• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /**************************************************************************
27  *
28  * Generic buffer handling
29  * These buffers are used for interrupt status, MAC stats, etc.
30  *
31  **************************************************************************/
32 
ef4_nic_alloc_buffer(struct ef4_nic * efx,struct ef4_buffer * buffer,unsigned int len,gfp_t gfp_flags)33 int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
34 			 unsigned int len, gfp_t gfp_flags)
35 {
36 	buffer->addr = dma_zalloc_coherent(&efx->pci_dev->dev, len,
37 					   &buffer->dma_addr, gfp_flags);
38 	if (!buffer->addr)
39 		return -ENOMEM;
40 	buffer->len = len;
41 	return 0;
42 }
43 
ef4_nic_free_buffer(struct ef4_nic * efx,struct ef4_buffer * buffer)44 void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer)
45 {
46 	if (buffer->addr) {
47 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
48 				  buffer->addr, buffer->dma_addr);
49 		buffer->addr = NULL;
50 	}
51 }
52 
53 /* Check whether an event is present in the eventq at the current
54  * read pointer.  Only useful for self-test.
55  */
ef4_nic_event_present(struct ef4_channel * channel)56 bool ef4_nic_event_present(struct ef4_channel *channel)
57 {
58 	return ef4_event_present(ef4_event(channel, channel->eventq_read_ptr));
59 }
60 
ef4_nic_event_test_start(struct ef4_channel * channel)61 void ef4_nic_event_test_start(struct ef4_channel *channel)
62 {
63 	channel->event_test_cpu = -1;
64 	smp_wmb();
65 	channel->efx->type->ev_test_generate(channel);
66 }
67 
ef4_nic_irq_test_start(struct ef4_nic * efx)68 int ef4_nic_irq_test_start(struct ef4_nic *efx)
69 {
70 	efx->last_irq_cpu = -1;
71 	smp_wmb();
72 	return efx->type->irq_test_generate(efx);
73 }
74 
75 /* Hook interrupt handler(s)
76  * Try MSI and then legacy interrupts.
77  */
ef4_nic_init_interrupt(struct ef4_nic * efx)78 int ef4_nic_init_interrupt(struct ef4_nic *efx)
79 {
80 	struct ef4_channel *channel;
81 	unsigned int n_irqs;
82 	int rc;
83 
84 	if (!EF4_INT_MODE_USE_MSI(efx)) {
85 		rc = request_irq(efx->legacy_irq,
86 				 efx->type->irq_handle_legacy, IRQF_SHARED,
87 				 efx->name, efx);
88 		if (rc) {
89 			netif_err(efx, drv, efx->net_dev,
90 				  "failed to hook legacy IRQ %d\n",
91 				  efx->pci_dev->irq);
92 			goto fail1;
93 		}
94 		return 0;
95 	}
96 
97 #ifdef CONFIG_RFS_ACCEL
98 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
99 		efx->net_dev->rx_cpu_rmap =
100 			alloc_irq_cpu_rmap(efx->n_rx_channels);
101 		if (!efx->net_dev->rx_cpu_rmap) {
102 			rc = -ENOMEM;
103 			goto fail1;
104 		}
105 	}
106 #endif
107 
108 	/* Hook MSI or MSI-X interrupt */
109 	n_irqs = 0;
110 	ef4_for_each_channel(channel, efx) {
111 		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
112 				 IRQF_PROBE_SHARED, /* Not shared */
113 				 efx->msi_context[channel->channel].name,
114 				 &efx->msi_context[channel->channel]);
115 		if (rc) {
116 			netif_err(efx, drv, efx->net_dev,
117 				  "failed to hook IRQ %d\n", channel->irq);
118 			goto fail2;
119 		}
120 		++n_irqs;
121 
122 #ifdef CONFIG_RFS_ACCEL
123 		if (efx->interrupt_mode == EF4_INT_MODE_MSIX &&
124 		    channel->channel < efx->n_rx_channels) {
125 			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
126 					      channel->irq);
127 			if (rc)
128 				goto fail2;
129 		}
130 #endif
131 	}
132 
133 	return 0;
134 
135  fail2:
136 #ifdef CONFIG_RFS_ACCEL
137 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138 	efx->net_dev->rx_cpu_rmap = NULL;
139 #endif
140 	ef4_for_each_channel(channel, efx) {
141 		if (n_irqs-- == 0)
142 			break;
143 		free_irq(channel->irq, &efx->msi_context[channel->channel]);
144 	}
145  fail1:
146 	return rc;
147 }
148 
ef4_nic_fini_interrupt(struct ef4_nic * efx)149 void ef4_nic_fini_interrupt(struct ef4_nic *efx)
150 {
151 	struct ef4_channel *channel;
152 
153 #ifdef CONFIG_RFS_ACCEL
154 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155 	efx->net_dev->rx_cpu_rmap = NULL;
156 #endif
157 
158 	if (EF4_INT_MODE_USE_MSI(efx)) {
159 		/* Disable MSI/MSI-X interrupts */
160 		ef4_for_each_channel(channel, efx)
161 			free_irq(channel->irq,
162 				 &efx->msi_context[channel->channel]);
163 	} else {
164 		/* Disable legacy interrupt */
165 		free_irq(efx->legacy_irq, efx);
166 	}
167 }
168 
169 /* Register dump */
170 
171 #define REGISTER_REVISION_FA	1
172 #define REGISTER_REVISION_FB	2
173 #define REGISTER_REVISION_FC	3
174 #define REGISTER_REVISION_FZ	3	/* last Falcon arch revision */
175 #define REGISTER_REVISION_ED	4
176 #define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
177 
178 struct ef4_nic_reg {
179 	u32 offset:24;
180 	u32 min_revision:3, max_revision:3;
181 };
182 
183 #define REGISTER(name, arch, min_rev, max_rev) {			\
184 	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
185 	REGISTER_REVISION_ ## arch ## min_rev,				\
186 	REGISTER_REVISION_ ## arch ## max_rev				\
187 }
188 #define REGISTER_AA(name) REGISTER(name, F, A, A)
189 #define REGISTER_AB(name) REGISTER(name, F, A, B)
190 #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
191 #define REGISTER_BB(name) REGISTER(name, F, B, B)
192 #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
193 #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
194 
195 static const struct ef4_nic_reg ef4_nic_regs[] = {
196 	REGISTER_AZ(ADR_REGION),
197 	REGISTER_AZ(INT_EN_KER),
198 	REGISTER_BZ(INT_EN_CHAR),
199 	REGISTER_AZ(INT_ADR_KER),
200 	REGISTER_BZ(INT_ADR_CHAR),
201 	/* INT_ACK_KER is WO */
202 	/* INT_ISR0 is RC */
203 	REGISTER_AZ(HW_INIT),
204 	REGISTER_CZ(USR_EV_CFG),
205 	REGISTER_AB(EE_SPI_HCMD),
206 	REGISTER_AB(EE_SPI_HADR),
207 	REGISTER_AB(EE_SPI_HDATA),
208 	REGISTER_AB(EE_BASE_PAGE),
209 	REGISTER_AB(EE_VPD_CFG0),
210 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
211 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
212 	/* PCIE_CORE_INDIRECT is indirect */
213 	REGISTER_AB(NIC_STAT),
214 	REGISTER_AB(GPIO_CTL),
215 	REGISTER_AB(GLB_CTL),
216 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
217 	REGISTER_BZ(DP_CTRL),
218 	REGISTER_AZ(MEM_STAT),
219 	REGISTER_AZ(CS_DEBUG),
220 	REGISTER_AZ(ALTERA_BUILD),
221 	REGISTER_AZ(CSR_SPARE),
222 	REGISTER_AB(PCIE_SD_CTL0123),
223 	REGISTER_AB(PCIE_SD_CTL45),
224 	REGISTER_AB(PCIE_PCS_CTL_STAT),
225 	/* DEBUG_DATA_OUT is not used */
226 	/* DRV_EV is WO */
227 	REGISTER_AZ(EVQ_CTL),
228 	REGISTER_AZ(EVQ_CNT1),
229 	REGISTER_AZ(EVQ_CNT2),
230 	REGISTER_AZ(BUF_TBL_CFG),
231 	REGISTER_AZ(SRM_RX_DC_CFG),
232 	REGISTER_AZ(SRM_TX_DC_CFG),
233 	REGISTER_AZ(SRM_CFG),
234 	/* BUF_TBL_UPD is WO */
235 	REGISTER_AZ(SRM_UPD_EVQ),
236 	REGISTER_AZ(SRAM_PARITY),
237 	REGISTER_AZ(RX_CFG),
238 	REGISTER_BZ(RX_FILTER_CTL),
239 	/* RX_FLUSH_DESCQ is WO */
240 	REGISTER_AZ(RX_DC_CFG),
241 	REGISTER_AZ(RX_DC_PF_WM),
242 	REGISTER_BZ(RX_RSS_TKEY),
243 	/* RX_NODESC_DROP is RC */
244 	REGISTER_AA(RX_SELF_RST),
245 	/* RX_DEBUG, RX_PUSH_DROP are not used */
246 	REGISTER_CZ(RX_RSS_IPV6_REG1),
247 	REGISTER_CZ(RX_RSS_IPV6_REG2),
248 	REGISTER_CZ(RX_RSS_IPV6_REG3),
249 	/* TX_FLUSH_DESCQ is WO */
250 	REGISTER_AZ(TX_DC_CFG),
251 	REGISTER_AA(TX_CHKSM_CFG),
252 	REGISTER_AZ(TX_CFG),
253 	/* TX_PUSH_DROP is not used */
254 	REGISTER_AZ(TX_RESERVED),
255 	REGISTER_BZ(TX_PACE),
256 	/* TX_PACE_DROP_QID is RC */
257 	REGISTER_BB(TX_VLAN),
258 	REGISTER_BZ(TX_IPFIL_PORTEN),
259 	REGISTER_AB(MD_TXD),
260 	REGISTER_AB(MD_RXD),
261 	REGISTER_AB(MD_CS),
262 	REGISTER_AB(MD_PHY_ADR),
263 	REGISTER_AB(MD_ID),
264 	/* MD_STAT is RC */
265 	REGISTER_AB(MAC_STAT_DMA),
266 	REGISTER_AB(MAC_CTRL),
267 	REGISTER_BB(GEN_MODE),
268 	REGISTER_AB(MAC_MC_HASH_REG0),
269 	REGISTER_AB(MAC_MC_HASH_REG1),
270 	REGISTER_AB(GM_CFG1),
271 	REGISTER_AB(GM_CFG2),
272 	/* GM_IPG and GM_HD are not used */
273 	REGISTER_AB(GM_MAX_FLEN),
274 	/* GM_TEST is not used */
275 	REGISTER_AB(GM_ADR1),
276 	REGISTER_AB(GM_ADR2),
277 	REGISTER_AB(GMF_CFG0),
278 	REGISTER_AB(GMF_CFG1),
279 	REGISTER_AB(GMF_CFG2),
280 	REGISTER_AB(GMF_CFG3),
281 	REGISTER_AB(GMF_CFG4),
282 	REGISTER_AB(GMF_CFG5),
283 	REGISTER_BB(TX_SRC_MAC_CTL),
284 	REGISTER_AB(XM_ADR_LO),
285 	REGISTER_AB(XM_ADR_HI),
286 	REGISTER_AB(XM_GLB_CFG),
287 	REGISTER_AB(XM_TX_CFG),
288 	REGISTER_AB(XM_RX_CFG),
289 	REGISTER_AB(XM_MGT_INT_MASK),
290 	REGISTER_AB(XM_FC),
291 	REGISTER_AB(XM_PAUSE_TIME),
292 	REGISTER_AB(XM_TX_PARAM),
293 	REGISTER_AB(XM_RX_PARAM),
294 	/* XM_MGT_INT_MSK (note no 'A') is RC */
295 	REGISTER_AB(XX_PWR_RST),
296 	REGISTER_AB(XX_SD_CTL),
297 	REGISTER_AB(XX_TXDRV_CTL),
298 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
299 	/* XX_CORE_STAT is partly RC */
300 };
301 
302 struct ef4_nic_reg_table {
303 	u32 offset:24;
304 	u32 min_revision:3, max_revision:3;
305 	u32 step:6, rows:21;
306 };
307 
308 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
309 	offset,								\
310 	REGISTER_REVISION_ ## arch ## min_rev,				\
311 	REGISTER_REVISION_ ## arch ## max_rev,				\
312 	step, rows							\
313 }
314 #define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
315 	REGISTER_TABLE_DIMENSIONS(					\
316 		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
317 		arch, min_rev, max_rev,					\
318 		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
319 		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
320 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
321 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
322 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
323 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
324 #define REGISTER_TABLE_BB_CZ(name)					\
325 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B,	\
326 				  FR_BZ_ ## name ## _STEP,		\
327 				  FR_BB_ ## name ## _ROWS),		\
328 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z,	\
329 				  FR_BZ_ ## name ## _STEP,		\
330 				  FR_CZ_ ## name ## _ROWS)
331 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
332 
333 static const struct ef4_nic_reg_table ef4_nic_reg_tables[] = {
334 	/* DRIVER is not used */
335 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
336 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
337 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
338 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
339 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
340 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
341 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
342 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
343 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
344 	/* We can't reasonably read all of the buffer table (up to 8MB!).
345 	 * However this driver will only use a few entries.  Reading
346 	 * 1K entries allows for some expansion of queue count and
347 	 * size before we need to change the version. */
348 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
349 				  F, A, A, 8, 1024),
350 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
351 				  F, B, Z, 8, 1024),
352 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
353 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
354 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
355 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
356 	/* TX_FILTER_TBL0 is huge and not used by this driver */
357 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
358 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
359 	/* MSIX_PBA_TABLE is not mapped */
360 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
361 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
362 };
363 
ef4_nic_get_regs_len(struct ef4_nic * efx)364 size_t ef4_nic_get_regs_len(struct ef4_nic *efx)
365 {
366 	const struct ef4_nic_reg *reg;
367 	const struct ef4_nic_reg_table *table;
368 	size_t len = 0;
369 
370 	for (reg = ef4_nic_regs;
371 	     reg < ef4_nic_regs + ARRAY_SIZE(ef4_nic_regs);
372 	     reg++)
373 		if (efx->type->revision >= reg->min_revision &&
374 		    efx->type->revision <= reg->max_revision)
375 			len += sizeof(ef4_oword_t);
376 
377 	for (table = ef4_nic_reg_tables;
378 	     table < ef4_nic_reg_tables + ARRAY_SIZE(ef4_nic_reg_tables);
379 	     table++)
380 		if (efx->type->revision >= table->min_revision &&
381 		    efx->type->revision <= table->max_revision)
382 			len += table->rows * min_t(size_t, table->step, 16);
383 
384 	return len;
385 }
386 
ef4_nic_get_regs(struct ef4_nic * efx,void * buf)387 void ef4_nic_get_regs(struct ef4_nic *efx, void *buf)
388 {
389 	const struct ef4_nic_reg *reg;
390 	const struct ef4_nic_reg_table *table;
391 
392 	for (reg = ef4_nic_regs;
393 	     reg < ef4_nic_regs + ARRAY_SIZE(ef4_nic_regs);
394 	     reg++) {
395 		if (efx->type->revision >= reg->min_revision &&
396 		    efx->type->revision <= reg->max_revision) {
397 			ef4_reado(efx, (ef4_oword_t *)buf, reg->offset);
398 			buf += sizeof(ef4_oword_t);
399 		}
400 	}
401 
402 	for (table = ef4_nic_reg_tables;
403 	     table < ef4_nic_reg_tables + ARRAY_SIZE(ef4_nic_reg_tables);
404 	     table++) {
405 		size_t size, i;
406 
407 		if (!(efx->type->revision >= table->min_revision &&
408 		      efx->type->revision <= table->max_revision))
409 			continue;
410 
411 		size = min_t(size_t, table->step, 16);
412 
413 		for (i = 0; i < table->rows; i++) {
414 			switch (table->step) {
415 			case 4: /* 32-bit SRAM */
416 				ef4_readd(efx, buf, table->offset + 4 * i);
417 				break;
418 			case 8: /* 64-bit SRAM */
419 				ef4_sram_readq(efx,
420 					       efx->membase + table->offset,
421 					       buf, i);
422 				break;
423 			case 16: /* 128-bit-readable register */
424 				ef4_reado_table(efx, buf, table->offset, i);
425 				break;
426 			case 32: /* 128-bit register, interleaved */
427 				ef4_reado_table(efx, buf, table->offset, 2 * i);
428 				break;
429 			default:
430 				WARN_ON(1);
431 				return;
432 			}
433 			buf += size;
434 		}
435 	}
436 }
437 
438 /**
439  * ef4_nic_describe_stats - Describe supported statistics for ethtool
440  * @desc: Array of &struct ef4_hw_stat_desc describing the statistics
441  * @count: Length of the @desc array
442  * @mask: Bitmask of which elements of @desc are enabled
443  * @names: Buffer to copy names to, or %NULL.  The names are copied
444  *	starting at intervals of %ETH_GSTRING_LEN bytes.
445  *
446  * Returns the number of visible statistics, i.e. the number of set
447  * bits in the first @count bits of @mask for which a name is defined.
448  */
ef4_nic_describe_stats(const struct ef4_hw_stat_desc * desc,size_t count,const unsigned long * mask,u8 * names)449 size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
450 			      const unsigned long *mask, u8 *names)
451 {
452 	size_t visible = 0;
453 	size_t index;
454 
455 	for_each_set_bit(index, mask, count) {
456 		if (desc[index].name) {
457 			if (names) {
458 				strlcpy(names, desc[index].name,
459 					ETH_GSTRING_LEN);
460 				names += ETH_GSTRING_LEN;
461 			}
462 			++visible;
463 		}
464 	}
465 
466 	return visible;
467 }
468 
469 /**
470  * ef4_nic_update_stats - Convert statistics DMA buffer to array of u64
471  * @desc: Array of &struct ef4_hw_stat_desc describing the DMA buffer
472  *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
473  *	the width is specified as 0 the corresponding element of
474  *	@stats is not updated.
475  * @count: Length of the @desc array
476  * @mask: Bitmask of which elements of @desc are enabled
477  * @stats: Buffer to update with the converted statistics.  The length
478  *	of this array must be at least @count.
479  * @dma_buf: DMA buffer containing hardware statistics
480  * @accumulate: If set, the converted values will be added rather than
481  *	directly stored to the corresponding elements of @stats
482  */
ef4_nic_update_stats(const struct ef4_hw_stat_desc * desc,size_t count,const unsigned long * mask,u64 * stats,const void * dma_buf,bool accumulate)483 void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
484 			  const unsigned long *mask,
485 			  u64 *stats, const void *dma_buf, bool accumulate)
486 {
487 	size_t index;
488 
489 	for_each_set_bit(index, mask, count) {
490 		if (desc[index].dma_width) {
491 			const void *addr = dma_buf + desc[index].offset;
492 			u64 val;
493 
494 			switch (desc[index].dma_width) {
495 			case 16:
496 				val = le16_to_cpup((__le16 *)addr);
497 				break;
498 			case 32:
499 				val = le32_to_cpup((__le32 *)addr);
500 				break;
501 			case 64:
502 				val = le64_to_cpup((__le64 *)addr);
503 				break;
504 			default:
505 				WARN_ON(1);
506 				val = 0;
507 				break;
508 			}
509 
510 			if (accumulate)
511 				stats[index] += val;
512 			else
513 				stats[index] = val;
514 		}
515 	}
516 }
517 
ef4_nic_fix_nodesc_drop_stat(struct ef4_nic * efx,u64 * rx_nodesc_drops)518 void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *rx_nodesc_drops)
519 {
520 	/* if down, or this is the first update after coming up */
521 	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
522 		efx->rx_nodesc_drops_while_down +=
523 			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
524 	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
525 	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
526 	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
527 }
528