1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
__reverse_ulong(unsigned char * str)33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
__reverse_ffs(unsigned long word)52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
f2fs_need_SSR(struct f2fs_sb_info * sbi)169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
f2fs_register_inmem_page(struct inode * inode,struct page * page)186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
191
192 f2fs_trace_pid(page);
193
194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195
196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197
198 /* add atomic page indices to the list */
199 new->page = page;
200 INIT_LIST_HEAD(&new->list);
201
202 /* increase reference count with clean state */
203 mutex_lock(&fi->inmem_lock);
204 get_page(page);
205 list_add_tail(&new->list, &fi->inmem_pages);
206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 if (list_empty(&fi->inmem_ilist))
208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 mutex_unlock(&fi->inmem_lock);
212
213 trace_f2fs_register_inmem_page(page, INMEM);
214 }
215
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)216 static int __revoke_inmem_pages(struct inode *inode,
217 struct list_head *head, bool drop, bool recover,
218 bool trylock)
219 {
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
222 int err = 0;
223
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
226
227 if (drop)
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230 if (trylock) {
231 /*
232 * to avoid deadlock in between page lock and
233 * inmem_lock.
234 */
235 if (!trylock_page(page))
236 continue;
237 } else {
238 lock_page(page);
239 }
240
241 f2fs_wait_on_page_writeback(page, DATA, true, true);
242
243 if (recover) {
244 struct dnode_of_data dn;
245 struct node_info ni;
246
247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 set_new_dnode(&dn, inode, NULL, NULL, 0);
250 err = f2fs_get_dnode_of_data(&dn, page->index,
251 LOOKUP_NODE);
252 if (err) {
253 if (err == -ENOMEM) {
254 congestion_wait(BLK_RW_ASYNC, HZ/50);
255 cond_resched();
256 goto retry;
257 }
258 err = -EAGAIN;
259 goto next;
260 }
261
262 err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 if (err) {
264 f2fs_put_dnode(&dn);
265 return err;
266 }
267
268 if (cur->old_addr == NEW_ADDR) {
269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 } else
272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 cur->old_addr, ni.version, true, true);
274 f2fs_put_dnode(&dn);
275 }
276 next:
277 /* we don't need to invalidate this in the sccessful status */
278 if (drop || recover) {
279 ClearPageUptodate(page);
280 clear_cold_data(page);
281 }
282 f2fs_clear_page_private(page);
283 f2fs_put_page(page, 1);
284
285 list_del(&cur->list);
286 kmem_cache_free(inmem_entry_slab, cur);
287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288 }
289 return err;
290 }
291
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 struct inode *inode;
296 struct f2fs_inode_info *fi;
297 next:
298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 if (list_empty(head)) {
300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 return;
302 }
303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 inode = igrab(&fi->vfs_inode);
305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306
307 if (inode) {
308 if (gc_failure) {
309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 goto drop;
311 goto skip;
312 }
313 drop:
314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 f2fs_drop_inmem_pages(inode);
316 iput(inode);
317 }
318 skip:
319 congestion_wait(BLK_RW_ASYNC, HZ/50);
320 cond_resched();
321 goto next;
322 }
323
f2fs_drop_inmem_pages(struct inode * inode)324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
328
329 while (!list_empty(&fi->inmem_pages)) {
330 mutex_lock(&fi->inmem_lock);
331 __revoke_inmem_pages(inode, &fi->inmem_pages,
332 true, false, true);
333
334 if (list_empty(&fi->inmem_pages)) {
335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 if (!list_empty(&fi->inmem_ilist))
337 list_del_init(&fi->inmem_ilist);
338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339 }
340 mutex_unlock(&fi->inmem_lock);
341 }
342
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 stat_dec_atomic_write(inode);
346 }
347
f2fs_drop_inmem_page(struct inode * inode,struct page * page)348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 struct list_head *head = &fi->inmem_pages;
353 struct inmem_pages *cur = NULL;
354
355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356
357 mutex_lock(&fi->inmem_lock);
358 list_for_each_entry(cur, head, list) {
359 if (cur->page == page)
360 break;
361 }
362
363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 list_del(&cur->list);
365 mutex_unlock(&fi->inmem_lock);
366
367 dec_page_count(sbi, F2FS_INMEM_PAGES);
368 kmem_cache_free(inmem_entry_slab, cur);
369
370 ClearPageUptodate(page);
371 f2fs_clear_page_private(page);
372 f2fs_put_page(page, 0);
373
374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376
__f2fs_commit_inmem_pages(struct inode * inode)377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 struct f2fs_inode_info *fi = F2FS_I(inode);
381 struct inmem_pages *cur, *tmp;
382 struct f2fs_io_info fio = {
383 .sbi = sbi,
384 .ino = inode->i_ino,
385 .type = DATA,
386 .op = REQ_OP_WRITE,
387 .op_flags = REQ_SYNC | REQ_PRIO,
388 .io_type = FS_DATA_IO,
389 };
390 struct list_head revoke_list;
391 bool submit_bio = false;
392 int err = 0;
393
394 INIT_LIST_HEAD(&revoke_list);
395
396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 struct page *page = cur->page;
398
399 lock_page(page);
400 if (page->mapping == inode->i_mapping) {
401 trace_f2fs_commit_inmem_page(page, INMEM);
402
403 f2fs_wait_on_page_writeback(page, DATA, true, true);
404
405 set_page_dirty(page);
406 if (clear_page_dirty_for_io(page)) {
407 inode_dec_dirty_pages(inode);
408 f2fs_remove_dirty_inode(inode);
409 }
410 retry:
411 fio.page = page;
412 fio.old_blkaddr = NULL_ADDR;
413 fio.encrypted_page = NULL;
414 fio.need_lock = LOCK_DONE;
415 err = f2fs_do_write_data_page(&fio);
416 if (err) {
417 if (err == -ENOMEM) {
418 congestion_wait(BLK_RW_ASYNC, HZ/50);
419 cond_resched();
420 goto retry;
421 }
422 unlock_page(page);
423 break;
424 }
425 /* record old blkaddr for revoking */
426 cur->old_addr = fio.old_blkaddr;
427 submit_bio = true;
428 }
429 unlock_page(page);
430 list_move_tail(&cur->list, &revoke_list);
431 }
432
433 if (submit_bio)
434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435
436 if (err) {
437 /*
438 * try to revoke all committed pages, but still we could fail
439 * due to no memory or other reason, if that happened, EAGAIN
440 * will be returned, which means in such case, transaction is
441 * already not integrity, caller should use journal to do the
442 * recovery or rewrite & commit last transaction. For other
443 * error number, revoking was done by filesystem itself.
444 */
445 err = __revoke_inmem_pages(inode, &revoke_list,
446 false, true, false);
447
448 /* drop all uncommitted pages */
449 __revoke_inmem_pages(inode, &fi->inmem_pages,
450 true, false, false);
451 } else {
452 __revoke_inmem_pages(inode, &revoke_list,
453 false, false, false);
454 }
455
456 return err;
457 }
458
f2fs_commit_inmem_pages(struct inode * inode)459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 struct f2fs_inode_info *fi = F2FS_I(inode);
463 int err;
464
465 f2fs_balance_fs(sbi, true);
466
467 down_write(&fi->i_gc_rwsem[WRITE]);
468
469 f2fs_lock_op(sbi);
470 set_inode_flag(inode, FI_ATOMIC_COMMIT);
471
472 mutex_lock(&fi->inmem_lock);
473 err = __f2fs_commit_inmem_pages(inode);
474
475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 if (!list_empty(&fi->inmem_ilist))
477 list_del_init(&fi->inmem_ilist);
478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 mutex_unlock(&fi->inmem_lock);
480
481 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482
483 f2fs_unlock_op(sbi);
484 up_write(&fi->i_gc_rwsem[WRITE]);
485
486 return err;
487 }
488
489 /*
490 * This function balances dirty node and dentry pages.
491 * In addition, it controls garbage collection.
492 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 f2fs_show_injection_info(FAULT_CHECKPOINT);
497 f2fs_stop_checkpoint(sbi, false);
498 }
499
500 /* balance_fs_bg is able to be pending */
501 if (need && excess_cached_nats(sbi))
502 f2fs_balance_fs_bg(sbi);
503
504 if (f2fs_is_checkpoint_ready(sbi))
505 return;
506
507 /*
508 * We should do GC or end up with checkpoint, if there are so many dirty
509 * dir/node pages without enough free segments.
510 */
511 if (has_not_enough_free_secs(sbi, 0, 0)) {
512 mutex_lock(&sbi->gc_mutex);
513 f2fs_gc(sbi, false, false, NULL_SEGNO);
514 }
515 }
516
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi)517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 return;
521
522 /* try to shrink extent cache when there is no enough memory */
523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525
526 /* check the # of cached NAT entries */
527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529
530 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 else
533 f2fs_build_free_nids(sbi, false, false);
534
535 if (!is_idle(sbi, REQ_TIME) &&
536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 return;
538
539 /* checkpoint is the only way to shrink partial cached entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 excess_prefree_segs(sbi) ||
543 excess_dirty_nats(sbi) ||
544 excess_dirty_nodes(sbi) ||
545 f2fs_time_over(sbi, CP_TIME)) {
546 if (test_opt(sbi, DATA_FLUSH)) {
547 struct blk_plug plug;
548
549 blk_start_plug(&plug);
550 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
551 blk_finish_plug(&plug);
552 }
553 f2fs_sync_fs(sbi->sb, true);
554 stat_inc_bg_cp_count(sbi->stat_info);
555 }
556 }
557
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 struct block_device *bdev)
560 {
561 struct bio *bio;
562 int ret;
563
564 bio = f2fs_bio_alloc(sbi, 0, false);
565 if (!bio)
566 return -ENOMEM;
567
568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 bio_set_dev(bio, bdev);
570 ret = submit_bio_wait(bio);
571 bio_put(bio);
572
573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 test_opt(sbi, FLUSH_MERGE), ret);
575 return ret;
576 }
577
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579 {
580 int ret = 0;
581 int i;
582
583 if (!sbi->s_ndevs)
584 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585
586 for (i = 0; i < sbi->s_ndevs; i++) {
587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 continue;
589 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 if (ret)
591 break;
592 }
593 return ret;
594 }
595
issue_flush_thread(void * data)596 static int issue_flush_thread(void *data)
597 {
598 struct f2fs_sb_info *sbi = data;
599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602 if (kthread_should_stop())
603 return 0;
604
605 sb_start_intwrite(sbi->sb);
606
607 if (!llist_empty(&fcc->issue_list)) {
608 struct flush_cmd *cmd, *next;
609 int ret;
610
611 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613
614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615
616 ret = submit_flush_wait(sbi, cmd->ino);
617 atomic_inc(&fcc->issued_flush);
618
619 llist_for_each_entry_safe(cmd, next,
620 fcc->dispatch_list, llnode) {
621 cmd->ret = ret;
622 complete(&cmd->wait);
623 }
624 fcc->dispatch_list = NULL;
625 }
626
627 sb_end_intwrite(sbi->sb);
628
629 wait_event_interruptible(*q,
630 kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 goto repeat;
632 }
633
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 struct flush_cmd cmd;
638 int ret;
639
640 if (test_opt(sbi, NOBARRIER))
641 return 0;
642
643 if (!test_opt(sbi, FLUSH_MERGE)) {
644 atomic_inc(&fcc->queued_flush);
645 ret = submit_flush_wait(sbi, ino);
646 atomic_dec(&fcc->queued_flush);
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) {
652 ret = submit_flush_wait(sbi, ino);
653 atomic_dec(&fcc->queued_flush);
654
655 atomic_inc(&fcc->issued_flush);
656 return ret;
657 }
658
659 cmd.ino = ino;
660 init_completion(&cmd.wait);
661
662 llist_add(&cmd.llnode, &fcc->issue_list);
663
664 /* update issue_list before we wake up issue_flush thread */
665 smp_mb();
666
667 if (waitqueue_active(&fcc->flush_wait_queue))
668 wake_up(&fcc->flush_wait_queue);
669
670 if (fcc->f2fs_issue_flush) {
671 wait_for_completion(&cmd.wait);
672 atomic_dec(&fcc->queued_flush);
673 } else {
674 struct llist_node *list;
675
676 list = llist_del_all(&fcc->issue_list);
677 if (!list) {
678 wait_for_completion(&cmd.wait);
679 atomic_dec(&fcc->queued_flush);
680 } else {
681 struct flush_cmd *tmp, *next;
682
683 ret = submit_flush_wait(sbi, ino);
684
685 llist_for_each_entry_safe(tmp, next, list, llnode) {
686 if (tmp == &cmd) {
687 cmd.ret = ret;
688 atomic_dec(&fcc->queued_flush);
689 continue;
690 }
691 tmp->ret = ret;
692 complete(&tmp->wait);
693 }
694 }
695 }
696
697 return cmd.ret;
698 }
699
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
701 {
702 dev_t dev = sbi->sb->s_bdev->bd_dev;
703 struct flush_cmd_control *fcc;
704 int err = 0;
705
706 if (SM_I(sbi)->fcc_info) {
707 fcc = SM_I(sbi)->fcc_info;
708 if (fcc->f2fs_issue_flush)
709 return err;
710 goto init_thread;
711 }
712
713 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
714 if (!fcc)
715 return -ENOMEM;
716 atomic_set(&fcc->issued_flush, 0);
717 atomic_set(&fcc->queued_flush, 0);
718 init_waitqueue_head(&fcc->flush_wait_queue);
719 init_llist_head(&fcc->issue_list);
720 SM_I(sbi)->fcc_info = fcc;
721 if (!test_opt(sbi, FLUSH_MERGE))
722 return err;
723
724 init_thread:
725 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
726 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
727 if (IS_ERR(fcc->f2fs_issue_flush)) {
728 err = PTR_ERR(fcc->f2fs_issue_flush);
729 kvfree(fcc);
730 SM_I(sbi)->fcc_info = NULL;
731 return err;
732 }
733
734 return err;
735 }
736
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
738 {
739 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
740
741 if (fcc && fcc->f2fs_issue_flush) {
742 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
743
744 fcc->f2fs_issue_flush = NULL;
745 kthread_stop(flush_thread);
746 }
747 if (free) {
748 kvfree(fcc);
749 SM_I(sbi)->fcc_info = NULL;
750 }
751 }
752
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)753 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
754 {
755 int ret = 0, i;
756
757 if (!sbi->s_ndevs)
758 return 0;
759
760 for (i = 1; i < sbi->s_ndevs; i++) {
761 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
762 continue;
763 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
764 if (ret)
765 break;
766
767 spin_lock(&sbi->dev_lock);
768 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
769 spin_unlock(&sbi->dev_lock);
770 }
771
772 return ret;
773 }
774
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)775 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
776 enum dirty_type dirty_type)
777 {
778 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
779
780 /* need not be added */
781 if (IS_CURSEG(sbi, segno))
782 return;
783
784 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
785 dirty_i->nr_dirty[dirty_type]++;
786
787 if (dirty_type == DIRTY) {
788 struct seg_entry *sentry = get_seg_entry(sbi, segno);
789 enum dirty_type t = sentry->type;
790
791 if (unlikely(t >= DIRTY)) {
792 f2fs_bug_on(sbi, 1);
793 return;
794 }
795 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
796 dirty_i->nr_dirty[t]++;
797 }
798 }
799
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)800 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
801 enum dirty_type dirty_type)
802 {
803 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
804
805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
806 dirty_i->nr_dirty[dirty_type]--;
807
808 if (dirty_type == DIRTY) {
809 struct seg_entry *sentry = get_seg_entry(sbi, segno);
810 enum dirty_type t = sentry->type;
811
812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
813 dirty_i->nr_dirty[t]--;
814
815 if (get_valid_blocks(sbi, segno, true) == 0)
816 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
817 dirty_i->victim_secmap);
818 }
819 }
820
821 /*
822 * Should not occur error such as -ENOMEM.
823 * Adding dirty entry into seglist is not critical operation.
824 * If a given segment is one of current working segments, it won't be added.
825 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
827 {
828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
829 unsigned short valid_blocks, ckpt_valid_blocks;
830
831 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
832 return;
833
834 mutex_lock(&dirty_i->seglist_lock);
835
836 valid_blocks = get_valid_blocks(sbi, segno, false);
837 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
838
839 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840 ckpt_valid_blocks == sbi->blocks_per_seg)) {
841 __locate_dirty_segment(sbi, segno, PRE);
842 __remove_dirty_segment(sbi, segno, DIRTY);
843 } else if (valid_blocks < sbi->blocks_per_seg) {
844 __locate_dirty_segment(sbi, segno, DIRTY);
845 } else {
846 /* Recovery routine with SSR needs this */
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 }
849
850 mutex_unlock(&dirty_i->seglist_lock);
851 }
852
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 unsigned int segno;
858
859 mutex_lock(&dirty_i->seglist_lock);
860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 if (get_valid_blocks(sbi, segno, false))
862 continue;
863 if (IS_CURSEG(sbi, segno))
864 continue;
865 __locate_dirty_segment(sbi, segno, PRE);
866 __remove_dirty_segment(sbi, segno, DIRTY);
867 }
868 mutex_unlock(&dirty_i->seglist_lock);
869 }
870
f2fs_disable_cp_again(struct f2fs_sb_info * sbi)871 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
872 {
873 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
874 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
875 block_t holes[2] = {0, 0}; /* DATA and NODE */
876 struct seg_entry *se;
877 unsigned int segno;
878
879 mutex_lock(&dirty_i->seglist_lock);
880 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
881 se = get_seg_entry(sbi, segno);
882 if (IS_NODESEG(se->type))
883 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
884 else
885 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
886 }
887 mutex_unlock(&dirty_i->seglist_lock);
888
889 if (holes[DATA] > ovp || holes[NODE] > ovp)
890 return -EAGAIN;
891 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
892 dirty_segments(sbi) > overprovision_segments(sbi))
893 return -EAGAIN;
894 return 0;
895 }
896
897 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)898 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
899 {
900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
901 unsigned int segno = 0;
902
903 mutex_lock(&dirty_i->seglist_lock);
904 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
905 if (get_valid_blocks(sbi, segno, false))
906 continue;
907 if (get_ckpt_valid_blocks(sbi, segno))
908 continue;
909 mutex_unlock(&dirty_i->seglist_lock);
910 return segno;
911 }
912 mutex_unlock(&dirty_i->seglist_lock);
913 return NULL_SEGNO;
914 }
915
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)916 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
917 struct block_device *bdev, block_t lstart,
918 block_t start, block_t len)
919 {
920 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
921 struct list_head *pend_list;
922 struct discard_cmd *dc;
923
924 f2fs_bug_on(sbi, !len);
925
926 pend_list = &dcc->pend_list[plist_idx(len)];
927
928 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
929 INIT_LIST_HEAD(&dc->list);
930 dc->bdev = bdev;
931 dc->lstart = lstart;
932 dc->start = start;
933 dc->len = len;
934 dc->ref = 0;
935 dc->state = D_PREP;
936 dc->queued = 0;
937 dc->error = 0;
938 init_completion(&dc->wait);
939 list_add_tail(&dc->list, pend_list);
940 spin_lock_init(&dc->lock);
941 dc->bio_ref = 0;
942 atomic_inc(&dcc->discard_cmd_cnt);
943 dcc->undiscard_blks += len;
944
945 return dc;
946 }
947
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)948 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
949 struct block_device *bdev, block_t lstart,
950 block_t start, block_t len,
951 struct rb_node *parent, struct rb_node **p,
952 bool leftmost)
953 {
954 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
955 struct discard_cmd *dc;
956
957 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
958
959 rb_link_node(&dc->rb_node, parent, p);
960 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
961
962 return dc;
963 }
964
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)965 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
966 struct discard_cmd *dc)
967 {
968 if (dc->state == D_DONE)
969 atomic_sub(dc->queued, &dcc->queued_discard);
970
971 list_del(&dc->list);
972 rb_erase_cached(&dc->rb_node, &dcc->root);
973 dcc->undiscard_blks -= dc->len;
974
975 kmem_cache_free(discard_cmd_slab, dc);
976
977 atomic_dec(&dcc->discard_cmd_cnt);
978 }
979
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)980 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
981 struct discard_cmd *dc)
982 {
983 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
984 unsigned long flags;
985
986 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
987
988 spin_lock_irqsave(&dc->lock, flags);
989 if (dc->bio_ref) {
990 spin_unlock_irqrestore(&dc->lock, flags);
991 return;
992 }
993 spin_unlock_irqrestore(&dc->lock, flags);
994
995 f2fs_bug_on(sbi, dc->ref);
996
997 if (dc->error == -EOPNOTSUPP)
998 dc->error = 0;
999
1000 if (dc->error)
1001 printk_ratelimited(
1002 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1003 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1004 __detach_discard_cmd(dcc, dc);
1005 }
1006
f2fs_submit_discard_endio(struct bio * bio)1007 static void f2fs_submit_discard_endio(struct bio *bio)
1008 {
1009 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1010 unsigned long flags;
1011
1012 dc->error = blk_status_to_errno(bio->bi_status);
1013
1014 spin_lock_irqsave(&dc->lock, flags);
1015 dc->bio_ref--;
1016 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1017 dc->state = D_DONE;
1018 complete_all(&dc->wait);
1019 }
1020 spin_unlock_irqrestore(&dc->lock, flags);
1021 bio_put(bio);
1022 }
1023
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1024 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1025 block_t start, block_t end)
1026 {
1027 #ifdef CONFIG_F2FS_CHECK_FS
1028 struct seg_entry *sentry;
1029 unsigned int segno;
1030 block_t blk = start;
1031 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1032 unsigned long *map;
1033
1034 while (blk < end) {
1035 segno = GET_SEGNO(sbi, blk);
1036 sentry = get_seg_entry(sbi, segno);
1037 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1038
1039 if (end < START_BLOCK(sbi, segno + 1))
1040 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1041 else
1042 size = max_blocks;
1043 map = (unsigned long *)(sentry->cur_valid_map);
1044 offset = __find_rev_next_bit(map, size, offset);
1045 f2fs_bug_on(sbi, offset != size);
1046 blk = START_BLOCK(sbi, segno + 1);
1047 }
1048 #endif
1049 }
1050
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1051 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1052 struct discard_policy *dpolicy,
1053 int discard_type, unsigned int granularity)
1054 {
1055 /* common policy */
1056 dpolicy->type = discard_type;
1057 dpolicy->sync = true;
1058 dpolicy->ordered = false;
1059 dpolicy->granularity = granularity;
1060
1061 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1062 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063 dpolicy->timeout = 0;
1064
1065 if (discard_type == DPOLICY_BG) {
1066 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1067 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1068 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1069 dpolicy->io_aware = true;
1070 dpolicy->sync = false;
1071 dpolicy->ordered = true;
1072 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1073 dpolicy->granularity = 1;
1074 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1075 }
1076 } else if (discard_type == DPOLICY_FORCE) {
1077 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1078 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1079 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1080 dpolicy->io_aware = false;
1081 } else if (discard_type == DPOLICY_FSTRIM) {
1082 dpolicy->io_aware = false;
1083 } else if (discard_type == DPOLICY_UMOUNT) {
1084 dpolicy->max_requests = UINT_MAX;
1085 dpolicy->io_aware = false;
1086 /* we need to issue all to keep CP_TRIMMED_FLAG */
1087 dpolicy->granularity = 1;
1088 }
1089 }
1090
1091 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1092 struct block_device *bdev, block_t lstart,
1093 block_t start, block_t len);
1094 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1095 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1096 struct discard_policy *dpolicy,
1097 struct discard_cmd *dc,
1098 unsigned int *issued)
1099 {
1100 struct block_device *bdev = dc->bdev;
1101 struct request_queue *q = bdev_get_queue(bdev);
1102 unsigned int max_discard_blocks =
1103 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1106 &(dcc->fstrim_list) : &(dcc->wait_list);
1107 int flag = dpolicy->sync ? REQ_SYNC : 0;
1108 block_t lstart, start, len, total_len;
1109 int err = 0;
1110
1111 if (dc->state != D_PREP)
1112 return 0;
1113
1114 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1115 return 0;
1116
1117 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1118
1119 lstart = dc->lstart;
1120 start = dc->start;
1121 len = dc->len;
1122 total_len = len;
1123
1124 dc->len = 0;
1125
1126 while (total_len && *issued < dpolicy->max_requests && !err) {
1127 struct bio *bio = NULL;
1128 unsigned long flags;
1129 bool last = true;
1130
1131 if (len > max_discard_blocks) {
1132 len = max_discard_blocks;
1133 last = false;
1134 }
1135
1136 (*issued)++;
1137 if (*issued == dpolicy->max_requests)
1138 last = true;
1139
1140 dc->len += len;
1141
1142 if (time_to_inject(sbi, FAULT_DISCARD)) {
1143 f2fs_show_injection_info(FAULT_DISCARD);
1144 err = -EIO;
1145 goto submit;
1146 }
1147 err = __blkdev_issue_discard(bdev,
1148 SECTOR_FROM_BLOCK(start),
1149 SECTOR_FROM_BLOCK(len),
1150 GFP_NOFS, 0, &bio);
1151 submit:
1152 if (err) {
1153 spin_lock_irqsave(&dc->lock, flags);
1154 if (dc->state == D_PARTIAL)
1155 dc->state = D_SUBMIT;
1156 spin_unlock_irqrestore(&dc->lock, flags);
1157
1158 break;
1159 }
1160
1161 f2fs_bug_on(sbi, !bio);
1162
1163 /*
1164 * should keep before submission to avoid D_DONE
1165 * right away
1166 */
1167 spin_lock_irqsave(&dc->lock, flags);
1168 if (last)
1169 dc->state = D_SUBMIT;
1170 else
1171 dc->state = D_PARTIAL;
1172 dc->bio_ref++;
1173 spin_unlock_irqrestore(&dc->lock, flags);
1174
1175 atomic_inc(&dcc->queued_discard);
1176 dc->queued++;
1177 list_move_tail(&dc->list, wait_list);
1178
1179 /* sanity check on discard range */
1180 __check_sit_bitmap(sbi, lstart, lstart + len);
1181
1182 bio->bi_private = dc;
1183 bio->bi_end_io = f2fs_submit_discard_endio;
1184 bio->bi_opf |= flag;
1185 submit_bio(bio);
1186
1187 atomic_inc(&dcc->issued_discard);
1188
1189 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1190
1191 lstart += len;
1192 start += len;
1193 total_len -= len;
1194 len = total_len;
1195 }
1196
1197 if (!err && len)
1198 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1199 return err;
1200 }
1201
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1202 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1203 struct block_device *bdev, block_t lstart,
1204 block_t start, block_t len,
1205 struct rb_node **insert_p,
1206 struct rb_node *insert_parent)
1207 {
1208 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1209 struct rb_node **p;
1210 struct rb_node *parent = NULL;
1211 struct discard_cmd *dc = NULL;
1212 bool leftmost = true;
1213
1214 if (insert_p && insert_parent) {
1215 parent = insert_parent;
1216 p = insert_p;
1217 goto do_insert;
1218 }
1219
1220 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1221 lstart, &leftmost);
1222 do_insert:
1223 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1224 p, leftmost);
1225 if (!dc)
1226 return NULL;
1227
1228 return dc;
1229 }
1230
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1231 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1232 struct discard_cmd *dc)
1233 {
1234 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1235 }
1236
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1237 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1238 struct discard_cmd *dc, block_t blkaddr)
1239 {
1240 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1241 struct discard_info di = dc->di;
1242 bool modified = false;
1243
1244 if (dc->state == D_DONE || dc->len == 1) {
1245 __remove_discard_cmd(sbi, dc);
1246 return;
1247 }
1248
1249 dcc->undiscard_blks -= di.len;
1250
1251 if (blkaddr > di.lstart) {
1252 dc->len = blkaddr - dc->lstart;
1253 dcc->undiscard_blks += dc->len;
1254 __relocate_discard_cmd(dcc, dc);
1255 modified = true;
1256 }
1257
1258 if (blkaddr < di.lstart + di.len - 1) {
1259 if (modified) {
1260 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1261 di.start + blkaddr + 1 - di.lstart,
1262 di.lstart + di.len - 1 - blkaddr,
1263 NULL, NULL);
1264 } else {
1265 dc->lstart++;
1266 dc->len--;
1267 dc->start++;
1268 dcc->undiscard_blks += dc->len;
1269 __relocate_discard_cmd(dcc, dc);
1270 }
1271 }
1272 }
1273
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1274 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1275 struct block_device *bdev, block_t lstart,
1276 block_t start, block_t len)
1277 {
1278 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1279 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1280 struct discard_cmd *dc;
1281 struct discard_info di = {0};
1282 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1283 struct request_queue *q = bdev_get_queue(bdev);
1284 unsigned int max_discard_blocks =
1285 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1286 block_t end = lstart + len;
1287
1288 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1289 NULL, lstart,
1290 (struct rb_entry **)&prev_dc,
1291 (struct rb_entry **)&next_dc,
1292 &insert_p, &insert_parent, true, NULL);
1293 if (dc)
1294 prev_dc = dc;
1295
1296 if (!prev_dc) {
1297 di.lstart = lstart;
1298 di.len = next_dc ? next_dc->lstart - lstart : len;
1299 di.len = min(di.len, len);
1300 di.start = start;
1301 }
1302
1303 while (1) {
1304 struct rb_node *node;
1305 bool merged = false;
1306 struct discard_cmd *tdc = NULL;
1307
1308 if (prev_dc) {
1309 di.lstart = prev_dc->lstart + prev_dc->len;
1310 if (di.lstart < lstart)
1311 di.lstart = lstart;
1312 if (di.lstart >= end)
1313 break;
1314
1315 if (!next_dc || next_dc->lstart > end)
1316 di.len = end - di.lstart;
1317 else
1318 di.len = next_dc->lstart - di.lstart;
1319 di.start = start + di.lstart - lstart;
1320 }
1321
1322 if (!di.len)
1323 goto next;
1324
1325 if (prev_dc && prev_dc->state == D_PREP &&
1326 prev_dc->bdev == bdev &&
1327 __is_discard_back_mergeable(&di, &prev_dc->di,
1328 max_discard_blocks)) {
1329 prev_dc->di.len += di.len;
1330 dcc->undiscard_blks += di.len;
1331 __relocate_discard_cmd(dcc, prev_dc);
1332 di = prev_dc->di;
1333 tdc = prev_dc;
1334 merged = true;
1335 }
1336
1337 if (next_dc && next_dc->state == D_PREP &&
1338 next_dc->bdev == bdev &&
1339 __is_discard_front_mergeable(&di, &next_dc->di,
1340 max_discard_blocks)) {
1341 next_dc->di.lstart = di.lstart;
1342 next_dc->di.len += di.len;
1343 next_dc->di.start = di.start;
1344 dcc->undiscard_blks += di.len;
1345 __relocate_discard_cmd(dcc, next_dc);
1346 if (tdc)
1347 __remove_discard_cmd(sbi, tdc);
1348 merged = true;
1349 }
1350
1351 if (!merged) {
1352 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1353 di.len, NULL, NULL);
1354 }
1355 next:
1356 prev_dc = next_dc;
1357 if (!prev_dc)
1358 break;
1359
1360 node = rb_next(&prev_dc->rb_node);
1361 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1362 }
1363 }
1364
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1365 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1366 struct block_device *bdev, block_t blkstart, block_t blklen)
1367 {
1368 block_t lblkstart = blkstart;
1369
1370 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1371
1372 if (f2fs_is_multi_device(sbi)) {
1373 int devi = f2fs_target_device_index(sbi, blkstart);
1374
1375 blkstart -= FDEV(devi).start_blk;
1376 }
1377 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1378 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1379 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1380 return 0;
1381 }
1382
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1383 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1384 struct discard_policy *dpolicy)
1385 {
1386 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1387 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1388 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1389 struct discard_cmd *dc;
1390 struct blk_plug plug;
1391 unsigned int pos = dcc->next_pos;
1392 unsigned int issued = 0;
1393 bool io_interrupted = false;
1394
1395 mutex_lock(&dcc->cmd_lock);
1396 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1397 NULL, pos,
1398 (struct rb_entry **)&prev_dc,
1399 (struct rb_entry **)&next_dc,
1400 &insert_p, &insert_parent, true, NULL);
1401 if (!dc)
1402 dc = next_dc;
1403
1404 blk_start_plug(&plug);
1405
1406 while (dc) {
1407 struct rb_node *node;
1408 int err = 0;
1409
1410 if (dc->state != D_PREP)
1411 goto next;
1412
1413 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1414 io_interrupted = true;
1415 break;
1416 }
1417
1418 dcc->next_pos = dc->lstart + dc->len;
1419 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1420
1421 if (issued >= dpolicy->max_requests)
1422 break;
1423 next:
1424 node = rb_next(&dc->rb_node);
1425 if (err)
1426 __remove_discard_cmd(sbi, dc);
1427 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1428 }
1429
1430 blk_finish_plug(&plug);
1431
1432 if (!dc)
1433 dcc->next_pos = 0;
1434
1435 mutex_unlock(&dcc->cmd_lock);
1436
1437 if (!issued && io_interrupted)
1438 issued = -1;
1439
1440 return issued;
1441 }
1442
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1443 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444 struct discard_policy *dpolicy)
1445 {
1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 struct list_head *pend_list;
1448 struct discard_cmd *dc, *tmp;
1449 struct blk_plug plug;
1450 int i, issued = 0;
1451 bool io_interrupted = false;
1452
1453 if (dpolicy->timeout != 0)
1454 f2fs_update_time(sbi, dpolicy->timeout);
1455
1456 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1457 if (dpolicy->timeout != 0 &&
1458 f2fs_time_over(sbi, dpolicy->timeout))
1459 break;
1460
1461 if (i + 1 < dpolicy->granularity)
1462 break;
1463
1464 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1465 return __issue_discard_cmd_orderly(sbi, dpolicy);
1466
1467 pend_list = &dcc->pend_list[i];
1468
1469 mutex_lock(&dcc->cmd_lock);
1470 if (list_empty(pend_list))
1471 goto next;
1472 if (unlikely(dcc->rbtree_check))
1473 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1474 &dcc->root));
1475 blk_start_plug(&plug);
1476 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1477 f2fs_bug_on(sbi, dc->state != D_PREP);
1478
1479 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1480 !is_idle(sbi, DISCARD_TIME)) {
1481 io_interrupted = true;
1482 break;
1483 }
1484
1485 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1486
1487 if (issued >= dpolicy->max_requests)
1488 break;
1489 }
1490 blk_finish_plug(&plug);
1491 next:
1492 mutex_unlock(&dcc->cmd_lock);
1493
1494 if (issued >= dpolicy->max_requests || io_interrupted)
1495 break;
1496 }
1497
1498 if (!issued && io_interrupted)
1499 issued = -1;
1500
1501 return issued;
1502 }
1503
__drop_discard_cmd(struct f2fs_sb_info * sbi)1504 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1505 {
1506 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1507 struct list_head *pend_list;
1508 struct discard_cmd *dc, *tmp;
1509 int i;
1510 bool dropped = false;
1511
1512 mutex_lock(&dcc->cmd_lock);
1513 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1514 pend_list = &dcc->pend_list[i];
1515 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1516 f2fs_bug_on(sbi, dc->state != D_PREP);
1517 __remove_discard_cmd(sbi, dc);
1518 dropped = true;
1519 }
1520 }
1521 mutex_unlock(&dcc->cmd_lock);
1522
1523 return dropped;
1524 }
1525
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1526 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1527 {
1528 __drop_discard_cmd(sbi);
1529 }
1530
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1531 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1532 struct discard_cmd *dc)
1533 {
1534 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535 unsigned int len = 0;
1536
1537 wait_for_completion_io(&dc->wait);
1538 mutex_lock(&dcc->cmd_lock);
1539 f2fs_bug_on(sbi, dc->state != D_DONE);
1540 dc->ref--;
1541 if (!dc->ref) {
1542 if (!dc->error)
1543 len = dc->len;
1544 __remove_discard_cmd(sbi, dc);
1545 }
1546 mutex_unlock(&dcc->cmd_lock);
1547
1548 return len;
1549 }
1550
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1551 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1552 struct discard_policy *dpolicy,
1553 block_t start, block_t end)
1554 {
1555 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1556 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1557 &(dcc->fstrim_list) : &(dcc->wait_list);
1558 struct discard_cmd *dc, *tmp;
1559 bool need_wait;
1560 unsigned int trimmed = 0;
1561
1562 next:
1563 need_wait = false;
1564
1565 mutex_lock(&dcc->cmd_lock);
1566 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1567 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1568 continue;
1569 if (dc->len < dpolicy->granularity)
1570 continue;
1571 if (dc->state == D_DONE && !dc->ref) {
1572 wait_for_completion_io(&dc->wait);
1573 if (!dc->error)
1574 trimmed += dc->len;
1575 __remove_discard_cmd(sbi, dc);
1576 } else {
1577 dc->ref++;
1578 need_wait = true;
1579 break;
1580 }
1581 }
1582 mutex_unlock(&dcc->cmd_lock);
1583
1584 if (need_wait) {
1585 trimmed += __wait_one_discard_bio(sbi, dc);
1586 goto next;
1587 }
1588
1589 return trimmed;
1590 }
1591
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1592 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1593 struct discard_policy *dpolicy)
1594 {
1595 struct discard_policy dp;
1596 unsigned int discard_blks;
1597
1598 if (dpolicy)
1599 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1600
1601 /* wait all */
1602 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1603 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1604 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1605 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1606
1607 return discard_blks;
1608 }
1609
1610 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1611 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1612 {
1613 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1614 struct discard_cmd *dc;
1615 bool need_wait = false;
1616
1617 mutex_lock(&dcc->cmd_lock);
1618 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1619 NULL, blkaddr);
1620 if (dc) {
1621 if (dc->state == D_PREP) {
1622 __punch_discard_cmd(sbi, dc, blkaddr);
1623 } else {
1624 dc->ref++;
1625 need_wait = true;
1626 }
1627 }
1628 mutex_unlock(&dcc->cmd_lock);
1629
1630 if (need_wait)
1631 __wait_one_discard_bio(sbi, dc);
1632 }
1633
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1634 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1635 {
1636 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1637
1638 if (dcc && dcc->f2fs_issue_discard) {
1639 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1640
1641 dcc->f2fs_issue_discard = NULL;
1642 kthread_stop(discard_thread);
1643 }
1644 }
1645
1646 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1647 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1648 {
1649 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1650 struct discard_policy dpolicy;
1651 bool dropped;
1652
1653 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1654 dcc->discard_granularity);
1655 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1656 __issue_discard_cmd(sbi, &dpolicy);
1657 dropped = __drop_discard_cmd(sbi);
1658
1659 /* just to make sure there is no pending discard commands */
1660 __wait_all_discard_cmd(sbi, NULL);
1661
1662 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1663 return dropped;
1664 }
1665
issue_discard_thread(void * data)1666 static int issue_discard_thread(void *data)
1667 {
1668 struct f2fs_sb_info *sbi = data;
1669 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1670 wait_queue_head_t *q = &dcc->discard_wait_queue;
1671 struct discard_policy dpolicy;
1672 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1673 int issued;
1674
1675 set_freezable();
1676
1677 do {
1678 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1679 dcc->discard_granularity);
1680
1681 wait_event_interruptible_timeout(*q,
1682 kthread_should_stop() || freezing(current) ||
1683 dcc->discard_wake,
1684 msecs_to_jiffies(wait_ms));
1685
1686 if (dcc->discard_wake)
1687 dcc->discard_wake = 0;
1688
1689 /* clean up pending candidates before going to sleep */
1690 if (atomic_read(&dcc->queued_discard))
1691 __wait_all_discard_cmd(sbi, NULL);
1692
1693 if (try_to_freeze())
1694 continue;
1695 if (f2fs_readonly(sbi->sb))
1696 continue;
1697 if (kthread_should_stop())
1698 return 0;
1699 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1700 wait_ms = dpolicy.max_interval;
1701 continue;
1702 }
1703
1704 if (sbi->gc_mode == GC_URGENT)
1705 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1706
1707 sb_start_intwrite(sbi->sb);
1708
1709 issued = __issue_discard_cmd(sbi, &dpolicy);
1710 if (issued > 0) {
1711 __wait_all_discard_cmd(sbi, &dpolicy);
1712 wait_ms = dpolicy.min_interval;
1713 } else if (issued == -1){
1714 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 if (!wait_ms)
1716 wait_ms = dpolicy.mid_interval;
1717 } else {
1718 wait_ms = dpolicy.max_interval;
1719 }
1720
1721 sb_end_intwrite(sbi->sb);
1722
1723 } while (!kthread_should_stop());
1724 return 0;
1725 }
1726
1727 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 sector_t sector, nr_sects;
1732 block_t lblkstart = blkstart;
1733 int devi = 0;
1734
1735 if (f2fs_is_multi_device(sbi)) {
1736 devi = f2fs_target_device_index(sbi, blkstart);
1737 blkstart -= FDEV(devi).start_blk;
1738 }
1739
1740 /*
1741 * We need to know the type of the zone: for conventional zones,
1742 * use regular discard if the drive supports it. For sequential
1743 * zones, reset the zone write pointer.
1744 */
1745 switch (get_blkz_type(sbi, bdev, blkstart)) {
1746
1747 case BLK_ZONE_TYPE_CONVENTIONAL:
1748 if (!blk_queue_discard(bdev_get_queue(bdev)))
1749 return 0;
1750 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1751 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1752 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1753 sector = SECTOR_FROM_BLOCK(blkstart);
1754 nr_sects = SECTOR_FROM_BLOCK(blklen);
1755
1756 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1757 nr_sects != bdev_zone_sectors(bdev)) {
1758 f2fs_msg(sbi->sb, KERN_INFO,
1759 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1760 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1761 blkstart, blklen);
1762 return -EIO;
1763 }
1764 trace_f2fs_issue_reset_zone(bdev, blkstart);
1765 return blkdev_reset_zones(bdev, sector,
1766 nr_sects, GFP_NOFS);
1767 default:
1768 /* Unknown zone type: broken device ? */
1769 return -EIO;
1770 }
1771 }
1772 #endif
1773
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1774 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1775 struct block_device *bdev, block_t blkstart, block_t blklen)
1776 {
1777 #ifdef CONFIG_BLK_DEV_ZONED
1778 if (f2fs_sb_has_blkzoned(sbi) &&
1779 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1780 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1781 #endif
1782 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1783 }
1784
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1785 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1786 block_t blkstart, block_t blklen)
1787 {
1788 sector_t start = blkstart, len = 0;
1789 struct block_device *bdev;
1790 struct seg_entry *se;
1791 unsigned int offset;
1792 block_t i;
1793 int err = 0;
1794
1795 bdev = f2fs_target_device(sbi, blkstart, NULL);
1796
1797 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1798 if (i != start) {
1799 struct block_device *bdev2 =
1800 f2fs_target_device(sbi, i, NULL);
1801
1802 if (bdev2 != bdev) {
1803 err = __issue_discard_async(sbi, bdev,
1804 start, len);
1805 if (err)
1806 return err;
1807 bdev = bdev2;
1808 start = i;
1809 len = 0;
1810 }
1811 }
1812
1813 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1814 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1815
1816 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1817 sbi->discard_blks--;
1818 }
1819
1820 if (len)
1821 err = __issue_discard_async(sbi, bdev, start, len);
1822 return err;
1823 }
1824
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1825 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1826 bool check_only)
1827 {
1828 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1829 int max_blocks = sbi->blocks_per_seg;
1830 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1831 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1832 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1833 unsigned long *discard_map = (unsigned long *)se->discard_map;
1834 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1835 unsigned int start = 0, end = -1;
1836 bool force = (cpc->reason & CP_DISCARD);
1837 struct discard_entry *de = NULL;
1838 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1839 int i;
1840
1841 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1842 return false;
1843
1844 if (!force) {
1845 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1846 SM_I(sbi)->dcc_info->nr_discards >=
1847 SM_I(sbi)->dcc_info->max_discards)
1848 return false;
1849 }
1850
1851 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1852 for (i = 0; i < entries; i++)
1853 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1854 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1855
1856 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1857 SM_I(sbi)->dcc_info->max_discards) {
1858 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1859 if (start >= max_blocks)
1860 break;
1861
1862 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1863 if (force && start && end != max_blocks
1864 && (end - start) < cpc->trim_minlen)
1865 continue;
1866
1867 if (check_only)
1868 return true;
1869
1870 if (!de) {
1871 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1872 GFP_F2FS_ZERO);
1873 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1874 list_add_tail(&de->list, head);
1875 }
1876
1877 for (i = start; i < end; i++)
1878 __set_bit_le(i, (void *)de->discard_map);
1879
1880 SM_I(sbi)->dcc_info->nr_discards += end - start;
1881 }
1882 return false;
1883 }
1884
release_discard_addr(struct discard_entry * entry)1885 static void release_discard_addr(struct discard_entry *entry)
1886 {
1887 list_del(&entry->list);
1888 kmem_cache_free(discard_entry_slab, entry);
1889 }
1890
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1891 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1892 {
1893 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1894 struct discard_entry *entry, *this;
1895
1896 /* drop caches */
1897 list_for_each_entry_safe(entry, this, head, list)
1898 release_discard_addr(entry);
1899 }
1900
1901 /*
1902 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1903 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1904 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1905 {
1906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1907 unsigned int segno;
1908
1909 mutex_lock(&dirty_i->seglist_lock);
1910 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1911 __set_test_and_free(sbi, segno);
1912 mutex_unlock(&dirty_i->seglist_lock);
1913 }
1914
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1916 struct cp_control *cpc)
1917 {
1918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 struct list_head *head = &dcc->entry_list;
1920 struct discard_entry *entry, *this;
1921 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1922 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1923 unsigned int start = 0, end = -1;
1924 unsigned int secno, start_segno;
1925 bool force = (cpc->reason & CP_DISCARD);
1926 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1927
1928 mutex_lock(&dirty_i->seglist_lock);
1929
1930 while (1) {
1931 int i;
1932
1933 if (need_align && end != -1)
1934 end--;
1935 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1936 if (start >= MAIN_SEGS(sbi))
1937 break;
1938 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1939 start + 1);
1940
1941 if (need_align) {
1942 start = rounddown(start, sbi->segs_per_sec);
1943 end = roundup(end, sbi->segs_per_sec);
1944 }
1945
1946 for (i = start; i < end; i++) {
1947 if (test_and_clear_bit(i, prefree_map))
1948 dirty_i->nr_dirty[PRE]--;
1949 }
1950
1951 if (!f2fs_realtime_discard_enable(sbi))
1952 continue;
1953
1954 if (force && start >= cpc->trim_start &&
1955 (end - 1) <= cpc->trim_end)
1956 continue;
1957
1958 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1959 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1960 (end - start) << sbi->log_blocks_per_seg);
1961 continue;
1962 }
1963 next:
1964 secno = GET_SEC_FROM_SEG(sbi, start);
1965 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1966 if (!IS_CURSEC(sbi, secno) &&
1967 !get_valid_blocks(sbi, start, true))
1968 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1969 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1970
1971 start = start_segno + sbi->segs_per_sec;
1972 if (start < end)
1973 goto next;
1974 else
1975 end = start - 1;
1976 }
1977 mutex_unlock(&dirty_i->seglist_lock);
1978
1979 /* send small discards */
1980 list_for_each_entry_safe(entry, this, head, list) {
1981 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1982 bool is_valid = test_bit_le(0, entry->discard_map);
1983
1984 find_next:
1985 if (is_valid) {
1986 next_pos = find_next_zero_bit_le(entry->discard_map,
1987 sbi->blocks_per_seg, cur_pos);
1988 len = next_pos - cur_pos;
1989
1990 if (f2fs_sb_has_blkzoned(sbi) ||
1991 (force && len < cpc->trim_minlen))
1992 goto skip;
1993
1994 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1995 len);
1996 total_len += len;
1997 } else {
1998 next_pos = find_next_bit_le(entry->discard_map,
1999 sbi->blocks_per_seg, cur_pos);
2000 }
2001 skip:
2002 cur_pos = next_pos;
2003 is_valid = !is_valid;
2004
2005 if (cur_pos < sbi->blocks_per_seg)
2006 goto find_next;
2007
2008 release_discard_addr(entry);
2009 dcc->nr_discards -= total_len;
2010 }
2011
2012 wake_up_discard_thread(sbi, false);
2013 }
2014
create_discard_cmd_control(struct f2fs_sb_info * sbi)2015 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2016 {
2017 dev_t dev = sbi->sb->s_bdev->bd_dev;
2018 struct discard_cmd_control *dcc;
2019 int err = 0, i;
2020
2021 if (SM_I(sbi)->dcc_info) {
2022 dcc = SM_I(sbi)->dcc_info;
2023 goto init_thread;
2024 }
2025
2026 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2027 if (!dcc)
2028 return -ENOMEM;
2029
2030 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2031 INIT_LIST_HEAD(&dcc->entry_list);
2032 for (i = 0; i < MAX_PLIST_NUM; i++)
2033 INIT_LIST_HEAD(&dcc->pend_list[i]);
2034 INIT_LIST_HEAD(&dcc->wait_list);
2035 INIT_LIST_HEAD(&dcc->fstrim_list);
2036 mutex_init(&dcc->cmd_lock);
2037 atomic_set(&dcc->issued_discard, 0);
2038 atomic_set(&dcc->queued_discard, 0);
2039 atomic_set(&dcc->discard_cmd_cnt, 0);
2040 dcc->nr_discards = 0;
2041 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2042 dcc->undiscard_blks = 0;
2043 dcc->next_pos = 0;
2044 dcc->root = RB_ROOT_CACHED;
2045 dcc->rbtree_check = false;
2046
2047 init_waitqueue_head(&dcc->discard_wait_queue);
2048 SM_I(sbi)->dcc_info = dcc;
2049 init_thread:
2050 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2051 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2052 if (IS_ERR(dcc->f2fs_issue_discard)) {
2053 err = PTR_ERR(dcc->f2fs_issue_discard);
2054 kvfree(dcc);
2055 SM_I(sbi)->dcc_info = NULL;
2056 return err;
2057 }
2058
2059 return err;
2060 }
2061
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2062 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2063 {
2064 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2065
2066 if (!dcc)
2067 return;
2068
2069 f2fs_stop_discard_thread(sbi);
2070
2071 kvfree(dcc);
2072 SM_I(sbi)->dcc_info = NULL;
2073 }
2074
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2075 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2076 {
2077 struct sit_info *sit_i = SIT_I(sbi);
2078
2079 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2080 sit_i->dirty_sentries++;
2081 return false;
2082 }
2083
2084 return true;
2085 }
2086
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2087 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2088 unsigned int segno, int modified)
2089 {
2090 struct seg_entry *se = get_seg_entry(sbi, segno);
2091 se->type = type;
2092 if (modified)
2093 __mark_sit_entry_dirty(sbi, segno);
2094 }
2095
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2096 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2097 {
2098 struct seg_entry *se;
2099 unsigned int segno, offset;
2100 long int new_vblocks;
2101 bool exist;
2102 #ifdef CONFIG_F2FS_CHECK_FS
2103 bool mir_exist;
2104 #endif
2105
2106 segno = GET_SEGNO(sbi, blkaddr);
2107
2108 se = get_seg_entry(sbi, segno);
2109 new_vblocks = se->valid_blocks + del;
2110 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2111
2112 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2113 (new_vblocks > sbi->blocks_per_seg)));
2114
2115 se->valid_blocks = new_vblocks;
2116 se->mtime = get_mtime(sbi, false);
2117 if (se->mtime > SIT_I(sbi)->max_mtime)
2118 SIT_I(sbi)->max_mtime = se->mtime;
2119
2120 /* Update valid block bitmap */
2121 if (del > 0) {
2122 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2123 #ifdef CONFIG_F2FS_CHECK_FS
2124 mir_exist = f2fs_test_and_set_bit(offset,
2125 se->cur_valid_map_mir);
2126 if (unlikely(exist != mir_exist)) {
2127 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2128 "when setting bitmap, blk:%u, old bit:%d",
2129 blkaddr, exist);
2130 f2fs_bug_on(sbi, 1);
2131 }
2132 #endif
2133 if (unlikely(exist)) {
2134 f2fs_msg(sbi->sb, KERN_ERR,
2135 "Bitmap was wrongly set, blk:%u", blkaddr);
2136 f2fs_bug_on(sbi, 1);
2137 se->valid_blocks--;
2138 del = 0;
2139 }
2140
2141 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2142 sbi->discard_blks--;
2143
2144 /* don't overwrite by SSR to keep node chain */
2145 if (IS_NODESEG(se->type) &&
2146 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2147 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2148 se->ckpt_valid_blocks++;
2149 }
2150 } else {
2151 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2152 #ifdef CONFIG_F2FS_CHECK_FS
2153 mir_exist = f2fs_test_and_clear_bit(offset,
2154 se->cur_valid_map_mir);
2155 if (unlikely(exist != mir_exist)) {
2156 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2157 "when clearing bitmap, blk:%u, old bit:%d",
2158 blkaddr, exist);
2159 f2fs_bug_on(sbi, 1);
2160 }
2161 #endif
2162 if (unlikely(!exist)) {
2163 f2fs_msg(sbi->sb, KERN_ERR,
2164 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2165 f2fs_bug_on(sbi, 1);
2166 se->valid_blocks++;
2167 del = 0;
2168 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2169 /*
2170 * If checkpoints are off, we must not reuse data that
2171 * was used in the previous checkpoint. If it was used
2172 * before, we must track that to know how much space we
2173 * really have.
2174 */
2175 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2176 sbi->unusable_block_count++;
2177 }
2178
2179 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2180 sbi->discard_blks++;
2181 }
2182 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2183 se->ckpt_valid_blocks += del;
2184
2185 __mark_sit_entry_dirty(sbi, segno);
2186
2187 /* update total number of valid blocks to be written in ckpt area */
2188 SIT_I(sbi)->written_valid_blocks += del;
2189
2190 if (__is_large_section(sbi))
2191 get_sec_entry(sbi, segno)->valid_blocks += del;
2192 }
2193
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2194 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2195 {
2196 unsigned int segno = GET_SEGNO(sbi, addr);
2197 struct sit_info *sit_i = SIT_I(sbi);
2198
2199 f2fs_bug_on(sbi, addr == NULL_ADDR);
2200 if (addr == NEW_ADDR)
2201 return;
2202
2203 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2204
2205 /* add it into sit main buffer */
2206 down_write(&sit_i->sentry_lock);
2207
2208 update_sit_entry(sbi, addr, -1);
2209
2210 /* add it into dirty seglist */
2211 locate_dirty_segment(sbi, segno);
2212
2213 up_write(&sit_i->sentry_lock);
2214 }
2215
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2216 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2217 {
2218 struct sit_info *sit_i = SIT_I(sbi);
2219 unsigned int segno, offset;
2220 struct seg_entry *se;
2221 bool is_cp = false;
2222
2223 if (!is_valid_data_blkaddr(sbi, blkaddr))
2224 return true;
2225
2226 down_read(&sit_i->sentry_lock);
2227
2228 segno = GET_SEGNO(sbi, blkaddr);
2229 se = get_seg_entry(sbi, segno);
2230 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2231
2232 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2233 is_cp = true;
2234
2235 up_read(&sit_i->sentry_lock);
2236
2237 return is_cp;
2238 }
2239
2240 /*
2241 * This function should be resided under the curseg_mutex lock
2242 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2243 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2244 struct f2fs_summary *sum)
2245 {
2246 struct curseg_info *curseg = CURSEG_I(sbi, type);
2247 void *addr = curseg->sum_blk;
2248 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2249 memcpy(addr, sum, sizeof(struct f2fs_summary));
2250 }
2251
2252 /*
2253 * Calculate the number of current summary pages for writing
2254 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2255 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2256 {
2257 int valid_sum_count = 0;
2258 int i, sum_in_page;
2259
2260 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2261 if (sbi->ckpt->alloc_type[i] == SSR)
2262 valid_sum_count += sbi->blocks_per_seg;
2263 else {
2264 if (for_ra)
2265 valid_sum_count += le16_to_cpu(
2266 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2267 else
2268 valid_sum_count += curseg_blkoff(sbi, i);
2269 }
2270 }
2271
2272 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2273 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2274 if (valid_sum_count <= sum_in_page)
2275 return 1;
2276 else if ((valid_sum_count - sum_in_page) <=
2277 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2278 return 2;
2279 return 3;
2280 }
2281
2282 /*
2283 * Caller should put this summary page
2284 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2285 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2286 {
2287 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2288 }
2289
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2290 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2291 void *src, block_t blk_addr)
2292 {
2293 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2294
2295 memcpy(page_address(page), src, PAGE_SIZE);
2296 set_page_dirty(page);
2297 f2fs_put_page(page, 1);
2298 }
2299
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2300 static void write_sum_page(struct f2fs_sb_info *sbi,
2301 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2302 {
2303 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2304 }
2305
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2306 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2307 int type, block_t blk_addr)
2308 {
2309 struct curseg_info *curseg = CURSEG_I(sbi, type);
2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311 struct f2fs_summary_block *src = curseg->sum_blk;
2312 struct f2fs_summary_block *dst;
2313
2314 dst = (struct f2fs_summary_block *)page_address(page);
2315 memset(dst, 0, PAGE_SIZE);
2316
2317 mutex_lock(&curseg->curseg_mutex);
2318
2319 down_read(&curseg->journal_rwsem);
2320 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2321 up_read(&curseg->journal_rwsem);
2322
2323 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2324 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2325
2326 mutex_unlock(&curseg->curseg_mutex);
2327
2328 set_page_dirty(page);
2329 f2fs_put_page(page, 1);
2330 }
2331
is_next_segment_free(struct f2fs_sb_info * sbi,int type)2332 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2333 {
2334 struct curseg_info *curseg = CURSEG_I(sbi, type);
2335 unsigned int segno = curseg->segno + 1;
2336 struct free_segmap_info *free_i = FREE_I(sbi);
2337
2338 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2339 return !test_bit(segno, free_i->free_segmap);
2340 return 0;
2341 }
2342
2343 /*
2344 * Find a new segment from the free segments bitmap to right order
2345 * This function should be returned with success, otherwise BUG
2346 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2347 static void get_new_segment(struct f2fs_sb_info *sbi,
2348 unsigned int *newseg, bool new_sec, int dir)
2349 {
2350 struct free_segmap_info *free_i = FREE_I(sbi);
2351 unsigned int segno, secno, zoneno;
2352 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2353 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2354 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2355 unsigned int left_start = hint;
2356 bool init = true;
2357 int go_left = 0;
2358 int i;
2359
2360 spin_lock(&free_i->segmap_lock);
2361
2362 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2363 segno = find_next_zero_bit(free_i->free_segmap,
2364 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2365 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2366 goto got_it;
2367 }
2368 find_other_zone:
2369 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2370 if (secno >= MAIN_SECS(sbi)) {
2371 if (dir == ALLOC_RIGHT) {
2372 secno = find_next_zero_bit(free_i->free_secmap,
2373 MAIN_SECS(sbi), 0);
2374 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2375 } else {
2376 go_left = 1;
2377 left_start = hint - 1;
2378 }
2379 }
2380 if (go_left == 0)
2381 goto skip_left;
2382
2383 while (test_bit(left_start, free_i->free_secmap)) {
2384 if (left_start > 0) {
2385 left_start--;
2386 continue;
2387 }
2388 left_start = find_next_zero_bit(free_i->free_secmap,
2389 MAIN_SECS(sbi), 0);
2390 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2391 break;
2392 }
2393 secno = left_start;
2394 skip_left:
2395 segno = GET_SEG_FROM_SEC(sbi, secno);
2396 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2397
2398 /* give up on finding another zone */
2399 if (!init)
2400 goto got_it;
2401 if (sbi->secs_per_zone == 1)
2402 goto got_it;
2403 if (zoneno == old_zoneno)
2404 goto got_it;
2405 if (dir == ALLOC_LEFT) {
2406 if (!go_left && zoneno + 1 >= total_zones)
2407 goto got_it;
2408 if (go_left && zoneno == 0)
2409 goto got_it;
2410 }
2411 for (i = 0; i < NR_CURSEG_TYPE; i++)
2412 if (CURSEG_I(sbi, i)->zone == zoneno)
2413 break;
2414
2415 if (i < NR_CURSEG_TYPE) {
2416 /* zone is in user, try another */
2417 if (go_left)
2418 hint = zoneno * sbi->secs_per_zone - 1;
2419 else if (zoneno + 1 >= total_zones)
2420 hint = 0;
2421 else
2422 hint = (zoneno + 1) * sbi->secs_per_zone;
2423 init = false;
2424 goto find_other_zone;
2425 }
2426 got_it:
2427 /* set it as dirty segment in free segmap */
2428 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2429 __set_inuse(sbi, segno);
2430 *newseg = segno;
2431 spin_unlock(&free_i->segmap_lock);
2432 }
2433
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2435 {
2436 struct curseg_info *curseg = CURSEG_I(sbi, type);
2437 struct summary_footer *sum_footer;
2438
2439 curseg->segno = curseg->next_segno;
2440 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2441 curseg->next_blkoff = 0;
2442 curseg->next_segno = NULL_SEGNO;
2443
2444 sum_footer = &(curseg->sum_blk->footer);
2445 memset(sum_footer, 0, sizeof(struct summary_footer));
2446 if (IS_DATASEG(type))
2447 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2448 if (IS_NODESEG(type))
2449 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2450 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2451 }
2452
__get_next_segno(struct f2fs_sb_info * sbi,int type)2453 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2454 {
2455 /* if segs_per_sec is large than 1, we need to keep original policy. */
2456 if (__is_large_section(sbi))
2457 return CURSEG_I(sbi, type)->segno;
2458
2459 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2460 return 0;
2461
2462 if (test_opt(sbi, NOHEAP) &&
2463 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2464 return 0;
2465
2466 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2467 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2468
2469 /* find segments from 0 to reuse freed segments */
2470 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2471 return 0;
2472
2473 return CURSEG_I(sbi, type)->segno;
2474 }
2475
2476 /*
2477 * Allocate a current working segment.
2478 * This function always allocates a free segment in LFS manner.
2479 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2480 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2481 {
2482 struct curseg_info *curseg = CURSEG_I(sbi, type);
2483 unsigned int segno = curseg->segno;
2484 int dir = ALLOC_LEFT;
2485
2486 write_sum_page(sbi, curseg->sum_blk,
2487 GET_SUM_BLOCK(sbi, segno));
2488 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2489 dir = ALLOC_RIGHT;
2490
2491 if (test_opt(sbi, NOHEAP))
2492 dir = ALLOC_RIGHT;
2493
2494 segno = __get_next_segno(sbi, type);
2495 get_new_segment(sbi, &segno, new_sec, dir);
2496 curseg->next_segno = segno;
2497 reset_curseg(sbi, type, 1);
2498 curseg->alloc_type = LFS;
2499 }
2500
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2501 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2502 struct curseg_info *seg, block_t start)
2503 {
2504 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2505 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2506 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2507 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2508 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2509 int i, pos;
2510
2511 for (i = 0; i < entries; i++)
2512 target_map[i] = ckpt_map[i] | cur_map[i];
2513
2514 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2515
2516 seg->next_blkoff = pos;
2517 }
2518
2519 /*
2520 * If a segment is written by LFS manner, next block offset is just obtained
2521 * by increasing the current block offset. However, if a segment is written by
2522 * SSR manner, next block offset obtained by calling __next_free_blkoff
2523 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2524 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2525 struct curseg_info *seg)
2526 {
2527 if (seg->alloc_type == SSR)
2528 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2529 else
2530 seg->next_blkoff++;
2531 }
2532
2533 /*
2534 * This function always allocates a used segment(from dirty seglist) by SSR
2535 * manner, so it should recover the existing segment information of valid blocks
2536 */
change_curseg(struct f2fs_sb_info * sbi,int type)2537 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2538 {
2539 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2540 struct curseg_info *curseg = CURSEG_I(sbi, type);
2541 unsigned int new_segno = curseg->next_segno;
2542 struct f2fs_summary_block *sum_node;
2543 struct page *sum_page;
2544
2545 write_sum_page(sbi, curseg->sum_blk,
2546 GET_SUM_BLOCK(sbi, curseg->segno));
2547 __set_test_and_inuse(sbi, new_segno);
2548
2549 mutex_lock(&dirty_i->seglist_lock);
2550 __remove_dirty_segment(sbi, new_segno, PRE);
2551 __remove_dirty_segment(sbi, new_segno, DIRTY);
2552 mutex_unlock(&dirty_i->seglist_lock);
2553
2554 reset_curseg(sbi, type, 1);
2555 curseg->alloc_type = SSR;
2556 __next_free_blkoff(sbi, curseg, 0);
2557
2558 sum_page = f2fs_get_sum_page(sbi, new_segno);
2559 f2fs_bug_on(sbi, IS_ERR(sum_page));
2560 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2561 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2562 f2fs_put_page(sum_page, 1);
2563 }
2564
get_ssr_segment(struct f2fs_sb_info * sbi,int type)2565 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2566 {
2567 struct curseg_info *curseg = CURSEG_I(sbi, type);
2568 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2569 unsigned segno = NULL_SEGNO;
2570 int i, cnt;
2571 bool reversed = false;
2572
2573 /* f2fs_need_SSR() already forces to do this */
2574 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2575 curseg->next_segno = segno;
2576 return 1;
2577 }
2578
2579 /* For node segments, let's do SSR more intensively */
2580 if (IS_NODESEG(type)) {
2581 if (type >= CURSEG_WARM_NODE) {
2582 reversed = true;
2583 i = CURSEG_COLD_NODE;
2584 } else {
2585 i = CURSEG_HOT_NODE;
2586 }
2587 cnt = NR_CURSEG_NODE_TYPE;
2588 } else {
2589 if (type >= CURSEG_WARM_DATA) {
2590 reversed = true;
2591 i = CURSEG_COLD_DATA;
2592 } else {
2593 i = CURSEG_HOT_DATA;
2594 }
2595 cnt = NR_CURSEG_DATA_TYPE;
2596 }
2597
2598 for (; cnt-- > 0; reversed ? i-- : i++) {
2599 if (i == type)
2600 continue;
2601 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2602 curseg->next_segno = segno;
2603 return 1;
2604 }
2605 }
2606
2607 /* find valid_blocks=0 in dirty list */
2608 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2609 segno = get_free_segment(sbi);
2610 if (segno != NULL_SEGNO) {
2611 curseg->next_segno = segno;
2612 return 1;
2613 }
2614 }
2615 return 0;
2616 }
2617
2618 /*
2619 * flush out current segment and replace it with new segment
2620 * This function should be returned with success, otherwise BUG
2621 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2622 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2623 int type, bool force)
2624 {
2625 struct curseg_info *curseg = CURSEG_I(sbi, type);
2626
2627 if (force)
2628 new_curseg(sbi, type, true);
2629 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2630 type == CURSEG_WARM_NODE)
2631 new_curseg(sbi, type, false);
2632 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2633 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2634 new_curseg(sbi, type, false);
2635 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2636 change_curseg(sbi, type);
2637 else
2638 new_curseg(sbi, type, false);
2639
2640 stat_inc_seg_type(sbi, curseg);
2641 }
2642
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2643 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2644 {
2645 struct curseg_info *curseg;
2646 unsigned int old_segno;
2647 int i;
2648
2649 down_write(&SIT_I(sbi)->sentry_lock);
2650
2651 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2652 curseg = CURSEG_I(sbi, i);
2653 old_segno = curseg->segno;
2654 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2655 locate_dirty_segment(sbi, old_segno);
2656 }
2657
2658 up_write(&SIT_I(sbi)->sentry_lock);
2659 }
2660
2661 static const struct segment_allocation default_salloc_ops = {
2662 .allocate_segment = allocate_segment_by_default,
2663 };
2664
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2665 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2666 struct cp_control *cpc)
2667 {
2668 __u64 trim_start = cpc->trim_start;
2669 bool has_candidate = false;
2670
2671 down_write(&SIT_I(sbi)->sentry_lock);
2672 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2673 if (add_discard_addrs(sbi, cpc, true)) {
2674 has_candidate = true;
2675 break;
2676 }
2677 }
2678 up_write(&SIT_I(sbi)->sentry_lock);
2679
2680 cpc->trim_start = trim_start;
2681 return has_candidate;
2682 }
2683
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2684 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2685 struct discard_policy *dpolicy,
2686 unsigned int start, unsigned int end)
2687 {
2688 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2689 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2690 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2691 struct discard_cmd *dc;
2692 struct blk_plug plug;
2693 int issued;
2694 unsigned int trimmed = 0;
2695
2696 next:
2697 issued = 0;
2698
2699 mutex_lock(&dcc->cmd_lock);
2700 if (unlikely(dcc->rbtree_check))
2701 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2702 &dcc->root));
2703
2704 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2705 NULL, start,
2706 (struct rb_entry **)&prev_dc,
2707 (struct rb_entry **)&next_dc,
2708 &insert_p, &insert_parent, true, NULL);
2709 if (!dc)
2710 dc = next_dc;
2711
2712 blk_start_plug(&plug);
2713
2714 while (dc && dc->lstart <= end) {
2715 struct rb_node *node;
2716 int err = 0;
2717
2718 if (dc->len < dpolicy->granularity)
2719 goto skip;
2720
2721 if (dc->state != D_PREP) {
2722 list_move_tail(&dc->list, &dcc->fstrim_list);
2723 goto skip;
2724 }
2725
2726 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2727
2728 if (issued >= dpolicy->max_requests) {
2729 start = dc->lstart + dc->len;
2730
2731 if (err)
2732 __remove_discard_cmd(sbi, dc);
2733
2734 blk_finish_plug(&plug);
2735 mutex_unlock(&dcc->cmd_lock);
2736 trimmed += __wait_all_discard_cmd(sbi, NULL);
2737 congestion_wait(BLK_RW_ASYNC, HZ/50);
2738 goto next;
2739 }
2740 skip:
2741 node = rb_next(&dc->rb_node);
2742 if (err)
2743 __remove_discard_cmd(sbi, dc);
2744 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2745
2746 if (fatal_signal_pending(current))
2747 break;
2748 }
2749
2750 blk_finish_plug(&plug);
2751 mutex_unlock(&dcc->cmd_lock);
2752
2753 return trimmed;
2754 }
2755
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)2756 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2757 {
2758 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2759 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2760 unsigned int start_segno, end_segno;
2761 block_t start_block, end_block;
2762 struct cp_control cpc;
2763 struct discard_policy dpolicy;
2764 unsigned long long trimmed = 0;
2765 int err = 0;
2766 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2767
2768 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2769 return -EINVAL;
2770
2771 if (end < MAIN_BLKADDR(sbi))
2772 goto out;
2773
2774 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2775 f2fs_msg(sbi->sb, KERN_WARNING,
2776 "Found FS corruption, run fsck to fix.");
2777 return -EFSCORRUPTED;
2778 }
2779
2780 /* start/end segment number in main_area */
2781 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2782 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2783 GET_SEGNO(sbi, end);
2784 if (need_align) {
2785 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2786 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2787 }
2788
2789 cpc.reason = CP_DISCARD;
2790 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2791 cpc.trim_start = start_segno;
2792 cpc.trim_end = end_segno;
2793
2794 if (sbi->discard_blks == 0)
2795 goto out;
2796
2797 mutex_lock(&sbi->gc_mutex);
2798 err = f2fs_write_checkpoint(sbi, &cpc);
2799 mutex_unlock(&sbi->gc_mutex);
2800 if (err)
2801 goto out;
2802
2803 /*
2804 * We filed discard candidates, but actually we don't need to wait for
2805 * all of them, since they'll be issued in idle time along with runtime
2806 * discard option. User configuration looks like using runtime discard
2807 * or periodic fstrim instead of it.
2808 */
2809 if (f2fs_realtime_discard_enable(sbi))
2810 goto out;
2811
2812 start_block = START_BLOCK(sbi, start_segno);
2813 end_block = START_BLOCK(sbi, end_segno + 1);
2814
2815 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2816 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2817 start_block, end_block);
2818
2819 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2820 start_block, end_block);
2821 out:
2822 if (!err)
2823 range->len = F2FS_BLK_TO_BYTES(trimmed);
2824 return err;
2825 }
2826
__has_curseg_space(struct f2fs_sb_info * sbi,int type)2827 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2828 {
2829 struct curseg_info *curseg = CURSEG_I(sbi, type);
2830 if (curseg->next_blkoff < sbi->blocks_per_seg)
2831 return true;
2832 return false;
2833 }
2834
f2fs_rw_hint_to_seg_type(enum rw_hint hint)2835 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2836 {
2837 switch (hint) {
2838 case WRITE_LIFE_SHORT:
2839 return CURSEG_HOT_DATA;
2840 case WRITE_LIFE_EXTREME:
2841 return CURSEG_COLD_DATA;
2842 default:
2843 return CURSEG_WARM_DATA;
2844 }
2845 }
2846
2847 /* This returns write hints for each segment type. This hints will be
2848 * passed down to block layer. There are mapping tables which depend on
2849 * the mount option 'whint_mode'.
2850 *
2851 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2852 *
2853 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2854 *
2855 * User F2FS Block
2856 * ---- ---- -----
2857 * META WRITE_LIFE_NOT_SET
2858 * HOT_NODE "
2859 * WARM_NODE "
2860 * COLD_NODE "
2861 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2862 * extension list " "
2863 *
2864 * -- buffered io
2865 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2866 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2867 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2868 * WRITE_LIFE_NONE " "
2869 * WRITE_LIFE_MEDIUM " "
2870 * WRITE_LIFE_LONG " "
2871 *
2872 * -- direct io
2873 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2874 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2875 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2876 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2877 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2878 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2879 *
2880 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2881 *
2882 * User F2FS Block
2883 * ---- ---- -----
2884 * META WRITE_LIFE_MEDIUM;
2885 * HOT_NODE WRITE_LIFE_NOT_SET
2886 * WARM_NODE "
2887 * COLD_NODE WRITE_LIFE_NONE
2888 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2889 * extension list " "
2890 *
2891 * -- buffered io
2892 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2893 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2894 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2895 * WRITE_LIFE_NONE " "
2896 * WRITE_LIFE_MEDIUM " "
2897 * WRITE_LIFE_LONG " "
2898 *
2899 * -- direct io
2900 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2901 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2902 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2903 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2904 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2905 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2906 */
2907
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)2908 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2909 enum page_type type, enum temp_type temp)
2910 {
2911 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2912 if (type == DATA) {
2913 if (temp == WARM)
2914 return WRITE_LIFE_NOT_SET;
2915 else if (temp == HOT)
2916 return WRITE_LIFE_SHORT;
2917 else if (temp == COLD)
2918 return WRITE_LIFE_EXTREME;
2919 } else {
2920 return WRITE_LIFE_NOT_SET;
2921 }
2922 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2923 if (type == DATA) {
2924 if (temp == WARM)
2925 return WRITE_LIFE_LONG;
2926 else if (temp == HOT)
2927 return WRITE_LIFE_SHORT;
2928 else if (temp == COLD)
2929 return WRITE_LIFE_EXTREME;
2930 } else if (type == NODE) {
2931 if (temp == WARM || temp == HOT)
2932 return WRITE_LIFE_NOT_SET;
2933 else if (temp == COLD)
2934 return WRITE_LIFE_NONE;
2935 } else if (type == META) {
2936 return WRITE_LIFE_MEDIUM;
2937 }
2938 }
2939 return WRITE_LIFE_NOT_SET;
2940 }
2941
__get_segment_type_2(struct f2fs_io_info * fio)2942 static int __get_segment_type_2(struct f2fs_io_info *fio)
2943 {
2944 if (fio->type == DATA)
2945 return CURSEG_HOT_DATA;
2946 else
2947 return CURSEG_HOT_NODE;
2948 }
2949
__get_segment_type_4(struct f2fs_io_info * fio)2950 static int __get_segment_type_4(struct f2fs_io_info *fio)
2951 {
2952 if (fio->type == DATA) {
2953 struct inode *inode = fio->page->mapping->host;
2954
2955 if (S_ISDIR(inode->i_mode))
2956 return CURSEG_HOT_DATA;
2957 else
2958 return CURSEG_COLD_DATA;
2959 } else {
2960 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2961 return CURSEG_WARM_NODE;
2962 else
2963 return CURSEG_COLD_NODE;
2964 }
2965 }
2966
__get_segment_type_6(struct f2fs_io_info * fio)2967 static int __get_segment_type_6(struct f2fs_io_info *fio)
2968 {
2969 if (fio->type == DATA) {
2970 struct inode *inode = fio->page->mapping->host;
2971
2972 if (is_cold_data(fio->page) || file_is_cold(inode))
2973 return CURSEG_COLD_DATA;
2974 if (file_is_hot(inode) ||
2975 is_inode_flag_set(inode, FI_HOT_DATA) ||
2976 f2fs_is_atomic_file(inode) ||
2977 f2fs_is_volatile_file(inode))
2978 return CURSEG_HOT_DATA;
2979 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2980 } else {
2981 if (IS_DNODE(fio->page))
2982 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2983 CURSEG_HOT_NODE;
2984 return CURSEG_COLD_NODE;
2985 }
2986 }
2987
__get_segment_type(struct f2fs_io_info * fio)2988 static int __get_segment_type(struct f2fs_io_info *fio)
2989 {
2990 int type = 0;
2991
2992 switch (F2FS_OPTION(fio->sbi).active_logs) {
2993 case 2:
2994 type = __get_segment_type_2(fio);
2995 break;
2996 case 4:
2997 type = __get_segment_type_4(fio);
2998 break;
2999 case 6:
3000 type = __get_segment_type_6(fio);
3001 break;
3002 default:
3003 f2fs_bug_on(fio->sbi, true);
3004 }
3005
3006 if (IS_HOT(type))
3007 fio->temp = HOT;
3008 else if (IS_WARM(type))
3009 fio->temp = WARM;
3010 else
3011 fio->temp = COLD;
3012 return type;
3013 }
3014
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,bool add_list)3015 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3016 block_t old_blkaddr, block_t *new_blkaddr,
3017 struct f2fs_summary *sum, int type,
3018 struct f2fs_io_info *fio, bool add_list)
3019 {
3020 struct sit_info *sit_i = SIT_I(sbi);
3021 struct curseg_info *curseg = CURSEG_I(sbi, type);
3022
3023 down_read(&SM_I(sbi)->curseg_lock);
3024
3025 mutex_lock(&curseg->curseg_mutex);
3026 down_write(&sit_i->sentry_lock);
3027
3028 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3029
3030 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3031
3032 /*
3033 * __add_sum_entry should be resided under the curseg_mutex
3034 * because, this function updates a summary entry in the
3035 * current summary block.
3036 */
3037 __add_sum_entry(sbi, type, sum);
3038
3039 __refresh_next_blkoff(sbi, curseg);
3040
3041 stat_inc_block_count(sbi, curseg);
3042
3043 /*
3044 * SIT information should be updated before segment allocation,
3045 * since SSR needs latest valid block information.
3046 */
3047 update_sit_entry(sbi, *new_blkaddr, 1);
3048 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3049 update_sit_entry(sbi, old_blkaddr, -1);
3050
3051 if (!__has_curseg_space(sbi, type))
3052 sit_i->s_ops->allocate_segment(sbi, type, false);
3053
3054 /*
3055 * segment dirty status should be updated after segment allocation,
3056 * so we just need to update status only one time after previous
3057 * segment being closed.
3058 */
3059 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3060 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3061
3062 up_write(&sit_i->sentry_lock);
3063
3064 if (page && IS_NODESEG(type)) {
3065 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3066
3067 f2fs_inode_chksum_set(sbi, page);
3068 }
3069
3070 if (add_list) {
3071 struct f2fs_bio_info *io;
3072
3073 INIT_LIST_HEAD(&fio->list);
3074 fio->in_list = true;
3075 fio->retry = false;
3076 io = sbi->write_io[fio->type] + fio->temp;
3077 spin_lock(&io->io_lock);
3078 list_add_tail(&fio->list, &io->io_list);
3079 spin_unlock(&io->io_lock);
3080 }
3081
3082 mutex_unlock(&curseg->curseg_mutex);
3083
3084 up_read(&SM_I(sbi)->curseg_lock);
3085 }
3086
update_device_state(struct f2fs_io_info * fio)3087 static void update_device_state(struct f2fs_io_info *fio)
3088 {
3089 struct f2fs_sb_info *sbi = fio->sbi;
3090 unsigned int devidx;
3091
3092 if (!sbi->s_ndevs)
3093 return;
3094
3095 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3096
3097 /* update device state for fsync */
3098 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3099
3100 /* update device state for checkpoint */
3101 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3102 spin_lock(&sbi->dev_lock);
3103 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3104 spin_unlock(&sbi->dev_lock);
3105 }
3106 }
3107
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3108 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3109 {
3110 int type = __get_segment_type(fio);
3111 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3112
3113 if (keep_order)
3114 down_read(&fio->sbi->io_order_lock);
3115 reallocate:
3116 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3117 &fio->new_blkaddr, sum, type, fio, true);
3118 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3119 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3120 fio->old_blkaddr, fio->old_blkaddr);
3121
3122 /* writeout dirty page into bdev */
3123 f2fs_submit_page_write(fio);
3124 if (fio->retry) {
3125 fio->old_blkaddr = fio->new_blkaddr;
3126 goto reallocate;
3127 }
3128
3129 update_device_state(fio);
3130
3131 if (keep_order)
3132 up_read(&fio->sbi->io_order_lock);
3133 }
3134
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3135 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3136 enum iostat_type io_type)
3137 {
3138 struct f2fs_io_info fio = {
3139 .sbi = sbi,
3140 .type = META,
3141 .temp = HOT,
3142 .op = REQ_OP_WRITE,
3143 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3144 .old_blkaddr = page->index,
3145 .new_blkaddr = page->index,
3146 .page = page,
3147 .encrypted_page = NULL,
3148 .in_list = false,
3149 };
3150
3151 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3152 fio.op_flags &= ~REQ_META;
3153
3154 set_page_writeback(page);
3155 ClearPageError(page);
3156 f2fs_submit_page_write(&fio);
3157
3158 stat_inc_meta_count(sbi, page->index);
3159 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3160 }
3161
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3162 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3163 {
3164 struct f2fs_summary sum;
3165
3166 set_summary(&sum, nid, 0, 0);
3167 do_write_page(&sum, fio);
3168
3169 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3170 }
3171
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3172 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3173 struct f2fs_io_info *fio)
3174 {
3175 struct f2fs_sb_info *sbi = fio->sbi;
3176 struct f2fs_summary sum;
3177
3178 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3179 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3180 do_write_page(&sum, fio);
3181 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3182
3183 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3184 }
3185
f2fs_inplace_write_data(struct f2fs_io_info * fio)3186 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3187 {
3188 int err;
3189 struct f2fs_sb_info *sbi = fio->sbi;
3190
3191 fio->new_blkaddr = fio->old_blkaddr;
3192 /* i/o temperature is needed for passing down write hints */
3193 __get_segment_type(fio);
3194
3195 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3196 GET_SEGNO(sbi, fio->new_blkaddr))->type));
3197
3198 stat_inc_inplace_blocks(fio->sbi);
3199
3200 err = f2fs_submit_page_bio(fio);
3201 if (!err) {
3202 update_device_state(fio);
3203 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3204 }
3205
3206 return err;
3207 }
3208
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3209 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3210 unsigned int segno)
3211 {
3212 int i;
3213
3214 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3215 if (CURSEG_I(sbi, i)->segno == segno)
3216 break;
3217 }
3218 return i;
3219 }
3220
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr)3221 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3222 block_t old_blkaddr, block_t new_blkaddr,
3223 bool recover_curseg, bool recover_newaddr)
3224 {
3225 struct sit_info *sit_i = SIT_I(sbi);
3226 struct curseg_info *curseg;
3227 unsigned int segno, old_cursegno;
3228 struct seg_entry *se;
3229 int type;
3230 unsigned short old_blkoff;
3231
3232 segno = GET_SEGNO(sbi, new_blkaddr);
3233 se = get_seg_entry(sbi, segno);
3234 type = se->type;
3235
3236 down_write(&SM_I(sbi)->curseg_lock);
3237
3238 if (!recover_curseg) {
3239 /* for recovery flow */
3240 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3241 if (old_blkaddr == NULL_ADDR)
3242 type = CURSEG_COLD_DATA;
3243 else
3244 type = CURSEG_WARM_DATA;
3245 }
3246 } else {
3247 if (IS_CURSEG(sbi, segno)) {
3248 /* se->type is volatile as SSR allocation */
3249 type = __f2fs_get_curseg(sbi, segno);
3250 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3251 } else {
3252 type = CURSEG_WARM_DATA;
3253 }
3254 }
3255
3256 f2fs_bug_on(sbi, !IS_DATASEG(type));
3257 curseg = CURSEG_I(sbi, type);
3258
3259 mutex_lock(&curseg->curseg_mutex);
3260 down_write(&sit_i->sentry_lock);
3261
3262 old_cursegno = curseg->segno;
3263 old_blkoff = curseg->next_blkoff;
3264
3265 /* change the current segment */
3266 if (segno != curseg->segno) {
3267 curseg->next_segno = segno;
3268 change_curseg(sbi, type);
3269 }
3270
3271 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3272 __add_sum_entry(sbi, type, sum);
3273
3274 if (!recover_curseg || recover_newaddr)
3275 update_sit_entry(sbi, new_blkaddr, 1);
3276 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3277 invalidate_mapping_pages(META_MAPPING(sbi),
3278 old_blkaddr, old_blkaddr);
3279 update_sit_entry(sbi, old_blkaddr, -1);
3280 }
3281
3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3283 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3284
3285 locate_dirty_segment(sbi, old_cursegno);
3286
3287 if (recover_curseg) {
3288 if (old_cursegno != curseg->segno) {
3289 curseg->next_segno = old_cursegno;
3290 change_curseg(sbi, type);
3291 }
3292 curseg->next_blkoff = old_blkoff;
3293 }
3294
3295 up_write(&sit_i->sentry_lock);
3296 mutex_unlock(&curseg->curseg_mutex);
3297 up_write(&SM_I(sbi)->curseg_lock);
3298 }
3299
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3300 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3301 block_t old_addr, block_t new_addr,
3302 unsigned char version, bool recover_curseg,
3303 bool recover_newaddr)
3304 {
3305 struct f2fs_summary sum;
3306
3307 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3308
3309 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3310 recover_curseg, recover_newaddr);
3311
3312 f2fs_update_data_blkaddr(dn, new_addr);
3313 }
3314
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3315 void f2fs_wait_on_page_writeback(struct page *page,
3316 enum page_type type, bool ordered, bool locked)
3317 {
3318 if (PageWriteback(page)) {
3319 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3320
3321 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3322 if (ordered) {
3323 wait_on_page_writeback(page);
3324 f2fs_bug_on(sbi, locked && PageWriteback(page));
3325 } else {
3326 wait_for_stable_page(page);
3327 }
3328 }
3329 }
3330
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3331 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3332 {
3333 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3334 struct page *cpage;
3335
3336 if (!f2fs_post_read_required(inode))
3337 return;
3338
3339 if (!is_valid_data_blkaddr(sbi, blkaddr))
3340 return;
3341
3342 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3343 if (cpage) {
3344 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3345 f2fs_put_page(cpage, 1);
3346 }
3347 }
3348
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3349 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3350 block_t len)
3351 {
3352 block_t i;
3353
3354 for (i = 0; i < len; i++)
3355 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3356 }
3357
read_compacted_summaries(struct f2fs_sb_info * sbi)3358 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3359 {
3360 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3361 struct curseg_info *seg_i;
3362 unsigned char *kaddr;
3363 struct page *page;
3364 block_t start;
3365 int i, j, offset;
3366
3367 start = start_sum_block(sbi);
3368
3369 page = f2fs_get_meta_page(sbi, start++);
3370 if (IS_ERR(page))
3371 return PTR_ERR(page);
3372 kaddr = (unsigned char *)page_address(page);
3373
3374 /* Step 1: restore nat cache */
3375 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3376 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3377
3378 /* Step 2: restore sit cache */
3379 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3380 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3381 offset = 2 * SUM_JOURNAL_SIZE;
3382
3383 /* Step 3: restore summary entries */
3384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3385 unsigned short blk_off;
3386 unsigned int segno;
3387
3388 seg_i = CURSEG_I(sbi, i);
3389 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3390 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3391 seg_i->next_segno = segno;
3392 reset_curseg(sbi, i, 0);
3393 seg_i->alloc_type = ckpt->alloc_type[i];
3394 seg_i->next_blkoff = blk_off;
3395
3396 if (seg_i->alloc_type == SSR)
3397 blk_off = sbi->blocks_per_seg;
3398
3399 for (j = 0; j < blk_off; j++) {
3400 struct f2fs_summary *s;
3401 s = (struct f2fs_summary *)(kaddr + offset);
3402 seg_i->sum_blk->entries[j] = *s;
3403 offset += SUMMARY_SIZE;
3404 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3405 SUM_FOOTER_SIZE)
3406 continue;
3407
3408 f2fs_put_page(page, 1);
3409 page = NULL;
3410
3411 page = f2fs_get_meta_page(sbi, start++);
3412 if (IS_ERR(page))
3413 return PTR_ERR(page);
3414 kaddr = (unsigned char *)page_address(page);
3415 offset = 0;
3416 }
3417 }
3418 f2fs_put_page(page, 1);
3419 return 0;
3420 }
3421
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3422 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3423 {
3424 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3425 struct f2fs_summary_block *sum;
3426 struct curseg_info *curseg;
3427 struct page *new;
3428 unsigned short blk_off;
3429 unsigned int segno = 0;
3430 block_t blk_addr = 0;
3431 int err = 0;
3432
3433 /* get segment number and block addr */
3434 if (IS_DATASEG(type)) {
3435 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3436 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3437 CURSEG_HOT_DATA]);
3438 if (__exist_node_summaries(sbi))
3439 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3440 else
3441 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3442 } else {
3443 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3444 CURSEG_HOT_NODE]);
3445 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3446 CURSEG_HOT_NODE]);
3447 if (__exist_node_summaries(sbi))
3448 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3449 type - CURSEG_HOT_NODE);
3450 else
3451 blk_addr = GET_SUM_BLOCK(sbi, segno);
3452 }
3453
3454 new = f2fs_get_meta_page(sbi, blk_addr);
3455 if (IS_ERR(new))
3456 return PTR_ERR(new);
3457 sum = (struct f2fs_summary_block *)page_address(new);
3458
3459 if (IS_NODESEG(type)) {
3460 if (__exist_node_summaries(sbi)) {
3461 struct f2fs_summary *ns = &sum->entries[0];
3462 int i;
3463 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3464 ns->version = 0;
3465 ns->ofs_in_node = 0;
3466 }
3467 } else {
3468 err = f2fs_restore_node_summary(sbi, segno, sum);
3469 if (err)
3470 goto out;
3471 }
3472 }
3473
3474 /* set uncompleted segment to curseg */
3475 curseg = CURSEG_I(sbi, type);
3476 mutex_lock(&curseg->curseg_mutex);
3477
3478 /* update journal info */
3479 down_write(&curseg->journal_rwsem);
3480 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3481 up_write(&curseg->journal_rwsem);
3482
3483 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3484 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3485 curseg->next_segno = segno;
3486 reset_curseg(sbi, type, 0);
3487 curseg->alloc_type = ckpt->alloc_type[type];
3488 curseg->next_blkoff = blk_off;
3489 mutex_unlock(&curseg->curseg_mutex);
3490 out:
3491 f2fs_put_page(new, 1);
3492 return err;
3493 }
3494
restore_curseg_summaries(struct f2fs_sb_info * sbi)3495 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3496 {
3497 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3498 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3499 int type = CURSEG_HOT_DATA;
3500 int err;
3501
3502 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3503 int npages = f2fs_npages_for_summary_flush(sbi, true);
3504
3505 if (npages >= 2)
3506 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3507 META_CP, true);
3508
3509 /* restore for compacted data summary */
3510 err = read_compacted_summaries(sbi);
3511 if (err)
3512 return err;
3513 type = CURSEG_HOT_NODE;
3514 }
3515
3516 if (__exist_node_summaries(sbi))
3517 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3518 NR_CURSEG_TYPE - type, META_CP, true);
3519
3520 for (; type <= CURSEG_COLD_NODE; type++) {
3521 err = read_normal_summaries(sbi, type);
3522 if (err)
3523 return err;
3524 }
3525
3526 /* sanity check for summary blocks */
3527 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3528 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3529 return -EINVAL;
3530
3531 return 0;
3532 }
3533
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3534 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3535 {
3536 struct page *page;
3537 unsigned char *kaddr;
3538 struct f2fs_summary *summary;
3539 struct curseg_info *seg_i;
3540 int written_size = 0;
3541 int i, j;
3542
3543 page = f2fs_grab_meta_page(sbi, blkaddr++);
3544 kaddr = (unsigned char *)page_address(page);
3545 memset(kaddr, 0, PAGE_SIZE);
3546
3547 /* Step 1: write nat cache */
3548 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3549 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3550 written_size += SUM_JOURNAL_SIZE;
3551
3552 /* Step 2: write sit cache */
3553 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3554 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3555 written_size += SUM_JOURNAL_SIZE;
3556
3557 /* Step 3: write summary entries */
3558 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3559 unsigned short blkoff;
3560 seg_i = CURSEG_I(sbi, i);
3561 if (sbi->ckpt->alloc_type[i] == SSR)
3562 blkoff = sbi->blocks_per_seg;
3563 else
3564 blkoff = curseg_blkoff(sbi, i);
3565
3566 for (j = 0; j < blkoff; j++) {
3567 if (!page) {
3568 page = f2fs_grab_meta_page(sbi, blkaddr++);
3569 kaddr = (unsigned char *)page_address(page);
3570 memset(kaddr, 0, PAGE_SIZE);
3571 written_size = 0;
3572 }
3573 summary = (struct f2fs_summary *)(kaddr + written_size);
3574 *summary = seg_i->sum_blk->entries[j];
3575 written_size += SUMMARY_SIZE;
3576
3577 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3578 SUM_FOOTER_SIZE)
3579 continue;
3580
3581 set_page_dirty(page);
3582 f2fs_put_page(page, 1);
3583 page = NULL;
3584 }
3585 }
3586 if (page) {
3587 set_page_dirty(page);
3588 f2fs_put_page(page, 1);
3589 }
3590 }
3591
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3592 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3593 block_t blkaddr, int type)
3594 {
3595 int i, end;
3596 if (IS_DATASEG(type))
3597 end = type + NR_CURSEG_DATA_TYPE;
3598 else
3599 end = type + NR_CURSEG_NODE_TYPE;
3600
3601 for (i = type; i < end; i++)
3602 write_current_sum_page(sbi, i, blkaddr + (i - type));
3603 }
3604
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3605 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3606 {
3607 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3608 write_compacted_summaries(sbi, start_blk);
3609 else
3610 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3611 }
3612
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3613 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3614 {
3615 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3616 }
3617
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3618 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3619 unsigned int val, int alloc)
3620 {
3621 int i;
3622
3623 if (type == NAT_JOURNAL) {
3624 for (i = 0; i < nats_in_cursum(journal); i++) {
3625 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3626 return i;
3627 }
3628 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3629 return update_nats_in_cursum(journal, 1);
3630 } else if (type == SIT_JOURNAL) {
3631 for (i = 0; i < sits_in_cursum(journal); i++)
3632 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3633 return i;
3634 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3635 return update_sits_in_cursum(journal, 1);
3636 }
3637 return -1;
3638 }
3639
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3640 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3641 unsigned int segno)
3642 {
3643 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3644 }
3645
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3646 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3647 unsigned int start)
3648 {
3649 struct sit_info *sit_i = SIT_I(sbi);
3650 struct page *page;
3651 pgoff_t src_off, dst_off;
3652
3653 src_off = current_sit_addr(sbi, start);
3654 dst_off = next_sit_addr(sbi, src_off);
3655
3656 page = f2fs_grab_meta_page(sbi, dst_off);
3657 seg_info_to_sit_page(sbi, page, start);
3658
3659 set_page_dirty(page);
3660 set_to_next_sit(sit_i, start);
3661
3662 return page;
3663 }
3664
grab_sit_entry_set(void)3665 static struct sit_entry_set *grab_sit_entry_set(void)
3666 {
3667 struct sit_entry_set *ses =
3668 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3669
3670 ses->entry_cnt = 0;
3671 INIT_LIST_HEAD(&ses->set_list);
3672 return ses;
3673 }
3674
release_sit_entry_set(struct sit_entry_set * ses)3675 static void release_sit_entry_set(struct sit_entry_set *ses)
3676 {
3677 list_del(&ses->set_list);
3678 kmem_cache_free(sit_entry_set_slab, ses);
3679 }
3680
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3681 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3682 struct list_head *head)
3683 {
3684 struct sit_entry_set *next = ses;
3685
3686 if (list_is_last(&ses->set_list, head))
3687 return;
3688
3689 list_for_each_entry_continue(next, head, set_list)
3690 if (ses->entry_cnt <= next->entry_cnt)
3691 break;
3692
3693 list_move_tail(&ses->set_list, &next->set_list);
3694 }
3695
add_sit_entry(unsigned int segno,struct list_head * head)3696 static void add_sit_entry(unsigned int segno, struct list_head *head)
3697 {
3698 struct sit_entry_set *ses;
3699 unsigned int start_segno = START_SEGNO(segno);
3700
3701 list_for_each_entry(ses, head, set_list) {
3702 if (ses->start_segno == start_segno) {
3703 ses->entry_cnt++;
3704 adjust_sit_entry_set(ses, head);
3705 return;
3706 }
3707 }
3708
3709 ses = grab_sit_entry_set();
3710
3711 ses->start_segno = start_segno;
3712 ses->entry_cnt++;
3713 list_add(&ses->set_list, head);
3714 }
3715
add_sits_in_set(struct f2fs_sb_info * sbi)3716 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3717 {
3718 struct f2fs_sm_info *sm_info = SM_I(sbi);
3719 struct list_head *set_list = &sm_info->sit_entry_set;
3720 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3721 unsigned int segno;
3722
3723 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3724 add_sit_entry(segno, set_list);
3725 }
3726
remove_sits_in_journal(struct f2fs_sb_info * sbi)3727 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3728 {
3729 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3730 struct f2fs_journal *journal = curseg->journal;
3731 int i;
3732
3733 down_write(&curseg->journal_rwsem);
3734 for (i = 0; i < sits_in_cursum(journal); i++) {
3735 unsigned int segno;
3736 bool dirtied;
3737
3738 segno = le32_to_cpu(segno_in_journal(journal, i));
3739 dirtied = __mark_sit_entry_dirty(sbi, segno);
3740
3741 if (!dirtied)
3742 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3743 }
3744 update_sits_in_cursum(journal, -i);
3745 up_write(&curseg->journal_rwsem);
3746 }
3747
3748 /*
3749 * CP calls this function, which flushes SIT entries including sit_journal,
3750 * and moves prefree segs to free segs.
3751 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3752 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3753 {
3754 struct sit_info *sit_i = SIT_I(sbi);
3755 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3756 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3757 struct f2fs_journal *journal = curseg->journal;
3758 struct sit_entry_set *ses, *tmp;
3759 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3760 bool to_journal = true;
3761 struct seg_entry *se;
3762
3763 down_write(&sit_i->sentry_lock);
3764
3765 if (!sit_i->dirty_sentries)
3766 goto out;
3767
3768 /*
3769 * add and account sit entries of dirty bitmap in sit entry
3770 * set temporarily
3771 */
3772 add_sits_in_set(sbi);
3773
3774 /*
3775 * if there are no enough space in journal to store dirty sit
3776 * entries, remove all entries from journal and add and account
3777 * them in sit entry set.
3778 */
3779 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3780 remove_sits_in_journal(sbi);
3781
3782 /*
3783 * there are two steps to flush sit entries:
3784 * #1, flush sit entries to journal in current cold data summary block.
3785 * #2, flush sit entries to sit page.
3786 */
3787 list_for_each_entry_safe(ses, tmp, head, set_list) {
3788 struct page *page = NULL;
3789 struct f2fs_sit_block *raw_sit = NULL;
3790 unsigned int start_segno = ses->start_segno;
3791 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3792 (unsigned long)MAIN_SEGS(sbi));
3793 unsigned int segno = start_segno;
3794
3795 if (to_journal &&
3796 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3797 to_journal = false;
3798
3799 if (to_journal) {
3800 down_write(&curseg->journal_rwsem);
3801 } else {
3802 page = get_next_sit_page(sbi, start_segno);
3803 raw_sit = page_address(page);
3804 }
3805
3806 /* flush dirty sit entries in region of current sit set */
3807 for_each_set_bit_from(segno, bitmap, end) {
3808 int offset, sit_offset;
3809
3810 se = get_seg_entry(sbi, segno);
3811 #ifdef CONFIG_F2FS_CHECK_FS
3812 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3813 SIT_VBLOCK_MAP_SIZE))
3814 f2fs_bug_on(sbi, 1);
3815 #endif
3816
3817 /* add discard candidates */
3818 if (!(cpc->reason & CP_DISCARD)) {
3819 cpc->trim_start = segno;
3820 add_discard_addrs(sbi, cpc, false);
3821 }
3822
3823 if (to_journal) {
3824 offset = f2fs_lookup_journal_in_cursum(journal,
3825 SIT_JOURNAL, segno, 1);
3826 f2fs_bug_on(sbi, offset < 0);
3827 segno_in_journal(journal, offset) =
3828 cpu_to_le32(segno);
3829 seg_info_to_raw_sit(se,
3830 &sit_in_journal(journal, offset));
3831 check_block_count(sbi, segno,
3832 &sit_in_journal(journal, offset));
3833 } else {
3834 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3835 seg_info_to_raw_sit(se,
3836 &raw_sit->entries[sit_offset]);
3837 check_block_count(sbi, segno,
3838 &raw_sit->entries[sit_offset]);
3839 }
3840
3841 __clear_bit(segno, bitmap);
3842 sit_i->dirty_sentries--;
3843 ses->entry_cnt--;
3844 }
3845
3846 if (to_journal)
3847 up_write(&curseg->journal_rwsem);
3848 else
3849 f2fs_put_page(page, 1);
3850
3851 f2fs_bug_on(sbi, ses->entry_cnt);
3852 release_sit_entry_set(ses);
3853 }
3854
3855 f2fs_bug_on(sbi, !list_empty(head));
3856 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3857 out:
3858 if (cpc->reason & CP_DISCARD) {
3859 __u64 trim_start = cpc->trim_start;
3860
3861 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3862 add_discard_addrs(sbi, cpc, false);
3863
3864 cpc->trim_start = trim_start;
3865 }
3866 up_write(&sit_i->sentry_lock);
3867
3868 set_prefree_as_free_segments(sbi);
3869 }
3870
build_sit_info(struct f2fs_sb_info * sbi)3871 static int build_sit_info(struct f2fs_sb_info *sbi)
3872 {
3873 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3874 struct sit_info *sit_i;
3875 unsigned int sit_segs, start;
3876 char *src_bitmap;
3877 unsigned int bitmap_size;
3878
3879 /* allocate memory for SIT information */
3880 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3881 if (!sit_i)
3882 return -ENOMEM;
3883
3884 SM_I(sbi)->sit_info = sit_i;
3885
3886 sit_i->sentries =
3887 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3888 MAIN_SEGS(sbi)),
3889 GFP_KERNEL);
3890 if (!sit_i->sentries)
3891 return -ENOMEM;
3892
3893 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3894 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3895 GFP_KERNEL);
3896 if (!sit_i->dirty_sentries_bitmap)
3897 return -ENOMEM;
3898
3899 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3900 sit_i->sentries[start].cur_valid_map
3901 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3902 sit_i->sentries[start].ckpt_valid_map
3903 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3904 if (!sit_i->sentries[start].cur_valid_map ||
3905 !sit_i->sentries[start].ckpt_valid_map)
3906 return -ENOMEM;
3907
3908 #ifdef CONFIG_F2FS_CHECK_FS
3909 sit_i->sentries[start].cur_valid_map_mir
3910 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3911 if (!sit_i->sentries[start].cur_valid_map_mir)
3912 return -ENOMEM;
3913 #endif
3914
3915 sit_i->sentries[start].discard_map
3916 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3917 GFP_KERNEL);
3918 if (!sit_i->sentries[start].discard_map)
3919 return -ENOMEM;
3920 }
3921
3922 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3923 if (!sit_i->tmp_map)
3924 return -ENOMEM;
3925
3926 if (__is_large_section(sbi)) {
3927 sit_i->sec_entries =
3928 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3929 MAIN_SECS(sbi)),
3930 GFP_KERNEL);
3931 if (!sit_i->sec_entries)
3932 return -ENOMEM;
3933 }
3934
3935 /* get information related with SIT */
3936 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3937
3938 /* setup SIT bitmap from ckeckpoint pack */
3939 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3940 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3941
3942 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3943 if (!sit_i->sit_bitmap)
3944 return -ENOMEM;
3945
3946 #ifdef CONFIG_F2FS_CHECK_FS
3947 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3948 if (!sit_i->sit_bitmap_mir)
3949 return -ENOMEM;
3950 #endif
3951
3952 /* init SIT information */
3953 sit_i->s_ops = &default_salloc_ops;
3954
3955 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3956 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3957 sit_i->written_valid_blocks = 0;
3958 sit_i->bitmap_size = bitmap_size;
3959 sit_i->dirty_sentries = 0;
3960 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3961 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3962 sit_i->mounted_time = ktime_get_real_seconds();
3963 init_rwsem(&sit_i->sentry_lock);
3964 return 0;
3965 }
3966
build_free_segmap(struct f2fs_sb_info * sbi)3967 static int build_free_segmap(struct f2fs_sb_info *sbi)
3968 {
3969 struct free_segmap_info *free_i;
3970 unsigned int bitmap_size, sec_bitmap_size;
3971
3972 /* allocate memory for free segmap information */
3973 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3974 if (!free_i)
3975 return -ENOMEM;
3976
3977 SM_I(sbi)->free_info = free_i;
3978
3979 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3980 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3981 if (!free_i->free_segmap)
3982 return -ENOMEM;
3983
3984 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3985 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3986 if (!free_i->free_secmap)
3987 return -ENOMEM;
3988
3989 /* set all segments as dirty temporarily */
3990 memset(free_i->free_segmap, 0xff, bitmap_size);
3991 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3992
3993 /* init free segmap information */
3994 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3995 free_i->free_segments = 0;
3996 free_i->free_sections = 0;
3997 spin_lock_init(&free_i->segmap_lock);
3998 return 0;
3999 }
4000
build_curseg(struct f2fs_sb_info * sbi)4001 static int build_curseg(struct f2fs_sb_info *sbi)
4002 {
4003 struct curseg_info *array;
4004 int i;
4005
4006 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4007 GFP_KERNEL);
4008 if (!array)
4009 return -ENOMEM;
4010
4011 SM_I(sbi)->curseg_array = array;
4012
4013 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4014 mutex_init(&array[i].curseg_mutex);
4015 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4016 if (!array[i].sum_blk)
4017 return -ENOMEM;
4018 init_rwsem(&array[i].journal_rwsem);
4019 array[i].journal = f2fs_kzalloc(sbi,
4020 sizeof(struct f2fs_journal), GFP_KERNEL);
4021 if (!array[i].journal)
4022 return -ENOMEM;
4023 array[i].segno = NULL_SEGNO;
4024 array[i].next_blkoff = 0;
4025 }
4026 return restore_curseg_summaries(sbi);
4027 }
4028
build_sit_entries(struct f2fs_sb_info * sbi)4029 static int build_sit_entries(struct f2fs_sb_info *sbi)
4030 {
4031 struct sit_info *sit_i = SIT_I(sbi);
4032 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4033 struct f2fs_journal *journal = curseg->journal;
4034 struct seg_entry *se;
4035 struct f2fs_sit_entry sit;
4036 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4037 unsigned int i, start, end;
4038 unsigned int readed, start_blk = 0;
4039 int err = 0;
4040 block_t total_node_blocks = 0;
4041
4042 do {
4043 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4044 META_SIT, true);
4045
4046 start = start_blk * sit_i->sents_per_block;
4047 end = (start_blk + readed) * sit_i->sents_per_block;
4048
4049 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4050 struct f2fs_sit_block *sit_blk;
4051 struct page *page;
4052
4053 se = &sit_i->sentries[start];
4054 page = get_current_sit_page(sbi, start);
4055 if (IS_ERR(page))
4056 return PTR_ERR(page);
4057 sit_blk = (struct f2fs_sit_block *)page_address(page);
4058 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4059 f2fs_put_page(page, 1);
4060
4061 err = check_block_count(sbi, start, &sit);
4062 if (err)
4063 return err;
4064 seg_info_from_raw_sit(se, &sit);
4065 if (IS_NODESEG(se->type))
4066 total_node_blocks += se->valid_blocks;
4067
4068 /* build discard map only one time */
4069 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4070 memset(se->discard_map, 0xff,
4071 SIT_VBLOCK_MAP_SIZE);
4072 } else {
4073 memcpy(se->discard_map,
4074 se->cur_valid_map,
4075 SIT_VBLOCK_MAP_SIZE);
4076 sbi->discard_blks +=
4077 sbi->blocks_per_seg -
4078 se->valid_blocks;
4079 }
4080
4081 if (__is_large_section(sbi))
4082 get_sec_entry(sbi, start)->valid_blocks +=
4083 se->valid_blocks;
4084 }
4085 start_blk += readed;
4086 } while (start_blk < sit_blk_cnt);
4087
4088 down_read(&curseg->journal_rwsem);
4089 for (i = 0; i < sits_in_cursum(journal); i++) {
4090 unsigned int old_valid_blocks;
4091
4092 start = le32_to_cpu(segno_in_journal(journal, i));
4093 if (start >= MAIN_SEGS(sbi)) {
4094 f2fs_msg(sbi->sb, KERN_ERR,
4095 "Wrong journal entry on segno %u",
4096 start);
4097 set_sbi_flag(sbi, SBI_NEED_FSCK);
4098 err = -EFSCORRUPTED;
4099 break;
4100 }
4101
4102 se = &sit_i->sentries[start];
4103 sit = sit_in_journal(journal, i);
4104
4105 old_valid_blocks = se->valid_blocks;
4106 if (IS_NODESEG(se->type))
4107 total_node_blocks -= old_valid_blocks;
4108
4109 err = check_block_count(sbi, start, &sit);
4110 if (err)
4111 break;
4112 seg_info_from_raw_sit(se, &sit);
4113 if (IS_NODESEG(se->type))
4114 total_node_blocks += se->valid_blocks;
4115
4116 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4117 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4118 } else {
4119 memcpy(se->discard_map, se->cur_valid_map,
4120 SIT_VBLOCK_MAP_SIZE);
4121 sbi->discard_blks += old_valid_blocks;
4122 sbi->discard_blks -= se->valid_blocks;
4123 }
4124
4125 if (__is_large_section(sbi)) {
4126 get_sec_entry(sbi, start)->valid_blocks +=
4127 se->valid_blocks;
4128 get_sec_entry(sbi, start)->valid_blocks -=
4129 old_valid_blocks;
4130 }
4131 }
4132 up_read(&curseg->journal_rwsem);
4133
4134 if (!err && total_node_blocks != valid_node_count(sbi)) {
4135 f2fs_msg(sbi->sb, KERN_ERR,
4136 "SIT is corrupted node# %u vs %u",
4137 total_node_blocks, valid_node_count(sbi));
4138 set_sbi_flag(sbi, SBI_NEED_FSCK);
4139 err = -EFSCORRUPTED;
4140 }
4141
4142 return err;
4143 }
4144
init_free_segmap(struct f2fs_sb_info * sbi)4145 static void init_free_segmap(struct f2fs_sb_info *sbi)
4146 {
4147 unsigned int start;
4148 int type;
4149
4150 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4151 struct seg_entry *sentry = get_seg_entry(sbi, start);
4152 if (!sentry->valid_blocks)
4153 __set_free(sbi, start);
4154 else
4155 SIT_I(sbi)->written_valid_blocks +=
4156 sentry->valid_blocks;
4157 }
4158
4159 /* set use the current segments */
4160 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4161 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4162 __set_test_and_inuse(sbi, curseg_t->segno);
4163 }
4164 }
4165
init_dirty_segmap(struct f2fs_sb_info * sbi)4166 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4167 {
4168 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4169 struct free_segmap_info *free_i = FREE_I(sbi);
4170 unsigned int segno = 0, offset = 0;
4171 unsigned short valid_blocks;
4172
4173 while (1) {
4174 /* find dirty segment based on free segmap */
4175 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4176 if (segno >= MAIN_SEGS(sbi))
4177 break;
4178 offset = segno + 1;
4179 valid_blocks = get_valid_blocks(sbi, segno, false);
4180 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4181 continue;
4182 if (valid_blocks > sbi->blocks_per_seg) {
4183 f2fs_bug_on(sbi, 1);
4184 continue;
4185 }
4186 mutex_lock(&dirty_i->seglist_lock);
4187 __locate_dirty_segment(sbi, segno, DIRTY);
4188 mutex_unlock(&dirty_i->seglist_lock);
4189 }
4190 }
4191
init_victim_secmap(struct f2fs_sb_info * sbi)4192 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4193 {
4194 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4195 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4196
4197 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4198 if (!dirty_i->victim_secmap)
4199 return -ENOMEM;
4200 return 0;
4201 }
4202
build_dirty_segmap(struct f2fs_sb_info * sbi)4203 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4204 {
4205 struct dirty_seglist_info *dirty_i;
4206 unsigned int bitmap_size, i;
4207
4208 /* allocate memory for dirty segments list information */
4209 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4210 GFP_KERNEL);
4211 if (!dirty_i)
4212 return -ENOMEM;
4213
4214 SM_I(sbi)->dirty_info = dirty_i;
4215 mutex_init(&dirty_i->seglist_lock);
4216
4217 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4218
4219 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4220 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4221 GFP_KERNEL);
4222 if (!dirty_i->dirty_segmap[i])
4223 return -ENOMEM;
4224 }
4225
4226 init_dirty_segmap(sbi);
4227 return init_victim_secmap(sbi);
4228 }
4229
sanity_check_curseg(struct f2fs_sb_info * sbi)4230 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4231 {
4232 int i;
4233
4234 /*
4235 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4236 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4237 */
4238 for (i = 0; i < NO_CHECK_TYPE; i++) {
4239 struct curseg_info *curseg = CURSEG_I(sbi, i);
4240 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4241 unsigned int blkofs = curseg->next_blkoff;
4242
4243 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4244 goto out;
4245
4246 if (curseg->alloc_type == SSR)
4247 continue;
4248
4249 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4250 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4251 continue;
4252 out:
4253 f2fs_msg(sbi->sb, KERN_ERR,
4254 "Current segment's next free block offset is "
4255 "inconsistent with bitmap, logtype:%u, "
4256 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4257 i, curseg->segno, curseg->alloc_type,
4258 curseg->next_blkoff, blkofs);
4259 return -EFSCORRUPTED;
4260 }
4261 }
4262 return 0;
4263 }
4264
4265 /*
4266 * Update min, max modified time for cost-benefit GC algorithm
4267 */
init_min_max_mtime(struct f2fs_sb_info * sbi)4268 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4269 {
4270 struct sit_info *sit_i = SIT_I(sbi);
4271 unsigned int segno;
4272
4273 down_write(&sit_i->sentry_lock);
4274
4275 sit_i->min_mtime = ULLONG_MAX;
4276
4277 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4278 unsigned int i;
4279 unsigned long long mtime = 0;
4280
4281 for (i = 0; i < sbi->segs_per_sec; i++)
4282 mtime += get_seg_entry(sbi, segno + i)->mtime;
4283
4284 mtime = div_u64(mtime, sbi->segs_per_sec);
4285
4286 if (sit_i->min_mtime > mtime)
4287 sit_i->min_mtime = mtime;
4288 }
4289 sit_i->max_mtime = get_mtime(sbi, false);
4290 up_write(&sit_i->sentry_lock);
4291 }
4292
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)4293 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4294 {
4295 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4296 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4297 struct f2fs_sm_info *sm_info;
4298 int err;
4299
4300 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4301 if (!sm_info)
4302 return -ENOMEM;
4303
4304 /* init sm info */
4305 sbi->sm_info = sm_info;
4306 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4307 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4308 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4309 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4310 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4311 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4312 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4313 sm_info->rec_prefree_segments = sm_info->main_segments *
4314 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4315 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4316 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4317
4318 if (!test_opt(sbi, LFS))
4319 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4320 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4321 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4322 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4323 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4324 sm_info->min_ssr_sections = reserved_sections(sbi);
4325
4326 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4327
4328 init_rwsem(&sm_info->curseg_lock);
4329
4330 if (!f2fs_readonly(sbi->sb)) {
4331 err = f2fs_create_flush_cmd_control(sbi);
4332 if (err)
4333 return err;
4334 }
4335
4336 err = create_discard_cmd_control(sbi);
4337 if (err)
4338 return err;
4339
4340 err = build_sit_info(sbi);
4341 if (err)
4342 return err;
4343 err = build_free_segmap(sbi);
4344 if (err)
4345 return err;
4346 err = build_curseg(sbi);
4347 if (err)
4348 return err;
4349
4350 /* reinit free segmap based on SIT */
4351 err = build_sit_entries(sbi);
4352 if (err)
4353 return err;
4354
4355 init_free_segmap(sbi);
4356 err = build_dirty_segmap(sbi);
4357 if (err)
4358 return err;
4359
4360 err = sanity_check_curseg(sbi);
4361 if (err)
4362 return err;
4363
4364 init_min_max_mtime(sbi);
4365 return 0;
4366 }
4367
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)4368 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4369 enum dirty_type dirty_type)
4370 {
4371 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4372
4373 mutex_lock(&dirty_i->seglist_lock);
4374 kvfree(dirty_i->dirty_segmap[dirty_type]);
4375 dirty_i->nr_dirty[dirty_type] = 0;
4376 mutex_unlock(&dirty_i->seglist_lock);
4377 }
4378
destroy_victim_secmap(struct f2fs_sb_info * sbi)4379 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4380 {
4381 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4382 kvfree(dirty_i->victim_secmap);
4383 }
4384
destroy_dirty_segmap(struct f2fs_sb_info * sbi)4385 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4386 {
4387 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4388 int i;
4389
4390 if (!dirty_i)
4391 return;
4392
4393 /* discard pre-free/dirty segments list */
4394 for (i = 0; i < NR_DIRTY_TYPE; i++)
4395 discard_dirty_segmap(sbi, i);
4396
4397 destroy_victim_secmap(sbi);
4398 SM_I(sbi)->dirty_info = NULL;
4399 kvfree(dirty_i);
4400 }
4401
destroy_curseg(struct f2fs_sb_info * sbi)4402 static void destroy_curseg(struct f2fs_sb_info *sbi)
4403 {
4404 struct curseg_info *array = SM_I(sbi)->curseg_array;
4405 int i;
4406
4407 if (!array)
4408 return;
4409 SM_I(sbi)->curseg_array = NULL;
4410 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4411 kvfree(array[i].sum_blk);
4412 kvfree(array[i].journal);
4413 }
4414 kvfree(array);
4415 }
4416
destroy_free_segmap(struct f2fs_sb_info * sbi)4417 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4418 {
4419 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4420 if (!free_i)
4421 return;
4422 SM_I(sbi)->free_info = NULL;
4423 kvfree(free_i->free_segmap);
4424 kvfree(free_i->free_secmap);
4425 kvfree(free_i);
4426 }
4427
destroy_sit_info(struct f2fs_sb_info * sbi)4428 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4429 {
4430 struct sit_info *sit_i = SIT_I(sbi);
4431 unsigned int start;
4432
4433 if (!sit_i)
4434 return;
4435
4436 if (sit_i->sentries) {
4437 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4438 kvfree(sit_i->sentries[start].cur_valid_map);
4439 #ifdef CONFIG_F2FS_CHECK_FS
4440 kvfree(sit_i->sentries[start].cur_valid_map_mir);
4441 #endif
4442 kvfree(sit_i->sentries[start].ckpt_valid_map);
4443 kvfree(sit_i->sentries[start].discard_map);
4444 }
4445 }
4446 kvfree(sit_i->tmp_map);
4447
4448 kvfree(sit_i->sentries);
4449 kvfree(sit_i->sec_entries);
4450 kvfree(sit_i->dirty_sentries_bitmap);
4451
4452 SM_I(sbi)->sit_info = NULL;
4453 kvfree(sit_i->sit_bitmap);
4454 #ifdef CONFIG_F2FS_CHECK_FS
4455 kvfree(sit_i->sit_bitmap_mir);
4456 #endif
4457 kvfree(sit_i);
4458 }
4459
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)4460 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4461 {
4462 struct f2fs_sm_info *sm_info = SM_I(sbi);
4463
4464 if (!sm_info)
4465 return;
4466 f2fs_destroy_flush_cmd_control(sbi, true);
4467 destroy_discard_cmd_control(sbi);
4468 destroy_dirty_segmap(sbi);
4469 destroy_curseg(sbi);
4470 destroy_free_segmap(sbi);
4471 destroy_sit_info(sbi);
4472 sbi->sm_info = NULL;
4473 kvfree(sm_info);
4474 }
4475
f2fs_create_segment_manager_caches(void)4476 int __init f2fs_create_segment_manager_caches(void)
4477 {
4478 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4479 sizeof(struct discard_entry));
4480 if (!discard_entry_slab)
4481 goto fail;
4482
4483 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4484 sizeof(struct discard_cmd));
4485 if (!discard_cmd_slab)
4486 goto destroy_discard_entry;
4487
4488 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4489 sizeof(struct sit_entry_set));
4490 if (!sit_entry_set_slab)
4491 goto destroy_discard_cmd;
4492
4493 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4494 sizeof(struct inmem_pages));
4495 if (!inmem_entry_slab)
4496 goto destroy_sit_entry_set;
4497 return 0;
4498
4499 destroy_sit_entry_set:
4500 kmem_cache_destroy(sit_entry_set_slab);
4501 destroy_discard_cmd:
4502 kmem_cache_destroy(discard_cmd_slab);
4503 destroy_discard_entry:
4504 kmem_cache_destroy(discard_entry_slab);
4505 fail:
4506 return -ENOMEM;
4507 }
4508
f2fs_destroy_segment_manager_caches(void)4509 void f2fs_destroy_segment_manager_caches(void)
4510 {
4511 kmem_cache_destroy(sit_entry_set_slab);
4512 kmem_cache_destroy(discard_cmd_slab);
4513 kmem_cache_destroy(discard_entry_slab);
4514 kmem_cache_destroy(inmem_entry_slab);
4515 }
4516