1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 */
5
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/pgtable.h>
14 #include <asm/tlbflush.h>
15 #include <arch.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
19 #include <skas.h>
20
21 /*
22 * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by
23 * segv().
24 */
handle_page_fault(unsigned long address,unsigned long ip,int is_write,int is_user,int * code_out)25 int handle_page_fault(unsigned long address, unsigned long ip,
26 int is_write, int is_user, int *code_out)
27 {
28 struct mm_struct *mm = current->mm;
29 struct vm_area_struct *vma;
30 pgd_t *pgd;
31 pud_t *pud;
32 pmd_t *pmd;
33 pte_t *pte;
34 int err = -EFAULT;
35 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
36
37 *code_out = SEGV_MAPERR;
38
39 /*
40 * If the fault was with pagefaults disabled, don't take the fault, just
41 * fail.
42 */
43 if (faulthandler_disabled())
44 goto out_nosemaphore;
45
46 if (is_user)
47 flags |= FAULT_FLAG_USER;
48 retry:
49 down_read(&mm->mmap_sem);
50 vma = find_vma(mm, address);
51 if (!vma)
52 goto out;
53 else if (vma->vm_start <= address)
54 goto good_area;
55 else if (!(vma->vm_flags & VM_GROWSDOWN))
56 goto out;
57 else if (is_user && !ARCH_IS_STACKGROW(address))
58 goto out;
59 else if (expand_stack(vma, address))
60 goto out;
61
62 good_area:
63 *code_out = SEGV_ACCERR;
64 if (is_write) {
65 if (!(vma->vm_flags & VM_WRITE))
66 goto out;
67 flags |= FAULT_FLAG_WRITE;
68 } else {
69 /* Don't require VM_READ|VM_EXEC for write faults! */
70 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
71 goto out;
72 }
73
74 do {
75 int fault;
76
77 fault = handle_mm_fault(vma, address, flags);
78
79 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
80 goto out_nosemaphore;
81
82 if (unlikely(fault & VM_FAULT_ERROR)) {
83 if (fault & VM_FAULT_OOM) {
84 goto out_of_memory;
85 } else if (fault & VM_FAULT_SIGSEGV) {
86 goto out;
87 } else if (fault & VM_FAULT_SIGBUS) {
88 err = -EACCES;
89 goto out;
90 }
91 BUG();
92 }
93 if (flags & FAULT_FLAG_ALLOW_RETRY) {
94 if (fault & VM_FAULT_MAJOR)
95 current->maj_flt++;
96 else
97 current->min_flt++;
98 if (fault & VM_FAULT_RETRY) {
99 flags &= ~FAULT_FLAG_ALLOW_RETRY;
100 flags |= FAULT_FLAG_TRIED;
101
102 goto retry;
103 }
104 }
105
106 pgd = pgd_offset(mm, address);
107 pud = pud_offset(pgd, address);
108 pmd = pmd_offset(pud, address);
109 pte = pte_offset_kernel(pmd, address);
110 } while (!pte_present(*pte));
111 err = 0;
112 /*
113 * The below warning was added in place of
114 * pte_mkyoung(); if (is_write) pte_mkdirty();
115 * If it's triggered, we'd see normally a hang here (a clean pte is
116 * marked read-only to emulate the dirty bit).
117 * However, the generic code can mark a PTE writable but clean on a
118 * concurrent read fault, triggering this harmlessly. So comment it out.
119 */
120 #if 0
121 WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
122 #endif
123 flush_tlb_page(vma, address);
124 out:
125 up_read(&mm->mmap_sem);
126 out_nosemaphore:
127 return err;
128
129 out_of_memory:
130 /*
131 * We ran out of memory, call the OOM killer, and return the userspace
132 * (which will retry the fault, or kill us if we got oom-killed).
133 */
134 up_read(&mm->mmap_sem);
135 if (!is_user)
136 goto out_nosemaphore;
137 pagefault_out_of_memory();
138 return 0;
139 }
140 EXPORT_SYMBOL(handle_page_fault);
141
show_segv_info(struct uml_pt_regs * regs)142 static void show_segv_info(struct uml_pt_regs *regs)
143 {
144 struct task_struct *tsk = current;
145 struct faultinfo *fi = UPT_FAULTINFO(regs);
146
147 if (!unhandled_signal(tsk, SIGSEGV))
148 return;
149
150 if (!printk_ratelimit())
151 return;
152
153 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
154 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
155 tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
156 (void *)UPT_IP(regs), (void *)UPT_SP(regs),
157 fi->error_code);
158
159 print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
160 printk(KERN_CONT "\n");
161 }
162
bad_segv(struct faultinfo fi,unsigned long ip)163 static void bad_segv(struct faultinfo fi, unsigned long ip)
164 {
165 struct siginfo si;
166
167 si.si_signo = SIGSEGV;
168 si.si_code = SEGV_ACCERR;
169 si.si_addr = (void __user *) FAULT_ADDRESS(fi);
170 current->thread.arch.faultinfo = fi;
171 force_sig_info(SIGSEGV, &si, current);
172 }
173
fatal_sigsegv(void)174 void fatal_sigsegv(void)
175 {
176 force_sigsegv(SIGSEGV, current);
177 do_signal(¤t->thread.regs);
178 /*
179 * This is to tell gcc that we're not returning - do_signal
180 * can, in general, return, but in this case, it's not, since
181 * we just got a fatal SIGSEGV queued.
182 */
183 os_dump_core();
184 }
185
186 /**
187 * segv_handler() - the SIGSEGV handler
188 * @sig: the signal number
189 * @unused_si: the signal info struct; unused in this handler
190 * @regs: the ptrace register information
191 *
192 * The handler first extracts the faultinfo from the UML ptrace regs struct.
193 * If the userfault did not happen in an UML userspace process, bad_segv is called.
194 * Otherwise the signal did happen in a cloned userspace process, handle it.
195 */
segv_handler(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)196 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
197 {
198 struct faultinfo * fi = UPT_FAULTINFO(regs);
199
200 if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
201 show_segv_info(regs);
202 bad_segv(*fi, UPT_IP(regs));
203 return;
204 }
205 segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
206 }
207
208 /*
209 * We give a *copy* of the faultinfo in the regs to segv.
210 * This must be done, since nesting SEGVs could overwrite
211 * the info in the regs. A pointer to the info then would
212 * give us bad data!
213 */
segv(struct faultinfo fi,unsigned long ip,int is_user,struct uml_pt_regs * regs)214 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
215 struct uml_pt_regs *regs)
216 {
217 struct siginfo si;
218 jmp_buf *catcher;
219 int err;
220 int is_write = FAULT_WRITE(fi);
221 unsigned long address = FAULT_ADDRESS(fi);
222
223 if (!is_user && regs)
224 current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
225
226 if (!is_user && (address >= start_vm) && (address < end_vm)) {
227 flush_tlb_kernel_vm();
228 goto out;
229 }
230 else if (current->mm == NULL) {
231 show_regs(container_of(regs, struct pt_regs, regs));
232 panic("Segfault with no mm");
233 }
234 else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
235 show_regs(container_of(regs, struct pt_regs, regs));
236 panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
237 address, ip);
238 }
239
240 if (SEGV_IS_FIXABLE(&fi))
241 err = handle_page_fault(address, ip, is_write, is_user,
242 &si.si_code);
243 else {
244 err = -EFAULT;
245 /*
246 * A thread accessed NULL, we get a fault, but CR2 is invalid.
247 * This code is used in __do_copy_from_user() of TT mode.
248 * XXX tt mode is gone, so maybe this isn't needed any more
249 */
250 address = 0;
251 }
252
253 catcher = current->thread.fault_catcher;
254 if (!err)
255 goto out;
256 else if (catcher != NULL) {
257 current->thread.fault_addr = (void *) address;
258 UML_LONGJMP(catcher, 1);
259 }
260 else if (current->thread.fault_addr != NULL)
261 panic("fault_addr set but no fault catcher");
262 else if (!is_user && arch_fixup(ip, regs))
263 goto out;
264
265 if (!is_user) {
266 show_regs(container_of(regs, struct pt_regs, regs));
267 panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
268 address, ip);
269 }
270
271 show_segv_info(regs);
272
273 if (err == -EACCES) {
274 si.si_signo = SIGBUS;
275 si.si_errno = 0;
276 si.si_code = BUS_ADRERR;
277 si.si_addr = (void __user *)address;
278 current->thread.arch.faultinfo = fi;
279 force_sig_info(SIGBUS, &si, current);
280 } else {
281 BUG_ON(err != -EFAULT);
282 si.si_signo = SIGSEGV;
283 si.si_addr = (void __user *) address;
284 current->thread.arch.faultinfo = fi;
285 force_sig_info(SIGSEGV, &si, current);
286 }
287
288 out:
289 if (regs)
290 current->thread.segv_regs = NULL;
291
292 return 0;
293 }
294
relay_signal(int sig,struct siginfo * si,struct uml_pt_regs * regs)295 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
296 {
297 struct faultinfo *fi;
298 struct siginfo clean_si;
299
300 if (!UPT_IS_USER(regs)) {
301 if (sig == SIGBUS)
302 printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
303 "mount likely just ran out of space\n");
304 panic("Kernel mode signal %d", sig);
305 }
306
307 arch_examine_signal(sig, regs);
308
309 memset(&clean_si, 0, sizeof(clean_si));
310 clean_si.si_signo = si->si_signo;
311 clean_si.si_errno = si->si_errno;
312 clean_si.si_code = si->si_code;
313 switch (sig) {
314 case SIGILL:
315 case SIGFPE:
316 case SIGSEGV:
317 case SIGBUS:
318 case SIGTRAP:
319 fi = UPT_FAULTINFO(regs);
320 clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi);
321 current->thread.arch.faultinfo = *fi;
322 #ifdef __ARCH_SI_TRAPNO
323 clean_si.si_trapno = si->si_trapno;
324 #endif
325 break;
326 default:
327 printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n",
328 sig, si->si_code);
329 }
330
331 force_sig_info(sig, &clean_si, current);
332 }
333
bus_handler(int sig,struct siginfo * si,struct uml_pt_regs * regs)334 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
335 {
336 if (current->thread.fault_catcher != NULL)
337 UML_LONGJMP(current->thread.fault_catcher, 1);
338 else
339 relay_signal(sig, si, regs);
340 }
341
winch(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)342 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
343 {
344 do_IRQ(WINCH_IRQ, regs);
345 }
346
trap_init(void)347 void trap_init(void)
348 {
349 }
350