• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
con_flag_valid(unsigned long con_flag)105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
con_flag_set(struct ceph_connection * con,unsigned long con_flag)126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
con_flag_test(struct ceph_connection * con,unsigned long con_flag)133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170 
171 /*
172  * When skipping (ignoring) a block of input we read it into a "skip
173  * buffer," which is this many bytes in size.
174  */
175 #define SKIP_BUF_SIZE	1024
176 
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181 
182 /*
183  * Nicely render a sockaddr as a string.  An array of formatted
184  * strings is used, to approximate reentrancy.
185  */
186 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
187 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
190 
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 
194 static struct page *zero_page;		/* used in certain error cases */
195 
ceph_pr_addr(const struct sockaddr_storage * ss)196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 	int i;
199 	char *s;
200 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 
203 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 	s = addr_str[i];
205 
206 	switch (ss->ss_family) {
207 	case AF_INET:
208 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 			 ntohs(in4->sin_port));
210 		break;
211 
212 	case AF_INET6:
213 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 			 ntohs(in6->sin6_port));
215 		break;
216 
217 	default:
218 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 			 ss->ss_family);
220 	}
221 
222 	return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225 
encode_my_addr(struct ceph_messenger * msgr)226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 	ceph_encode_addr(&msgr->my_enc_addr);
230 }
231 
232 /*
233  * work queue for all reading and writing to/from the socket.
234  */
235 static struct workqueue_struct *ceph_msgr_wq;
236 
ceph_msgr_slab_init(void)237 static int ceph_msgr_slab_init(void)
238 {
239 	BUG_ON(ceph_msg_cache);
240 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 	if (!ceph_msg_cache)
242 		return -ENOMEM;
243 
244 	BUG_ON(ceph_msg_data_cache);
245 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 	if (ceph_msg_data_cache)
247 		return 0;
248 
249 	kmem_cache_destroy(ceph_msg_cache);
250 	ceph_msg_cache = NULL;
251 
252 	return -ENOMEM;
253 }
254 
ceph_msgr_slab_exit(void)255 static void ceph_msgr_slab_exit(void)
256 {
257 	BUG_ON(!ceph_msg_data_cache);
258 	kmem_cache_destroy(ceph_msg_data_cache);
259 	ceph_msg_data_cache = NULL;
260 
261 	BUG_ON(!ceph_msg_cache);
262 	kmem_cache_destroy(ceph_msg_cache);
263 	ceph_msg_cache = NULL;
264 }
265 
_ceph_msgr_exit(void)266 static void _ceph_msgr_exit(void)
267 {
268 	if (ceph_msgr_wq) {
269 		destroy_workqueue(ceph_msgr_wq);
270 		ceph_msgr_wq = NULL;
271 	}
272 
273 	BUG_ON(zero_page == NULL);
274 	put_page(zero_page);
275 	zero_page = NULL;
276 
277 	ceph_msgr_slab_exit();
278 }
279 
ceph_msgr_init(void)280 int ceph_msgr_init(void)
281 {
282 	if (ceph_msgr_slab_init())
283 		return -ENOMEM;
284 
285 	BUG_ON(zero_page != NULL);
286 	zero_page = ZERO_PAGE(0);
287 	get_page(zero_page);
288 
289 	/*
290 	 * The number of active work items is limited by the number of
291 	 * connections, so leave @max_active at default.
292 	 */
293 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 	if (ceph_msgr_wq)
295 		return 0;
296 
297 	pr_err("msgr_init failed to create workqueue\n");
298 	_ceph_msgr_exit();
299 
300 	return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303 
ceph_msgr_exit(void)304 void ceph_msgr_exit(void)
305 {
306 	BUG_ON(ceph_msgr_wq == NULL);
307 
308 	_ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311 
ceph_msgr_flush(void)312 void ceph_msgr_flush(void)
313 {
314 	flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317 
318 /* Connection socket state transition functions */
319 
con_sock_state_init(struct ceph_connection * con)320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 	int old_state;
323 
324 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 		printk("%s: unexpected old state %d\n", __func__, old_state);
327 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 	     CON_SOCK_STATE_CLOSED);
329 }
330 
con_sock_state_connecting(struct ceph_connection * con)331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 	int old_state;
334 
335 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 		printk("%s: unexpected old state %d\n", __func__, old_state);
338 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 	     CON_SOCK_STATE_CONNECTING);
340 }
341 
con_sock_state_connected(struct ceph_connection * con)342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 	int old_state;
345 
346 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 		printk("%s: unexpected old state %d\n", __func__, old_state);
349 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 	     CON_SOCK_STATE_CONNECTED);
351 }
352 
con_sock_state_closing(struct ceph_connection * con)353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 	int old_state;
356 
357 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 			old_state != CON_SOCK_STATE_CONNECTED &&
360 			old_state != CON_SOCK_STATE_CLOSING))
361 		printk("%s: unexpected old state %d\n", __func__, old_state);
362 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 	     CON_SOCK_STATE_CLOSING);
364 }
365 
con_sock_state_closed(struct ceph_connection * con)366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 	int old_state;
369 
370 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 		    old_state != CON_SOCK_STATE_CLOSING &&
373 		    old_state != CON_SOCK_STATE_CONNECTING &&
374 		    old_state != CON_SOCK_STATE_CLOSED))
375 		printk("%s: unexpected old state %d\n", __func__, old_state);
376 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 	     CON_SOCK_STATE_CLOSED);
378 }
379 
380 /*
381  * socket callback functions
382  */
383 
384 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 	struct ceph_connection *con = sk->sk_user_data;
388 	if (atomic_read(&con->msgr->stopping)) {
389 		return;
390 	}
391 
392 	if (sk->sk_state != TCP_CLOSE_WAIT) {
393 		dout("%s on %p state = %lu, queueing work\n", __func__,
394 		     con, con->state);
395 		queue_con(con);
396 	}
397 }
398 
399 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 	struct ceph_connection *con = sk->sk_user_data;
403 
404 	/* only queue to workqueue if there is data we want to write,
405 	 * and there is sufficient space in the socket buffer to accept
406 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
407 	 * doesn't get called again until try_write() fills the socket
408 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 	 * and net/core/stream.c:sk_stream_write_space().
410 	 */
411 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 		if (sk_stream_is_writeable(sk)) {
413 			dout("%s %p queueing write work\n", __func__, con);
414 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 			queue_con(con);
416 		}
417 	} else {
418 		dout("%s %p nothing to write\n", __func__, con);
419 	}
420 }
421 
422 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 	struct ceph_connection *con = sk->sk_user_data;
426 
427 	dout("%s %p state = %lu sk_state = %u\n", __func__,
428 	     con, con->state, sk->sk_state);
429 
430 	switch (sk->sk_state) {
431 	case TCP_CLOSE:
432 		dout("%s TCP_CLOSE\n", __func__);
433 	case TCP_CLOSE_WAIT:
434 		dout("%s TCP_CLOSE_WAIT\n", __func__);
435 		con_sock_state_closing(con);
436 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 		queue_con(con);
438 		break;
439 	case TCP_ESTABLISHED:
440 		dout("%s TCP_ESTABLISHED\n", __func__);
441 		con_sock_state_connected(con);
442 		queue_con(con);
443 		break;
444 	default:	/* Everything else is uninteresting */
445 		break;
446 	}
447 }
448 
449 /*
450  * set up socket callbacks
451  */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)452 static void set_sock_callbacks(struct socket *sock,
453 			       struct ceph_connection *con)
454 {
455 	struct sock *sk = sock->sk;
456 	sk->sk_user_data = con;
457 	sk->sk_data_ready = ceph_sock_data_ready;
458 	sk->sk_write_space = ceph_sock_write_space;
459 	sk->sk_state_change = ceph_sock_state_change;
460 }
461 
462 
463 /*
464  * socket helpers
465  */
466 
467 /*
468  * initiate connection to a remote socket.
469  */
ceph_tcp_connect(struct ceph_connection * con)470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 	struct socket *sock;
474 	unsigned int noio_flag;
475 	int ret;
476 
477 	BUG_ON(con->sock);
478 
479 	/* sock_create_kern() allocates with GFP_KERNEL */
480 	noio_flag = memalloc_noio_save();
481 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 			       SOCK_STREAM, IPPROTO_TCP, &sock);
483 	memalloc_noio_restore(noio_flag);
484 	if (ret)
485 		return ret;
486 	sock->sk->sk_allocation = GFP_NOFS;
487 
488 #ifdef CONFIG_LOCKDEP
489 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
490 #endif
491 
492 	set_sock_callbacks(sock, con);
493 
494 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
495 
496 	con_sock_state_connecting(con);
497 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
498 				 O_NONBLOCK);
499 	if (ret == -EINPROGRESS) {
500 		dout("connect %s EINPROGRESS sk_state = %u\n",
501 		     ceph_pr_addr(&con->peer_addr.in_addr),
502 		     sock->sk->sk_state);
503 	} else if (ret < 0) {
504 		pr_err("connect %s error %d\n",
505 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
506 		sock_release(sock);
507 		return ret;
508 	}
509 
510 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
511 		int optval = 1;
512 
513 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
514 					(char *)&optval, sizeof(optval));
515 		if (ret)
516 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 			       ret);
518 	}
519 
520 	con->sock = sock;
521 	return 0;
522 }
523 
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)524 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
525 {
526 	struct kvec iov = {buf, len};
527 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 	int r;
529 
530 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
531 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
532 	if (r == -EAGAIN)
533 		r = 0;
534 	return r;
535 }
536 
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
538 		     int page_offset, size_t length)
539 {
540 	struct bio_vec bvec = {
541 		.bv_page = page,
542 		.bv_offset = page_offset,
543 		.bv_len = length
544 	};
545 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 	int r;
547 
548 	BUG_ON(page_offset + length > PAGE_SIZE);
549 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
550 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
551 	if (r == -EAGAIN)
552 		r = 0;
553 	return r;
554 }
555 
556 /*
557  * write something.  @more is true if caller will be sending more data
558  * shortly.
559  */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)560 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
561 		     size_t kvlen, size_t len, int more)
562 {
563 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
564 	int r;
565 
566 	if (more)
567 		msg.msg_flags |= MSG_MORE;
568 	else
569 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
570 
571 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
572 	if (r == -EAGAIN)
573 		r = 0;
574 	return r;
575 }
576 
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)577 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
578 		     int offset, size_t size, bool more)
579 {
580 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
581 	int ret;
582 
583 	ret = kernel_sendpage(sock, page, offset, size, flags);
584 	if (ret == -EAGAIN)
585 		ret = 0;
586 
587 	return ret;
588 }
589 
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)590 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
591 		     int offset, size_t size, bool more)
592 {
593 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
594 	struct bio_vec bvec;
595 	int ret;
596 
597 	/*
598 	 * sendpage cannot properly handle pages with page_count == 0,
599 	 * we need to fall back to sendmsg if that's the case.
600 	 *
601 	 * Same goes for slab pages: skb_can_coalesce() allows
602 	 * coalescing neighboring slab objects into a single frag which
603 	 * triggers one of hardened usercopy checks.
604 	 */
605 	if (page_count(page) >= 1 && !PageSlab(page))
606 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
607 
608 	bvec.bv_page = page;
609 	bvec.bv_offset = offset;
610 	bvec.bv_len = size;
611 
612 	if (more)
613 		msg.msg_flags |= MSG_MORE;
614 	else
615 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
616 
617 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
618 	ret = sock_sendmsg(sock, &msg);
619 	if (ret == -EAGAIN)
620 		ret = 0;
621 
622 	return ret;
623 }
624 
625 /*
626  * Shutdown/close the socket for the given connection.
627  */
con_close_socket(struct ceph_connection * con)628 static int con_close_socket(struct ceph_connection *con)
629 {
630 	int rc = 0;
631 
632 	dout("con_close_socket on %p sock %p\n", con, con->sock);
633 	if (con->sock) {
634 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
635 		sock_release(con->sock);
636 		con->sock = NULL;
637 	}
638 
639 	/*
640 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
641 	 * independent of the connection mutex, and we could have
642 	 * received a socket close event before we had the chance to
643 	 * shut the socket down.
644 	 */
645 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
646 
647 	con_sock_state_closed(con);
648 	return rc;
649 }
650 
651 /*
652  * Reset a connection.  Discard all incoming and outgoing messages
653  * and clear *_seq state.
654  */
ceph_msg_remove(struct ceph_msg * msg)655 static void ceph_msg_remove(struct ceph_msg *msg)
656 {
657 	list_del_init(&msg->list_head);
658 
659 	ceph_msg_put(msg);
660 }
ceph_msg_remove_list(struct list_head * head)661 static void ceph_msg_remove_list(struct list_head *head)
662 {
663 	while (!list_empty(head)) {
664 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
665 							list_head);
666 		ceph_msg_remove(msg);
667 	}
668 }
669 
reset_connection(struct ceph_connection * con)670 static void reset_connection(struct ceph_connection *con)
671 {
672 	/* reset connection, out_queue, msg_ and connect_seq */
673 	/* discard existing out_queue and msg_seq */
674 	dout("reset_connection %p\n", con);
675 	ceph_msg_remove_list(&con->out_queue);
676 	ceph_msg_remove_list(&con->out_sent);
677 
678 	if (con->in_msg) {
679 		BUG_ON(con->in_msg->con != con);
680 		ceph_msg_put(con->in_msg);
681 		con->in_msg = NULL;
682 	}
683 
684 	con->connect_seq = 0;
685 	con->out_seq = 0;
686 	if (con->out_msg) {
687 		BUG_ON(con->out_msg->con != con);
688 		ceph_msg_put(con->out_msg);
689 		con->out_msg = NULL;
690 	}
691 	con->in_seq = 0;
692 	con->in_seq_acked = 0;
693 
694 	con->out_skip = 0;
695 }
696 
697 /*
698  * mark a peer down.  drop any open connections.
699  */
ceph_con_close(struct ceph_connection * con)700 void ceph_con_close(struct ceph_connection *con)
701 {
702 	mutex_lock(&con->mutex);
703 	dout("con_close %p peer %s\n", con,
704 	     ceph_pr_addr(&con->peer_addr.in_addr));
705 	con->state = CON_STATE_CLOSED;
706 
707 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
708 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
709 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
710 	con_flag_clear(con, CON_FLAG_BACKOFF);
711 
712 	reset_connection(con);
713 	con->peer_global_seq = 0;
714 	cancel_con(con);
715 	con_close_socket(con);
716 	mutex_unlock(&con->mutex);
717 }
718 EXPORT_SYMBOL(ceph_con_close);
719 
720 /*
721  * Reopen a closed connection, with a new peer address.
722  */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)723 void ceph_con_open(struct ceph_connection *con,
724 		   __u8 entity_type, __u64 entity_num,
725 		   struct ceph_entity_addr *addr)
726 {
727 	mutex_lock(&con->mutex);
728 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
729 
730 	WARN_ON(con->state != CON_STATE_CLOSED);
731 	con->state = CON_STATE_PREOPEN;
732 
733 	con->peer_name.type = (__u8) entity_type;
734 	con->peer_name.num = cpu_to_le64(entity_num);
735 
736 	memcpy(&con->peer_addr, addr, sizeof(*addr));
737 	con->delay = 0;      /* reset backoff memory */
738 	mutex_unlock(&con->mutex);
739 	queue_con(con);
740 }
741 EXPORT_SYMBOL(ceph_con_open);
742 
743 /*
744  * return true if this connection ever successfully opened
745  */
ceph_con_opened(struct ceph_connection * con)746 bool ceph_con_opened(struct ceph_connection *con)
747 {
748 	return con->connect_seq > 0;
749 }
750 
751 /*
752  * initialize a new connection.
753  */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)754 void ceph_con_init(struct ceph_connection *con, void *private,
755 	const struct ceph_connection_operations *ops,
756 	struct ceph_messenger *msgr)
757 {
758 	dout("con_init %p\n", con);
759 	memset(con, 0, sizeof(*con));
760 	con->private = private;
761 	con->ops = ops;
762 	con->msgr = msgr;
763 
764 	con_sock_state_init(con);
765 
766 	mutex_init(&con->mutex);
767 	INIT_LIST_HEAD(&con->out_queue);
768 	INIT_LIST_HEAD(&con->out_sent);
769 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
770 
771 	con->state = CON_STATE_CLOSED;
772 }
773 EXPORT_SYMBOL(ceph_con_init);
774 
775 
776 /*
777  * We maintain a global counter to order connection attempts.  Get
778  * a unique seq greater than @gt.
779  */
get_global_seq(struct ceph_messenger * msgr,u32 gt)780 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
781 {
782 	u32 ret;
783 
784 	spin_lock(&msgr->global_seq_lock);
785 	if (msgr->global_seq < gt)
786 		msgr->global_seq = gt;
787 	ret = ++msgr->global_seq;
788 	spin_unlock(&msgr->global_seq_lock);
789 	return ret;
790 }
791 
con_out_kvec_reset(struct ceph_connection * con)792 static void con_out_kvec_reset(struct ceph_connection *con)
793 {
794 	BUG_ON(con->out_skip);
795 
796 	con->out_kvec_left = 0;
797 	con->out_kvec_bytes = 0;
798 	con->out_kvec_cur = &con->out_kvec[0];
799 }
800 
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)801 static void con_out_kvec_add(struct ceph_connection *con,
802 				size_t size, void *data)
803 {
804 	int index = con->out_kvec_left;
805 
806 	BUG_ON(con->out_skip);
807 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
808 
809 	con->out_kvec[index].iov_len = size;
810 	con->out_kvec[index].iov_base = data;
811 	con->out_kvec_left++;
812 	con->out_kvec_bytes += size;
813 }
814 
815 /*
816  * Chop off a kvec from the end.  Return residual number of bytes for
817  * that kvec, i.e. how many bytes would have been written if the kvec
818  * hadn't been nuked.
819  */
con_out_kvec_skip(struct ceph_connection * con)820 static int con_out_kvec_skip(struct ceph_connection *con)
821 {
822 	int off = con->out_kvec_cur - con->out_kvec;
823 	int skip = 0;
824 
825 	if (con->out_kvec_bytes > 0) {
826 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
827 		BUG_ON(con->out_kvec_bytes < skip);
828 		BUG_ON(!con->out_kvec_left);
829 		con->out_kvec_bytes -= skip;
830 		con->out_kvec_left--;
831 	}
832 
833 	return skip;
834 }
835 
836 #ifdef CONFIG_BLOCK
837 
838 /*
839  * For a bio data item, a piece is whatever remains of the next
840  * entry in the current bio iovec, or the first entry in the next
841  * bio in the list.
842  */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)843 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
844 					size_t length)
845 {
846 	struct ceph_msg_data *data = cursor->data;
847 	struct bio *bio;
848 
849 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
850 
851 	bio = data->bio;
852 	BUG_ON(!bio);
853 
854 	cursor->resid = min(length, data->bio_length);
855 	cursor->bio = bio;
856 	cursor->bvec_iter = bio->bi_iter;
857 	cursor->last_piece =
858 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
859 }
860 
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)861 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
862 						size_t *page_offset,
863 						size_t *length)
864 {
865 	struct ceph_msg_data *data = cursor->data;
866 	struct bio *bio;
867 	struct bio_vec bio_vec;
868 
869 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
870 
871 	bio = cursor->bio;
872 	BUG_ON(!bio);
873 
874 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
875 
876 	*page_offset = (size_t) bio_vec.bv_offset;
877 	BUG_ON(*page_offset >= PAGE_SIZE);
878 	if (cursor->last_piece) /* pagelist offset is always 0 */
879 		*length = cursor->resid;
880 	else
881 		*length = (size_t) bio_vec.bv_len;
882 	BUG_ON(*length > cursor->resid);
883 	BUG_ON(*page_offset + *length > PAGE_SIZE);
884 
885 	return bio_vec.bv_page;
886 }
887 
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)888 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
889 					size_t bytes)
890 {
891 	struct bio *bio;
892 	struct bio_vec bio_vec;
893 
894 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
895 
896 	bio = cursor->bio;
897 	BUG_ON(!bio);
898 
899 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
900 
901 	/* Advance the cursor offset */
902 
903 	BUG_ON(cursor->resid < bytes);
904 	cursor->resid -= bytes;
905 
906 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
907 
908 	if (bytes < bio_vec.bv_len)
909 		return false;	/* more bytes to process in this segment */
910 
911 	/* Move on to the next segment, and possibly the next bio */
912 
913 	if (!cursor->bvec_iter.bi_size) {
914 		bio = bio->bi_next;
915 		cursor->bio = bio;
916 		if (bio)
917 			cursor->bvec_iter = bio->bi_iter;
918 		else
919 			memset(&cursor->bvec_iter, 0,
920 			       sizeof(cursor->bvec_iter));
921 	}
922 
923 	if (!cursor->last_piece) {
924 		BUG_ON(!cursor->resid);
925 		BUG_ON(!bio);
926 		/* A short read is OK, so use <= rather than == */
927 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
928 			cursor->last_piece = true;
929 	}
930 
931 	return true;
932 }
933 #endif /* CONFIG_BLOCK */
934 
935 /*
936  * For a page array, a piece comes from the first page in the array
937  * that has not already been fully consumed.
938  */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)939 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
940 					size_t length)
941 {
942 	struct ceph_msg_data *data = cursor->data;
943 	int page_count;
944 
945 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
946 
947 	BUG_ON(!data->pages);
948 	BUG_ON(!data->length);
949 
950 	cursor->resid = min(length, data->length);
951 	page_count = calc_pages_for(data->alignment, (u64)data->length);
952 	cursor->page_offset = data->alignment & ~PAGE_MASK;
953 	cursor->page_index = 0;
954 	BUG_ON(page_count > (int)USHRT_MAX);
955 	cursor->page_count = (unsigned short)page_count;
956 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
957 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
958 }
959 
960 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)961 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
962 					size_t *page_offset, size_t *length)
963 {
964 	struct ceph_msg_data *data = cursor->data;
965 
966 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
967 
968 	BUG_ON(cursor->page_index >= cursor->page_count);
969 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
970 
971 	*page_offset = cursor->page_offset;
972 	if (cursor->last_piece)
973 		*length = cursor->resid;
974 	else
975 		*length = PAGE_SIZE - *page_offset;
976 
977 	return data->pages[cursor->page_index];
978 }
979 
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)980 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
981 						size_t bytes)
982 {
983 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
984 
985 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
986 
987 	/* Advance the cursor page offset */
988 
989 	cursor->resid -= bytes;
990 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
991 	if (!bytes || cursor->page_offset)
992 		return false;	/* more bytes to process in the current page */
993 
994 	if (!cursor->resid)
995 		return false;   /* no more data */
996 
997 	/* Move on to the next page; offset is already at 0 */
998 
999 	BUG_ON(cursor->page_index >= cursor->page_count);
1000 	cursor->page_index++;
1001 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1002 
1003 	return true;
1004 }
1005 
1006 /*
1007  * For a pagelist, a piece is whatever remains to be consumed in the
1008  * first page in the list, or the front of the next page.
1009  */
1010 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)1011 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1012 					size_t length)
1013 {
1014 	struct ceph_msg_data *data = cursor->data;
1015 	struct ceph_pagelist *pagelist;
1016 	struct page *page;
1017 
1018 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1019 
1020 	pagelist = data->pagelist;
1021 	BUG_ON(!pagelist);
1022 
1023 	if (!length)
1024 		return;		/* pagelist can be assigned but empty */
1025 
1026 	BUG_ON(list_empty(&pagelist->head));
1027 	page = list_first_entry(&pagelist->head, struct page, lru);
1028 
1029 	cursor->resid = min(length, pagelist->length);
1030 	cursor->page = page;
1031 	cursor->offset = 0;
1032 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1033 }
1034 
1035 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1036 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1037 				size_t *page_offset, size_t *length)
1038 {
1039 	struct ceph_msg_data *data = cursor->data;
1040 	struct ceph_pagelist *pagelist;
1041 
1042 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1043 
1044 	pagelist = data->pagelist;
1045 	BUG_ON(!pagelist);
1046 
1047 	BUG_ON(!cursor->page);
1048 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1049 
1050 	/* offset of first page in pagelist is always 0 */
1051 	*page_offset = cursor->offset & ~PAGE_MASK;
1052 	if (cursor->last_piece)
1053 		*length = cursor->resid;
1054 	else
1055 		*length = PAGE_SIZE - *page_offset;
1056 
1057 	return cursor->page;
1058 }
1059 
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1060 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1061 						size_t bytes)
1062 {
1063 	struct ceph_msg_data *data = cursor->data;
1064 	struct ceph_pagelist *pagelist;
1065 
1066 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1067 
1068 	pagelist = data->pagelist;
1069 	BUG_ON(!pagelist);
1070 
1071 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1072 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1073 
1074 	/* Advance the cursor offset */
1075 
1076 	cursor->resid -= bytes;
1077 	cursor->offset += bytes;
1078 	/* offset of first page in pagelist is always 0 */
1079 	if (!bytes || cursor->offset & ~PAGE_MASK)
1080 		return false;	/* more bytes to process in the current page */
1081 
1082 	if (!cursor->resid)
1083 		return false;   /* no more data */
1084 
1085 	/* Move on to the next page */
1086 
1087 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1088 	cursor->page = list_next_entry(cursor->page, lru);
1089 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1090 
1091 	return true;
1092 }
1093 
1094 /*
1095  * Message data is handled (sent or received) in pieces, where each
1096  * piece resides on a single page.  The network layer might not
1097  * consume an entire piece at once.  A data item's cursor keeps
1098  * track of which piece is next to process and how much remains to
1099  * be processed in that piece.  It also tracks whether the current
1100  * piece is the last one in the data item.
1101  */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1102 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1103 {
1104 	size_t length = cursor->total_resid;
1105 
1106 	switch (cursor->data->type) {
1107 	case CEPH_MSG_DATA_PAGELIST:
1108 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1109 		break;
1110 	case CEPH_MSG_DATA_PAGES:
1111 		ceph_msg_data_pages_cursor_init(cursor, length);
1112 		break;
1113 #ifdef CONFIG_BLOCK
1114 	case CEPH_MSG_DATA_BIO:
1115 		ceph_msg_data_bio_cursor_init(cursor, length);
1116 		break;
1117 #endif /* CONFIG_BLOCK */
1118 	case CEPH_MSG_DATA_NONE:
1119 	default:
1120 		/* BUG(); */
1121 		break;
1122 	}
1123 	cursor->need_crc = true;
1124 }
1125 
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1126 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1127 {
1128 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1129 	struct ceph_msg_data *data;
1130 
1131 	BUG_ON(!length);
1132 	BUG_ON(length > msg->data_length);
1133 	BUG_ON(list_empty(&msg->data));
1134 
1135 	cursor->data_head = &msg->data;
1136 	cursor->total_resid = length;
1137 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1138 	cursor->data = data;
1139 
1140 	__ceph_msg_data_cursor_init(cursor);
1141 }
1142 
1143 /*
1144  * Return the page containing the next piece to process for a given
1145  * data item, and supply the page offset and length of that piece.
1146  * Indicate whether this is the last piece in this data item.
1147  */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1148 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1149 					size_t *page_offset, size_t *length,
1150 					bool *last_piece)
1151 {
1152 	struct page *page;
1153 
1154 	switch (cursor->data->type) {
1155 	case CEPH_MSG_DATA_PAGELIST:
1156 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1157 		break;
1158 	case CEPH_MSG_DATA_PAGES:
1159 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1160 		break;
1161 #ifdef CONFIG_BLOCK
1162 	case CEPH_MSG_DATA_BIO:
1163 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1164 		break;
1165 #endif /* CONFIG_BLOCK */
1166 	case CEPH_MSG_DATA_NONE:
1167 	default:
1168 		page = NULL;
1169 		break;
1170 	}
1171 	BUG_ON(!page);
1172 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1173 	BUG_ON(!*length);
1174 	if (last_piece)
1175 		*last_piece = cursor->last_piece;
1176 
1177 	return page;
1178 }
1179 
1180 /*
1181  * Returns true if the result moves the cursor on to the next piece
1182  * of the data item.
1183  */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1184 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1185 				  size_t bytes)
1186 {
1187 	bool new_piece;
1188 
1189 	BUG_ON(bytes > cursor->resid);
1190 	switch (cursor->data->type) {
1191 	case CEPH_MSG_DATA_PAGELIST:
1192 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1193 		break;
1194 	case CEPH_MSG_DATA_PAGES:
1195 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1196 		break;
1197 #ifdef CONFIG_BLOCK
1198 	case CEPH_MSG_DATA_BIO:
1199 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1200 		break;
1201 #endif /* CONFIG_BLOCK */
1202 	case CEPH_MSG_DATA_NONE:
1203 	default:
1204 		BUG();
1205 		break;
1206 	}
1207 	cursor->total_resid -= bytes;
1208 
1209 	if (!cursor->resid && cursor->total_resid) {
1210 		WARN_ON(!cursor->last_piece);
1211 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1212 		cursor->data = list_next_entry(cursor->data, links);
1213 		__ceph_msg_data_cursor_init(cursor);
1214 		new_piece = true;
1215 	}
1216 	cursor->need_crc = new_piece;
1217 }
1218 
sizeof_footer(struct ceph_connection * con)1219 static size_t sizeof_footer(struct ceph_connection *con)
1220 {
1221 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1222 	    sizeof(struct ceph_msg_footer) :
1223 	    sizeof(struct ceph_msg_footer_old);
1224 }
1225 
prepare_message_data(struct ceph_msg * msg,u32 data_len)1226 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1227 {
1228 	BUG_ON(!msg);
1229 	BUG_ON(!data_len);
1230 
1231 	/* Initialize data cursor */
1232 
1233 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1234 }
1235 
1236 /*
1237  * Prepare footer for currently outgoing message, and finish things
1238  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1239  */
prepare_write_message_footer(struct ceph_connection * con)1240 static void prepare_write_message_footer(struct ceph_connection *con)
1241 {
1242 	struct ceph_msg *m = con->out_msg;
1243 
1244 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1245 
1246 	dout("prepare_write_message_footer %p\n", con);
1247 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1248 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1249 		if (con->ops->sign_message)
1250 			con->ops->sign_message(m);
1251 		else
1252 			m->footer.sig = 0;
1253 	} else {
1254 		m->old_footer.flags = m->footer.flags;
1255 	}
1256 	con->out_more = m->more_to_follow;
1257 	con->out_msg_done = true;
1258 }
1259 
1260 /*
1261  * Prepare headers for the next outgoing message.
1262  */
prepare_write_message(struct ceph_connection * con)1263 static void prepare_write_message(struct ceph_connection *con)
1264 {
1265 	struct ceph_msg *m;
1266 	u32 crc;
1267 
1268 	con_out_kvec_reset(con);
1269 	con->out_msg_done = false;
1270 
1271 	/* Sneak an ack in there first?  If we can get it into the same
1272 	 * TCP packet that's a good thing. */
1273 	if (con->in_seq > con->in_seq_acked) {
1274 		con->in_seq_acked = con->in_seq;
1275 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1276 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1277 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1278 			&con->out_temp_ack);
1279 	}
1280 
1281 	BUG_ON(list_empty(&con->out_queue));
1282 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1283 	con->out_msg = m;
1284 	BUG_ON(m->con != con);
1285 
1286 	/* put message on sent list */
1287 	ceph_msg_get(m);
1288 	list_move_tail(&m->list_head, &con->out_sent);
1289 
1290 	/*
1291 	 * only assign outgoing seq # if we haven't sent this message
1292 	 * yet.  if it is requeued, resend with it's original seq.
1293 	 */
1294 	if (m->needs_out_seq) {
1295 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1296 		m->needs_out_seq = false;
1297 
1298 		if (con->ops->reencode_message)
1299 			con->ops->reencode_message(m);
1300 	}
1301 
1302 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1303 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1304 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1305 	     m->data_length);
1306 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1307 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1308 
1309 	/* tag + hdr + front + middle */
1310 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1311 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1312 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1313 
1314 	if (m->middle)
1315 		con_out_kvec_add(con, m->middle->vec.iov_len,
1316 			m->middle->vec.iov_base);
1317 
1318 	/* fill in hdr crc and finalize hdr */
1319 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1320 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1321 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1322 
1323 	/* fill in front and middle crc, footer */
1324 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1325 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1326 	if (m->middle) {
1327 		crc = crc32c(0, m->middle->vec.iov_base,
1328 				m->middle->vec.iov_len);
1329 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1330 	} else
1331 		con->out_msg->footer.middle_crc = 0;
1332 	dout("%s front_crc %u middle_crc %u\n", __func__,
1333 	     le32_to_cpu(con->out_msg->footer.front_crc),
1334 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1335 	con->out_msg->footer.flags = 0;
1336 
1337 	/* is there a data payload? */
1338 	con->out_msg->footer.data_crc = 0;
1339 	if (m->data_length) {
1340 		prepare_message_data(con->out_msg, m->data_length);
1341 		con->out_more = 1;  /* data + footer will follow */
1342 	} else {
1343 		/* no, queue up footer too and be done */
1344 		prepare_write_message_footer(con);
1345 	}
1346 
1347 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1348 }
1349 
1350 /*
1351  * Prepare an ack.
1352  */
prepare_write_ack(struct ceph_connection * con)1353 static void prepare_write_ack(struct ceph_connection *con)
1354 {
1355 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1356 	     con->in_seq_acked, con->in_seq);
1357 	con->in_seq_acked = con->in_seq;
1358 
1359 	con_out_kvec_reset(con);
1360 
1361 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1362 
1363 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1364 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1365 				&con->out_temp_ack);
1366 
1367 	con->out_more = 1;  /* more will follow.. eventually.. */
1368 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1369 }
1370 
1371 /*
1372  * Prepare to share the seq during handshake
1373  */
prepare_write_seq(struct ceph_connection * con)1374 static void prepare_write_seq(struct ceph_connection *con)
1375 {
1376 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1377 	     con->in_seq_acked, con->in_seq);
1378 	con->in_seq_acked = con->in_seq;
1379 
1380 	con_out_kvec_reset(con);
1381 
1382 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1383 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1384 			 &con->out_temp_ack);
1385 
1386 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1387 }
1388 
1389 /*
1390  * Prepare to write keepalive byte.
1391  */
prepare_write_keepalive(struct ceph_connection * con)1392 static void prepare_write_keepalive(struct ceph_connection *con)
1393 {
1394 	dout("prepare_write_keepalive %p\n", con);
1395 	con_out_kvec_reset(con);
1396 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1397 		struct timespec now;
1398 
1399 		ktime_get_real_ts(&now);
1400 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1401 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1402 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1403 				 &con->out_temp_keepalive2);
1404 	} else {
1405 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1406 	}
1407 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1408 }
1409 
1410 /*
1411  * Connection negotiation.
1412  */
1413 
get_connect_authorizer(struct ceph_connection * con)1414 static int get_connect_authorizer(struct ceph_connection *con)
1415 {
1416 	struct ceph_auth_handshake *auth;
1417 	int auth_proto;
1418 
1419 	if (!con->ops->get_authorizer) {
1420 		con->auth = NULL;
1421 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1422 		con->out_connect.authorizer_len = 0;
1423 		return 0;
1424 	}
1425 
1426 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1427 	if (IS_ERR(auth))
1428 		return PTR_ERR(auth);
1429 
1430 	con->auth = auth;
1431 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1432 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1433 	return 0;
1434 }
1435 
1436 /*
1437  * We connected to a peer and are saying hello.
1438  */
prepare_write_banner(struct ceph_connection * con)1439 static void prepare_write_banner(struct ceph_connection *con)
1440 {
1441 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1442 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1443 					&con->msgr->my_enc_addr);
1444 
1445 	con->out_more = 0;
1446 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1447 }
1448 
__prepare_write_connect(struct ceph_connection * con)1449 static void __prepare_write_connect(struct ceph_connection *con)
1450 {
1451 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1452 	if (con->auth)
1453 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1454 				 con->auth->authorizer_buf);
1455 
1456 	con->out_more = 0;
1457 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1458 }
1459 
prepare_write_connect(struct ceph_connection * con)1460 static int prepare_write_connect(struct ceph_connection *con)
1461 {
1462 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1463 	int proto;
1464 	int ret;
1465 
1466 	switch (con->peer_name.type) {
1467 	case CEPH_ENTITY_TYPE_MON:
1468 		proto = CEPH_MONC_PROTOCOL;
1469 		break;
1470 	case CEPH_ENTITY_TYPE_OSD:
1471 		proto = CEPH_OSDC_PROTOCOL;
1472 		break;
1473 	case CEPH_ENTITY_TYPE_MDS:
1474 		proto = CEPH_MDSC_PROTOCOL;
1475 		break;
1476 	default:
1477 		BUG();
1478 	}
1479 
1480 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1481 	     con->connect_seq, global_seq, proto);
1482 
1483 	con->out_connect.features =
1484 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1485 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1486 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1487 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1488 	con->out_connect.protocol_version = cpu_to_le32(proto);
1489 	con->out_connect.flags = 0;
1490 
1491 	ret = get_connect_authorizer(con);
1492 	if (ret)
1493 		return ret;
1494 
1495 	__prepare_write_connect(con);
1496 	return 0;
1497 }
1498 
1499 /*
1500  * write as much of pending kvecs to the socket as we can.
1501  *  1 -> done
1502  *  0 -> socket full, but more to do
1503  * <0 -> error
1504  */
write_partial_kvec(struct ceph_connection * con)1505 static int write_partial_kvec(struct ceph_connection *con)
1506 {
1507 	int ret;
1508 
1509 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1510 	while (con->out_kvec_bytes > 0) {
1511 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1512 				       con->out_kvec_left, con->out_kvec_bytes,
1513 				       con->out_more);
1514 		if (ret <= 0)
1515 			goto out;
1516 		con->out_kvec_bytes -= ret;
1517 		if (con->out_kvec_bytes == 0)
1518 			break;            /* done */
1519 
1520 		/* account for full iov entries consumed */
1521 		while (ret >= con->out_kvec_cur->iov_len) {
1522 			BUG_ON(!con->out_kvec_left);
1523 			ret -= con->out_kvec_cur->iov_len;
1524 			con->out_kvec_cur++;
1525 			con->out_kvec_left--;
1526 		}
1527 		/* and for a partially-consumed entry */
1528 		if (ret) {
1529 			con->out_kvec_cur->iov_len -= ret;
1530 			con->out_kvec_cur->iov_base += ret;
1531 		}
1532 	}
1533 	con->out_kvec_left = 0;
1534 	ret = 1;
1535 out:
1536 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1537 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1538 	return ret;  /* done! */
1539 }
1540 
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1541 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1542 				unsigned int page_offset,
1543 				unsigned int length)
1544 {
1545 	char *kaddr;
1546 
1547 	kaddr = kmap(page);
1548 	BUG_ON(kaddr == NULL);
1549 	crc = crc32c(crc, kaddr + page_offset, length);
1550 	kunmap(page);
1551 
1552 	return crc;
1553 }
1554 /*
1555  * Write as much message data payload as we can.  If we finish, queue
1556  * up the footer.
1557  *  1 -> done, footer is now queued in out_kvec[].
1558  *  0 -> socket full, but more to do
1559  * <0 -> error
1560  */
write_partial_message_data(struct ceph_connection * con)1561 static int write_partial_message_data(struct ceph_connection *con)
1562 {
1563 	struct ceph_msg *msg = con->out_msg;
1564 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1565 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1566 	u32 crc;
1567 
1568 	dout("%s %p msg %p\n", __func__, con, msg);
1569 
1570 	if (list_empty(&msg->data))
1571 		return -EINVAL;
1572 
1573 	/*
1574 	 * Iterate through each page that contains data to be
1575 	 * written, and send as much as possible for each.
1576 	 *
1577 	 * If we are calculating the data crc (the default), we will
1578 	 * need to map the page.  If we have no pages, they have
1579 	 * been revoked, so use the zero page.
1580 	 */
1581 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1582 	while (cursor->resid) {
1583 		struct page *page;
1584 		size_t page_offset;
1585 		size_t length;
1586 		bool last_piece;
1587 		int ret;
1588 
1589 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1590 					  &last_piece);
1591 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1592 					length, !last_piece);
1593 		if (ret <= 0) {
1594 			if (do_datacrc)
1595 				msg->footer.data_crc = cpu_to_le32(crc);
1596 
1597 			return ret;
1598 		}
1599 		if (do_datacrc && cursor->need_crc)
1600 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1601 		ceph_msg_data_advance(cursor, (size_t)ret);
1602 	}
1603 
1604 	dout("%s %p msg %p done\n", __func__, con, msg);
1605 
1606 	/* prepare and queue up footer, too */
1607 	if (do_datacrc)
1608 		msg->footer.data_crc = cpu_to_le32(crc);
1609 	else
1610 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1611 	con_out_kvec_reset(con);
1612 	prepare_write_message_footer(con);
1613 
1614 	return 1;	/* must return > 0 to indicate success */
1615 }
1616 
1617 /*
1618  * write some zeros
1619  */
write_partial_skip(struct ceph_connection * con)1620 static int write_partial_skip(struct ceph_connection *con)
1621 {
1622 	int ret;
1623 
1624 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1625 	while (con->out_skip > 0) {
1626 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1627 
1628 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1629 		if (ret <= 0)
1630 			goto out;
1631 		con->out_skip -= ret;
1632 	}
1633 	ret = 1;
1634 out:
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Prepare to read connection handshake, or an ack.
1640  */
prepare_read_banner(struct ceph_connection * con)1641 static void prepare_read_banner(struct ceph_connection *con)
1642 {
1643 	dout("prepare_read_banner %p\n", con);
1644 	con->in_base_pos = 0;
1645 }
1646 
prepare_read_connect(struct ceph_connection * con)1647 static void prepare_read_connect(struct ceph_connection *con)
1648 {
1649 	dout("prepare_read_connect %p\n", con);
1650 	con->in_base_pos = 0;
1651 }
1652 
prepare_read_ack(struct ceph_connection * con)1653 static void prepare_read_ack(struct ceph_connection *con)
1654 {
1655 	dout("prepare_read_ack %p\n", con);
1656 	con->in_base_pos = 0;
1657 }
1658 
prepare_read_seq(struct ceph_connection * con)1659 static void prepare_read_seq(struct ceph_connection *con)
1660 {
1661 	dout("prepare_read_seq %p\n", con);
1662 	con->in_base_pos = 0;
1663 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1664 }
1665 
prepare_read_tag(struct ceph_connection * con)1666 static void prepare_read_tag(struct ceph_connection *con)
1667 {
1668 	dout("prepare_read_tag %p\n", con);
1669 	con->in_base_pos = 0;
1670 	con->in_tag = CEPH_MSGR_TAG_READY;
1671 }
1672 
prepare_read_keepalive_ack(struct ceph_connection * con)1673 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_keepalive_ack %p\n", con);
1676 	con->in_base_pos = 0;
1677 }
1678 
1679 /*
1680  * Prepare to read a message.
1681  */
prepare_read_message(struct ceph_connection * con)1682 static int prepare_read_message(struct ceph_connection *con)
1683 {
1684 	dout("prepare_read_message %p\n", con);
1685 	BUG_ON(con->in_msg != NULL);
1686 	con->in_base_pos = 0;
1687 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688 	return 0;
1689 }
1690 
1691 
read_partial(struct ceph_connection * con,int end,int size,void * object)1692 static int read_partial(struct ceph_connection *con,
1693 			int end, int size, void *object)
1694 {
1695 	while (con->in_base_pos < end) {
1696 		int left = end - con->in_base_pos;
1697 		int have = size - left;
1698 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699 		if (ret <= 0)
1700 			return ret;
1701 		con->in_base_pos += ret;
1702 	}
1703 	return 1;
1704 }
1705 
1706 
1707 /*
1708  * Read all or part of the connect-side handshake on a new connection
1709  */
read_partial_banner(struct ceph_connection * con)1710 static int read_partial_banner(struct ceph_connection *con)
1711 {
1712 	int size;
1713 	int end;
1714 	int ret;
1715 
1716 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717 
1718 	/* peer's banner */
1719 	size = strlen(CEPH_BANNER);
1720 	end = size;
1721 	ret = read_partial(con, end, size, con->in_banner);
1722 	if (ret <= 0)
1723 		goto out;
1724 
1725 	size = sizeof (con->actual_peer_addr);
1726 	end += size;
1727 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1728 	if (ret <= 0)
1729 		goto out;
1730 
1731 	size = sizeof (con->peer_addr_for_me);
1732 	end += size;
1733 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1734 	if (ret <= 0)
1735 		goto out;
1736 
1737 out:
1738 	return ret;
1739 }
1740 
read_partial_connect(struct ceph_connection * con)1741 static int read_partial_connect(struct ceph_connection *con)
1742 {
1743 	int size;
1744 	int end;
1745 	int ret;
1746 
1747 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1748 
1749 	size = sizeof (con->in_reply);
1750 	end = size;
1751 	ret = read_partial(con, end, size, &con->in_reply);
1752 	if (ret <= 0)
1753 		goto out;
1754 
1755 	if (con->auth) {
1756 		size = le32_to_cpu(con->in_reply.authorizer_len);
1757 		if (size > con->auth->authorizer_reply_buf_len) {
1758 			pr_err("authorizer reply too big: %d > %zu\n", size,
1759 			       con->auth->authorizer_reply_buf_len);
1760 			ret = -EINVAL;
1761 			goto out;
1762 		}
1763 
1764 		end += size;
1765 		ret = read_partial(con, end, size,
1766 				   con->auth->authorizer_reply_buf);
1767 		if (ret <= 0)
1768 			goto out;
1769 	}
1770 
1771 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1772 	     con, (int)con->in_reply.tag,
1773 	     le32_to_cpu(con->in_reply.connect_seq),
1774 	     le32_to_cpu(con->in_reply.global_seq));
1775 out:
1776 	return ret;
1777 }
1778 
1779 /*
1780  * Verify the hello banner looks okay.
1781  */
verify_hello(struct ceph_connection * con)1782 static int verify_hello(struct ceph_connection *con)
1783 {
1784 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1785 		pr_err("connect to %s got bad banner\n",
1786 		       ceph_pr_addr(&con->peer_addr.in_addr));
1787 		con->error_msg = "protocol error, bad banner";
1788 		return -1;
1789 	}
1790 	return 0;
1791 }
1792 
addr_is_blank(struct sockaddr_storage * ss)1793 static bool addr_is_blank(struct sockaddr_storage *ss)
1794 {
1795 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1796 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1797 
1798 	switch (ss->ss_family) {
1799 	case AF_INET:
1800 		return addr->s_addr == htonl(INADDR_ANY);
1801 	case AF_INET6:
1802 		return ipv6_addr_any(addr6);
1803 	default:
1804 		return true;
1805 	}
1806 }
1807 
addr_port(struct sockaddr_storage * ss)1808 static int addr_port(struct sockaddr_storage *ss)
1809 {
1810 	switch (ss->ss_family) {
1811 	case AF_INET:
1812 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1813 	case AF_INET6:
1814 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1815 	}
1816 	return 0;
1817 }
1818 
addr_set_port(struct sockaddr_storage * ss,int p)1819 static void addr_set_port(struct sockaddr_storage *ss, int p)
1820 {
1821 	switch (ss->ss_family) {
1822 	case AF_INET:
1823 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1824 		break;
1825 	case AF_INET6:
1826 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1827 		break;
1828 	}
1829 }
1830 
1831 /*
1832  * Unlike other *_pton function semantics, zero indicates success.
1833  */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1834 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1835 		char delim, const char **ipend)
1836 {
1837 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1838 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1839 
1840 	memset(ss, 0, sizeof(*ss));
1841 
1842 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1843 		ss->ss_family = AF_INET;
1844 		return 0;
1845 	}
1846 
1847 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1848 		ss->ss_family = AF_INET6;
1849 		return 0;
1850 	}
1851 
1852 	return -EINVAL;
1853 }
1854 
1855 /*
1856  * Extract hostname string and resolve using kernel DNS facility.
1857  */
1858 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1859 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1860 		struct sockaddr_storage *ss, char delim, const char **ipend)
1861 {
1862 	const char *end, *delim_p;
1863 	char *colon_p, *ip_addr = NULL;
1864 	int ip_len, ret;
1865 
1866 	/*
1867 	 * The end of the hostname occurs immediately preceding the delimiter or
1868 	 * the port marker (':') where the delimiter takes precedence.
1869 	 */
1870 	delim_p = memchr(name, delim, namelen);
1871 	colon_p = memchr(name, ':', namelen);
1872 
1873 	if (delim_p && colon_p)
1874 		end = delim_p < colon_p ? delim_p : colon_p;
1875 	else if (!delim_p && colon_p)
1876 		end = colon_p;
1877 	else {
1878 		end = delim_p;
1879 		if (!end) /* case: hostname:/ */
1880 			end = name + namelen;
1881 	}
1882 
1883 	if (end <= name)
1884 		return -EINVAL;
1885 
1886 	/* do dns_resolve upcall */
1887 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1888 	if (ip_len > 0)
1889 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1890 	else
1891 		ret = -ESRCH;
1892 
1893 	kfree(ip_addr);
1894 
1895 	*ipend = end;
1896 
1897 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1898 			ret, ret ? "failed" : ceph_pr_addr(ss));
1899 
1900 	return ret;
1901 }
1902 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1903 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1904 		struct sockaddr_storage *ss, char delim, const char **ipend)
1905 {
1906 	return -EINVAL;
1907 }
1908 #endif
1909 
1910 /*
1911  * Parse a server name (IP or hostname). If a valid IP address is not found
1912  * then try to extract a hostname to resolve using userspace DNS upcall.
1913  */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1914 static int ceph_parse_server_name(const char *name, size_t namelen,
1915 			struct sockaddr_storage *ss, char delim, const char **ipend)
1916 {
1917 	int ret;
1918 
1919 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1920 	if (ret)
1921 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1922 
1923 	return ret;
1924 }
1925 
1926 /*
1927  * Parse an ip[:port] list into an addr array.  Use the default
1928  * monitor port if a port isn't specified.
1929  */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1930 int ceph_parse_ips(const char *c, const char *end,
1931 		   struct ceph_entity_addr *addr,
1932 		   int max_count, int *count)
1933 {
1934 	int i, ret = -EINVAL;
1935 	const char *p = c;
1936 
1937 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1938 	for (i = 0; i < max_count; i++) {
1939 		const char *ipend;
1940 		struct sockaddr_storage *ss = &addr[i].in_addr;
1941 		int port;
1942 		char delim = ',';
1943 
1944 		if (*p == '[') {
1945 			delim = ']';
1946 			p++;
1947 		}
1948 
1949 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1950 		if (ret)
1951 			goto bad;
1952 		ret = -EINVAL;
1953 
1954 		p = ipend;
1955 
1956 		if (delim == ']') {
1957 			if (*p != ']') {
1958 				dout("missing matching ']'\n");
1959 				goto bad;
1960 			}
1961 			p++;
1962 		}
1963 
1964 		/* port? */
1965 		if (p < end && *p == ':') {
1966 			port = 0;
1967 			p++;
1968 			while (p < end && *p >= '0' && *p <= '9') {
1969 				port = (port * 10) + (*p - '0');
1970 				p++;
1971 			}
1972 			if (port == 0)
1973 				port = CEPH_MON_PORT;
1974 			else if (port > 65535)
1975 				goto bad;
1976 		} else {
1977 			port = CEPH_MON_PORT;
1978 		}
1979 
1980 		addr_set_port(ss, port);
1981 
1982 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1983 
1984 		if (p == end)
1985 			break;
1986 		if (*p != ',')
1987 			goto bad;
1988 		p++;
1989 	}
1990 
1991 	if (p != end)
1992 		goto bad;
1993 
1994 	if (count)
1995 		*count = i + 1;
1996 	return 0;
1997 
1998 bad:
1999 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL(ceph_parse_ips);
2003 
process_banner(struct ceph_connection * con)2004 static int process_banner(struct ceph_connection *con)
2005 {
2006 	dout("process_banner on %p\n", con);
2007 
2008 	if (verify_hello(con) < 0)
2009 		return -1;
2010 
2011 	ceph_decode_addr(&con->actual_peer_addr);
2012 	ceph_decode_addr(&con->peer_addr_for_me);
2013 
2014 	/*
2015 	 * Make sure the other end is who we wanted.  note that the other
2016 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2017 	 * them the benefit of the doubt.
2018 	 */
2019 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2020 		   sizeof(con->peer_addr)) != 0 &&
2021 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2022 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2023 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2024 			ceph_pr_addr(&con->peer_addr.in_addr),
2025 			(int)le32_to_cpu(con->peer_addr.nonce),
2026 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2027 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2028 		con->error_msg = "wrong peer at address";
2029 		return -1;
2030 	}
2031 
2032 	/*
2033 	 * did we learn our address?
2034 	 */
2035 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2036 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2037 
2038 		memcpy(&con->msgr->inst.addr.in_addr,
2039 		       &con->peer_addr_for_me.in_addr,
2040 		       sizeof(con->peer_addr_for_me.in_addr));
2041 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2042 		encode_my_addr(con->msgr);
2043 		dout("process_banner learned my addr is %s\n",
2044 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2045 	}
2046 
2047 	return 0;
2048 }
2049 
process_connect(struct ceph_connection * con)2050 static int process_connect(struct ceph_connection *con)
2051 {
2052 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2053 	u64 req_feat = from_msgr(con->msgr)->required_features;
2054 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2055 	int ret;
2056 
2057 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2058 
2059 	if (con->auth) {
2060 		int len = le32_to_cpu(con->in_reply.authorizer_len);
2061 
2062 		/*
2063 		 * Any connection that defines ->get_authorizer()
2064 		 * should also define ->add_authorizer_challenge() and
2065 		 * ->verify_authorizer_reply().
2066 		 *
2067 		 * See get_connect_authorizer().
2068 		 */
2069 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2070 			ret = con->ops->add_authorizer_challenge(
2071 				    con, con->auth->authorizer_reply_buf, len);
2072 			if (ret < 0)
2073 				return ret;
2074 
2075 			con_out_kvec_reset(con);
2076 			__prepare_write_connect(con);
2077 			prepare_read_connect(con);
2078 			return 0;
2079 		}
2080 
2081 		if (len) {
2082 			ret = con->ops->verify_authorizer_reply(con);
2083 			if (ret < 0) {
2084 				con->error_msg = "bad authorize reply";
2085 				return ret;
2086 			}
2087 		}
2088 	}
2089 
2090 	switch (con->in_reply.tag) {
2091 	case CEPH_MSGR_TAG_FEATURES:
2092 		pr_err("%s%lld %s feature set mismatch,"
2093 		       " my %llx < server's %llx, missing %llx\n",
2094 		       ENTITY_NAME(con->peer_name),
2095 		       ceph_pr_addr(&con->peer_addr.in_addr),
2096 		       sup_feat, server_feat, server_feat & ~sup_feat);
2097 		con->error_msg = "missing required protocol features";
2098 		reset_connection(con);
2099 		return -1;
2100 
2101 	case CEPH_MSGR_TAG_BADPROTOVER:
2102 		pr_err("%s%lld %s protocol version mismatch,"
2103 		       " my %d != server's %d\n",
2104 		       ENTITY_NAME(con->peer_name),
2105 		       ceph_pr_addr(&con->peer_addr.in_addr),
2106 		       le32_to_cpu(con->out_connect.protocol_version),
2107 		       le32_to_cpu(con->in_reply.protocol_version));
2108 		con->error_msg = "protocol version mismatch";
2109 		reset_connection(con);
2110 		return -1;
2111 
2112 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2113 		con->auth_retry++;
2114 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2115 		     con->auth_retry);
2116 		if (con->auth_retry == 2) {
2117 			con->error_msg = "connect authorization failure";
2118 			return -1;
2119 		}
2120 		con_out_kvec_reset(con);
2121 		ret = prepare_write_connect(con);
2122 		if (ret < 0)
2123 			return ret;
2124 		prepare_read_connect(con);
2125 		break;
2126 
2127 	case CEPH_MSGR_TAG_RESETSESSION:
2128 		/*
2129 		 * If we connected with a large connect_seq but the peer
2130 		 * has no record of a session with us (no connection, or
2131 		 * connect_seq == 0), they will send RESETSESION to indicate
2132 		 * that they must have reset their session, and may have
2133 		 * dropped messages.
2134 		 */
2135 		dout("process_connect got RESET peer seq %u\n",
2136 		     le32_to_cpu(con->in_reply.connect_seq));
2137 		pr_err("%s%lld %s connection reset\n",
2138 		       ENTITY_NAME(con->peer_name),
2139 		       ceph_pr_addr(&con->peer_addr.in_addr));
2140 		reset_connection(con);
2141 		con_out_kvec_reset(con);
2142 		ret = prepare_write_connect(con);
2143 		if (ret < 0)
2144 			return ret;
2145 		prepare_read_connect(con);
2146 
2147 		/* Tell ceph about it. */
2148 		mutex_unlock(&con->mutex);
2149 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2150 		if (con->ops->peer_reset)
2151 			con->ops->peer_reset(con);
2152 		mutex_lock(&con->mutex);
2153 		if (con->state != CON_STATE_NEGOTIATING)
2154 			return -EAGAIN;
2155 		break;
2156 
2157 	case CEPH_MSGR_TAG_RETRY_SESSION:
2158 		/*
2159 		 * If we sent a smaller connect_seq than the peer has, try
2160 		 * again with a larger value.
2161 		 */
2162 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2163 		     le32_to_cpu(con->out_connect.connect_seq),
2164 		     le32_to_cpu(con->in_reply.connect_seq));
2165 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2166 		con_out_kvec_reset(con);
2167 		ret = prepare_write_connect(con);
2168 		if (ret < 0)
2169 			return ret;
2170 		prepare_read_connect(con);
2171 		break;
2172 
2173 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2174 		/*
2175 		 * If we sent a smaller global_seq than the peer has, try
2176 		 * again with a larger value.
2177 		 */
2178 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2179 		     con->peer_global_seq,
2180 		     le32_to_cpu(con->in_reply.global_seq));
2181 		get_global_seq(con->msgr,
2182 			       le32_to_cpu(con->in_reply.global_seq));
2183 		con_out_kvec_reset(con);
2184 		ret = prepare_write_connect(con);
2185 		if (ret < 0)
2186 			return ret;
2187 		prepare_read_connect(con);
2188 		break;
2189 
2190 	case CEPH_MSGR_TAG_SEQ:
2191 	case CEPH_MSGR_TAG_READY:
2192 		if (req_feat & ~server_feat) {
2193 			pr_err("%s%lld %s protocol feature mismatch,"
2194 			       " my required %llx > server's %llx, need %llx\n",
2195 			       ENTITY_NAME(con->peer_name),
2196 			       ceph_pr_addr(&con->peer_addr.in_addr),
2197 			       req_feat, server_feat, req_feat & ~server_feat);
2198 			con->error_msg = "missing required protocol features";
2199 			reset_connection(con);
2200 			return -1;
2201 		}
2202 
2203 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2204 		con->state = CON_STATE_OPEN;
2205 		con->auth_retry = 0;    /* we authenticated; clear flag */
2206 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2207 		con->connect_seq++;
2208 		con->peer_features = server_feat;
2209 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2210 		     con->peer_global_seq,
2211 		     le32_to_cpu(con->in_reply.connect_seq),
2212 		     con->connect_seq);
2213 		WARN_ON(con->connect_seq !=
2214 			le32_to_cpu(con->in_reply.connect_seq));
2215 
2216 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2217 			con_flag_set(con, CON_FLAG_LOSSYTX);
2218 
2219 		con->delay = 0;      /* reset backoff memory */
2220 
2221 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2222 			prepare_write_seq(con);
2223 			prepare_read_seq(con);
2224 		} else {
2225 			prepare_read_tag(con);
2226 		}
2227 		break;
2228 
2229 	case CEPH_MSGR_TAG_WAIT:
2230 		/*
2231 		 * If there is a connection race (we are opening
2232 		 * connections to each other), one of us may just have
2233 		 * to WAIT.  This shouldn't happen if we are the
2234 		 * client.
2235 		 */
2236 		con->error_msg = "protocol error, got WAIT as client";
2237 		return -1;
2238 
2239 	default:
2240 		con->error_msg = "protocol error, garbage tag during connect";
2241 		return -1;
2242 	}
2243 	return 0;
2244 }
2245 
2246 
2247 /*
2248  * read (part of) an ack
2249  */
read_partial_ack(struct ceph_connection * con)2250 static int read_partial_ack(struct ceph_connection *con)
2251 {
2252 	int size = sizeof (con->in_temp_ack);
2253 	int end = size;
2254 
2255 	return read_partial(con, end, size, &con->in_temp_ack);
2256 }
2257 
2258 /*
2259  * We can finally discard anything that's been acked.
2260  */
process_ack(struct ceph_connection * con)2261 static void process_ack(struct ceph_connection *con)
2262 {
2263 	struct ceph_msg *m;
2264 	u64 ack = le64_to_cpu(con->in_temp_ack);
2265 	u64 seq;
2266 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2267 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2268 
2269 	/*
2270 	 * In the reconnect case, con_fault() has requeued messages
2271 	 * in out_sent. We should cleanup old messages according to
2272 	 * the reconnect seq.
2273 	 */
2274 	while (!list_empty(list)) {
2275 		m = list_first_entry(list, struct ceph_msg, list_head);
2276 		if (reconnect && m->needs_out_seq)
2277 			break;
2278 		seq = le64_to_cpu(m->hdr.seq);
2279 		if (seq > ack)
2280 			break;
2281 		dout("got ack for seq %llu type %d at %p\n", seq,
2282 		     le16_to_cpu(m->hdr.type), m);
2283 		m->ack_stamp = jiffies;
2284 		ceph_msg_remove(m);
2285 	}
2286 
2287 	prepare_read_tag(con);
2288 }
2289 
2290 
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2291 static int read_partial_message_section(struct ceph_connection *con,
2292 					struct kvec *section,
2293 					unsigned int sec_len, u32 *crc)
2294 {
2295 	int ret, left;
2296 
2297 	BUG_ON(!section);
2298 
2299 	while (section->iov_len < sec_len) {
2300 		BUG_ON(section->iov_base == NULL);
2301 		left = sec_len - section->iov_len;
2302 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2303 				       section->iov_len, left);
2304 		if (ret <= 0)
2305 			return ret;
2306 		section->iov_len += ret;
2307 	}
2308 	if (section->iov_len == sec_len)
2309 		*crc = crc32c(0, section->iov_base, section->iov_len);
2310 
2311 	return 1;
2312 }
2313 
read_partial_msg_data(struct ceph_connection * con)2314 static int read_partial_msg_data(struct ceph_connection *con)
2315 {
2316 	struct ceph_msg *msg = con->in_msg;
2317 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2318 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2319 	struct page *page;
2320 	size_t page_offset;
2321 	size_t length;
2322 	u32 crc = 0;
2323 	int ret;
2324 
2325 	BUG_ON(!msg);
2326 	if (list_empty(&msg->data))
2327 		return -EIO;
2328 
2329 	if (do_datacrc)
2330 		crc = con->in_data_crc;
2331 	while (cursor->resid) {
2332 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2333 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2334 		if (ret <= 0) {
2335 			if (do_datacrc)
2336 				con->in_data_crc = crc;
2337 
2338 			return ret;
2339 		}
2340 
2341 		if (do_datacrc)
2342 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2343 		ceph_msg_data_advance(cursor, (size_t)ret);
2344 	}
2345 	if (do_datacrc)
2346 		con->in_data_crc = crc;
2347 
2348 	return 1;	/* must return > 0 to indicate success */
2349 }
2350 
2351 /*
2352  * read (part of) a message.
2353  */
2354 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2355 
read_partial_message(struct ceph_connection * con)2356 static int read_partial_message(struct ceph_connection *con)
2357 {
2358 	struct ceph_msg *m = con->in_msg;
2359 	int size;
2360 	int end;
2361 	int ret;
2362 	unsigned int front_len, middle_len, data_len;
2363 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2364 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2365 	u64 seq;
2366 	u32 crc;
2367 
2368 	dout("read_partial_message con %p msg %p\n", con, m);
2369 
2370 	/* header */
2371 	size = sizeof (con->in_hdr);
2372 	end = size;
2373 	ret = read_partial(con, end, size, &con->in_hdr);
2374 	if (ret <= 0)
2375 		return ret;
2376 
2377 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2378 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2379 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2380 		       crc, con->in_hdr.crc);
2381 		return -EBADMSG;
2382 	}
2383 
2384 	front_len = le32_to_cpu(con->in_hdr.front_len);
2385 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2386 		return -EIO;
2387 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2388 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2389 		return -EIO;
2390 	data_len = le32_to_cpu(con->in_hdr.data_len);
2391 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2392 		return -EIO;
2393 
2394 	/* verify seq# */
2395 	seq = le64_to_cpu(con->in_hdr.seq);
2396 	if ((s64)seq - (s64)con->in_seq < 1) {
2397 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2398 			ENTITY_NAME(con->peer_name),
2399 			ceph_pr_addr(&con->peer_addr.in_addr),
2400 			seq, con->in_seq + 1);
2401 		con->in_base_pos = -front_len - middle_len - data_len -
2402 			sizeof_footer(con);
2403 		con->in_tag = CEPH_MSGR_TAG_READY;
2404 		return 1;
2405 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2406 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2407 		       seq, con->in_seq + 1);
2408 		con->error_msg = "bad message sequence # for incoming message";
2409 		return -EBADE;
2410 	}
2411 
2412 	/* allocate message? */
2413 	if (!con->in_msg) {
2414 		int skip = 0;
2415 
2416 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2417 		     front_len, data_len);
2418 		ret = ceph_con_in_msg_alloc(con, &skip);
2419 		if (ret < 0)
2420 			return ret;
2421 
2422 		BUG_ON(!con->in_msg ^ skip);
2423 		if (skip) {
2424 			/* skip this message */
2425 			dout("alloc_msg said skip message\n");
2426 			con->in_base_pos = -front_len - middle_len - data_len -
2427 				sizeof_footer(con);
2428 			con->in_tag = CEPH_MSGR_TAG_READY;
2429 			con->in_seq++;
2430 			return 1;
2431 		}
2432 
2433 		BUG_ON(!con->in_msg);
2434 		BUG_ON(con->in_msg->con != con);
2435 		m = con->in_msg;
2436 		m->front.iov_len = 0;    /* haven't read it yet */
2437 		if (m->middle)
2438 			m->middle->vec.iov_len = 0;
2439 
2440 		/* prepare for data payload, if any */
2441 
2442 		if (data_len)
2443 			prepare_message_data(con->in_msg, data_len);
2444 	}
2445 
2446 	/* front */
2447 	ret = read_partial_message_section(con, &m->front, front_len,
2448 					   &con->in_front_crc);
2449 	if (ret <= 0)
2450 		return ret;
2451 
2452 	/* middle */
2453 	if (m->middle) {
2454 		ret = read_partial_message_section(con, &m->middle->vec,
2455 						   middle_len,
2456 						   &con->in_middle_crc);
2457 		if (ret <= 0)
2458 			return ret;
2459 	}
2460 
2461 	/* (page) data */
2462 	if (data_len) {
2463 		ret = read_partial_msg_data(con);
2464 		if (ret <= 0)
2465 			return ret;
2466 	}
2467 
2468 	/* footer */
2469 	size = sizeof_footer(con);
2470 	end += size;
2471 	ret = read_partial(con, end, size, &m->footer);
2472 	if (ret <= 0)
2473 		return ret;
2474 
2475 	if (!need_sign) {
2476 		m->footer.flags = m->old_footer.flags;
2477 		m->footer.sig = 0;
2478 	}
2479 
2480 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2481 	     m, front_len, m->footer.front_crc, middle_len,
2482 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2483 
2484 	/* crc ok? */
2485 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2486 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2487 		       m, con->in_front_crc, m->footer.front_crc);
2488 		return -EBADMSG;
2489 	}
2490 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2491 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2492 		       m, con->in_middle_crc, m->footer.middle_crc);
2493 		return -EBADMSG;
2494 	}
2495 	if (do_datacrc &&
2496 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2497 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2498 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2499 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2500 		return -EBADMSG;
2501 	}
2502 
2503 	if (need_sign && con->ops->check_message_signature &&
2504 	    con->ops->check_message_signature(m)) {
2505 		pr_err("read_partial_message %p signature check failed\n", m);
2506 		return -EBADMSG;
2507 	}
2508 
2509 	return 1; /* done! */
2510 }
2511 
2512 /*
2513  * Process message.  This happens in the worker thread.  The callback should
2514  * be careful not to do anything that waits on other incoming messages or it
2515  * may deadlock.
2516  */
process_message(struct ceph_connection * con)2517 static void process_message(struct ceph_connection *con)
2518 {
2519 	struct ceph_msg *msg = con->in_msg;
2520 
2521 	BUG_ON(con->in_msg->con != con);
2522 	con->in_msg = NULL;
2523 
2524 	/* if first message, set peer_name */
2525 	if (con->peer_name.type == 0)
2526 		con->peer_name = msg->hdr.src;
2527 
2528 	con->in_seq++;
2529 	mutex_unlock(&con->mutex);
2530 
2531 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2532 	     msg, le64_to_cpu(msg->hdr.seq),
2533 	     ENTITY_NAME(msg->hdr.src),
2534 	     le16_to_cpu(msg->hdr.type),
2535 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2536 	     le32_to_cpu(msg->hdr.front_len),
2537 	     le32_to_cpu(msg->hdr.data_len),
2538 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2539 	con->ops->dispatch(con, msg);
2540 
2541 	mutex_lock(&con->mutex);
2542 }
2543 
read_keepalive_ack(struct ceph_connection * con)2544 static int read_keepalive_ack(struct ceph_connection *con)
2545 {
2546 	struct ceph_timespec ceph_ts;
2547 	size_t size = sizeof(ceph_ts);
2548 	int ret = read_partial(con, size, size, &ceph_ts);
2549 	if (ret <= 0)
2550 		return ret;
2551 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2552 	prepare_read_tag(con);
2553 	return 1;
2554 }
2555 
2556 /*
2557  * Write something to the socket.  Called in a worker thread when the
2558  * socket appears to be writeable and we have something ready to send.
2559  */
try_write(struct ceph_connection * con)2560 static int try_write(struct ceph_connection *con)
2561 {
2562 	int ret = 1;
2563 
2564 	dout("try_write start %p state %lu\n", con, con->state);
2565 	if (con->state != CON_STATE_PREOPEN &&
2566 	    con->state != CON_STATE_CONNECTING &&
2567 	    con->state != CON_STATE_NEGOTIATING &&
2568 	    con->state != CON_STATE_OPEN)
2569 		return 0;
2570 
2571 more:
2572 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2573 
2574 	/* open the socket first? */
2575 	if (con->state == CON_STATE_PREOPEN) {
2576 		BUG_ON(con->sock);
2577 		con->state = CON_STATE_CONNECTING;
2578 
2579 		con_out_kvec_reset(con);
2580 		prepare_write_banner(con);
2581 		prepare_read_banner(con);
2582 
2583 		BUG_ON(con->in_msg);
2584 		con->in_tag = CEPH_MSGR_TAG_READY;
2585 		dout("try_write initiating connect on %p new state %lu\n",
2586 		     con, con->state);
2587 		ret = ceph_tcp_connect(con);
2588 		if (ret < 0) {
2589 			con->error_msg = "connect error";
2590 			goto out;
2591 		}
2592 	}
2593 
2594 more_kvec:
2595 	BUG_ON(!con->sock);
2596 
2597 	/* kvec data queued? */
2598 	if (con->out_kvec_left) {
2599 		ret = write_partial_kvec(con);
2600 		if (ret <= 0)
2601 			goto out;
2602 	}
2603 	if (con->out_skip) {
2604 		ret = write_partial_skip(con);
2605 		if (ret <= 0)
2606 			goto out;
2607 	}
2608 
2609 	/* msg pages? */
2610 	if (con->out_msg) {
2611 		if (con->out_msg_done) {
2612 			ceph_msg_put(con->out_msg);
2613 			con->out_msg = NULL;   /* we're done with this one */
2614 			goto do_next;
2615 		}
2616 
2617 		ret = write_partial_message_data(con);
2618 		if (ret == 1)
2619 			goto more_kvec;  /* we need to send the footer, too! */
2620 		if (ret == 0)
2621 			goto out;
2622 		if (ret < 0) {
2623 			dout("try_write write_partial_message_data err %d\n",
2624 			     ret);
2625 			goto out;
2626 		}
2627 	}
2628 
2629 do_next:
2630 	if (con->state == CON_STATE_OPEN) {
2631 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2632 			prepare_write_keepalive(con);
2633 			goto more;
2634 		}
2635 		/* is anything else pending? */
2636 		if (!list_empty(&con->out_queue)) {
2637 			prepare_write_message(con);
2638 			goto more;
2639 		}
2640 		if (con->in_seq > con->in_seq_acked) {
2641 			prepare_write_ack(con);
2642 			goto more;
2643 		}
2644 	}
2645 
2646 	/* Nothing to do! */
2647 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2648 	dout("try_write nothing else to write.\n");
2649 	ret = 0;
2650 out:
2651 	dout("try_write done on %p ret %d\n", con, ret);
2652 	return ret;
2653 }
2654 
2655 
2656 
2657 /*
2658  * Read what we can from the socket.
2659  */
try_read(struct ceph_connection * con)2660 static int try_read(struct ceph_connection *con)
2661 {
2662 	int ret = -1;
2663 
2664 more:
2665 	dout("try_read start on %p state %lu\n", con, con->state);
2666 	if (con->state != CON_STATE_CONNECTING &&
2667 	    con->state != CON_STATE_NEGOTIATING &&
2668 	    con->state != CON_STATE_OPEN)
2669 		return 0;
2670 
2671 	BUG_ON(!con->sock);
2672 
2673 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2674 	     con->in_base_pos);
2675 
2676 	if (con->state == CON_STATE_CONNECTING) {
2677 		dout("try_read connecting\n");
2678 		ret = read_partial_banner(con);
2679 		if (ret <= 0)
2680 			goto out;
2681 		ret = process_banner(con);
2682 		if (ret < 0)
2683 			goto out;
2684 
2685 		con->state = CON_STATE_NEGOTIATING;
2686 
2687 		/*
2688 		 * Received banner is good, exchange connection info.
2689 		 * Do not reset out_kvec, as sending our banner raced
2690 		 * with receiving peer banner after connect completed.
2691 		 */
2692 		ret = prepare_write_connect(con);
2693 		if (ret < 0)
2694 			goto out;
2695 		prepare_read_connect(con);
2696 
2697 		/* Send connection info before awaiting response */
2698 		goto out;
2699 	}
2700 
2701 	if (con->state == CON_STATE_NEGOTIATING) {
2702 		dout("try_read negotiating\n");
2703 		ret = read_partial_connect(con);
2704 		if (ret <= 0)
2705 			goto out;
2706 		ret = process_connect(con);
2707 		if (ret < 0)
2708 			goto out;
2709 		goto more;
2710 	}
2711 
2712 	WARN_ON(con->state != CON_STATE_OPEN);
2713 
2714 	if (con->in_base_pos < 0) {
2715 		/*
2716 		 * skipping + discarding content.
2717 		 *
2718 		 * FIXME: there must be a better way to do this!
2719 		 */
2720 		static char buf[SKIP_BUF_SIZE];
2721 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2722 
2723 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2724 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2725 		if (ret <= 0)
2726 			goto out;
2727 		con->in_base_pos += ret;
2728 		if (con->in_base_pos)
2729 			goto more;
2730 	}
2731 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2732 		/*
2733 		 * what's next?
2734 		 */
2735 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2736 		if (ret <= 0)
2737 			goto out;
2738 		dout("try_read got tag %d\n", (int)con->in_tag);
2739 		switch (con->in_tag) {
2740 		case CEPH_MSGR_TAG_MSG:
2741 			prepare_read_message(con);
2742 			break;
2743 		case CEPH_MSGR_TAG_ACK:
2744 			prepare_read_ack(con);
2745 			break;
2746 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2747 			prepare_read_keepalive_ack(con);
2748 			break;
2749 		case CEPH_MSGR_TAG_CLOSE:
2750 			con_close_socket(con);
2751 			con->state = CON_STATE_CLOSED;
2752 			goto out;
2753 		default:
2754 			goto bad_tag;
2755 		}
2756 	}
2757 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2758 		ret = read_partial_message(con);
2759 		if (ret <= 0) {
2760 			switch (ret) {
2761 			case -EBADMSG:
2762 				con->error_msg = "bad crc/signature";
2763 				/* fall through */
2764 			case -EBADE:
2765 				ret = -EIO;
2766 				break;
2767 			case -EIO:
2768 				con->error_msg = "io error";
2769 				break;
2770 			}
2771 			goto out;
2772 		}
2773 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2774 			goto more;
2775 		process_message(con);
2776 		if (con->state == CON_STATE_OPEN)
2777 			prepare_read_tag(con);
2778 		goto more;
2779 	}
2780 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2781 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2782 		/*
2783 		 * the final handshake seq exchange is semantically
2784 		 * equivalent to an ACK
2785 		 */
2786 		ret = read_partial_ack(con);
2787 		if (ret <= 0)
2788 			goto out;
2789 		process_ack(con);
2790 		goto more;
2791 	}
2792 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2793 		ret = read_keepalive_ack(con);
2794 		if (ret <= 0)
2795 			goto out;
2796 		goto more;
2797 	}
2798 
2799 out:
2800 	dout("try_read done on %p ret %d\n", con, ret);
2801 	return ret;
2802 
2803 bad_tag:
2804 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2805 	con->error_msg = "protocol error, garbage tag";
2806 	ret = -1;
2807 	goto out;
2808 }
2809 
2810 
2811 /*
2812  * Atomically queue work on a connection after the specified delay.
2813  * Bump @con reference to avoid races with connection teardown.
2814  * Returns 0 if work was queued, or an error code otherwise.
2815  */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2816 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2817 {
2818 	if (!con->ops->get(con)) {
2819 		dout("%s %p ref count 0\n", __func__, con);
2820 		return -ENOENT;
2821 	}
2822 
2823 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2824 		dout("%s %p - already queued\n", __func__, con);
2825 		con->ops->put(con);
2826 		return -EBUSY;
2827 	}
2828 
2829 	dout("%s %p %lu\n", __func__, con, delay);
2830 	return 0;
2831 }
2832 
queue_con(struct ceph_connection * con)2833 static void queue_con(struct ceph_connection *con)
2834 {
2835 	(void) queue_con_delay(con, 0);
2836 }
2837 
cancel_con(struct ceph_connection * con)2838 static void cancel_con(struct ceph_connection *con)
2839 {
2840 	if (cancel_delayed_work(&con->work)) {
2841 		dout("%s %p\n", __func__, con);
2842 		con->ops->put(con);
2843 	}
2844 }
2845 
con_sock_closed(struct ceph_connection * con)2846 static bool con_sock_closed(struct ceph_connection *con)
2847 {
2848 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2849 		return false;
2850 
2851 #define CASE(x)								\
2852 	case CON_STATE_ ## x:						\
2853 		con->error_msg = "socket closed (con state " #x ")";	\
2854 		break;
2855 
2856 	switch (con->state) {
2857 	CASE(CLOSED);
2858 	CASE(PREOPEN);
2859 	CASE(CONNECTING);
2860 	CASE(NEGOTIATING);
2861 	CASE(OPEN);
2862 	CASE(STANDBY);
2863 	default:
2864 		pr_warn("%s con %p unrecognized state %lu\n",
2865 			__func__, con, con->state);
2866 		con->error_msg = "unrecognized con state";
2867 		BUG();
2868 		break;
2869 	}
2870 #undef CASE
2871 
2872 	return true;
2873 }
2874 
con_backoff(struct ceph_connection * con)2875 static bool con_backoff(struct ceph_connection *con)
2876 {
2877 	int ret;
2878 
2879 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2880 		return false;
2881 
2882 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2883 	if (ret) {
2884 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2885 			con, con->delay);
2886 		BUG_ON(ret == -ENOENT);
2887 		con_flag_set(con, CON_FLAG_BACKOFF);
2888 	}
2889 
2890 	return true;
2891 }
2892 
2893 /* Finish fault handling; con->mutex must *not* be held here */
2894 
con_fault_finish(struct ceph_connection * con)2895 static void con_fault_finish(struct ceph_connection *con)
2896 {
2897 	dout("%s %p\n", __func__, con);
2898 
2899 	/*
2900 	 * in case we faulted due to authentication, invalidate our
2901 	 * current tickets so that we can get new ones.
2902 	 */
2903 	if (con->auth_retry) {
2904 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2905 		if (con->ops->invalidate_authorizer)
2906 			con->ops->invalidate_authorizer(con);
2907 		con->auth_retry = 0;
2908 	}
2909 
2910 	if (con->ops->fault)
2911 		con->ops->fault(con);
2912 }
2913 
2914 /*
2915  * Do some work on a connection.  Drop a connection ref when we're done.
2916  */
ceph_con_workfn(struct work_struct * work)2917 static void ceph_con_workfn(struct work_struct *work)
2918 {
2919 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2920 						   work.work);
2921 	bool fault;
2922 
2923 	mutex_lock(&con->mutex);
2924 	while (true) {
2925 		int ret;
2926 
2927 		if ((fault = con_sock_closed(con))) {
2928 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2929 			break;
2930 		}
2931 		if (con_backoff(con)) {
2932 			dout("%s: con %p BACKOFF\n", __func__, con);
2933 			break;
2934 		}
2935 		if (con->state == CON_STATE_STANDBY) {
2936 			dout("%s: con %p STANDBY\n", __func__, con);
2937 			break;
2938 		}
2939 		if (con->state == CON_STATE_CLOSED) {
2940 			dout("%s: con %p CLOSED\n", __func__, con);
2941 			BUG_ON(con->sock);
2942 			break;
2943 		}
2944 		if (con->state == CON_STATE_PREOPEN) {
2945 			dout("%s: con %p PREOPEN\n", __func__, con);
2946 			BUG_ON(con->sock);
2947 		}
2948 
2949 		ret = try_read(con);
2950 		if (ret < 0) {
2951 			if (ret == -EAGAIN)
2952 				continue;
2953 			if (!con->error_msg)
2954 				con->error_msg = "socket error on read";
2955 			fault = true;
2956 			break;
2957 		}
2958 
2959 		ret = try_write(con);
2960 		if (ret < 0) {
2961 			if (ret == -EAGAIN)
2962 				continue;
2963 			if (!con->error_msg)
2964 				con->error_msg = "socket error on write";
2965 			fault = true;
2966 		}
2967 
2968 		break;	/* If we make it to here, we're done */
2969 	}
2970 	if (fault)
2971 		con_fault(con);
2972 	mutex_unlock(&con->mutex);
2973 
2974 	if (fault)
2975 		con_fault_finish(con);
2976 
2977 	con->ops->put(con);
2978 }
2979 
2980 /*
2981  * Generic error/fault handler.  A retry mechanism is used with
2982  * exponential backoff
2983  */
con_fault(struct ceph_connection * con)2984 static void con_fault(struct ceph_connection *con)
2985 {
2986 	dout("fault %p state %lu to peer %s\n",
2987 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2988 
2989 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2990 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2991 	con->error_msg = NULL;
2992 
2993 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2994 	       con->state != CON_STATE_NEGOTIATING &&
2995 	       con->state != CON_STATE_OPEN);
2996 
2997 	con_close_socket(con);
2998 
2999 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3000 		dout("fault on LOSSYTX channel, marking CLOSED\n");
3001 		con->state = CON_STATE_CLOSED;
3002 		return;
3003 	}
3004 
3005 	if (con->in_msg) {
3006 		BUG_ON(con->in_msg->con != con);
3007 		ceph_msg_put(con->in_msg);
3008 		con->in_msg = NULL;
3009 	}
3010 
3011 	/* Requeue anything that hasn't been acked */
3012 	list_splice_init(&con->out_sent, &con->out_queue);
3013 
3014 	/* If there are no messages queued or keepalive pending, place
3015 	 * the connection in a STANDBY state */
3016 	if (list_empty(&con->out_queue) &&
3017 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3018 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3019 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3020 		con->state = CON_STATE_STANDBY;
3021 	} else {
3022 		/* retry after a delay. */
3023 		con->state = CON_STATE_PREOPEN;
3024 		if (con->delay == 0)
3025 			con->delay = BASE_DELAY_INTERVAL;
3026 		else if (con->delay < MAX_DELAY_INTERVAL)
3027 			con->delay *= 2;
3028 		con_flag_set(con, CON_FLAG_BACKOFF);
3029 		queue_con(con);
3030 	}
3031 }
3032 
3033 
3034 
3035 /*
3036  * initialize a new messenger instance
3037  */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)3038 void ceph_messenger_init(struct ceph_messenger *msgr,
3039 			 struct ceph_entity_addr *myaddr)
3040 {
3041 	spin_lock_init(&msgr->global_seq_lock);
3042 
3043 	if (myaddr)
3044 		msgr->inst.addr = *myaddr;
3045 
3046 	/* select a random nonce */
3047 	msgr->inst.addr.type = 0;
3048 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3049 	encode_my_addr(msgr);
3050 
3051 	atomic_set(&msgr->stopping, 0);
3052 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3053 
3054 	dout("%s %p\n", __func__, msgr);
3055 }
3056 EXPORT_SYMBOL(ceph_messenger_init);
3057 
ceph_messenger_fini(struct ceph_messenger * msgr)3058 void ceph_messenger_fini(struct ceph_messenger *msgr)
3059 {
3060 	put_net(read_pnet(&msgr->net));
3061 }
3062 EXPORT_SYMBOL(ceph_messenger_fini);
3063 
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)3064 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3065 {
3066 	if (msg->con)
3067 		msg->con->ops->put(msg->con);
3068 
3069 	msg->con = con ? con->ops->get(con) : NULL;
3070 	BUG_ON(msg->con != con);
3071 }
3072 
clear_standby(struct ceph_connection * con)3073 static void clear_standby(struct ceph_connection *con)
3074 {
3075 	/* come back from STANDBY? */
3076 	if (con->state == CON_STATE_STANDBY) {
3077 		dout("clear_standby %p and ++connect_seq\n", con);
3078 		con->state = CON_STATE_PREOPEN;
3079 		con->connect_seq++;
3080 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3081 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3082 	}
3083 }
3084 
3085 /*
3086  * Queue up an outgoing message on the given connection.
3087  */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)3088 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3089 {
3090 	/* set src+dst */
3091 	msg->hdr.src = con->msgr->inst.name;
3092 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3093 	msg->needs_out_seq = true;
3094 
3095 	mutex_lock(&con->mutex);
3096 
3097 	if (con->state == CON_STATE_CLOSED) {
3098 		dout("con_send %p closed, dropping %p\n", con, msg);
3099 		ceph_msg_put(msg);
3100 		mutex_unlock(&con->mutex);
3101 		return;
3102 	}
3103 
3104 	msg_con_set(msg, con);
3105 
3106 	BUG_ON(!list_empty(&msg->list_head));
3107 	list_add_tail(&msg->list_head, &con->out_queue);
3108 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3109 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3110 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3111 	     le32_to_cpu(msg->hdr.front_len),
3112 	     le32_to_cpu(msg->hdr.middle_len),
3113 	     le32_to_cpu(msg->hdr.data_len));
3114 
3115 	clear_standby(con);
3116 	mutex_unlock(&con->mutex);
3117 
3118 	/* if there wasn't anything waiting to send before, queue
3119 	 * new work */
3120 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3121 		queue_con(con);
3122 }
3123 EXPORT_SYMBOL(ceph_con_send);
3124 
3125 /*
3126  * Revoke a message that was previously queued for send
3127  */
ceph_msg_revoke(struct ceph_msg * msg)3128 void ceph_msg_revoke(struct ceph_msg *msg)
3129 {
3130 	struct ceph_connection *con = msg->con;
3131 
3132 	if (!con) {
3133 		dout("%s msg %p null con\n", __func__, msg);
3134 		return;		/* Message not in our possession */
3135 	}
3136 
3137 	mutex_lock(&con->mutex);
3138 	if (!list_empty(&msg->list_head)) {
3139 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3140 		list_del_init(&msg->list_head);
3141 		msg->hdr.seq = 0;
3142 
3143 		ceph_msg_put(msg);
3144 	}
3145 	if (con->out_msg == msg) {
3146 		BUG_ON(con->out_skip);
3147 		/* footer */
3148 		if (con->out_msg_done) {
3149 			con->out_skip += con_out_kvec_skip(con);
3150 		} else {
3151 			BUG_ON(!msg->data_length);
3152 			con->out_skip += sizeof_footer(con);
3153 		}
3154 		/* data, middle, front */
3155 		if (msg->data_length)
3156 			con->out_skip += msg->cursor.total_resid;
3157 		if (msg->middle)
3158 			con->out_skip += con_out_kvec_skip(con);
3159 		con->out_skip += con_out_kvec_skip(con);
3160 
3161 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3162 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3163 		msg->hdr.seq = 0;
3164 		con->out_msg = NULL;
3165 		ceph_msg_put(msg);
3166 	}
3167 
3168 	mutex_unlock(&con->mutex);
3169 }
3170 
3171 /*
3172  * Revoke a message that we may be reading data into
3173  */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3174 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3175 {
3176 	struct ceph_connection *con = msg->con;
3177 
3178 	if (!con) {
3179 		dout("%s msg %p null con\n", __func__, msg);
3180 		return;		/* Message not in our possession */
3181 	}
3182 
3183 	mutex_lock(&con->mutex);
3184 	if (con->in_msg == msg) {
3185 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3186 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3187 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3188 
3189 		/* skip rest of message */
3190 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3191 		con->in_base_pos = con->in_base_pos -
3192 				sizeof(struct ceph_msg_header) -
3193 				front_len -
3194 				middle_len -
3195 				data_len -
3196 				sizeof(struct ceph_msg_footer);
3197 		ceph_msg_put(con->in_msg);
3198 		con->in_msg = NULL;
3199 		con->in_tag = CEPH_MSGR_TAG_READY;
3200 		con->in_seq++;
3201 	} else {
3202 		dout("%s %p in_msg %p msg %p no-op\n",
3203 		     __func__, con, con->in_msg, msg);
3204 	}
3205 	mutex_unlock(&con->mutex);
3206 }
3207 
3208 /*
3209  * Queue a keepalive byte to ensure the tcp connection is alive.
3210  */
ceph_con_keepalive(struct ceph_connection * con)3211 void ceph_con_keepalive(struct ceph_connection *con)
3212 {
3213 	dout("con_keepalive %p\n", con);
3214 	mutex_lock(&con->mutex);
3215 	clear_standby(con);
3216 	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3217 	mutex_unlock(&con->mutex);
3218 
3219 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3220 		queue_con(con);
3221 }
3222 EXPORT_SYMBOL(ceph_con_keepalive);
3223 
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)3224 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3225 			       unsigned long interval)
3226 {
3227 	if (interval > 0 &&
3228 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3229 		struct timespec now;
3230 		struct timespec ts;
3231 		ktime_get_real_ts(&now);
3232 		jiffies_to_timespec(interval, &ts);
3233 		ts = timespec_add(con->last_keepalive_ack, ts);
3234 		return timespec_compare(&now, &ts) >= 0;
3235 	}
3236 	return false;
3237 }
3238 
ceph_msg_data_create(enum ceph_msg_data_type type)3239 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3240 {
3241 	struct ceph_msg_data *data;
3242 
3243 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3244 		return NULL;
3245 
3246 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3247 	if (!data)
3248 		return NULL;
3249 
3250 	data->type = type;
3251 	INIT_LIST_HEAD(&data->links);
3252 
3253 	return data;
3254 }
3255 
ceph_msg_data_destroy(struct ceph_msg_data * data)3256 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3257 {
3258 	if (!data)
3259 		return;
3260 
3261 	WARN_ON(!list_empty(&data->links));
3262 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3263 		ceph_pagelist_release(data->pagelist);
3264 	kmem_cache_free(ceph_msg_data_cache, data);
3265 }
3266 
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3267 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3268 		size_t length, size_t alignment)
3269 {
3270 	struct ceph_msg_data *data;
3271 
3272 	BUG_ON(!pages);
3273 	BUG_ON(!length);
3274 
3275 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3276 	BUG_ON(!data);
3277 	data->pages = pages;
3278 	data->length = length;
3279 	data->alignment = alignment & ~PAGE_MASK;
3280 
3281 	list_add_tail(&data->links, &msg->data);
3282 	msg->data_length += length;
3283 }
3284 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3285 
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3286 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3287 				struct ceph_pagelist *pagelist)
3288 {
3289 	struct ceph_msg_data *data;
3290 
3291 	BUG_ON(!pagelist);
3292 	BUG_ON(!pagelist->length);
3293 
3294 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3295 	BUG_ON(!data);
3296 	data->pagelist = pagelist;
3297 
3298 	list_add_tail(&data->links, &msg->data);
3299 	msg->data_length += pagelist->length;
3300 }
3301 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3302 
3303 #ifdef	CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct bio * bio,size_t length)3304 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3305 		size_t length)
3306 {
3307 	struct ceph_msg_data *data;
3308 
3309 	BUG_ON(!bio);
3310 
3311 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3312 	BUG_ON(!data);
3313 	data->bio = bio;
3314 	data->bio_length = length;
3315 
3316 	list_add_tail(&data->links, &msg->data);
3317 	msg->data_length += length;
3318 }
3319 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3320 #endif	/* CONFIG_BLOCK */
3321 
3322 /*
3323  * construct a new message with given type, size
3324  * the new msg has a ref count of 1.
3325  */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3326 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3327 			      bool can_fail)
3328 {
3329 	struct ceph_msg *m;
3330 
3331 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3332 	if (m == NULL)
3333 		goto out;
3334 
3335 	m->hdr.type = cpu_to_le16(type);
3336 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3337 	m->hdr.front_len = cpu_to_le32(front_len);
3338 
3339 	INIT_LIST_HEAD(&m->list_head);
3340 	kref_init(&m->kref);
3341 	INIT_LIST_HEAD(&m->data);
3342 
3343 	/* front */
3344 	if (front_len) {
3345 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3346 		if (m->front.iov_base == NULL) {
3347 			dout("ceph_msg_new can't allocate %d bytes\n",
3348 			     front_len);
3349 			goto out2;
3350 		}
3351 	} else {
3352 		m->front.iov_base = NULL;
3353 	}
3354 	m->front_alloc_len = m->front.iov_len = front_len;
3355 
3356 	dout("ceph_msg_new %p front %d\n", m, front_len);
3357 	return m;
3358 
3359 out2:
3360 	ceph_msg_put(m);
3361 out:
3362 	if (!can_fail) {
3363 		pr_err("msg_new can't create type %d front %d\n", type,
3364 		       front_len);
3365 		WARN_ON(1);
3366 	} else {
3367 		dout("msg_new can't create type %d front %d\n", type,
3368 		     front_len);
3369 	}
3370 	return NULL;
3371 }
3372 EXPORT_SYMBOL(ceph_msg_new);
3373 
3374 /*
3375  * Allocate "middle" portion of a message, if it is needed and wasn't
3376  * allocated by alloc_msg.  This allows us to read a small fixed-size
3377  * per-type header in the front and then gracefully fail (i.e.,
3378  * propagate the error to the caller based on info in the front) when
3379  * the middle is too large.
3380  */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3381 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3382 {
3383 	int type = le16_to_cpu(msg->hdr.type);
3384 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3385 
3386 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3387 	     ceph_msg_type_name(type), middle_len);
3388 	BUG_ON(!middle_len);
3389 	BUG_ON(msg->middle);
3390 
3391 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3392 	if (!msg->middle)
3393 		return -ENOMEM;
3394 	return 0;
3395 }
3396 
3397 /*
3398  * Allocate a message for receiving an incoming message on a
3399  * connection, and save the result in con->in_msg.  Uses the
3400  * connection's private alloc_msg op if available.
3401  *
3402  * Returns 0 on success, or a negative error code.
3403  *
3404  * On success, if we set *skip = 1:
3405  *  - the next message should be skipped and ignored.
3406  *  - con->in_msg == NULL
3407  * or if we set *skip = 0:
3408  *  - con->in_msg is non-null.
3409  * On error (ENOMEM, EAGAIN, ...),
3410  *  - con->in_msg == NULL
3411  */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3412 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3413 {
3414 	struct ceph_msg_header *hdr = &con->in_hdr;
3415 	int middle_len = le32_to_cpu(hdr->middle_len);
3416 	struct ceph_msg *msg;
3417 	int ret = 0;
3418 
3419 	BUG_ON(con->in_msg != NULL);
3420 	BUG_ON(!con->ops->alloc_msg);
3421 
3422 	mutex_unlock(&con->mutex);
3423 	msg = con->ops->alloc_msg(con, hdr, skip);
3424 	mutex_lock(&con->mutex);
3425 	if (con->state != CON_STATE_OPEN) {
3426 		if (msg)
3427 			ceph_msg_put(msg);
3428 		return -EAGAIN;
3429 	}
3430 	if (msg) {
3431 		BUG_ON(*skip);
3432 		msg_con_set(msg, con);
3433 		con->in_msg = msg;
3434 	} else {
3435 		/*
3436 		 * Null message pointer means either we should skip
3437 		 * this message or we couldn't allocate memory.  The
3438 		 * former is not an error.
3439 		 */
3440 		if (*skip)
3441 			return 0;
3442 
3443 		con->error_msg = "error allocating memory for incoming message";
3444 		return -ENOMEM;
3445 	}
3446 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3447 
3448 	if (middle_len && !con->in_msg->middle) {
3449 		ret = ceph_alloc_middle(con, con->in_msg);
3450 		if (ret < 0) {
3451 			ceph_msg_put(con->in_msg);
3452 			con->in_msg = NULL;
3453 		}
3454 	}
3455 
3456 	return ret;
3457 }
3458 
3459 
3460 /*
3461  * Free a generically kmalloc'd message.
3462  */
ceph_msg_free(struct ceph_msg * m)3463 static void ceph_msg_free(struct ceph_msg *m)
3464 {
3465 	dout("%s %p\n", __func__, m);
3466 	kvfree(m->front.iov_base);
3467 	kmem_cache_free(ceph_msg_cache, m);
3468 }
3469 
ceph_msg_release(struct kref * kref)3470 static void ceph_msg_release(struct kref *kref)
3471 {
3472 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3473 	struct ceph_msg_data *data, *next;
3474 
3475 	dout("%s %p\n", __func__, m);
3476 	WARN_ON(!list_empty(&m->list_head));
3477 
3478 	msg_con_set(m, NULL);
3479 
3480 	/* drop middle, data, if any */
3481 	if (m->middle) {
3482 		ceph_buffer_put(m->middle);
3483 		m->middle = NULL;
3484 	}
3485 
3486 	list_for_each_entry_safe(data, next, &m->data, links) {
3487 		list_del_init(&data->links);
3488 		ceph_msg_data_destroy(data);
3489 	}
3490 	m->data_length = 0;
3491 
3492 	if (m->pool)
3493 		ceph_msgpool_put(m->pool, m);
3494 	else
3495 		ceph_msg_free(m);
3496 }
3497 
ceph_msg_get(struct ceph_msg * msg)3498 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3499 {
3500 	dout("%s %p (was %d)\n", __func__, msg,
3501 	     kref_read(&msg->kref));
3502 	kref_get(&msg->kref);
3503 	return msg;
3504 }
3505 EXPORT_SYMBOL(ceph_msg_get);
3506 
ceph_msg_put(struct ceph_msg * msg)3507 void ceph_msg_put(struct ceph_msg *msg)
3508 {
3509 	dout("%s %p (was %d)\n", __func__, msg,
3510 	     kref_read(&msg->kref));
3511 	kref_put(&msg->kref, ceph_msg_release);
3512 }
3513 EXPORT_SYMBOL(ceph_msg_put);
3514 
ceph_msg_dump(struct ceph_msg * msg)3515 void ceph_msg_dump(struct ceph_msg *msg)
3516 {
3517 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3518 		 msg->front_alloc_len, msg->data_length);
3519 	print_hex_dump(KERN_DEBUG, "header: ",
3520 		       DUMP_PREFIX_OFFSET, 16, 1,
3521 		       &msg->hdr, sizeof(msg->hdr), true);
3522 	print_hex_dump(KERN_DEBUG, " front: ",
3523 		       DUMP_PREFIX_OFFSET, 16, 1,
3524 		       msg->front.iov_base, msg->front.iov_len, true);
3525 	if (msg->middle)
3526 		print_hex_dump(KERN_DEBUG, "middle: ",
3527 			       DUMP_PREFIX_OFFSET, 16, 1,
3528 			       msg->middle->vec.iov_base,
3529 			       msg->middle->vec.iov_len, true);
3530 	print_hex_dump(KERN_DEBUG, "footer: ",
3531 		       DUMP_PREFIX_OFFSET, 16, 1,
3532 		       &msg->footer, sizeof(msg->footer), true);
3533 }
3534 EXPORT_SYMBOL(ceph_msg_dump);
3535