• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27 #include <trace/events/android_fs.h>
28 
29 #define NUM_PREALLOC_POST_READ_CTXS	128
30 
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33 
__is_cp_guaranteed(struct page * page)34 static bool __is_cp_guaranteed(struct page *page)
35 {
36 	struct address_space *mapping = page->mapping;
37 	struct inode *inode;
38 	struct f2fs_sb_info *sbi;
39 
40 	if (!mapping)
41 		return false;
42 
43 	inode = mapping->host;
44 	sbi = F2FS_I_SB(inode);
45 
46 	if (inode->i_ino == F2FS_META_INO(sbi) ||
47 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
48 			S_ISDIR(inode->i_mode) ||
49 			(S_ISREG(inode->i_mode) &&
50 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51 			is_cold_data(page))
52 		return true;
53 	return false;
54 }
55 
__read_io_type(struct page * page)56 static enum count_type __read_io_type(struct page *page)
57 {
58 	struct address_space *mapping = page->mapping;
59 
60 	if (mapping) {
61 		struct inode *inode = mapping->host;
62 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63 
64 		if (inode->i_ino == F2FS_META_INO(sbi))
65 			return F2FS_RD_META;
66 
67 		if (inode->i_ino == F2FS_NODE_INO(sbi))
68 			return F2FS_RD_NODE;
69 	}
70 	return F2FS_RD_DATA;
71 }
72 
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75 	STEP_INITIAL = 0,
76 	STEP_DECRYPT,
77 };
78 
79 struct bio_post_read_ctx {
80 	struct bio *bio;
81 	struct work_struct work;
82 	unsigned int cur_step;
83 	unsigned int enabled_steps;
84 };
85 
__read_end_io(struct bio * bio)86 static void __read_end_io(struct bio *bio)
87 {
88 	struct page *page;
89 	struct bio_vec *bv;
90 	int i;
91 
92 	bio_for_each_segment_all(bv, bio, i) {
93 		page = bv->bv_page;
94 
95 		/* PG_error was set if any post_read step failed */
96 		if (bio->bi_status || PageError(page)) {
97 			ClearPageUptodate(page);
98 			/* will re-read again later */
99 			ClearPageError(page);
100 		} else {
101 			SetPageUptodate(page);
102 		}
103 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104 		unlock_page(page);
105 	}
106 	if (bio->bi_private)
107 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108 	bio_put(bio);
109 }
110 
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112 
decrypt_work(struct work_struct * work)113 static void decrypt_work(struct work_struct *work)
114 {
115 	struct bio_post_read_ctx *ctx =
116 		container_of(work, struct bio_post_read_ctx, work);
117 
118 	fscrypt_decrypt_bio(ctx->bio);
119 
120 	bio_post_read_processing(ctx);
121 }
122 
bio_post_read_processing(struct bio_post_read_ctx * ctx)123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 	switch (++ctx->cur_step) {
126 	case STEP_DECRYPT:
127 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128 			INIT_WORK(&ctx->work, decrypt_work);
129 			fscrypt_enqueue_decrypt_work(&ctx->work);
130 			return;
131 		}
132 		ctx->cur_step++;
133 		/* fall-through */
134 	default:
135 		__read_end_io(ctx->bio);
136 	}
137 }
138 
f2fs_bio_post_read_required(struct bio * bio)139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141 	return bio->bi_private && !bio->bi_status;
142 }
143 
f2fs_read_end_io(struct bio * bio)144 static void f2fs_read_end_io(struct bio *bio)
145 {
146 	struct page *first_page = bio->bi_io_vec[0].bv_page;
147 
148 	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_READ_IO)) {
149 		f2fs_show_injection_info(FAULT_READ_IO);
150 		bio->bi_status = BLK_STS_IOERR;
151 	}
152 
153 	if (f2fs_bio_post_read_required(bio)) {
154 		struct bio_post_read_ctx *ctx = bio->bi_private;
155 
156 		ctx->cur_step = STEP_INITIAL;
157 		bio_post_read_processing(ctx);
158 		return;
159 	}
160 
161 	if (first_page != NULL &&
162 		__read_io_type(first_page) == F2FS_RD_DATA) {
163 		trace_android_fs_dataread_end(first_page->mapping->host,
164 						page_offset(first_page),
165 						bio->bi_iter.bi_size);
166 	}
167 
168 	__read_end_io(bio);
169 }
170 
f2fs_write_end_io(struct bio * bio)171 static void f2fs_write_end_io(struct bio *bio)
172 {
173 	struct f2fs_sb_info *sbi = bio->bi_private;
174 	struct bio_vec *bvec;
175 	int i;
176 
177 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
178 		f2fs_show_injection_info(FAULT_WRITE_IO);
179 		bio->bi_status = BLK_STS_IOERR;
180 	}
181 
182 	bio_for_each_segment_all(bvec, bio, i) {
183 		struct page *page = bvec->bv_page;
184 		enum count_type type = WB_DATA_TYPE(page);
185 
186 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
187 			set_page_private(page, (unsigned long)NULL);
188 			ClearPagePrivate(page);
189 			unlock_page(page);
190 			mempool_free(page, sbi->write_io_dummy);
191 
192 			if (unlikely(bio->bi_status))
193 				f2fs_stop_checkpoint(sbi, true);
194 			continue;
195 		}
196 
197 		fscrypt_pullback_bio_page(&page, true);
198 
199 		if (unlikely(bio->bi_status)) {
200 			mapping_set_error(page->mapping, -EIO);
201 			if (type == F2FS_WB_CP_DATA)
202 				f2fs_stop_checkpoint(sbi, true);
203 		}
204 
205 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
206 					page->index != nid_of_node(page));
207 
208 		dec_page_count(sbi, type);
209 		if (f2fs_in_warm_node_list(sbi, page))
210 			f2fs_del_fsync_node_entry(sbi, page);
211 		clear_cold_data(page);
212 		end_page_writeback(page);
213 	}
214 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
215 				wq_has_sleeper(&sbi->cp_wait))
216 		wake_up(&sbi->cp_wait);
217 
218 	bio_put(bio);
219 }
220 
221 /*
222  * Return true, if pre_bio's bdev is same as its target device.
223  */
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)224 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
225 				block_t blk_addr, struct bio *bio)
226 {
227 	struct block_device *bdev = sbi->sb->s_bdev;
228 	int i;
229 
230 	if (f2fs_is_multi_device(sbi)) {
231 		for (i = 0; i < sbi->s_ndevs; i++) {
232 			if (FDEV(i).start_blk <= blk_addr &&
233 			    FDEV(i).end_blk >= blk_addr) {
234 				blk_addr -= FDEV(i).start_blk;
235 				bdev = FDEV(i).bdev;
236 				break;
237 			}
238 		}
239 	}
240 	if (bio) {
241 		bio_set_dev(bio, bdev);
242 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
243 	}
244 	return bdev;
245 }
246 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)247 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
248 {
249 	int i;
250 
251 	if (!f2fs_is_multi_device(sbi))
252 		return 0;
253 
254 	for (i = 0; i < sbi->s_ndevs; i++)
255 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
256 			return i;
257 	return 0;
258 }
259 
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)260 static bool __same_bdev(struct f2fs_sb_info *sbi,
261 				block_t blk_addr, struct bio *bio)
262 {
263 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
264 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
265 }
266 
267 /*
268  * Low-level block read/write IO operations.
269  */
__bio_alloc(struct f2fs_sb_info * sbi,block_t blk_addr,struct writeback_control * wbc,int npages,bool is_read,enum page_type type,enum temp_type temp)270 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
271 				struct writeback_control *wbc,
272 				int npages, bool is_read,
273 				enum page_type type, enum temp_type temp)
274 {
275 	struct bio *bio;
276 
277 	bio = f2fs_bio_alloc(sbi, npages, true);
278 
279 	f2fs_target_device(sbi, blk_addr, bio);
280 	if (is_read) {
281 		bio->bi_end_io = f2fs_read_end_io;
282 		bio->bi_private = NULL;
283 	} else {
284 		bio->bi_end_io = f2fs_write_end_io;
285 		bio->bi_private = sbi;
286 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
287 	}
288 	if (wbc)
289 		wbc_init_bio(wbc, bio);
290 
291 	return bio;
292 }
293 
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)294 static inline void __submit_bio(struct f2fs_sb_info *sbi,
295 				struct bio *bio, enum page_type type)
296 {
297 	if (!is_read_io(bio_op(bio))) {
298 		unsigned int start;
299 
300 		if (type != DATA && type != NODE)
301 			goto submit_io;
302 
303 		if (test_opt(sbi, LFS) && current->plug)
304 			blk_finish_plug(current->plug);
305 
306 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
307 		start %= F2FS_IO_SIZE(sbi);
308 
309 		if (start == 0)
310 			goto submit_io;
311 
312 		/* fill dummy pages */
313 		for (; start < F2FS_IO_SIZE(sbi); start++) {
314 			struct page *page =
315 				mempool_alloc(sbi->write_io_dummy,
316 					      GFP_NOIO | __GFP_NOFAIL);
317 			f2fs_bug_on(sbi, !page);
318 
319 			zero_user_segment(page, 0, PAGE_SIZE);
320 			SetPagePrivate(page);
321 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
322 			lock_page(page);
323 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
324 				f2fs_bug_on(sbi, 1);
325 		}
326 		/*
327 		 * In the NODE case, we lose next block address chain. So, we
328 		 * need to do checkpoint in f2fs_sync_file.
329 		 */
330 		if (type == NODE)
331 			set_sbi_flag(sbi, SBI_NEED_CP);
332 	}
333 submit_io:
334 	if (is_read_io(bio_op(bio)))
335 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
336 	else
337 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
338 	submit_bio(bio);
339 }
340 
__f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)341 static void __f2fs_submit_read_bio(struct f2fs_sb_info *sbi,
342 				struct bio *bio, enum page_type type)
343 {
344 	if (trace_android_fs_dataread_start_enabled() && (type == DATA)) {
345 		struct page *first_page = bio->bi_io_vec[0].bv_page;
346 
347 		if (first_page != NULL &&
348 			__read_io_type(first_page) == F2FS_RD_DATA) {
349 			char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
350 
351 			path = android_fstrace_get_pathname(pathbuf,
352 						MAX_TRACE_PATHBUF_LEN,
353 						first_page->mapping->host);
354 
355 			trace_android_fs_dataread_start(
356 				first_page->mapping->host,
357 				page_offset(first_page),
358 				bio->bi_iter.bi_size,
359 				current->pid,
360 				path,
361 				current->comm);
362 		}
363 	}
364 	__submit_bio(sbi, bio, type);
365 }
366 
__submit_merged_bio(struct f2fs_bio_info * io)367 static void __submit_merged_bio(struct f2fs_bio_info *io)
368 {
369 	struct f2fs_io_info *fio = &io->fio;
370 
371 	if (!io->bio)
372 		return;
373 
374 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
375 
376 	if (is_read_io(fio->op))
377 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
378 	else
379 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
380 
381 	__submit_bio(io->sbi, io->bio, fio->type);
382 	io->bio = NULL;
383 }
384 
__has_merged_page(struct f2fs_bio_info * io,struct inode * inode,struct page * page,nid_t ino)385 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
386 						struct page *page, nid_t ino)
387 {
388 	struct bio_vec *bvec;
389 	struct page *target;
390 	int i;
391 
392 	if (!io->bio)
393 		return false;
394 
395 	if (!inode && !page && !ino)
396 		return true;
397 
398 	bio_for_each_segment_all(bvec, io->bio, i) {
399 
400 		if (bvec->bv_page->mapping)
401 			target = bvec->bv_page;
402 		else
403 			target = fscrypt_control_page(bvec->bv_page);
404 
405 		if (inode && inode == target->mapping->host)
406 			return true;
407 		if (page && page == target)
408 			return true;
409 		if (ino && ino == ino_of_node(target))
410 			return true;
411 	}
412 
413 	return false;
414 }
415 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)416 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
417 				enum page_type type, enum temp_type temp)
418 {
419 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
420 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
421 
422 	down_write(&io->io_rwsem);
423 
424 	/* change META to META_FLUSH in the checkpoint procedure */
425 	if (type >= META_FLUSH) {
426 		io->fio.type = META_FLUSH;
427 		io->fio.op = REQ_OP_WRITE;
428 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
429 		if (!test_opt(sbi, NOBARRIER))
430 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
431 	}
432 	__submit_merged_bio(io);
433 	up_write(&io->io_rwsem);
434 }
435 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)436 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
437 				struct inode *inode, struct page *page,
438 				nid_t ino, enum page_type type, bool force)
439 {
440 	enum temp_type temp;
441 	bool ret = true;
442 
443 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
444 		if (!force)	{
445 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
446 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
447 
448 			down_read(&io->io_rwsem);
449 			ret = __has_merged_page(io, inode, page, ino);
450 			up_read(&io->io_rwsem);
451 		}
452 		if (ret)
453 			__f2fs_submit_merged_write(sbi, type, temp);
454 
455 		/* TODO: use HOT temp only for meta pages now. */
456 		if (type >= META)
457 			break;
458 	}
459 }
460 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)461 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
462 {
463 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
464 }
465 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)466 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
467 				struct inode *inode, struct page *page,
468 				nid_t ino, enum page_type type)
469 {
470 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
471 }
472 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)473 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
474 {
475 	f2fs_submit_merged_write(sbi, DATA);
476 	f2fs_submit_merged_write(sbi, NODE);
477 	f2fs_submit_merged_write(sbi, META);
478 }
479 
480 /*
481  * Fill the locked page with data located in the block address.
482  * A caller needs to unlock the page on failure.
483  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)484 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
485 {
486 	struct bio *bio;
487 	struct page *page = fio->encrypted_page ?
488 			fio->encrypted_page : fio->page;
489 
490 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
491 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
492 		return -EFSCORRUPTED;
493 
494 	trace_f2fs_submit_page_bio(page, fio);
495 	f2fs_trace_ios(fio, 0);
496 
497 	/* Allocate a new bio */
498 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
499 				1, is_read_io(fio->op), fio->type, fio->temp);
500 
501 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
502 		bio_put(bio);
503 		return -EFAULT;
504 	}
505 
506 	if (fio->io_wbc && !is_read_io(fio->op))
507 		wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
508 
509 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
510 
511 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
512 			__read_io_type(page): WB_DATA_TYPE(fio->page));
513 
514 	__f2fs_submit_read_bio(fio->sbi, bio, fio->type);
515 	return 0;
516 }
517 
f2fs_submit_page_write(struct f2fs_io_info * fio)518 void f2fs_submit_page_write(struct f2fs_io_info *fio)
519 {
520 	struct f2fs_sb_info *sbi = fio->sbi;
521 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
522 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
523 	struct page *bio_page;
524 
525 	f2fs_bug_on(sbi, is_read_io(fio->op));
526 
527 	down_write(&io->io_rwsem);
528 next:
529 	if (fio->in_list) {
530 		spin_lock(&io->io_lock);
531 		if (list_empty(&io->io_list)) {
532 			spin_unlock(&io->io_lock);
533 			goto out;
534 		}
535 		fio = list_first_entry(&io->io_list,
536 						struct f2fs_io_info, list);
537 		list_del(&fio->list);
538 		spin_unlock(&io->io_lock);
539 	}
540 
541 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
542 		verify_block_addr(fio, fio->old_blkaddr);
543 	verify_block_addr(fio, fio->new_blkaddr);
544 
545 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
546 
547 	/* set submitted = true as a return value */
548 	fio->submitted = true;
549 
550 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
551 
552 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
553 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
554 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
555 		__submit_merged_bio(io);
556 alloc_new:
557 	if (io->bio == NULL) {
558 		if ((fio->type == DATA || fio->type == NODE) &&
559 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
560 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
561 			fio->retry = true;
562 			goto skip;
563 		}
564 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
565 						BIO_MAX_PAGES, false,
566 						fio->type, fio->temp);
567 		io->fio = *fio;
568 	}
569 
570 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
571 		__submit_merged_bio(io);
572 		goto alloc_new;
573 	}
574 
575 	if (fio->io_wbc)
576 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
577 
578 	io->last_block_in_bio = fio->new_blkaddr;
579 	f2fs_trace_ios(fio, 0);
580 
581 	trace_f2fs_submit_page_write(fio->page, fio);
582 skip:
583 	if (fio->in_list)
584 		goto next;
585 out:
586 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
587 				f2fs_is_checkpoint_ready(sbi))
588 		__submit_merged_bio(io);
589 	up_write(&io->io_rwsem);
590 }
591 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag)592 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
593 					unsigned nr_pages, unsigned op_flag)
594 {
595 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
596 	struct bio *bio;
597 	struct bio_post_read_ctx *ctx;
598 	unsigned int post_read_steps = 0;
599 
600 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
601 		return ERR_PTR(-EFAULT);
602 
603 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
604 	if (!bio)
605 		return ERR_PTR(-ENOMEM);
606 	f2fs_target_device(sbi, blkaddr, bio);
607 	bio->bi_end_io = f2fs_read_end_io;
608 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
609 
610 	if (f2fs_encrypted_file(inode))
611 		post_read_steps |= 1 << STEP_DECRYPT;
612 	if (post_read_steps) {
613 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
614 		if (!ctx) {
615 			bio_put(bio);
616 			return ERR_PTR(-ENOMEM);
617 		}
618 		ctx->bio = bio;
619 		ctx->enabled_steps = post_read_steps;
620 		bio->bi_private = ctx;
621 	}
622 
623 	return bio;
624 }
625 
626 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr)627 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
628 							block_t blkaddr)
629 {
630 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
631 
632 	if (IS_ERR(bio))
633 		return PTR_ERR(bio);
634 
635 	/* wait for GCed page writeback via META_MAPPING */
636 	f2fs_wait_on_block_writeback(inode, blkaddr);
637 
638 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
639 		bio_put(bio);
640 		return -EFAULT;
641 	}
642 	ClearPageError(page);
643 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
644 	__f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
645 	return 0;
646 }
647 
__set_data_blkaddr(struct dnode_of_data * dn)648 static void __set_data_blkaddr(struct dnode_of_data *dn)
649 {
650 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
651 	__le32 *addr_array;
652 	int base = 0;
653 
654 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
655 		base = get_extra_isize(dn->inode);
656 
657 	/* Get physical address of data block */
658 	addr_array = blkaddr_in_node(rn);
659 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
660 }
661 
662 /*
663  * Lock ordering for the change of data block address:
664  * ->data_page
665  *  ->node_page
666  *    update block addresses in the node page
667  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)668 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
669 {
670 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
671 	__set_data_blkaddr(dn);
672 	if (set_page_dirty(dn->node_page))
673 		dn->node_changed = true;
674 }
675 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)676 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
677 {
678 	dn->data_blkaddr = blkaddr;
679 	f2fs_set_data_blkaddr(dn);
680 	f2fs_update_extent_cache(dn);
681 }
682 
683 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)684 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
685 {
686 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
687 	int err;
688 
689 	if (!count)
690 		return 0;
691 
692 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
693 		return -EPERM;
694 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
695 		return err;
696 
697 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
698 						dn->ofs_in_node, count);
699 
700 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
701 
702 	for (; count > 0; dn->ofs_in_node++) {
703 		block_t blkaddr = datablock_addr(dn->inode,
704 					dn->node_page, dn->ofs_in_node);
705 		if (blkaddr == NULL_ADDR) {
706 			dn->data_blkaddr = NEW_ADDR;
707 			__set_data_blkaddr(dn);
708 			count--;
709 		}
710 	}
711 
712 	if (set_page_dirty(dn->node_page))
713 		dn->node_changed = true;
714 	return 0;
715 }
716 
717 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)718 int f2fs_reserve_new_block(struct dnode_of_data *dn)
719 {
720 	unsigned int ofs_in_node = dn->ofs_in_node;
721 	int ret;
722 
723 	ret = f2fs_reserve_new_blocks(dn, 1);
724 	dn->ofs_in_node = ofs_in_node;
725 	return ret;
726 }
727 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)728 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
729 {
730 	bool need_put = dn->inode_page ? false : true;
731 	int err;
732 
733 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
734 	if (err)
735 		return err;
736 
737 	if (dn->data_blkaddr == NULL_ADDR)
738 		err = f2fs_reserve_new_block(dn);
739 	if (err || need_put)
740 		f2fs_put_dnode(dn);
741 	return err;
742 }
743 
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)744 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
745 {
746 	struct extent_info ei  = {0,0,0};
747 	struct inode *inode = dn->inode;
748 
749 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
750 		dn->data_blkaddr = ei.blk + index - ei.fofs;
751 		return 0;
752 	}
753 
754 	return f2fs_reserve_block(dn, index);
755 }
756 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)757 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
758 						int op_flags, bool for_write)
759 {
760 	struct address_space *mapping = inode->i_mapping;
761 	struct dnode_of_data dn;
762 	struct page *page;
763 	struct extent_info ei = {0,0,0};
764 	int err;
765 
766 	page = f2fs_grab_cache_page(mapping, index, for_write);
767 	if (!page)
768 		return ERR_PTR(-ENOMEM);
769 
770 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
771 		dn.data_blkaddr = ei.blk + index - ei.fofs;
772 		goto got_it;
773 	}
774 
775 	set_new_dnode(&dn, inode, NULL, NULL, 0);
776 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
777 	if (err)
778 		goto put_err;
779 	f2fs_put_dnode(&dn);
780 
781 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
782 		err = -ENOENT;
783 		goto put_err;
784 	}
785 got_it:
786 	if (PageUptodate(page)) {
787 		unlock_page(page);
788 		return page;
789 	}
790 
791 	/*
792 	 * A new dentry page is allocated but not able to be written, since its
793 	 * new inode page couldn't be allocated due to -ENOSPC.
794 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
795 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
796 	 * f2fs_init_inode_metadata.
797 	 */
798 	if (dn.data_blkaddr == NEW_ADDR) {
799 		zero_user_segment(page, 0, PAGE_SIZE);
800 		if (!PageUptodate(page))
801 			SetPageUptodate(page);
802 		unlock_page(page);
803 		return page;
804 	}
805 
806 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
807 	if (err)
808 		goto put_err;
809 	return page;
810 
811 put_err:
812 	f2fs_put_page(page, 1);
813 	return ERR_PTR(err);
814 }
815 
f2fs_find_data_page(struct inode * inode,pgoff_t index)816 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
817 {
818 	struct address_space *mapping = inode->i_mapping;
819 	struct page *page;
820 
821 	page = find_get_page(mapping, index);
822 	if (page && PageUptodate(page))
823 		return page;
824 	f2fs_put_page(page, 0);
825 
826 	page = f2fs_get_read_data_page(inode, index, 0, false);
827 	if (IS_ERR(page))
828 		return page;
829 
830 	if (PageUptodate(page))
831 		return page;
832 
833 	wait_on_page_locked(page);
834 	if (unlikely(!PageUptodate(page))) {
835 		f2fs_put_page(page, 0);
836 		return ERR_PTR(-EIO);
837 	}
838 	return page;
839 }
840 
841 /*
842  * If it tries to access a hole, return an error.
843  * Because, the callers, functions in dir.c and GC, should be able to know
844  * whether this page exists or not.
845  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)846 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
847 							bool for_write)
848 {
849 	struct address_space *mapping = inode->i_mapping;
850 	struct page *page;
851 repeat:
852 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
853 	if (IS_ERR(page))
854 		return page;
855 
856 	/* wait for read completion */
857 	lock_page(page);
858 	if (unlikely(page->mapping != mapping)) {
859 		f2fs_put_page(page, 1);
860 		goto repeat;
861 	}
862 	if (unlikely(!PageUptodate(page))) {
863 		f2fs_put_page(page, 1);
864 		return ERR_PTR(-EIO);
865 	}
866 	return page;
867 }
868 
869 /*
870  * Caller ensures that this data page is never allocated.
871  * A new zero-filled data page is allocated in the page cache.
872  *
873  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
874  * f2fs_unlock_op().
875  * Note that, ipage is set only by make_empty_dir, and if any error occur,
876  * ipage should be released by this function.
877  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)878 struct page *f2fs_get_new_data_page(struct inode *inode,
879 		struct page *ipage, pgoff_t index, bool new_i_size)
880 {
881 	struct address_space *mapping = inode->i_mapping;
882 	struct page *page;
883 	struct dnode_of_data dn;
884 	int err;
885 
886 	page = f2fs_grab_cache_page(mapping, index, true);
887 	if (!page) {
888 		/*
889 		 * before exiting, we should make sure ipage will be released
890 		 * if any error occur.
891 		 */
892 		f2fs_put_page(ipage, 1);
893 		return ERR_PTR(-ENOMEM);
894 	}
895 
896 	set_new_dnode(&dn, inode, ipage, NULL, 0);
897 	err = f2fs_reserve_block(&dn, index);
898 	if (err) {
899 		f2fs_put_page(page, 1);
900 		return ERR_PTR(err);
901 	}
902 	if (!ipage)
903 		f2fs_put_dnode(&dn);
904 
905 	if (PageUptodate(page))
906 		goto got_it;
907 
908 	if (dn.data_blkaddr == NEW_ADDR) {
909 		zero_user_segment(page, 0, PAGE_SIZE);
910 		if (!PageUptodate(page))
911 			SetPageUptodate(page);
912 	} else {
913 		f2fs_put_page(page, 1);
914 
915 		/* if ipage exists, blkaddr should be NEW_ADDR */
916 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
917 		page = f2fs_get_lock_data_page(inode, index, true);
918 		if (IS_ERR(page))
919 			return page;
920 	}
921 got_it:
922 	if (new_i_size && i_size_read(inode) <
923 				((loff_t)(index + 1) << PAGE_SHIFT))
924 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
925 	return page;
926 }
927 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)928 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
929 {
930 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
931 	struct f2fs_summary sum;
932 	struct node_info ni;
933 	block_t old_blkaddr;
934 	blkcnt_t count = 1;
935 	int err;
936 
937 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
938 		return -EPERM;
939 
940 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
941 	if (err)
942 		return err;
943 
944 	dn->data_blkaddr = datablock_addr(dn->inode,
945 				dn->node_page, dn->ofs_in_node);
946 	if (dn->data_blkaddr != NULL_ADDR)
947 		goto alloc;
948 
949 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
950 		return err;
951 
952 alloc:
953 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
954 	old_blkaddr = dn->data_blkaddr;
955 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
956 					&sum, seg_type, NULL, false);
957 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
958 		invalidate_mapping_pages(META_MAPPING(sbi),
959 					old_blkaddr, old_blkaddr);
960 	f2fs_set_data_blkaddr(dn);
961 
962 	/*
963 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
964 	 * data from unwritten block via dio_read.
965 	 */
966 	return 0;
967 }
968 
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)969 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
970 {
971 	struct inode *inode = file_inode(iocb->ki_filp);
972 	struct f2fs_map_blocks map;
973 	int flag;
974 	int err = 0;
975 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
976 
977 	/* convert inline data for Direct I/O*/
978 	if (direct_io) {
979 		err = f2fs_convert_inline_inode(inode);
980 		if (err)
981 			return err;
982 	}
983 
984 	if (direct_io && allow_outplace_dio(inode, iocb, from))
985 		return 0;
986 
987 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
988 		return 0;
989 
990 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
991 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
992 	if (map.m_len > map.m_lblk)
993 		map.m_len -= map.m_lblk;
994 	else
995 		map.m_len = 0;
996 
997 	map.m_next_pgofs = NULL;
998 	map.m_next_extent = NULL;
999 	map.m_seg_type = NO_CHECK_TYPE;
1000 	map.m_may_create = true;
1001 
1002 	if (direct_io) {
1003 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1004 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1005 					F2FS_GET_BLOCK_PRE_AIO :
1006 					F2FS_GET_BLOCK_PRE_DIO;
1007 		goto map_blocks;
1008 	}
1009 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1010 		err = f2fs_convert_inline_inode(inode);
1011 		if (err)
1012 			return err;
1013 	}
1014 	if (f2fs_has_inline_data(inode))
1015 		return err;
1016 
1017 	flag = F2FS_GET_BLOCK_PRE_AIO;
1018 
1019 map_blocks:
1020 	err = f2fs_map_blocks(inode, &map, 1, flag);
1021 	if (map.m_len > 0 && err == -ENOSPC) {
1022 		if (!direct_io)
1023 			set_inode_flag(inode, FI_NO_PREALLOC);
1024 		err = 0;
1025 	}
1026 	return err;
1027 }
1028 
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1029 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1030 {
1031 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1032 		if (lock)
1033 			down_read(&sbi->node_change);
1034 		else
1035 			up_read(&sbi->node_change);
1036 	} else {
1037 		if (lock)
1038 			f2fs_lock_op(sbi);
1039 		else
1040 			f2fs_unlock_op(sbi);
1041 	}
1042 }
1043 
1044 /*
1045  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1046  * f2fs_map_blocks structure.
1047  * If original data blocks are allocated, then give them to blockdev.
1048  * Otherwise,
1049  *     a. preallocate requested block addresses
1050  *     b. do not use extent cache for better performance
1051  *     c. give the block addresses to blockdev
1052  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1053 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1054 						int create, int flag)
1055 {
1056 	unsigned int maxblocks = map->m_len;
1057 	struct dnode_of_data dn;
1058 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1059 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1060 	pgoff_t pgofs, end_offset, end;
1061 	int err = 0, ofs = 1;
1062 	unsigned int ofs_in_node, last_ofs_in_node;
1063 	blkcnt_t prealloc;
1064 	struct extent_info ei = {0,0,0};
1065 	block_t blkaddr;
1066 	unsigned int start_pgofs;
1067 
1068 	if (!maxblocks)
1069 		return 0;
1070 
1071 	map->m_len = 0;
1072 	map->m_flags = 0;
1073 
1074 	/* it only supports block size == page size */
1075 	pgofs =	(pgoff_t)map->m_lblk;
1076 	end = pgofs + maxblocks;
1077 
1078 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1079 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1080 							map->m_may_create)
1081 			goto next_dnode;
1082 
1083 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1084 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1085 		map->m_flags = F2FS_MAP_MAPPED;
1086 		if (map->m_next_extent)
1087 			*map->m_next_extent = pgofs + map->m_len;
1088 
1089 		/* for hardware encryption, but to avoid potential issue in future */
1090 		if (flag == F2FS_GET_BLOCK_DIO)
1091 			f2fs_wait_on_block_writeback_range(inode,
1092 						map->m_pblk, map->m_len);
1093 		goto out;
1094 	}
1095 
1096 next_dnode:
1097 	if (map->m_may_create)
1098 		__do_map_lock(sbi, flag, true);
1099 
1100 	/* When reading holes, we need its node page */
1101 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1102 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1103 	if (err) {
1104 		if (flag == F2FS_GET_BLOCK_BMAP)
1105 			map->m_pblk = 0;
1106 		if (err == -ENOENT) {
1107 			err = 0;
1108 			if (map->m_next_pgofs)
1109 				*map->m_next_pgofs =
1110 					f2fs_get_next_page_offset(&dn, pgofs);
1111 			if (map->m_next_extent)
1112 				*map->m_next_extent =
1113 					f2fs_get_next_page_offset(&dn, pgofs);
1114 		}
1115 		goto unlock_out;
1116 	}
1117 
1118 	start_pgofs = pgofs;
1119 	prealloc = 0;
1120 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1121 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1122 
1123 next_block:
1124 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1125 
1126 	if (__is_valid_data_blkaddr(blkaddr) &&
1127 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1128 		err = -EFSCORRUPTED;
1129 		goto sync_out;
1130 	}
1131 
1132 	if (is_valid_data_blkaddr(sbi, blkaddr)) {
1133 		/* use out-place-update for driect IO under LFS mode */
1134 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1135 							map->m_may_create) {
1136 			err = __allocate_data_block(&dn, map->m_seg_type);
1137 			if (!err) {
1138 				blkaddr = dn.data_blkaddr;
1139 				set_inode_flag(inode, FI_APPEND_WRITE);
1140 			}
1141 		}
1142 	} else {
1143 		if (create) {
1144 			if (unlikely(f2fs_cp_error(sbi))) {
1145 				err = -EIO;
1146 				goto sync_out;
1147 			}
1148 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1149 				if (blkaddr == NULL_ADDR) {
1150 					prealloc++;
1151 					last_ofs_in_node = dn.ofs_in_node;
1152 				}
1153 			} else {
1154 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1155 					flag != F2FS_GET_BLOCK_DIO);
1156 				err = __allocate_data_block(&dn,
1157 							map->m_seg_type);
1158 				if (!err)
1159 					set_inode_flag(inode, FI_APPEND_WRITE);
1160 			}
1161 			if (err)
1162 				goto sync_out;
1163 			map->m_flags |= F2FS_MAP_NEW;
1164 			blkaddr = dn.data_blkaddr;
1165 		} else {
1166 			if (flag == F2FS_GET_BLOCK_BMAP) {
1167 				map->m_pblk = 0;
1168 				goto sync_out;
1169 			}
1170 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1171 				goto sync_out;
1172 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1173 						blkaddr == NULL_ADDR) {
1174 				if (map->m_next_pgofs)
1175 					*map->m_next_pgofs = pgofs + 1;
1176 				goto sync_out;
1177 			}
1178 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1179 				/* for defragment case */
1180 				if (map->m_next_pgofs)
1181 					*map->m_next_pgofs = pgofs + 1;
1182 				goto sync_out;
1183 			}
1184 		}
1185 	}
1186 
1187 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1188 		goto skip;
1189 
1190 	if (map->m_len == 0) {
1191 		/* preallocated unwritten block should be mapped for fiemap. */
1192 		if (blkaddr == NEW_ADDR)
1193 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1194 		map->m_flags |= F2FS_MAP_MAPPED;
1195 
1196 		map->m_pblk = blkaddr;
1197 		map->m_len = 1;
1198 	} else if ((map->m_pblk != NEW_ADDR &&
1199 			blkaddr == (map->m_pblk + ofs)) ||
1200 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1201 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1202 		ofs++;
1203 		map->m_len++;
1204 	} else {
1205 		goto sync_out;
1206 	}
1207 
1208 skip:
1209 	dn.ofs_in_node++;
1210 	pgofs++;
1211 
1212 	/* preallocate blocks in batch for one dnode page */
1213 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1214 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1215 
1216 		dn.ofs_in_node = ofs_in_node;
1217 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1218 		if (err)
1219 			goto sync_out;
1220 
1221 		map->m_len += dn.ofs_in_node - ofs_in_node;
1222 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1223 			err = -ENOSPC;
1224 			goto sync_out;
1225 		}
1226 		dn.ofs_in_node = end_offset;
1227 	}
1228 
1229 	if (pgofs >= end)
1230 		goto sync_out;
1231 	else if (dn.ofs_in_node < end_offset)
1232 		goto next_block;
1233 
1234 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1235 		if (map->m_flags & F2FS_MAP_MAPPED) {
1236 			unsigned int ofs = start_pgofs - map->m_lblk;
1237 
1238 			f2fs_update_extent_cache_range(&dn,
1239 				start_pgofs, map->m_pblk + ofs,
1240 				map->m_len - ofs);
1241 		}
1242 	}
1243 
1244 	f2fs_put_dnode(&dn);
1245 
1246 	if (map->m_may_create) {
1247 		__do_map_lock(sbi, flag, false);
1248 		f2fs_balance_fs(sbi, dn.node_changed);
1249 	}
1250 	goto next_dnode;
1251 
1252 sync_out:
1253 
1254 	/* for hardware encryption, but to avoid potential issue in future */
1255 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1256 		f2fs_wait_on_block_writeback_range(inode,
1257 						map->m_pblk, map->m_len);
1258 
1259 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1260 		if (map->m_flags & F2FS_MAP_MAPPED) {
1261 			unsigned int ofs = start_pgofs - map->m_lblk;
1262 
1263 			f2fs_update_extent_cache_range(&dn,
1264 				start_pgofs, map->m_pblk + ofs,
1265 				map->m_len - ofs);
1266 		}
1267 		if (map->m_next_extent)
1268 			*map->m_next_extent = pgofs + 1;
1269 	}
1270 	f2fs_put_dnode(&dn);
1271 unlock_out:
1272 	if (map->m_may_create) {
1273 		__do_map_lock(sbi, flag, false);
1274 		f2fs_balance_fs(sbi, dn.node_changed);
1275 	}
1276 out:
1277 	trace_f2fs_map_blocks(inode, map, err);
1278 	return err;
1279 }
1280 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1281 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1282 {
1283 	struct f2fs_map_blocks map;
1284 	block_t last_lblk;
1285 	int err;
1286 
1287 	if (pos + len > i_size_read(inode))
1288 		return false;
1289 
1290 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1291 	map.m_next_pgofs = NULL;
1292 	map.m_next_extent = NULL;
1293 	map.m_seg_type = NO_CHECK_TYPE;
1294 	map.m_may_create = false;
1295 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1296 
1297 	while (map.m_lblk < last_lblk) {
1298 		map.m_len = last_lblk - map.m_lblk;
1299 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1300 		if (err || map.m_len == 0)
1301 			return false;
1302 		map.m_lblk += map.m_len;
1303 	}
1304 	return true;
1305 }
1306 
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1307 static int __get_data_block(struct inode *inode, sector_t iblock,
1308 			struct buffer_head *bh, int create, int flag,
1309 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1310 {
1311 	struct f2fs_map_blocks map;
1312 	int err;
1313 
1314 	map.m_lblk = iblock;
1315 	map.m_len = bh->b_size >> inode->i_blkbits;
1316 	map.m_next_pgofs = next_pgofs;
1317 	map.m_next_extent = NULL;
1318 	map.m_seg_type = seg_type;
1319 	map.m_may_create = may_write;
1320 
1321 	err = f2fs_map_blocks(inode, &map, create, flag);
1322 	if (!err) {
1323 		map_bh(bh, inode->i_sb, map.m_pblk);
1324 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1325 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1326 	}
1327 	return err;
1328 }
1329 
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1330 static int get_data_block(struct inode *inode, sector_t iblock,
1331 			struct buffer_head *bh_result, int create, int flag,
1332 			pgoff_t *next_pgofs)
1333 {
1334 	return __get_data_block(inode, iblock, bh_result, create,
1335 							flag, next_pgofs,
1336 							NO_CHECK_TYPE, create);
1337 }
1338 
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1339 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1340 			struct buffer_head *bh_result, int create)
1341 {
1342 	return __get_data_block(inode, iblock, bh_result, create,
1343 				F2FS_GET_BLOCK_DIO, NULL,
1344 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1345 				true);
1346 }
1347 
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1348 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1349 			struct buffer_head *bh_result, int create)
1350 {
1351 	return __get_data_block(inode, iblock, bh_result, create,
1352 				F2FS_GET_BLOCK_DIO, NULL,
1353 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1354 				false);
1355 }
1356 
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1357 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1358 			struct buffer_head *bh_result, int create)
1359 {
1360 	/* Block number less than F2FS MAX BLOCKS */
1361 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1362 		return -EFBIG;
1363 
1364 	return __get_data_block(inode, iblock, bh_result, create,
1365 						F2FS_GET_BLOCK_BMAP, NULL,
1366 						NO_CHECK_TYPE, create);
1367 }
1368 
logical_to_blk(struct inode * inode,loff_t offset)1369 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1370 {
1371 	return (offset >> inode->i_blkbits);
1372 }
1373 
blk_to_logical(struct inode * inode,sector_t blk)1374 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1375 {
1376 	return (blk << inode->i_blkbits);
1377 }
1378 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1379 static int f2fs_xattr_fiemap(struct inode *inode,
1380 				struct fiemap_extent_info *fieinfo)
1381 {
1382 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1383 	struct page *page;
1384 	struct node_info ni;
1385 	__u64 phys = 0, len;
1386 	__u32 flags;
1387 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1388 	int err = 0;
1389 
1390 	if (f2fs_has_inline_xattr(inode)) {
1391 		int offset;
1392 
1393 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1394 						inode->i_ino, false);
1395 		if (!page)
1396 			return -ENOMEM;
1397 
1398 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1399 		if (err) {
1400 			f2fs_put_page(page, 1);
1401 			return err;
1402 		}
1403 
1404 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1405 		offset = offsetof(struct f2fs_inode, i_addr) +
1406 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1407 					get_inline_xattr_addrs(inode));
1408 
1409 		phys += offset;
1410 		len = inline_xattr_size(inode);
1411 
1412 		f2fs_put_page(page, 1);
1413 
1414 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1415 
1416 		if (!xnid)
1417 			flags |= FIEMAP_EXTENT_LAST;
1418 
1419 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1420 		if (err || err == 1)
1421 			return err;
1422 	}
1423 
1424 	if (xnid) {
1425 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1426 		if (!page)
1427 			return -ENOMEM;
1428 
1429 		err = f2fs_get_node_info(sbi, xnid, &ni);
1430 		if (err) {
1431 			f2fs_put_page(page, 1);
1432 			return err;
1433 		}
1434 
1435 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1436 		len = inode->i_sb->s_blocksize;
1437 
1438 		f2fs_put_page(page, 1);
1439 
1440 		flags = FIEMAP_EXTENT_LAST;
1441 	}
1442 
1443 	if (phys)
1444 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1445 
1446 	return (err < 0 ? err : 0);
1447 }
1448 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1449 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1450 		u64 start, u64 len)
1451 {
1452 	struct buffer_head map_bh;
1453 	sector_t start_blk, last_blk;
1454 	pgoff_t next_pgofs;
1455 	u64 logical = 0, phys = 0, size = 0;
1456 	u32 flags = 0;
1457 	int ret = 0;
1458 
1459 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1460 		ret = f2fs_precache_extents(inode);
1461 		if (ret)
1462 			return ret;
1463 	}
1464 
1465 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1466 	if (ret)
1467 		return ret;
1468 
1469 	inode_lock(inode);
1470 
1471 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1472 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1473 		goto out;
1474 	}
1475 
1476 	if (f2fs_has_inline_data(inode)) {
1477 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1478 		if (ret != -EAGAIN)
1479 			goto out;
1480 	}
1481 
1482 	if (logical_to_blk(inode, len) == 0)
1483 		len = blk_to_logical(inode, 1);
1484 
1485 	start_blk = logical_to_blk(inode, start);
1486 	last_blk = logical_to_blk(inode, start + len - 1);
1487 
1488 next:
1489 	memset(&map_bh, 0, sizeof(struct buffer_head));
1490 	map_bh.b_size = len;
1491 
1492 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1493 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1494 	if (ret)
1495 		goto out;
1496 
1497 	/* HOLE */
1498 	if (!buffer_mapped(&map_bh)) {
1499 		start_blk = next_pgofs;
1500 
1501 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1502 					F2FS_I_SB(inode)->max_file_blocks))
1503 			goto prep_next;
1504 
1505 		flags |= FIEMAP_EXTENT_LAST;
1506 	}
1507 
1508 	if (size) {
1509 		if (f2fs_encrypted_inode(inode))
1510 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1511 
1512 		ret = fiemap_fill_next_extent(fieinfo, logical,
1513 				phys, size, flags);
1514 	}
1515 
1516 	if (start_blk > last_blk || ret)
1517 		goto out;
1518 
1519 	logical = blk_to_logical(inode, start_blk);
1520 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1521 	size = map_bh.b_size;
1522 	flags = 0;
1523 	if (buffer_unwritten(&map_bh))
1524 		flags = FIEMAP_EXTENT_UNWRITTEN;
1525 
1526 	start_blk += logical_to_blk(inode, size);
1527 
1528 prep_next:
1529 	cond_resched();
1530 	if (fatal_signal_pending(current))
1531 		ret = -EINTR;
1532 	else
1533 		goto next;
1534 out:
1535 	if (ret == 1)
1536 		ret = 0;
1537 
1538 	inode_unlock(inode);
1539 	return ret;
1540 }
1541 
1542 /*
1543  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1544  * Major change was from block_size == page_size in f2fs by default.
1545  *
1546  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1547  * this function ever deviates from doing just read-ahead, it should either
1548  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1549  * from read-ahead.
1550  */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)1551 static int f2fs_mpage_readpages(struct address_space *mapping,
1552 			struct list_head *pages, struct page *page,
1553 			unsigned nr_pages, bool is_readahead)
1554 {
1555 	struct bio *bio = NULL;
1556 	sector_t last_block_in_bio = 0;
1557 	struct inode *inode = mapping->host;
1558 	const unsigned blkbits = inode->i_blkbits;
1559 	const unsigned blocksize = 1 << blkbits;
1560 	sector_t block_in_file;
1561 	sector_t last_block;
1562 	sector_t last_block_in_file;
1563 	sector_t block_nr;
1564 	struct f2fs_map_blocks map;
1565 
1566 	map.m_pblk = 0;
1567 	map.m_lblk = 0;
1568 	map.m_len = 0;
1569 	map.m_flags = 0;
1570 	map.m_next_pgofs = NULL;
1571 	map.m_next_extent = NULL;
1572 	map.m_seg_type = NO_CHECK_TYPE;
1573 	map.m_may_create = false;
1574 
1575 	for (; nr_pages; nr_pages--) {
1576 		if (pages) {
1577 			page = list_last_entry(pages, struct page, lru);
1578 
1579 			prefetchw(&page->flags);
1580 			list_del(&page->lru);
1581 			if (add_to_page_cache_lru(page, mapping,
1582 						  page->index,
1583 						  readahead_gfp_mask(mapping)))
1584 				goto next_page;
1585 		}
1586 
1587 		block_in_file = (sector_t)page->index;
1588 		last_block = block_in_file + nr_pages;
1589 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1590 								blkbits;
1591 		if (last_block > last_block_in_file)
1592 			last_block = last_block_in_file;
1593 
1594 		/* just zeroing out page which is beyond EOF */
1595 		if (block_in_file >= last_block)
1596 			goto zero_out;
1597 		/*
1598 		 * Map blocks using the previous result first.
1599 		 */
1600 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1601 				block_in_file > map.m_lblk &&
1602 				block_in_file < (map.m_lblk + map.m_len))
1603 			goto got_it;
1604 
1605 		/*
1606 		 * Then do more f2fs_map_blocks() calls until we are
1607 		 * done with this page.
1608 		 */
1609 		map.m_lblk = block_in_file;
1610 		map.m_len = last_block - block_in_file;
1611 
1612 		if (f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT))
1613 			goto set_error_page;
1614 got_it:
1615 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1616 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1617 			SetPageMappedToDisk(page);
1618 
1619 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1620 				SetPageUptodate(page);
1621 				goto confused;
1622 			}
1623 
1624 			if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1625 								DATA_GENERIC))
1626 				goto set_error_page;
1627 		} else {
1628 zero_out:
1629 			zero_user_segment(page, 0, PAGE_SIZE);
1630 			if (!PageUptodate(page))
1631 				SetPageUptodate(page);
1632 			unlock_page(page);
1633 			goto next_page;
1634 		}
1635 
1636 		/*
1637 		 * This page will go to BIO.  Do we need to send this
1638 		 * BIO off first?
1639 		 */
1640 		if (bio && (last_block_in_bio != block_nr - 1 ||
1641 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1642 submit_and_realloc:
1643 			__f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
1644 			bio = NULL;
1645 		}
1646 		if (bio == NULL) {
1647 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1648 					is_readahead ? REQ_RAHEAD : 0);
1649 			if (IS_ERR(bio)) {
1650 				bio = NULL;
1651 				goto set_error_page;
1652 			}
1653 		}
1654 
1655 		/*
1656 		 * If the page is under writeback, we need to wait for
1657 		 * its completion to see the correct decrypted data.
1658 		 */
1659 		f2fs_wait_on_block_writeback(inode, block_nr);
1660 
1661 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1662 			goto submit_and_realloc;
1663 
1664 		inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1665 		ClearPageError(page);
1666 		last_block_in_bio = block_nr;
1667 		goto next_page;
1668 set_error_page:
1669 		SetPageError(page);
1670 		zero_user_segment(page, 0, PAGE_SIZE);
1671 		unlock_page(page);
1672 		goto next_page;
1673 confused:
1674 		if (bio) {
1675 			__f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
1676 			bio = NULL;
1677 		}
1678 		unlock_page(page);
1679 next_page:
1680 		if (pages)
1681 			put_page(page);
1682 	}
1683 	BUG_ON(pages && !list_empty(pages));
1684 	if (bio)
1685 		__f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
1686 	return 0;
1687 }
1688 
f2fs_read_data_page(struct file * file,struct page * page)1689 static int f2fs_read_data_page(struct file *file, struct page *page)
1690 {
1691 	struct inode *inode = page->mapping->host;
1692 	int ret = -EAGAIN;
1693 
1694 	trace_f2fs_readpage(page, DATA);
1695 
1696 	/* If the file has inline data, try to read it directly */
1697 	if (f2fs_has_inline_data(inode))
1698 		ret = f2fs_read_inline_data(inode, page);
1699 	if (ret == -EAGAIN)
1700 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1701 	return ret;
1702 }
1703 
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1704 static int f2fs_read_data_pages(struct file *file,
1705 			struct address_space *mapping,
1706 			struct list_head *pages, unsigned nr_pages)
1707 {
1708 	struct inode *inode = mapping->host;
1709 	struct page *page = list_last_entry(pages, struct page, lru);
1710 
1711 	trace_f2fs_readpages(inode, page, nr_pages);
1712 
1713 	/* If the file has inline data, skip readpages */
1714 	if (f2fs_has_inline_data(inode))
1715 		return 0;
1716 
1717 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1718 }
1719 
encrypt_one_page(struct f2fs_io_info * fio)1720 static int encrypt_one_page(struct f2fs_io_info *fio)
1721 {
1722 	struct inode *inode = fio->page->mapping->host;
1723 	struct page *mpage;
1724 	gfp_t gfp_flags = GFP_NOFS;
1725 
1726 	if (!f2fs_encrypted_file(inode))
1727 		return 0;
1728 
1729 	/* wait for GCed page writeback via META_MAPPING */
1730 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1731 
1732 retry_encrypt:
1733 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1734 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1735 	if (IS_ERR(fio->encrypted_page)) {
1736 		/* flush pending IOs and wait for a while in the ENOMEM case */
1737 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1738 			f2fs_flush_merged_writes(fio->sbi);
1739 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1740 			gfp_flags |= __GFP_NOFAIL;
1741 			goto retry_encrypt;
1742 		}
1743 		return PTR_ERR(fio->encrypted_page);
1744 	}
1745 
1746 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1747 	if (mpage) {
1748 		if (PageUptodate(mpage))
1749 			memcpy(page_address(mpage),
1750 				page_address(fio->encrypted_page), PAGE_SIZE);
1751 		f2fs_put_page(mpage, 1);
1752 	}
1753 	return 0;
1754 }
1755 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)1756 static inline bool check_inplace_update_policy(struct inode *inode,
1757 				struct f2fs_io_info *fio)
1758 {
1759 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1760 	unsigned int policy = SM_I(sbi)->ipu_policy;
1761 
1762 	if (policy & (0x1 << F2FS_IPU_FORCE))
1763 		return true;
1764 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1765 		return true;
1766 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1767 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1768 		return true;
1769 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1770 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1771 		return true;
1772 
1773 	/*
1774 	 * IPU for rewrite async pages
1775 	 */
1776 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1777 			fio && fio->op == REQ_OP_WRITE &&
1778 			!(fio->op_flags & REQ_SYNC) &&
1779 			!f2fs_encrypted_inode(inode))
1780 		return true;
1781 
1782 	/* this is only set during fdatasync */
1783 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1784 			is_inode_flag_set(inode, FI_NEED_IPU))
1785 		return true;
1786 
1787 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1788 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1789 		return true;
1790 
1791 	return false;
1792 }
1793 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)1794 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1795 {
1796 	if (f2fs_is_pinned_file(inode))
1797 		return true;
1798 
1799 	/* if this is cold file, we should overwrite to avoid fragmentation */
1800 	if (file_is_cold(inode))
1801 		return true;
1802 
1803 	return check_inplace_update_policy(inode, fio);
1804 }
1805 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)1806 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1807 {
1808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1809 
1810 	if (test_opt(sbi, LFS))
1811 		return true;
1812 	if (S_ISDIR(inode->i_mode))
1813 		return true;
1814 	if (IS_NOQUOTA(inode))
1815 		return true;
1816 	if (f2fs_is_atomic_file(inode))
1817 		return true;
1818 	if (fio) {
1819 		if (is_cold_data(fio->page))
1820 			return true;
1821 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1822 			return true;
1823 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1824 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1825 			return true;
1826 	}
1827 	return false;
1828 }
1829 
need_inplace_update(struct f2fs_io_info * fio)1830 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1831 {
1832 	struct inode *inode = fio->page->mapping->host;
1833 
1834 	if (f2fs_should_update_outplace(inode, fio))
1835 		return false;
1836 
1837 	return f2fs_should_update_inplace(inode, fio);
1838 }
1839 
f2fs_do_write_data_page(struct f2fs_io_info * fio)1840 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1841 {
1842 	struct page *page = fio->page;
1843 	struct inode *inode = page->mapping->host;
1844 	struct dnode_of_data dn;
1845 	struct extent_info ei = {0,0,0};
1846 	struct node_info ni;
1847 	bool ipu_force = false;
1848 	int err = 0;
1849 
1850 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1851 	if (need_inplace_update(fio) &&
1852 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1853 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1854 
1855 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1856 							DATA_GENERIC))
1857 			return -EFSCORRUPTED;
1858 
1859 		ipu_force = true;
1860 		fio->need_lock = LOCK_DONE;
1861 		goto got_it;
1862 	}
1863 
1864 	/* Deadlock due to between page->lock and f2fs_lock_op */
1865 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1866 		return -EAGAIN;
1867 
1868 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1869 	if (err)
1870 		goto out;
1871 
1872 	fio->old_blkaddr = dn.data_blkaddr;
1873 
1874 	/* This page is already truncated */
1875 	if (fio->old_blkaddr == NULL_ADDR) {
1876 		ClearPageUptodate(page);
1877 		clear_cold_data(page);
1878 		goto out_writepage;
1879 	}
1880 got_it:
1881 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1882 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1883 							DATA_GENERIC)) {
1884 		err = -EFSCORRUPTED;
1885 		goto out_writepage;
1886 	}
1887 	/*
1888 	 * If current allocation needs SSR,
1889 	 * it had better in-place writes for updated data.
1890 	 */
1891 	if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1892 					need_inplace_update(fio))) {
1893 		err = encrypt_one_page(fio);
1894 		if (err)
1895 			goto out_writepage;
1896 
1897 		set_page_writeback(page);
1898 		ClearPageError(page);
1899 		f2fs_put_dnode(&dn);
1900 		if (fio->need_lock == LOCK_REQ)
1901 			f2fs_unlock_op(fio->sbi);
1902 		err = f2fs_inplace_write_data(fio);
1903 		if (err) {
1904 			if (f2fs_encrypted_file(inode))
1905 				fscrypt_pullback_bio_page(&fio->encrypted_page,
1906 									true);
1907 			if (PageWriteback(page))
1908 				end_page_writeback(page);
1909 		}
1910 		trace_f2fs_do_write_data_page(fio->page, IPU);
1911 		set_inode_flag(inode, FI_UPDATE_WRITE);
1912 		return err;
1913 	}
1914 
1915 	if (fio->need_lock == LOCK_RETRY) {
1916 		if (!f2fs_trylock_op(fio->sbi)) {
1917 			err = -EAGAIN;
1918 			goto out_writepage;
1919 		}
1920 		fio->need_lock = LOCK_REQ;
1921 	}
1922 
1923 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1924 	if (err)
1925 		goto out_writepage;
1926 
1927 	fio->version = ni.version;
1928 
1929 	err = encrypt_one_page(fio);
1930 	if (err)
1931 		goto out_writepage;
1932 
1933 	set_page_writeback(page);
1934 	ClearPageError(page);
1935 
1936 	/* LFS mode write path */
1937 	f2fs_outplace_write_data(&dn, fio);
1938 	trace_f2fs_do_write_data_page(page, OPU);
1939 	set_inode_flag(inode, FI_APPEND_WRITE);
1940 	if (page->index == 0)
1941 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1942 out_writepage:
1943 	f2fs_put_dnode(&dn);
1944 out:
1945 	if (fio->need_lock == LOCK_REQ)
1946 		f2fs_unlock_op(fio->sbi);
1947 	return err;
1948 }
1949 
__write_data_page(struct page * page,bool * submitted,struct writeback_control * wbc,enum iostat_type io_type)1950 static int __write_data_page(struct page *page, bool *submitted,
1951 				struct writeback_control *wbc,
1952 				enum iostat_type io_type)
1953 {
1954 	struct inode *inode = page->mapping->host;
1955 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1956 	loff_t i_size = i_size_read(inode);
1957 	const pgoff_t end_index = ((unsigned long long) i_size)
1958 							>> PAGE_SHIFT;
1959 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1960 	unsigned offset = 0;
1961 	bool need_balance_fs = false;
1962 	int err = 0;
1963 	struct f2fs_io_info fio = {
1964 		.sbi = sbi,
1965 		.ino = inode->i_ino,
1966 		.type = DATA,
1967 		.op = REQ_OP_WRITE,
1968 		.op_flags = wbc_to_write_flags(wbc),
1969 		.old_blkaddr = NULL_ADDR,
1970 		.page = page,
1971 		.encrypted_page = NULL,
1972 		.submitted = false,
1973 		.need_lock = LOCK_RETRY,
1974 		.io_type = io_type,
1975 		.io_wbc = wbc,
1976 	};
1977 
1978 	trace_f2fs_writepage(page, DATA);
1979 
1980 	/* we should bypass data pages to proceed the kworkder jobs */
1981 	if (unlikely(f2fs_cp_error(sbi))) {
1982 		mapping_set_error(page->mapping, -EIO);
1983 		/*
1984 		 * don't drop any dirty dentry pages for keeping lastest
1985 		 * directory structure.
1986 		 */
1987 		if (S_ISDIR(inode->i_mode))
1988 			goto redirty_out;
1989 		goto out;
1990 	}
1991 
1992 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1993 		goto redirty_out;
1994 
1995 	if (page->index < end_index)
1996 		goto write;
1997 
1998 	/*
1999 	 * If the offset is out-of-range of file size,
2000 	 * this page does not have to be written to disk.
2001 	 */
2002 	offset = i_size & (PAGE_SIZE - 1);
2003 	if ((page->index >= end_index + 1) || !offset)
2004 		goto out;
2005 
2006 	zero_user_segment(page, offset, PAGE_SIZE);
2007 write:
2008 	if (f2fs_is_drop_cache(inode))
2009 		goto out;
2010 	/* we should not write 0'th page having journal header */
2011 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2012 			(!wbc->for_reclaim &&
2013 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2014 		goto redirty_out;
2015 
2016 	/* Dentry blocks are controlled by checkpoint */
2017 	if (S_ISDIR(inode->i_mode)) {
2018 		fio.need_lock = LOCK_DONE;
2019 		err = f2fs_do_write_data_page(&fio);
2020 		goto done;
2021 	}
2022 
2023 	if (!wbc->for_reclaim)
2024 		need_balance_fs = true;
2025 	else if (has_not_enough_free_secs(sbi, 0, 0))
2026 		goto redirty_out;
2027 	else
2028 		set_inode_flag(inode, FI_HOT_DATA);
2029 
2030 	err = -EAGAIN;
2031 	if (f2fs_has_inline_data(inode)) {
2032 		err = f2fs_write_inline_data(inode, page);
2033 		if (!err)
2034 			goto out;
2035 	}
2036 
2037 	if (err == -EAGAIN) {
2038 		err = f2fs_do_write_data_page(&fio);
2039 		if (err == -EAGAIN) {
2040 			fio.need_lock = LOCK_REQ;
2041 			err = f2fs_do_write_data_page(&fio);
2042 		}
2043 	}
2044 
2045 	if (err) {
2046 		file_set_keep_isize(inode);
2047 	} else {
2048 		down_write(&F2FS_I(inode)->i_sem);
2049 		if (F2FS_I(inode)->last_disk_size < psize)
2050 			F2FS_I(inode)->last_disk_size = psize;
2051 		up_write(&F2FS_I(inode)->i_sem);
2052 	}
2053 
2054 done:
2055 	if (err && err != -ENOENT)
2056 		goto redirty_out;
2057 
2058 out:
2059 	inode_dec_dirty_pages(inode);
2060 	if (err) {
2061 		ClearPageUptodate(page);
2062 		clear_cold_data(page);
2063 	}
2064 
2065 	if (wbc->for_reclaim) {
2066 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2067 		clear_inode_flag(inode, FI_HOT_DATA);
2068 		f2fs_remove_dirty_inode(inode);
2069 		submitted = NULL;
2070 	}
2071 
2072 	unlock_page(page);
2073 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2074 		f2fs_balance_fs(sbi, need_balance_fs);
2075 
2076 	if (unlikely(f2fs_cp_error(sbi))) {
2077 		f2fs_submit_merged_write(sbi, DATA);
2078 		submitted = NULL;
2079 	}
2080 
2081 	if (submitted)
2082 		*submitted = fio.submitted;
2083 
2084 	return 0;
2085 
2086 redirty_out:
2087 	redirty_page_for_writepage(wbc, page);
2088 	/*
2089 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2090 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2091 	 * file_write_and_wait_range() will see EIO error, which is critical
2092 	 * to return value of fsync() followed by atomic_write failure to user.
2093 	 */
2094 	if (!err || wbc->for_reclaim)
2095 		return AOP_WRITEPAGE_ACTIVATE;
2096 	unlock_page(page);
2097 	return err;
2098 }
2099 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2100 static int f2fs_write_data_page(struct page *page,
2101 					struct writeback_control *wbc)
2102 {
2103 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2104 }
2105 
2106 /*
2107  * This function was copied from write_cche_pages from mm/page-writeback.c.
2108  * The major change is making write step of cold data page separately from
2109  * warm/hot data page.
2110  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2111 static int f2fs_write_cache_pages(struct address_space *mapping,
2112 					struct writeback_control *wbc,
2113 					enum iostat_type io_type)
2114 {
2115 	int ret = 0;
2116 	int done = 0;
2117 	struct pagevec pvec;
2118 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119 	int nr_pages;
2120 	pgoff_t uninitialized_var(writeback_index);
2121 	pgoff_t index;
2122 	pgoff_t end;		/* Inclusive */
2123 	pgoff_t done_index;
2124 	int cycled;
2125 	int range_whole = 0;
2126 	int tag;
2127 	int nwritten = 0;
2128 
2129 	pagevec_init(&pvec, 0);
2130 
2131 	if (get_dirty_pages(mapping->host) <=
2132 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2133 		set_inode_flag(mapping->host, FI_HOT_DATA);
2134 	else
2135 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2136 
2137 	if (wbc->range_cyclic) {
2138 		writeback_index = mapping->writeback_index; /* prev offset */
2139 		index = writeback_index;
2140 		if (index == 0)
2141 			cycled = 1;
2142 		else
2143 			cycled = 0;
2144 		end = -1;
2145 	} else {
2146 		index = wbc->range_start >> PAGE_SHIFT;
2147 		end = wbc->range_end >> PAGE_SHIFT;
2148 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2149 			range_whole = 1;
2150 		cycled = 1; /* ignore range_cyclic tests */
2151 	}
2152 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2153 		tag = PAGECACHE_TAG_TOWRITE;
2154 	else
2155 		tag = PAGECACHE_TAG_DIRTY;
2156 retry:
2157 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2158 		tag_pages_for_writeback(mapping, index, end);
2159 	done_index = index;
2160 	while (!done && (index <= end)) {
2161 		int i;
2162 
2163 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2164 				tag);
2165 		if (nr_pages == 0)
2166 			break;
2167 
2168 		for (i = 0; i < nr_pages; i++) {
2169 			struct page *page = pvec.pages[i];
2170 			bool submitted = false;
2171 
2172 			/* give a priority to WB_SYNC threads */
2173 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2174 					wbc->sync_mode == WB_SYNC_NONE) {
2175 				done = 1;
2176 				break;
2177 			}
2178 
2179 			done_index = page->index;
2180 retry_write:
2181 			lock_page(page);
2182 
2183 			if (unlikely(page->mapping != mapping)) {
2184 continue_unlock:
2185 				unlock_page(page);
2186 				continue;
2187 			}
2188 
2189 			if (!PageDirty(page)) {
2190 				/* someone wrote it for us */
2191 				goto continue_unlock;
2192 			}
2193 
2194 			if (PageWriteback(page)) {
2195 				if (wbc->sync_mode != WB_SYNC_NONE)
2196 					f2fs_wait_on_page_writeback(page,
2197 							DATA, true, true);
2198 				else
2199 					goto continue_unlock;
2200 			}
2201 
2202 			if (!clear_page_dirty_for_io(page))
2203 				goto continue_unlock;
2204 
2205 			ret = __write_data_page(page, &submitted, wbc, io_type);
2206 			if (unlikely(ret)) {
2207 				/*
2208 				 * keep nr_to_write, since vfs uses this to
2209 				 * get # of written pages.
2210 				 */
2211 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2212 					unlock_page(page);
2213 					ret = 0;
2214 					continue;
2215 				} else if (ret == -EAGAIN) {
2216 					ret = 0;
2217 					if (wbc->sync_mode == WB_SYNC_ALL) {
2218 						cond_resched();
2219 						congestion_wait(BLK_RW_ASYNC,
2220 									HZ/50);
2221 						goto retry_write;
2222 					}
2223 					continue;
2224 				}
2225 				done_index = page->index + 1;
2226 				done = 1;
2227 				break;
2228 			} else if (submitted) {
2229 				nwritten++;
2230 			}
2231 
2232 			if (--wbc->nr_to_write <= 0 &&
2233 					wbc->sync_mode == WB_SYNC_NONE) {
2234 				done = 1;
2235 				break;
2236 			}
2237 		}
2238 		pagevec_release(&pvec);
2239 		cond_resched();
2240 	}
2241 
2242 	if (!cycled && !done) {
2243 		cycled = 1;
2244 		index = 0;
2245 		end = writeback_index - 1;
2246 		goto retry;
2247 	}
2248 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2249 		mapping->writeback_index = done_index;
2250 
2251 	if (nwritten)
2252 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2253 								NULL, 0, DATA);
2254 
2255 	return ret;
2256 }
2257 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)2258 static inline bool __should_serialize_io(struct inode *inode,
2259 					struct writeback_control *wbc)
2260 {
2261 	if (!S_ISREG(inode->i_mode))
2262 		return false;
2263 	if (IS_NOQUOTA(inode))
2264 		return false;
2265 	if (wbc->sync_mode != WB_SYNC_ALL)
2266 		return true;
2267 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2268 		return true;
2269 	return false;
2270 }
2271 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2272 static int __f2fs_write_data_pages(struct address_space *mapping,
2273 						struct writeback_control *wbc,
2274 						enum iostat_type io_type)
2275 {
2276 	struct inode *inode = mapping->host;
2277 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2278 	struct blk_plug plug;
2279 	int ret;
2280 	bool locked = false;
2281 
2282 	/* deal with chardevs and other special file */
2283 	if (!mapping->a_ops->writepage)
2284 		return 0;
2285 
2286 	/* skip writing if there is no dirty page in this inode */
2287 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2288 		return 0;
2289 
2290 	/* during POR, we don't need to trigger writepage at all. */
2291 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2292 		goto skip_write;
2293 
2294 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2295 			wbc->sync_mode == WB_SYNC_NONE &&
2296 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2297 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2298 		goto skip_write;
2299 
2300 	/* skip writing during file defragment */
2301 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2302 		goto skip_write;
2303 
2304 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2305 
2306 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2307 	if (wbc->sync_mode == WB_SYNC_ALL)
2308 		atomic_inc(&sbi->wb_sync_req[DATA]);
2309 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2310 		goto skip_write;
2311 
2312 	if (__should_serialize_io(inode, wbc)) {
2313 		mutex_lock(&sbi->writepages);
2314 		locked = true;
2315 	}
2316 
2317 	blk_start_plug(&plug);
2318 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2319 	blk_finish_plug(&plug);
2320 
2321 	if (locked)
2322 		mutex_unlock(&sbi->writepages);
2323 
2324 	if (wbc->sync_mode == WB_SYNC_ALL)
2325 		atomic_dec(&sbi->wb_sync_req[DATA]);
2326 	/*
2327 	 * if some pages were truncated, we cannot guarantee its mapping->host
2328 	 * to detect pending bios.
2329 	 */
2330 
2331 	f2fs_remove_dirty_inode(inode);
2332 	return ret;
2333 
2334 skip_write:
2335 	wbc->pages_skipped += get_dirty_pages(inode);
2336 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2337 	return 0;
2338 }
2339 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)2340 static int f2fs_write_data_pages(struct address_space *mapping,
2341 			    struct writeback_control *wbc)
2342 {
2343 	struct inode *inode = mapping->host;
2344 
2345 	return __f2fs_write_data_pages(mapping, wbc,
2346 			F2FS_I(inode)->cp_task == current ?
2347 			FS_CP_DATA_IO : FS_DATA_IO);
2348 }
2349 
f2fs_write_failed(struct address_space * mapping,loff_t to)2350 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2351 {
2352 	struct inode *inode = mapping->host;
2353 	loff_t i_size = i_size_read(inode);
2354 
2355 	if (to > i_size) {
2356 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2357 		down_write(&F2FS_I(inode)->i_mmap_sem);
2358 
2359 		truncate_pagecache(inode, i_size);
2360 		if (!IS_NOQUOTA(inode))
2361 			f2fs_truncate_blocks(inode, i_size, true);
2362 
2363 		up_write(&F2FS_I(inode)->i_mmap_sem);
2364 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2365 	}
2366 }
2367 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)2368 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2369 			struct page *page, loff_t pos, unsigned len,
2370 			block_t *blk_addr, bool *node_changed)
2371 {
2372 	struct inode *inode = page->mapping->host;
2373 	pgoff_t index = page->index;
2374 	struct dnode_of_data dn;
2375 	struct page *ipage;
2376 	bool locked = false;
2377 	struct extent_info ei = {0,0,0};
2378 	int err = 0;
2379 	int flag;
2380 
2381 	/*
2382 	 * we already allocated all the blocks, so we don't need to get
2383 	 * the block addresses when there is no need to fill the page.
2384 	 */
2385 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2386 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2387 		return 0;
2388 
2389 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2390 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2391 		flag = F2FS_GET_BLOCK_DEFAULT;
2392 	else
2393 		flag = F2FS_GET_BLOCK_PRE_AIO;
2394 
2395 	if (f2fs_has_inline_data(inode) ||
2396 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2397 		__do_map_lock(sbi, flag, true);
2398 		locked = true;
2399 	}
2400 restart:
2401 	/* check inline_data */
2402 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2403 	if (IS_ERR(ipage)) {
2404 		err = PTR_ERR(ipage);
2405 		goto unlock_out;
2406 	}
2407 
2408 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2409 
2410 	if (f2fs_has_inline_data(inode)) {
2411 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2412 			f2fs_do_read_inline_data(page, ipage);
2413 			set_inode_flag(inode, FI_DATA_EXIST);
2414 			if (inode->i_nlink)
2415 				set_inline_node(ipage);
2416 		} else {
2417 			err = f2fs_convert_inline_page(&dn, page);
2418 			if (err)
2419 				goto out;
2420 			if (dn.data_blkaddr == NULL_ADDR)
2421 				err = f2fs_get_block(&dn, index);
2422 		}
2423 	} else if (locked) {
2424 		err = f2fs_get_block(&dn, index);
2425 	} else {
2426 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2427 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2428 		} else {
2429 			/* hole case */
2430 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2431 			if (err || dn.data_blkaddr == NULL_ADDR) {
2432 				f2fs_put_dnode(&dn);
2433 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2434 								true);
2435 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2436 				locked = true;
2437 				goto restart;
2438 			}
2439 		}
2440 	}
2441 
2442 	/* convert_inline_page can make node_changed */
2443 	*blk_addr = dn.data_blkaddr;
2444 	*node_changed = dn.node_changed;
2445 out:
2446 	f2fs_put_dnode(&dn);
2447 unlock_out:
2448 	if (locked)
2449 		__do_map_lock(sbi, flag, false);
2450 	return err;
2451 }
2452 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2453 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2454 		loff_t pos, unsigned len, unsigned flags,
2455 		struct page **pagep, void **fsdata)
2456 {
2457 	struct inode *inode = mapping->host;
2458 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2459 	struct page *page = NULL;
2460 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2461 	bool need_balance = false, drop_atomic = false;
2462 	block_t blkaddr = NULL_ADDR;
2463 	int err = 0;
2464 
2465 	if (trace_android_fs_datawrite_start_enabled()) {
2466 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2467 
2468 		path = android_fstrace_get_pathname(pathbuf,
2469 						    MAX_TRACE_PATHBUF_LEN,
2470 						    inode);
2471 		trace_android_fs_datawrite_start(inode, pos, len,
2472 						 current->pid, path,
2473 						 current->comm);
2474 	}
2475 	trace_f2fs_write_begin(inode, pos, len, flags);
2476 
2477 	err = f2fs_is_checkpoint_ready(sbi);
2478 	if (err)
2479 		goto fail;
2480 
2481 	if ((f2fs_is_atomic_file(inode) &&
2482 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2483 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2484 		err = -ENOMEM;
2485 		drop_atomic = true;
2486 		goto fail;
2487 	}
2488 
2489 	/*
2490 	 * We should check this at this moment to avoid deadlock on inode page
2491 	 * and #0 page. The locking rule for inline_data conversion should be:
2492 	 * lock_page(page #0) -> lock_page(inode_page)
2493 	 */
2494 	if (index != 0) {
2495 		err = f2fs_convert_inline_inode(inode);
2496 		if (err)
2497 			goto fail;
2498 	}
2499 repeat:
2500 	/*
2501 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2502 	 * wait_for_stable_page. Will wait that below with our IO control.
2503 	 */
2504 	page = f2fs_pagecache_get_page(mapping, index,
2505 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2506 	if (!page) {
2507 		err = -ENOMEM;
2508 		goto fail;
2509 	}
2510 
2511 	*pagep = page;
2512 
2513 	err = prepare_write_begin(sbi, page, pos, len,
2514 					&blkaddr, &need_balance);
2515 	if (err)
2516 		goto fail;
2517 
2518 	if (need_balance && !IS_NOQUOTA(inode) &&
2519 			has_not_enough_free_secs(sbi, 0, 0)) {
2520 		unlock_page(page);
2521 		f2fs_balance_fs(sbi, true);
2522 		lock_page(page);
2523 		if (page->mapping != mapping) {
2524 			/* The page got truncated from under us */
2525 			f2fs_put_page(page, 1);
2526 			goto repeat;
2527 		}
2528 	}
2529 
2530 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2531 
2532 	if (len == PAGE_SIZE || PageUptodate(page))
2533 		return 0;
2534 
2535 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2536 		zero_user_segment(page, len, PAGE_SIZE);
2537 		return 0;
2538 	}
2539 
2540 	if (blkaddr == NEW_ADDR) {
2541 		zero_user_segment(page, 0, PAGE_SIZE);
2542 		SetPageUptodate(page);
2543 	} else {
2544 		err = f2fs_submit_page_read(inode, page, blkaddr);
2545 		if (err)
2546 			goto fail;
2547 
2548 		lock_page(page);
2549 		if (unlikely(page->mapping != mapping)) {
2550 			f2fs_put_page(page, 1);
2551 			goto repeat;
2552 		}
2553 		if (unlikely(!PageUptodate(page))) {
2554 			err = -EIO;
2555 			goto fail;
2556 		}
2557 	}
2558 	return 0;
2559 
2560 fail:
2561 	f2fs_put_page(page, 1);
2562 	f2fs_write_failed(mapping, pos + len);
2563 	if (drop_atomic)
2564 		f2fs_drop_inmem_pages_all(sbi, false);
2565 	return err;
2566 }
2567 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2568 static int f2fs_write_end(struct file *file,
2569 			struct address_space *mapping,
2570 			loff_t pos, unsigned len, unsigned copied,
2571 			struct page *page, void *fsdata)
2572 {
2573 	struct inode *inode = page->mapping->host;
2574 
2575 	trace_android_fs_datawrite_end(inode, pos, len);
2576 	trace_f2fs_write_end(inode, pos, len, copied);
2577 
2578 	/*
2579 	 * This should be come from len == PAGE_SIZE, and we expect copied
2580 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2581 	 * let generic_perform_write() try to copy data again through copied=0.
2582 	 */
2583 	if (!PageUptodate(page)) {
2584 		if (unlikely(copied != len))
2585 			copied = 0;
2586 		else
2587 			SetPageUptodate(page);
2588 	}
2589 	if (!copied)
2590 		goto unlock_out;
2591 
2592 	set_page_dirty(page);
2593 
2594 	if (pos + copied > i_size_read(inode))
2595 		f2fs_i_size_write(inode, pos + copied);
2596 unlock_out:
2597 	f2fs_put_page(page, 1);
2598 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2599 	return copied;
2600 }
2601 
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)2602 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2603 			   loff_t offset)
2604 {
2605 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2606 	unsigned blkbits = i_blkbits;
2607 	unsigned blocksize_mask = (1 << blkbits) - 1;
2608 	unsigned long align = offset | iov_iter_alignment(iter);
2609 	struct block_device *bdev = inode->i_sb->s_bdev;
2610 
2611 	if (align & blocksize_mask) {
2612 		if (bdev)
2613 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2614 		blocksize_mask = (1 << blkbits) - 1;
2615 		if (align & blocksize_mask)
2616 			return -EINVAL;
2617 		return 1;
2618 	}
2619 	return 0;
2620 }
2621 
f2fs_dio_end_io(struct bio * bio)2622 static void f2fs_dio_end_io(struct bio *bio)
2623 {
2624 	struct f2fs_private_dio *dio = bio->bi_private;
2625 
2626 	dec_page_count(F2FS_I_SB(dio->inode),
2627 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2628 
2629 	bio->bi_private = dio->orig_private;
2630 	bio->bi_end_io = dio->orig_end_io;
2631 
2632 	kvfree(dio);
2633 
2634 	bio_endio(bio);
2635 }
2636 
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)2637 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2638 							loff_t file_offset)
2639 {
2640 	struct f2fs_private_dio *dio;
2641 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2642 
2643 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2644 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2645 	if (!dio)
2646 		goto out;
2647 
2648 	dio->inode = inode;
2649 	dio->orig_end_io = bio->bi_end_io;
2650 	dio->orig_private = bio->bi_private;
2651 	dio->write = write;
2652 
2653 	bio->bi_end_io = f2fs_dio_end_io;
2654 	bio->bi_private = dio;
2655 
2656 	inc_page_count(F2FS_I_SB(inode),
2657 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2658 
2659 	submit_bio(bio);
2660 	return;
2661 out:
2662 	bio->bi_status = BLK_STS_IOERR;
2663 	bio_endio(bio);
2664 }
2665 
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2666 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2667 {
2668 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2669 	struct inode *inode = mapping->host;
2670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2671 	struct f2fs_inode_info *fi = F2FS_I(inode);
2672 	size_t count = iov_iter_count(iter);
2673 	loff_t offset = iocb->ki_pos;
2674 	int rw = iov_iter_rw(iter);
2675 	int err;
2676 	enum rw_hint hint = iocb->ki_hint;
2677 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2678 	bool do_opu;
2679 
2680 	err = check_direct_IO(inode, iter, offset);
2681 	if (err)
2682 		return err < 0 ? err : 0;
2683 
2684 	if (f2fs_force_buffered_io(inode, iocb, iter))
2685 		return 0;
2686 
2687 	do_opu = allow_outplace_dio(inode, iocb, iter);
2688 
2689 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2690 
2691 	if (trace_android_fs_dataread_start_enabled() &&
2692 	    (rw == READ)) {
2693 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2694 
2695 		path = android_fstrace_get_pathname(pathbuf,
2696 						    MAX_TRACE_PATHBUF_LEN,
2697 						    inode);
2698 		trace_android_fs_dataread_start(inode, offset,
2699 						count, current->pid, path,
2700 						current->comm);
2701 	}
2702 	if (trace_android_fs_datawrite_start_enabled() &&
2703 	    (rw == WRITE)) {
2704 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2705 
2706 		path = android_fstrace_get_pathname(pathbuf,
2707 						    MAX_TRACE_PATHBUF_LEN,
2708 						    inode);
2709 		trace_android_fs_datawrite_start(inode, offset, count,
2710 						 current->pid, path,
2711 						 current->comm);
2712 	}
2713 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2714 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2715 
2716 	if (iocb->ki_flags & IOCB_NOWAIT) {
2717 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2718 			iocb->ki_hint = hint;
2719 			err = -EAGAIN;
2720 			goto out;
2721 		}
2722 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2723 			up_read(&fi->i_gc_rwsem[rw]);
2724 			iocb->ki_hint = hint;
2725 			err = -EAGAIN;
2726 			goto out;
2727 		}
2728 	} else {
2729 		down_read(&fi->i_gc_rwsem[rw]);
2730 		if (do_opu)
2731 			down_read(&fi->i_gc_rwsem[READ]);
2732 	}
2733 
2734 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2735 			iter, rw == WRITE ? get_data_block_dio_write :
2736 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2737 			DIO_LOCKING | DIO_SKIP_HOLES);
2738 
2739 	if (do_opu)
2740 		up_read(&fi->i_gc_rwsem[READ]);
2741 
2742 	up_read(&fi->i_gc_rwsem[rw]);
2743 
2744 	if (rw == WRITE) {
2745 		if (whint_mode == WHINT_MODE_OFF)
2746 			iocb->ki_hint = hint;
2747 		if (err > 0) {
2748 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2749 									err);
2750 			if (!do_opu)
2751 				set_inode_flag(inode, FI_UPDATE_WRITE);
2752 		} else if (err < 0) {
2753 			f2fs_write_failed(mapping, offset + count);
2754 		}
2755 	}
2756 out:
2757 	if (trace_android_fs_dataread_start_enabled() &&
2758 	    (rw == READ))
2759 		trace_android_fs_dataread_end(inode, offset, count);
2760 	if (trace_android_fs_datawrite_start_enabled() &&
2761 	    (rw == WRITE))
2762 		trace_android_fs_datawrite_end(inode, offset, count);
2763 
2764 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2765 
2766 	return err;
2767 }
2768 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)2769 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2770 							unsigned int length)
2771 {
2772 	struct inode *inode = page->mapping->host;
2773 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2774 
2775 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2776 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2777 		return;
2778 
2779 	if (PageDirty(page)) {
2780 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2781 			dec_page_count(sbi, F2FS_DIRTY_META);
2782 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2783 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2784 		} else {
2785 			inode_dec_dirty_pages(inode);
2786 			f2fs_remove_dirty_inode(inode);
2787 		}
2788 	}
2789 
2790 	clear_cold_data(page);
2791 
2792 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2793 		return f2fs_drop_inmem_page(inode, page);
2794 
2795 	f2fs_clear_page_private(page);
2796 }
2797 
f2fs_release_page(struct page * page,gfp_t wait)2798 int f2fs_release_page(struct page *page, gfp_t wait)
2799 {
2800 	/* If this is dirty page, keep PagePrivate */
2801 	if (PageDirty(page))
2802 		return 0;
2803 
2804 	/* This is atomic written page, keep Private */
2805 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2806 		return 0;
2807 
2808 	clear_cold_data(page);
2809 	f2fs_clear_page_private(page);
2810 	return 1;
2811 }
2812 
f2fs_set_data_page_dirty(struct page * page)2813 static int f2fs_set_data_page_dirty(struct page *page)
2814 {
2815 	struct address_space *mapping = page->mapping;
2816 	struct inode *inode = mapping->host;
2817 
2818 	trace_f2fs_set_page_dirty(page, DATA);
2819 
2820 	if (!PageUptodate(page))
2821 		SetPageUptodate(page);
2822 
2823 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2824 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2825 			f2fs_register_inmem_page(inode, page);
2826 			return 1;
2827 		}
2828 		/*
2829 		 * Previously, this page has been registered, we just
2830 		 * return here.
2831 		 */
2832 		return 0;
2833 	}
2834 
2835 	if (!PageDirty(page)) {
2836 		__set_page_dirty_nobuffers(page);
2837 		f2fs_update_dirty_page(inode, page);
2838 		return 1;
2839 	}
2840 	return 0;
2841 }
2842 
f2fs_bmap(struct address_space * mapping,sector_t block)2843 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2844 {
2845 	struct inode *inode = mapping->host;
2846 
2847 	if (f2fs_has_inline_data(inode))
2848 		return 0;
2849 
2850 	/* make sure allocating whole blocks */
2851 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2852 		filemap_write_and_wait(mapping);
2853 
2854 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2855 }
2856 
2857 #ifdef CONFIG_MIGRATION
2858 #include <linux/migrate.h>
2859 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2860 int f2fs_migrate_page(struct address_space *mapping,
2861 		struct page *newpage, struct page *page, enum migrate_mode mode)
2862 {
2863 	int rc, extra_count;
2864 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2865 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2866 
2867 	BUG_ON(PageWriteback(page));
2868 
2869 	/* migrating an atomic written page is safe with the inmem_lock hold */
2870 	if (atomic_written) {
2871 		if (mode != MIGRATE_SYNC)
2872 			return -EBUSY;
2873 		if (!mutex_trylock(&fi->inmem_lock))
2874 			return -EAGAIN;
2875 	}
2876 
2877 	/* one extra reference was held for atomic_write page */
2878 	extra_count = atomic_written ? 1 : 0;
2879 	rc = migrate_page_move_mapping(mapping, newpage,
2880 				page, NULL, mode, extra_count);
2881 	if (rc != MIGRATEPAGE_SUCCESS) {
2882 		if (atomic_written)
2883 			mutex_unlock(&fi->inmem_lock);
2884 		return rc;
2885 	}
2886 
2887 	if (atomic_written) {
2888 		struct inmem_pages *cur;
2889 		list_for_each_entry(cur, &fi->inmem_pages, list)
2890 			if (cur->page == page) {
2891 				cur->page = newpage;
2892 				break;
2893 			}
2894 		mutex_unlock(&fi->inmem_lock);
2895 		put_page(page);
2896 		get_page(newpage);
2897 	}
2898 
2899 	if (PagePrivate(page)) {
2900 		f2fs_set_page_private(newpage, page_private(page));
2901 		f2fs_clear_page_private(page);
2902 	}
2903 
2904 	if (mode != MIGRATE_SYNC_NO_COPY)
2905 		migrate_page_copy(newpage, page);
2906 	else
2907 		migrate_page_states(newpage, page);
2908 
2909 	return MIGRATEPAGE_SUCCESS;
2910 }
2911 #endif
2912 
2913 const struct address_space_operations f2fs_dblock_aops = {
2914 	.readpage	= f2fs_read_data_page,
2915 	.readpages	= f2fs_read_data_pages,
2916 	.writepage	= f2fs_write_data_page,
2917 	.writepages	= f2fs_write_data_pages,
2918 	.write_begin	= f2fs_write_begin,
2919 	.write_end	= f2fs_write_end,
2920 	.set_page_dirty	= f2fs_set_data_page_dirty,
2921 	.invalidatepage	= f2fs_invalidate_page,
2922 	.releasepage	= f2fs_release_page,
2923 	.direct_IO	= f2fs_direct_IO,
2924 	.bmap		= f2fs_bmap,
2925 #ifdef CONFIG_MIGRATION
2926 	.migratepage    = f2fs_migrate_page,
2927 #endif
2928 };
2929 
f2fs_clear_radix_tree_dirty_tag(struct page * page)2930 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2931 {
2932 	struct address_space *mapping = page_mapping(page);
2933 	unsigned long flags;
2934 
2935 	spin_lock_irqsave(&mapping->tree_lock, flags);
2936 	radix_tree_tag_clear(&mapping->page_tree, page_index(page),
2937 					PAGECACHE_TAG_DIRTY);
2938 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
2939 }
2940 
f2fs_init_post_read_processing(void)2941 int __init f2fs_init_post_read_processing(void)
2942 {
2943 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2944 	if (!bio_post_read_ctx_cache)
2945 		goto fail;
2946 	bio_post_read_ctx_pool =
2947 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2948 					 bio_post_read_ctx_cache);
2949 	if (!bio_post_read_ctx_pool)
2950 		goto fail_free_cache;
2951 	return 0;
2952 
2953 fail_free_cache:
2954 	kmem_cache_destroy(bio_post_read_ctx_cache);
2955 fail:
2956 	return -ENOMEM;
2957 }
2958 
f2fs_destroy_post_read_processing(void)2959 void __exit f2fs_destroy_post_read_processing(void)
2960 {
2961 	mempool_destroy(bio_post_read_ctx_pool);
2962 	kmem_cache_destroy(bio_post_read_ctx_cache);
2963 }
2964