfo_count = 0;
701 
702 	for (row = 0; row < mci->nr_csrows; row++) {
703 		struct csrow_info *ri = mci->csrows[row];
704 
705 		ri->ue_count = 0;
706 		ri->ce_count = 0;
707 
708 		for (chan = 0; chan < ri->nr_channels; chan++)
709 			ri->channels[chan]->ce_count = 0;
710 	}
711 
712 	cnt = 1;
713 	for (i = 0; i < mci->n_layers; i++) {
714 		cnt *= mci->layers[i].size;
715 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
716 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
717 	}
718 
719 	mci->start_time = jiffies;
720 	return count;
721 }
722 
723 /* Memory scrubbing interface:
724  *
725  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
726  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
727  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
728  *
729  * Negative value still means that an error has occurred while setting
730  * the scrub rate.
731  */
mci_sdram_scrub_rate_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)732 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
733 					  struct device_attribute *mattr,
734 					  const char *data, size_t count)
735 {
736 	struct mem_ctl_info *mci = to_mci(dev);
737 	unsigned long bandwidth = 0;
738 	int new_bw = 0;
739 
740 	if (kstrtoul(data, 10, &bandwidth) < 0)
741 		return -EINVAL;
742 
743 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
744 	if (new_bw < 0) {
745 		edac_printk(KERN_WARNING, EDAC_MC,
746 			    "Error setting scrub rate to: %lu\n", bandwidth);
747 		return -EINVAL;
748 	}
749 
750 	return count;
751 }
752 
753 /*
754  * ->get_sdram_scrub_rate() return value semantics same as above.
755  */
mci_sdram_scrub_rate_show(struct device * dev,struct device_attribute * mattr,char * data)756 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
757 					 struct device_attribute *mattr,
758 					 char *data)
759 {
760 	struct mem_ctl_info *mci = to_mci(dev);
761 	int bandwidth = 0;
762 
763 	bandwidth = mci->get_sdram_scrub_rate(mci);
764 	if (bandwidth < 0) {
765 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
766 		return bandwidth;
767 	}
768 
769 	return sprintf(data, "%d\n", bandwidth);
770 }
771 
772 /* default attribute files for the MCI object */
mci_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)773 static ssize_t mci_ue_count_show(struct device *dev,
774 				 struct device_attribute *mattr,
775 				 char *data)
776 {
777 	struct mem_ctl_info *mci = to_mci(dev);
778 
779 	return sprintf(data, "%d\n", mci->ue_mc);
780 }
781 
mci_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)782 static ssize_t mci_ce_count_show(struct device *dev,
783 				 struct device_attribute *mattr,
784 				 char *data)
785 {
786 	struct mem_ctl_info *mci = to_mci(dev);
787 
788 	return sprintf(data, "%d\n", mci->ce_mc);
789 }
790 
mci_ce_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)791 static ssize_t mci_ce_noinfo_show(struct device *dev,
792 				  struct device_attribute *mattr,
793 				  char *data)
794 {
795 	struct mem_ctl_info *mci = to_mci(dev);
796 
797 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
798 }
799 
mci_ue_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)800 static ssize_t mci_ue_noinfo_show(struct device *dev,
801 				  struct device_attribute *mattr,
802 				  char *data)
803 {
804 	struct mem_ctl_info *mci = to_mci(dev);
805 
806 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
807 }
808 
mci_seconds_show(struct device * dev,struct device_attribute * mattr,char * data)809 static ssize_t mci_seconds_show(struct device *dev,
810 				struct device_attribute *mattr,
811 				char *data)
812 {
813 	struct mem_ctl_info *mci = to_mci(dev);
814 
815 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
816 }
817 
mci_ctl_name_show(struct device * dev,struct device_attribute * mattr,char * data)818 static ssize_t mci_ctl_name_show(struct device *dev,
819 				 struct device_attribute *mattr,
820 				 char *data)
821 {
822 	struct mem_ctl_info *mci = to_mci(dev);
823 
824 	return sprintf(data, "%s\n", mci->ctl_name);
825 }
826 
mci_size_mb_show(struct device * dev,struct device_attribute * mattr,char * data)827 static ssize_t mci_size_mb_show(struct device *dev,
828 				struct device_attribute *mattr,
829 				char *data)
830 {
831 	struct mem_ctl_info *mci = to_mci(dev);
832 	int total_pages = 0, csrow_idx, j;
833 
834 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
835 		struct csrow_info *csrow = mci->csrows[csrow_idx];
836 
837 		for (j = 0; j < csrow->nr_channels; j++) {
838 			struct dimm_info *dimm = csrow->channels[j]->dimm;
839 
840 			total_pages += dimm->nr_pages;
841 		}
842 	}
843 
844 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
845 }
846 
mci_max_location_show(struct device * dev,struct device_attribute * mattr,char * data)847 static ssize_t mci_max_location_show(struct device *dev,
848 				     struct device_attribute *mattr,
849 				     char *data)
850 {
851 	struct mem_ctl_info *mci = to_mci(dev);
852 	int i;
853 	char *p = data;
854 
855 	for (i = 0; i < mci->n_layers; i++) {
856 		p += sprintf(p, "%s %d ",
857 			     edac_layer_name[mci->layers[i].type],
858 			     mci->layers[i].size - 1);
859 	}
860 
861 	return p - data;
862 }
863 
864 /* default Control file */
865 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
866 
867 /* default Attribute files */
868 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
869 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
870 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
871 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
872 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
873 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
874 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
875 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
876 
877 /* memory scrubber attribute file */
878 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
879 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
880 
881 static struct attribute *mci_attrs[] = {
882 	&dev_attr_reset_counters.attr,
883 	&dev_attr_mc_name.attr,
884 	&dev_attr_size_mb.attr,
885 	&dev_attr_seconds_since_reset.attr,
886 	&dev_attr_ue_noinfo_count.attr,
887 	&dev_attr_ce_noinfo_count.attr,
888 	&dev_attr_ue_count.attr,
889 	&dev_attr_ce_count.attr,
890 	&dev_attr_max_location.attr,
891 	&dev_attr_sdram_scrub_rate.attr,
892 	NULL
893 };
894 
mci_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)895 static umode_t mci_attr_is_visible(struct kobject *kobj,
896 				   struct attribute *attr, int idx)
897 {
898 	struct device *dev = kobj_to_dev(kobj);
899 	struct mem_ctl_info *mci = to_mci(dev);
900 	umode_t mode = 0;
901 
902 	if (attr != &dev_attr_sdram_scrub_rate.attr)
903 		return attr->mode;
904 	if (mci->get_sdram_scrub_rate)
905 		mode |= S_IRUGO;
906 	if (mci->set_sdram_scrub_rate)
907 		mode |= S_IWUSR;
908 	return mode;
909 }
910 
911 static const struct attribute_group mci_attr_grp = {
912 	.attrs	= mci_attrs,
913 	.is_visible = mci_attr_is_visible,
914 };
915 
916 static const struct attribute_group *mci_attr_groups[] = {
917 	&mci_attr_grp,
918 	NULL
919 };
920 
mci_attr_release(struct device * dev)921 static void mci_attr_release(struct device *dev)
922 {
923 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
924 
925 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
926 	kfree(mci);
927 }
928 
929 static const struct device_type mci_attr_type = {
930 	.groups		= mci_attr_groups,
931 	.release	= mci_attr_release,
932 };
933 
934 /*
935  * Create a new Memory Controller kobject instance,
936  *	mc<id> under the 'mc' directory
937  *
938  * Return:
939  *	0	Success
940  *	!0	Failure
941  */
edac_create_sysfs_mci_device(struct mem_ctl_info * mci,const struct attribute_group ** groups)942 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
943 				 const struct attribute_group **groups)
944 {
945 	char *name;
946 	int i, err;
947 
948 	/*
949 	 * The memory controller needs its own bus, in order to avoid
950 	 * namespace conflicts at /sys/bus/edac.
951 	 */
952 	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
953 	if (!name)
954 		return -ENOMEM;
955 
956 	mci->bus->name = name;
957 
958 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
959 
960 	err = bus_register(mci->bus);
961 	if (err < 0) {
962 		kfree(name);
963 		return err;
964 	}
965 
966 	/* get the /sys/devices/system/edac subsys reference */
967 	mci->dev.type = &mci_attr_type;
968 	device_initialize(&mci->dev);
969 
970 	mci->dev.parent = mci_pdev;
971 	mci->dev.bus = mci->bus;
972 	mci->dev.groups = groups;
973 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
974 	dev_set_drvdata(&mci->dev, mci);
975 	pm_runtime_forbid(&mci->dev);
976 
977 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
978 	err = device_add(&mci->dev);
979 	if (err < 0) {
980 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
981 		goto fail_unregister_bus;
982 	}
983 
984 	/*
985 	 * Create the dimm/rank devices
986 	 */
987 	for (i = 0; i < mci->tot_dimms; i++) {
988 		struct dimm_info *dimm = mci->dimms[i];
989 		/* Only expose populated DIMMs */
990 		if (!dimm->nr_pages)
991 			continue;
992 
993 #ifdef CONFIG_EDAC_DEBUG
994 		edac_dbg(1, "creating dimm%d, located at ", i);
995 		if (edac_debug_level >= 1) {
996 			int lay;
997 			for (lay = 0; lay < mci->n_layers; lay++)
998 				printk(KERN_CONT "%s %d ",
999 					edac_layer_name[mci->layers[lay].type],
1000 					dimm->location[lay]);
1001 			printk(KERN_CONT "\n");
1002 		}
1003 #endif
1004 		err = edac_create_dimm_object(mci, dimm, i);
1005 		if (err) {
1006 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1007 			goto fail_unregister_dimm;
1008 		}
1009 	}
1010 
1011 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1012 	err = edac_create_csrow_objects(mci);
1013 	if (err < 0)
1014 		goto fail_unregister_dimm;
1015 #endif
1016 
1017 	edac_create_debugfs_nodes(mci);
1018 	return 0;
1019 
1020 fail_unregister_dimm:
1021 	for (i--; i >= 0; i--) {
1022 		struct dimm_info *dimm = mci->dimms[i];
1023 		if (!dimm->nr_pages)
1024 			continue;
1025 
1026 		device_unregister(&dimm->dev);
1027 	}
1028 	device_unregister(&mci->dev);
1029 fail_unregister_bus:
1030 	bus_unregister(mci->bus);
1031 	kfree(name);
1032 
1033 	return err;
1034 }
1035 
1036 /*
1037  * remove a Memory Controller instance
1038  */
edac_remove_sysfs_mci_device(struct mem_ctl_info * mci)1039 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1040 {
1041 	int i;
1042 
1043 	edac_dbg(0, "\n");
1044 
1045 #ifdef CONFIG_EDAC_DEBUG
1046 	edac_debugfs_remove_recursive(mci->debugfs);
1047 #endif
1048 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1049 	edac_delete_csrow_objects(mci);
1050 #endif
1051 
1052 	for (i = 0; i < mci->tot_dimms; i++) {
1053 		struct dimm_info *dimm = mci->dimms[i];
1054 		if (dimm->nr_pages == 0)
1055 			continue;
1056 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1057 		device_unregister(&dimm->dev);
1058 	}
1059 }
1060 
edac_unregister_sysfs(struct mem_ctl_info * mci)1061 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1062 {
1063 	struct bus_type *bus = mci->bus;
1064 	const char *name = mci->bus->name;
1065 
1066 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1067 	device_unregister(&mci->dev);
1068 	bus_unregister(bus);
1069 	kfree(name);
1070 }
1071 
mc_attr_release(struct device * dev)1072 static void mc_attr_release(struct device *dev)
1073 {
1074 	/*
1075 	 * There's no container structure here, as this is just the mci
1076 	 * parent device, used to create the /sys/devices/mc sysfs node.
1077 	 * So, there are no attributes on it.
1078 	 */
1079 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1080 	kfree(dev);
1081 }
1082 
1083 static const struct device_type mc_attr_type = {
1084 	.release	= mc_attr_release,
1085 };
1086 /*
1087  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1088  */
edac_mc_sysfs_init(void)1089 int __init edac_mc_sysfs_init(void)
1090 {
1091 	int err;
1092 
1093 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1094 	if (!mci_pdev) {
1095 		err = -ENOMEM;
1096 		goto out;
1097 	}
1098 
1099 	mci_pdev->bus = edac_get_sysfs_subsys();
1100 	mci_pdev->type = &mc_attr_type;
1101 	device_initialize(mci_pdev);
1102 	dev_set_name(mci_pdev, "mc");
1103 
1104 	err = device_add(mci_pdev);
1105 	if (err < 0)
1106 		goto out_put_device;
1107 
1108 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1109 
1110 	return 0;
1111 
1112  out_put_device:
1113 	put_device(mci_pdev);
1114  out:
1115 	return err;
1116 }
1117 
edac_mc_sysfs_exit(void)1118 void edac_mc_sysfs_exit(void)
1119 {
1120 	device_unregister(mci_pdev);
1121 }
1122