1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
45
46 /*
47 * FIXME: remove all knowledge of the buffer layer from the core VM
48 */
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50
51 #include <asm/mman.h>
52
53 /*
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
56 *
57 * Shared mappings now work. 15.8.1995 Bruno.
58 *
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
61 *
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 */
64
65 /*
66 * Lock ordering:
67 *
68 * ->i_mmap_rwsem (truncate_pagecache)
69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
70 * ->swap_lock (exclusive_swap_page, others)
71 * ->mapping->tree_lock
72 *
73 * ->i_mutex
74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
75 *
76 * ->mmap_sem
77 * ->i_mmap_rwsem
78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
79 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 *
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
83 *
84 * ->i_mutex (generic_perform_write)
85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 *
87 * bdi->wb.list_lock
88 * sb_lock (fs/fs-writeback.c)
89 * ->mapping->tree_lock (__sync_single_inode)
90 *
91 * ->i_mmap_rwsem
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 *
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->tree_lock (try_to_unmap_one)
101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->tree_lock (page_remove_rmap->set_page_dirty)
105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 *
112 * ->i_mmap_rwsem
113 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 */
115
page_cache_tree_insert(struct address_space * mapping,struct page * page,void ** shadowp)116 static int page_cache_tree_insert(struct address_space *mapping,
117 struct page *page, void **shadowp)
118 {
119 struct radix_tree_node *node;
120 void **slot;
121 int error;
122
123 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
124 &node, &slot);
125 if (error)
126 return error;
127 if (*slot) {
128 void *p;
129
130 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
131 if (!radix_tree_exceptional_entry(p))
132 return -EEXIST;
133
134 mapping->nrexceptional--;
135 if (shadowp)
136 *shadowp = p;
137 }
138 __radix_tree_replace(&mapping->page_tree, node, slot, page,
139 workingset_update_node, mapping);
140 mapping->nrpages++;
141 return 0;
142 }
143
page_cache_tree_delete(struct address_space * mapping,struct page * page,void * shadow)144 static void page_cache_tree_delete(struct address_space *mapping,
145 struct page *page, void *shadow)
146 {
147 int i, nr;
148
149 /* hugetlb pages are represented by one entry in the radix tree */
150 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(PageTail(page), page);
154 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
155
156 for (i = 0; i < nr; i++) {
157 struct radix_tree_node *node;
158 void **slot;
159
160 __radix_tree_lookup(&mapping->page_tree, page->index + i,
161 &node, &slot);
162
163 VM_BUG_ON_PAGE(!node && nr != 1, page);
164
165 radix_tree_clear_tags(&mapping->page_tree, node, slot);
166 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
167 workingset_update_node, mapping);
168 }
169
170 if (shadow) {
171 mapping->nrexceptional += nr;
172 /*
173 * Make sure the nrexceptional update is committed before
174 * the nrpages update so that final truncate racing
175 * with reclaim does not see both counters 0 at the
176 * same time and miss a shadow entry.
177 */
178 smp_wmb();
179 }
180 mapping->nrpages -= nr;
181 }
182
183 /*
184 * Delete a page from the page cache and free it. Caller has to make
185 * sure the page is locked and that nobody else uses it - or that usage
186 * is safe. The caller must hold the mapping's tree_lock.
187 */
__delete_from_page_cache(struct page * page,void * shadow)188 void __delete_from_page_cache(struct page *page, void *shadow)
189 {
190 struct address_space *mapping = page->mapping;
191 int nr = hpage_nr_pages(page);
192
193 trace_mm_filemap_delete_from_page_cache(page);
194 /*
195 * if we're uptodate, flush out into the cleancache, otherwise
196 * invalidate any existing cleancache entries. We can't leave
197 * stale data around in the cleancache once our page is gone
198 */
199 if (PageUptodate(page) && PageMappedToDisk(page))
200 cleancache_put_page(page);
201 else
202 cleancache_invalidate_page(mapping, page);
203
204 VM_BUG_ON_PAGE(PageTail(page), page);
205 VM_BUG_ON_PAGE(page_mapped(page), page);
206 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
207 int mapcount;
208
209 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
210 current->comm, page_to_pfn(page));
211 dump_page(page, "still mapped when deleted");
212 dump_stack();
213 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
214
215 mapcount = page_mapcount(page);
216 if (mapping_exiting(mapping) &&
217 page_count(page) >= mapcount + 2) {
218 /*
219 * All vmas have already been torn down, so it's
220 * a good bet that actually the page is unmapped,
221 * and we'd prefer not to leak it: if we're wrong,
222 * some other bad page check should catch it later.
223 */
224 page_mapcount_reset(page);
225 page_ref_sub(page, mapcount);
226 }
227 }
228
229 page_cache_tree_delete(mapping, page, shadow);
230
231 page->mapping = NULL;
232 /* Leave page->index set: truncation lookup relies upon it */
233
234 /* hugetlb pages do not participate in page cache accounting. */
235 if (PageHuge(page))
236 return;
237
238 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
239 if (PageSwapBacked(page)) {
240 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
241 if (PageTransHuge(page))
242 __dec_node_page_state(page, NR_SHMEM_THPS);
243 } else {
244 VM_BUG_ON_PAGE(PageTransHuge(page), page);
245 }
246
247 /*
248 * At this point page must be either written or cleaned by truncate.
249 * Dirty page here signals a bug and loss of unwritten data.
250 *
251 * This fixes dirty accounting after removing the page entirely but
252 * leaves PageDirty set: it has no effect for truncated page and
253 * anyway will be cleared before returning page into buddy allocator.
254 */
255 if (WARN_ON_ONCE(PageDirty(page)))
256 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
257 }
258
259 /**
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
262 *
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
266 */
delete_from_page_cache(struct page * page)267 void delete_from_page_cache(struct page *page)
268 {
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
271 void (*freepage)(struct page *);
272
273 BUG_ON(!PageLocked(page));
274
275 freepage = mapping->a_ops->freepage;
276
277 spin_lock_irqsave(&mapping->tree_lock, flags);
278 __delete_from_page_cache(page, NULL);
279 spin_unlock_irqrestore(&mapping->tree_lock, flags);
280
281 if (freepage)
282 freepage(page);
283
284 if (PageTransHuge(page) && !PageHuge(page)) {
285 page_ref_sub(page, HPAGE_PMD_NR);
286 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
287 } else {
288 put_page(page);
289 }
290 }
291 EXPORT_SYMBOL(delete_from_page_cache);
292
filemap_check_errors(struct address_space * mapping)293 int filemap_check_errors(struct address_space *mapping)
294 {
295 int ret = 0;
296 /* Check for outstanding write errors */
297 if (test_bit(AS_ENOSPC, &mapping->flags) &&
298 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_bit(AS_EIO, &mapping->flags) &&
301 test_and_clear_bit(AS_EIO, &mapping->flags))
302 ret = -EIO;
303 return ret;
304 }
305 EXPORT_SYMBOL(filemap_check_errors);
306
filemap_check_and_keep_errors(struct address_space * mapping)307 static int filemap_check_and_keep_errors(struct address_space *mapping)
308 {
309 /* Check for outstanding write errors */
310 if (test_bit(AS_EIO, &mapping->flags))
311 return -EIO;
312 if (test_bit(AS_ENOSPC, &mapping->flags))
313 return -ENOSPC;
314 return 0;
315 }
316
317 /**
318 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
319 * @mapping: address space structure to write
320 * @start: offset in bytes where the range starts
321 * @end: offset in bytes where the range ends (inclusive)
322 * @sync_mode: enable synchronous operation
323 *
324 * Start writeback against all of a mapping's dirty pages that lie
325 * within the byte offsets <start, end> inclusive.
326 *
327 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
328 * opposed to a regular memory cleansing writeback. The difference between
329 * these two operations is that if a dirty page/buffer is encountered, it must
330 * be waited upon, and not just skipped over.
331 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)332 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end, int sync_mode)
334 {
335 int ret;
336 struct writeback_control wbc = {
337 .sync_mode = sync_mode,
338 .nr_to_write = LONG_MAX,
339 .range_start = start,
340 .range_end = end,
341 };
342
343 if (!mapping_cap_writeback_dirty(mapping) ||
344 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
345 return 0;
346
347 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
348 ret = do_writepages(mapping, &wbc);
349 wbc_detach_inode(&wbc);
350 return ret;
351 }
352
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)353 static inline int __filemap_fdatawrite(struct address_space *mapping,
354 int sync_mode)
355 {
356 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
357 }
358
filemap_fdatawrite(struct address_space * mapping)359 int filemap_fdatawrite(struct address_space *mapping)
360 {
361 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite);
364
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)365 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
366 loff_t end)
367 {
368 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
369 }
370 EXPORT_SYMBOL(filemap_fdatawrite_range);
371
372 /**
373 * filemap_flush - mostly a non-blocking flush
374 * @mapping: target address_space
375 *
376 * This is a mostly non-blocking flush. Not suitable for data-integrity
377 * purposes - I/O may not be started against all dirty pages.
378 */
filemap_flush(struct address_space * mapping)379 int filemap_flush(struct address_space *mapping)
380 {
381 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
382 }
383 EXPORT_SYMBOL(filemap_flush);
384
385 /**
386 * filemap_range_has_page - check if a page exists in range.
387 * @mapping: address space within which to check
388 * @start_byte: offset in bytes where the range starts
389 * @end_byte: offset in bytes where the range ends (inclusive)
390 *
391 * Find at least one page in the range supplied, usually used to check if
392 * direct writing in this range will trigger a writeback.
393 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)394 bool filemap_range_has_page(struct address_space *mapping,
395 loff_t start_byte, loff_t end_byte)
396 {
397 pgoff_t index = start_byte >> PAGE_SHIFT;
398 pgoff_t end = end_byte >> PAGE_SHIFT;
399 struct page *page;
400
401 if (end_byte < start_byte)
402 return false;
403
404 if (mapping->nrpages == 0)
405 return false;
406
407 if (!find_get_pages_range(mapping, &index, end, 1, &page))
408 return false;
409 put_page(page);
410 return true;
411 }
412 EXPORT_SYMBOL(filemap_range_has_page);
413
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)414 static void __filemap_fdatawait_range(struct address_space *mapping,
415 loff_t start_byte, loff_t end_byte)
416 {
417 pgoff_t index = start_byte >> PAGE_SHIFT;
418 pgoff_t end = end_byte >> PAGE_SHIFT;
419 struct pagevec pvec;
420 int nr_pages;
421
422 if (end_byte < start_byte)
423 return;
424
425 pagevec_init(&pvec, 0);
426 while (index <= end) {
427 unsigned i;
428
429 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
430 end, PAGECACHE_TAG_WRITEBACK);
431 if (!nr_pages)
432 break;
433
434 for (i = 0; i < nr_pages; i++) {
435 struct page *page = pvec.pages[i];
436
437 wait_on_page_writeback(page);
438 ClearPageError(page);
439 }
440 pagevec_release(&pvec);
441 cond_resched();
442 }
443 }
444
445 /**
446 * filemap_fdatawait_range - wait for writeback to complete
447 * @mapping: address space structure to wait for
448 * @start_byte: offset in bytes where the range starts
449 * @end_byte: offset in bytes where the range ends (inclusive)
450 *
451 * Walk the list of under-writeback pages of the given address space
452 * in the given range and wait for all of them. Check error status of
453 * the address space and return it.
454 *
455 * Since the error status of the address space is cleared by this function,
456 * callers are responsible for checking the return value and handling and/or
457 * reporting the error.
458 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)459 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
460 loff_t end_byte)
461 {
462 __filemap_fdatawait_range(mapping, start_byte, end_byte);
463 return filemap_check_errors(mapping);
464 }
465 EXPORT_SYMBOL(filemap_fdatawait_range);
466
467 /**
468 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
469 * @mapping: address space structure to wait for
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Walk the list of under-writeback pages of the given address space in the
474 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
475 * this function does not clear error status of the address space.
476 *
477 * Use this function if callers don't handle errors themselves. Expected
478 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
479 * fsfreeze(8)
480 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)481 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
482 loff_t start_byte, loff_t end_byte)
483 {
484 __filemap_fdatawait_range(mapping, start_byte, end_byte);
485 return filemap_check_and_keep_errors(mapping);
486 }
487 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
488
489 /**
490 * file_fdatawait_range - wait for writeback to complete
491 * @file: file pointing to address space structure to wait for
492 * @start_byte: offset in bytes where the range starts
493 * @end_byte: offset in bytes where the range ends (inclusive)
494 *
495 * Walk the list of under-writeback pages of the address space that file
496 * refers to, in the given range and wait for all of them. Check error
497 * status of the address space vs. the file->f_wb_err cursor and return it.
498 *
499 * Since the error status of the file is advanced by this function,
500 * callers are responsible for checking the return value and handling and/or
501 * reporting the error.
502 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)503 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
504 {
505 struct address_space *mapping = file->f_mapping;
506
507 __filemap_fdatawait_range(mapping, start_byte, end_byte);
508 return file_check_and_advance_wb_err(file);
509 }
510 EXPORT_SYMBOL(file_fdatawait_range);
511
512 /**
513 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
514 * @mapping: address space structure to wait for
515 *
516 * Walk the list of under-writeback pages of the given address space
517 * and wait for all of them. Unlike filemap_fdatawait(), this function
518 * does not clear error status of the address space.
519 *
520 * Use this function if callers don't handle errors themselves. Expected
521 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
522 * fsfreeze(8)
523 */
filemap_fdatawait_keep_errors(struct address_space * mapping)524 int filemap_fdatawait_keep_errors(struct address_space *mapping)
525 {
526 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
527 return filemap_check_and_keep_errors(mapping);
528 }
529 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
530
mapping_needs_writeback(struct address_space * mapping)531 static bool mapping_needs_writeback(struct address_space *mapping)
532 {
533 return (!dax_mapping(mapping) && mapping->nrpages) ||
534 (dax_mapping(mapping) && mapping->nrexceptional);
535 }
536
filemap_write_and_wait(struct address_space * mapping)537 int filemap_write_and_wait(struct address_space *mapping)
538 {
539 int err = 0;
540
541 if (mapping_needs_writeback(mapping)) {
542 err = filemap_fdatawrite(mapping);
543 /*
544 * Even if the above returned error, the pages may be
545 * written partially (e.g. -ENOSPC), so we wait for it.
546 * But the -EIO is special case, it may indicate the worst
547 * thing (e.g. bug) happened, so we avoid waiting for it.
548 */
549 if (err != -EIO) {
550 int err2 = filemap_fdatawait(mapping);
551 if (!err)
552 err = err2;
553 } else {
554 /* Clear any previously stored errors */
555 filemap_check_errors(mapping);
556 }
557 } else {
558 err = filemap_check_errors(mapping);
559 }
560 return err;
561 }
562 EXPORT_SYMBOL(filemap_write_and_wait);
563
564 /**
565 * filemap_write_and_wait_range - write out & wait on a file range
566 * @mapping: the address_space for the pages
567 * @lstart: offset in bytes where the range starts
568 * @lend: offset in bytes where the range ends (inclusive)
569 *
570 * Write out and wait upon file offsets lstart->lend, inclusive.
571 *
572 * Note that @lend is inclusive (describes the last byte to be written) so
573 * that this function can be used to write to the very end-of-file (end = -1).
574 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)575 int filemap_write_and_wait_range(struct address_space *mapping,
576 loff_t lstart, loff_t lend)
577 {
578 int err = 0;
579
580 if (mapping_needs_writeback(mapping)) {
581 err = __filemap_fdatawrite_range(mapping, lstart, lend,
582 WB_SYNC_ALL);
583 /* See comment of filemap_write_and_wait() */
584 if (err != -EIO) {
585 int err2 = filemap_fdatawait_range(mapping,
586 lstart, lend);
587 if (!err)
588 err = err2;
589 } else {
590 /* Clear any previously stored errors */
591 filemap_check_errors(mapping);
592 }
593 } else {
594 err = filemap_check_errors(mapping);
595 }
596 return err;
597 }
598 EXPORT_SYMBOL(filemap_write_and_wait_range);
599
__filemap_set_wb_err(struct address_space * mapping,int err)600 void __filemap_set_wb_err(struct address_space *mapping, int err)
601 {
602 errseq_t eseq = errseq_set(&mapping->wb_err, err);
603
604 trace_filemap_set_wb_err(mapping, eseq);
605 }
606 EXPORT_SYMBOL(__filemap_set_wb_err);
607
608 /**
609 * file_check_and_advance_wb_err - report wb error (if any) that was previously
610 * and advance wb_err to current one
611 * @file: struct file on which the error is being reported
612 *
613 * When userland calls fsync (or something like nfsd does the equivalent), we
614 * want to report any writeback errors that occurred since the last fsync (or
615 * since the file was opened if there haven't been any).
616 *
617 * Grab the wb_err from the mapping. If it matches what we have in the file,
618 * then just quickly return 0. The file is all caught up.
619 *
620 * If it doesn't match, then take the mapping value, set the "seen" flag in
621 * it and try to swap it into place. If it works, or another task beat us
622 * to it with the new value, then update the f_wb_err and return the error
623 * portion. The error at this point must be reported via proper channels
624 * (a'la fsync, or NFS COMMIT operation, etc.).
625 *
626 * While we handle mapping->wb_err with atomic operations, the f_wb_err
627 * value is protected by the f_lock since we must ensure that it reflects
628 * the latest value swapped in for this file descriptor.
629 */
file_check_and_advance_wb_err(struct file * file)630 int file_check_and_advance_wb_err(struct file *file)
631 {
632 int err = 0;
633 errseq_t old = READ_ONCE(file->f_wb_err);
634 struct address_space *mapping = file->f_mapping;
635
636 /* Locklessly handle the common case where nothing has changed */
637 if (errseq_check(&mapping->wb_err, old)) {
638 /* Something changed, must use slow path */
639 spin_lock(&file->f_lock);
640 old = file->f_wb_err;
641 err = errseq_check_and_advance(&mapping->wb_err,
642 &file->f_wb_err);
643 trace_file_check_and_advance_wb_err(file, old);
644 spin_unlock(&file->f_lock);
645 }
646
647 /*
648 * We're mostly using this function as a drop in replacement for
649 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
650 * that the legacy code would have had on these flags.
651 */
652 clear_bit(AS_EIO, &mapping->flags);
653 clear_bit(AS_ENOSPC, &mapping->flags);
654 return err;
655 }
656 EXPORT_SYMBOL(file_check_and_advance_wb_err);
657
658 /**
659 * file_write_and_wait_range - write out & wait on a file range
660 * @file: file pointing to address_space with pages
661 * @lstart: offset in bytes where the range starts
662 * @lend: offset in bytes where the range ends (inclusive)
663 *
664 * Write out and wait upon file offsets lstart->lend, inclusive.
665 *
666 * Note that @lend is inclusive (describes the last byte to be written) so
667 * that this function can be used to write to the very end-of-file (end = -1).
668 *
669 * After writing out and waiting on the data, we check and advance the
670 * f_wb_err cursor to the latest value, and return any errors detected there.
671 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)672 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
673 {
674 int err = 0, err2;
675 struct address_space *mapping = file->f_mapping;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /* See comment of filemap_write_and_wait() */
681 if (err != -EIO)
682 __filemap_fdatawait_range(mapping, lstart, lend);
683 }
684 err2 = file_check_and_advance_wb_err(file);
685 if (!err)
686 err = err2;
687 return err;
688 }
689 EXPORT_SYMBOL(file_write_and_wait_range);
690
691 /**
692 * replace_page_cache_page - replace a pagecache page with a new one
693 * @old: page to be replaced
694 * @new: page to replace with
695 * @gfp_mask: allocation mode
696 *
697 * This function replaces a page in the pagecache with a new one. On
698 * success it acquires the pagecache reference for the new page and
699 * drops it for the old page. Both the old and new pages must be
700 * locked. This function does not add the new page to the LRU, the
701 * caller must do that.
702 *
703 * The remove + add is atomic. The only way this function can fail is
704 * memory allocation failure.
705 */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)706 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
707 {
708 int error;
709
710 VM_BUG_ON_PAGE(!PageLocked(old), old);
711 VM_BUG_ON_PAGE(!PageLocked(new), new);
712 VM_BUG_ON_PAGE(new->mapping, new);
713
714 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
715 if (!error) {
716 struct address_space *mapping = old->mapping;
717 void (*freepage)(struct page *);
718 unsigned long flags;
719
720 pgoff_t offset = old->index;
721 freepage = mapping->a_ops->freepage;
722
723 get_page(new);
724 new->mapping = mapping;
725 new->index = offset;
726
727 spin_lock_irqsave(&mapping->tree_lock, flags);
728 __delete_from_page_cache(old, NULL);
729 error = page_cache_tree_insert(mapping, new, NULL);
730 BUG_ON(error);
731
732 /*
733 * hugetlb pages do not participate in page cache accounting.
734 */
735 if (!PageHuge(new))
736 __inc_node_page_state(new, NR_FILE_PAGES);
737 if (PageSwapBacked(new))
738 __inc_node_page_state(new, NR_SHMEM);
739 spin_unlock_irqrestore(&mapping->tree_lock, flags);
740 mem_cgroup_migrate(old, new);
741 radix_tree_preload_end();
742 if (freepage)
743 freepage(old);
744 put_page(old);
745 }
746
747 return error;
748 }
749 EXPORT_SYMBOL_GPL(replace_page_cache_page);
750
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask,void ** shadowp)751 static int __add_to_page_cache_locked(struct page *page,
752 struct address_space *mapping,
753 pgoff_t offset, gfp_t gfp_mask,
754 void **shadowp)
755 {
756 int huge = PageHuge(page);
757 struct mem_cgroup *memcg;
758 int error;
759
760 VM_BUG_ON_PAGE(!PageLocked(page), page);
761 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
762
763 if (!huge) {
764 error = mem_cgroup_try_charge(page, current->mm,
765 gfp_mask, &memcg, false);
766 if (error)
767 return error;
768 }
769
770 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
771 if (error) {
772 if (!huge)
773 mem_cgroup_cancel_charge(page, memcg, false);
774 return error;
775 }
776
777 get_page(page);
778 page->mapping = mapping;
779 page->index = offset;
780
781 spin_lock_irq(&mapping->tree_lock);
782 error = page_cache_tree_insert(mapping, page, shadowp);
783 radix_tree_preload_end();
784 if (unlikely(error))
785 goto err_insert;
786
787 /* hugetlb pages do not participate in page cache accounting. */
788 if (!huge)
789 __inc_node_page_state(page, NR_FILE_PAGES);
790 spin_unlock_irq(&mapping->tree_lock);
791 if (!huge)
792 mem_cgroup_commit_charge(page, memcg, false, false);
793 trace_mm_filemap_add_to_page_cache(page);
794 return 0;
795 err_insert:
796 page->mapping = NULL;
797 /* Leave page->index set: truncation relies upon it */
798 spin_unlock_irq(&mapping->tree_lock);
799 if (!huge)
800 mem_cgroup_cancel_charge(page, memcg, false);
801 put_page(page);
802 return error;
803 }
804
805 /**
806 * add_to_page_cache_locked - add a locked page to the pagecache
807 * @page: page to add
808 * @mapping: the page's address_space
809 * @offset: page index
810 * @gfp_mask: page allocation mode
811 *
812 * This function is used to add a page to the pagecache. It must be locked.
813 * This function does not add the page to the LRU. The caller must do that.
814 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)815 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
816 pgoff_t offset, gfp_t gfp_mask)
817 {
818 return __add_to_page_cache_locked(page, mapping, offset,
819 gfp_mask, NULL);
820 }
821 EXPORT_SYMBOL(add_to_page_cache_locked);
822
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)823 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
824 pgoff_t offset, gfp_t gfp_mask)
825 {
826 void *shadow = NULL;
827 int ret;
828
829 __SetPageLocked(page);
830 ret = __add_to_page_cache_locked(page, mapping, offset,
831 gfp_mask, &shadow);
832 if (unlikely(ret))
833 __ClearPageLocked(page);
834 else {
835 /*
836 * The page might have been evicted from cache only
837 * recently, in which case it should be activated like
838 * any other repeatedly accessed page.
839 * The exception is pages getting rewritten; evicting other
840 * data from the working set, only to cache data that will
841 * get overwritten with something else, is a waste of memory.
842 */
843 WARN_ON_ONCE(PageActive(page));
844 if (!(gfp_mask & __GFP_WRITE) && shadow)
845 workingset_refault(page, shadow);
846 lru_cache_add(page);
847 }
848 return ret;
849 }
850 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
851
852 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)853 struct page *__page_cache_alloc(gfp_t gfp)
854 {
855 int n;
856 struct page *page;
857
858 if (cpuset_do_page_mem_spread()) {
859 unsigned int cpuset_mems_cookie;
860 do {
861 cpuset_mems_cookie = read_mems_allowed_begin();
862 n = cpuset_mem_spread_node();
863 page = __alloc_pages_node(n, gfp, 0);
864 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
865
866 return page;
867 }
868 return alloc_pages(gfp, 0);
869 }
870 EXPORT_SYMBOL(__page_cache_alloc);
871 #endif
872
873 /*
874 * In order to wait for pages to become available there must be
875 * waitqueues associated with pages. By using a hash table of
876 * waitqueues where the bucket discipline is to maintain all
877 * waiters on the same queue and wake all when any of the pages
878 * become available, and for the woken contexts to check to be
879 * sure the appropriate page became available, this saves space
880 * at a cost of "thundering herd" phenomena during rare hash
881 * collisions.
882 */
883 #define PAGE_WAIT_TABLE_BITS 8
884 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
885 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
886
page_waitqueue(struct page * page)887 static wait_queue_head_t *page_waitqueue(struct page *page)
888 {
889 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
890 }
891
pagecache_init(void)892 void __init pagecache_init(void)
893 {
894 int i;
895
896 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
897 init_waitqueue_head(&page_wait_table[i]);
898
899 page_writeback_init();
900 }
901
902 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
903 struct wait_page_key {
904 struct page *page;
905 int bit_nr;
906 int page_match;
907 };
908
909 struct wait_page_queue {
910 struct page *page;
911 int bit_nr;
912 wait_queue_entry_t wait;
913 };
914
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)915 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
916 {
917 struct wait_page_key *key = arg;
918 struct wait_page_queue *wait_page
919 = container_of(wait, struct wait_page_queue, wait);
920
921 if (wait_page->page != key->page)
922 return 0;
923 key->page_match = 1;
924
925 if (wait_page->bit_nr != key->bit_nr)
926 return 0;
927
928 /* Stop walking if it's locked */
929 if (test_bit(key->bit_nr, &key->page->flags))
930 return -1;
931
932 return autoremove_wake_function(wait, mode, sync, key);
933 }
934
wake_up_page_bit(struct page * page,int bit_nr)935 static void wake_up_page_bit(struct page *page, int bit_nr)
936 {
937 wait_queue_head_t *q = page_waitqueue(page);
938 struct wait_page_key key;
939 unsigned long flags;
940 wait_queue_entry_t bookmark;
941
942 key.page = page;
943 key.bit_nr = bit_nr;
944 key.page_match = 0;
945
946 bookmark.flags = 0;
947 bookmark.private = NULL;
948 bookmark.func = NULL;
949 INIT_LIST_HEAD(&bookmark.entry);
950
951 spin_lock_irqsave(&q->lock, flags);
952 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
953
954 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
955 /*
956 * Take a breather from holding the lock,
957 * allow pages that finish wake up asynchronously
958 * to acquire the lock and remove themselves
959 * from wait queue
960 */
961 spin_unlock_irqrestore(&q->lock, flags);
962 cpu_relax();
963 spin_lock_irqsave(&q->lock, flags);
964 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
965 }
966
967 /*
968 * It is possible for other pages to have collided on the waitqueue
969 * hash, so in that case check for a page match. That prevents a long-
970 * term waiter
971 *
972 * It is still possible to miss a case here, when we woke page waiters
973 * and removed them from the waitqueue, but there are still other
974 * page waiters.
975 */
976 if (!waitqueue_active(q) || !key.page_match) {
977 ClearPageWaiters(page);
978 /*
979 * It's possible to miss clearing Waiters here, when we woke
980 * our page waiters, but the hashed waitqueue has waiters for
981 * other pages on it.
982 *
983 * That's okay, it's a rare case. The next waker will clear it.
984 */
985 }
986 spin_unlock_irqrestore(&q->lock, flags);
987 }
988
wake_up_page(struct page * page,int bit)989 static void wake_up_page(struct page *page, int bit)
990 {
991 if (!PageWaiters(page))
992 return;
993 wake_up_page_bit(page, bit);
994 }
995
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,bool lock)996 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
997 struct page *page, int bit_nr, int state, bool lock)
998 {
999 struct wait_page_queue wait_page;
1000 wait_queue_entry_t *wait = &wait_page.wait;
1001 bool thrashing = false;
1002 unsigned long pflags;
1003 int ret = 0;
1004
1005 if (bit_nr == PG_locked &&
1006 !PageUptodate(page) && PageWorkingset(page)) {
1007 if (!PageSwapBacked(page))
1008 delayacct_thrashing_start();
1009 psi_memstall_enter(&pflags);
1010 thrashing = true;
1011 }
1012
1013 init_wait(wait);
1014 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1015 wait->func = wake_page_function;
1016 wait_page.page = page;
1017 wait_page.bit_nr = bit_nr;
1018
1019 for (;;) {
1020 spin_lock_irq(&q->lock);
1021
1022 if (likely(list_empty(&wait->entry))) {
1023 __add_wait_queue_entry_tail(q, wait);
1024 SetPageWaiters(page);
1025 }
1026
1027 set_current_state(state);
1028
1029 spin_unlock_irq(&q->lock);
1030
1031 if (likely(test_bit(bit_nr, &page->flags))) {
1032 io_schedule();
1033 }
1034
1035 if (lock) {
1036 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1037 break;
1038 } else {
1039 if (!test_bit(bit_nr, &page->flags))
1040 break;
1041 }
1042
1043 if (unlikely(signal_pending_state(state, current))) {
1044 ret = -EINTR;
1045 break;
1046 }
1047 }
1048
1049 finish_wait(q, wait);
1050
1051 if (thrashing) {
1052 if (!PageSwapBacked(page))
1053 delayacct_thrashing_end();
1054 psi_memstall_leave(&pflags);
1055 }
1056
1057 /*
1058 * A signal could leave PageWaiters set. Clearing it here if
1059 * !waitqueue_active would be possible (by open-coding finish_wait),
1060 * but still fail to catch it in the case of wait hash collision. We
1061 * already can fail to clear wait hash collision cases, so don't
1062 * bother with signals either.
1063 */
1064
1065 return ret;
1066 }
1067
wait_on_page_bit(struct page * page,int bit_nr)1068 void wait_on_page_bit(struct page *page, int bit_nr)
1069 {
1070 wait_queue_head_t *q = page_waitqueue(page);
1071 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1072 }
1073 EXPORT_SYMBOL(wait_on_page_bit);
1074
wait_on_page_bit_killable(struct page * page,int bit_nr)1075 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1076 {
1077 wait_queue_head_t *q = page_waitqueue(page);
1078 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1079 }
1080
1081 /**
1082 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1083 * @page: Page defining the wait queue of interest
1084 * @waiter: Waiter to add to the queue
1085 *
1086 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1087 */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1088 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1089 {
1090 wait_queue_head_t *q = page_waitqueue(page);
1091 unsigned long flags;
1092
1093 spin_lock_irqsave(&q->lock, flags);
1094 __add_wait_queue_entry_tail(q, waiter);
1095 SetPageWaiters(page);
1096 spin_unlock_irqrestore(&q->lock, flags);
1097 }
1098 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1099
1100 #ifndef clear_bit_unlock_is_negative_byte
1101
1102 /*
1103 * PG_waiters is the high bit in the same byte as PG_lock.
1104 *
1105 * On x86 (and on many other architectures), we can clear PG_lock and
1106 * test the sign bit at the same time. But if the architecture does
1107 * not support that special operation, we just do this all by hand
1108 * instead.
1109 *
1110 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1111 * being cleared, but a memory barrier should be unneccssary since it is
1112 * in the same byte as PG_locked.
1113 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1114 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1115 {
1116 clear_bit_unlock(nr, mem);
1117 /* smp_mb__after_atomic(); */
1118 return test_bit(PG_waiters, mem);
1119 }
1120
1121 #endif
1122
1123 /**
1124 * unlock_page - unlock a locked page
1125 * @page: the page
1126 *
1127 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1128 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1129 * mechanism between PageLocked pages and PageWriteback pages is shared.
1130 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1131 *
1132 * Note that this depends on PG_waiters being the sign bit in the byte
1133 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1134 * clear the PG_locked bit and test PG_waiters at the same time fairly
1135 * portably (architectures that do LL/SC can test any bit, while x86 can
1136 * test the sign bit).
1137 */
unlock_page(struct page * page)1138 void unlock_page(struct page *page)
1139 {
1140 BUILD_BUG_ON(PG_waiters != 7);
1141 page = compound_head(page);
1142 VM_BUG_ON_PAGE(!PageLocked(page), page);
1143 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1144 wake_up_page_bit(page, PG_locked);
1145 }
1146 EXPORT_SYMBOL(unlock_page);
1147
1148 /**
1149 * end_page_writeback - end writeback against a page
1150 * @page: the page
1151 */
end_page_writeback(struct page * page)1152 void end_page_writeback(struct page *page)
1153 {
1154 /*
1155 * TestClearPageReclaim could be used here but it is an atomic
1156 * operation and overkill in this particular case. Failing to
1157 * shuffle a page marked for immediate reclaim is too mild to
1158 * justify taking an atomic operation penalty at the end of
1159 * ever page writeback.
1160 */
1161 if (PageReclaim(page)) {
1162 ClearPageReclaim(page);
1163 rotate_reclaimable_page(page);
1164 }
1165
1166 if (!test_clear_page_writeback(page))
1167 BUG();
1168
1169 smp_mb__after_atomic();
1170 wake_up_page(page, PG_writeback);
1171 }
1172 EXPORT_SYMBOL(end_page_writeback);
1173
1174 /*
1175 * After completing I/O on a page, call this routine to update the page
1176 * flags appropriately
1177 */
page_endio(struct page * page,bool is_write,int err)1178 void page_endio(struct page *page, bool is_write, int err)
1179 {
1180 if (!is_write) {
1181 if (!err) {
1182 SetPageUptodate(page);
1183 } else {
1184 ClearPageUptodate(page);
1185 SetPageError(page);
1186 }
1187 unlock_page(page);
1188 } else {
1189 if (err) {
1190 struct address_space *mapping;
1191
1192 SetPageError(page);
1193 mapping = page_mapping(page);
1194 if (mapping)
1195 mapping_set_error(mapping, err);
1196 }
1197 end_page_writeback(page);
1198 }
1199 }
1200 EXPORT_SYMBOL_GPL(page_endio);
1201
1202 /**
1203 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1204 * @__page: the page to lock
1205 */
__lock_page(struct page * __page)1206 void __lock_page(struct page *__page)
1207 {
1208 struct page *page = compound_head(__page);
1209 wait_queue_head_t *q = page_waitqueue(page);
1210 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1211 }
1212 EXPORT_SYMBOL(__lock_page);
1213
__lock_page_killable(struct page * __page)1214 int __lock_page_killable(struct page *__page)
1215 {
1216 struct page *page = compound_head(__page);
1217 wait_queue_head_t *q = page_waitqueue(page);
1218 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1219 }
1220 EXPORT_SYMBOL_GPL(__lock_page_killable);
1221
1222 /*
1223 * Return values:
1224 * 1 - page is locked; mmap_sem is still held.
1225 * 0 - page is not locked.
1226 * mmap_sem has been released (up_read()), unless flags had both
1227 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1228 * which case mmap_sem is still held.
1229 *
1230 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1231 * with the page locked and the mmap_sem unperturbed.
1232 */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1233 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1234 unsigned int flags)
1235 {
1236 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1237 /*
1238 * CAUTION! In this case, mmap_sem is not released
1239 * even though return 0.
1240 */
1241 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1242 return 0;
1243
1244 up_read(&mm->mmap_sem);
1245 if (flags & FAULT_FLAG_KILLABLE)
1246 wait_on_page_locked_killable(page);
1247 else
1248 wait_on_page_locked(page);
1249 return 0;
1250 } else {
1251 if (flags & FAULT_FLAG_KILLABLE) {
1252 int ret;
1253
1254 ret = __lock_page_killable(page);
1255 if (ret) {
1256 up_read(&mm->mmap_sem);
1257 return 0;
1258 }
1259 } else
1260 __lock_page(page);
1261 return 1;
1262 }
1263 }
1264
1265 /**
1266 * page_cache_next_hole - find the next hole (not-present entry)
1267 * @mapping: mapping
1268 * @index: index
1269 * @max_scan: maximum range to search
1270 *
1271 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1272 * lowest indexed hole.
1273 *
1274 * Returns: the index of the hole if found, otherwise returns an index
1275 * outside of the set specified (in which case 'return - index >=
1276 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1277 * be returned.
1278 *
1279 * page_cache_next_hole may be called under rcu_read_lock. However,
1280 * like radix_tree_gang_lookup, this will not atomically search a
1281 * snapshot of the tree at a single point in time. For example, if a
1282 * hole is created at index 5, then subsequently a hole is created at
1283 * index 10, page_cache_next_hole covering both indexes may return 10
1284 * if called under rcu_read_lock.
1285 */
page_cache_next_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1286 pgoff_t page_cache_next_hole(struct address_space *mapping,
1287 pgoff_t index, unsigned long max_scan)
1288 {
1289 unsigned long i;
1290
1291 for (i = 0; i < max_scan; i++) {
1292 struct page *page;
1293
1294 page = radix_tree_lookup(&mapping->page_tree, index);
1295 if (!page || radix_tree_exceptional_entry(page))
1296 break;
1297 index++;
1298 if (index == 0)
1299 break;
1300 }
1301
1302 return index;
1303 }
1304 EXPORT_SYMBOL(page_cache_next_hole);
1305
1306 /**
1307 * page_cache_prev_hole - find the prev hole (not-present entry)
1308 * @mapping: mapping
1309 * @index: index
1310 * @max_scan: maximum range to search
1311 *
1312 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1313 * the first hole.
1314 *
1315 * Returns: the index of the hole if found, otherwise returns an index
1316 * outside of the set specified (in which case 'index - return >=
1317 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1318 * will be returned.
1319 *
1320 * page_cache_prev_hole may be called under rcu_read_lock. However,
1321 * like radix_tree_gang_lookup, this will not atomically search a
1322 * snapshot of the tree at a single point in time. For example, if a
1323 * hole is created at index 10, then subsequently a hole is created at
1324 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1325 * called under rcu_read_lock.
1326 */
page_cache_prev_hole(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1327 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1328 pgoff_t index, unsigned long max_scan)
1329 {
1330 unsigned long i;
1331
1332 for (i = 0; i < max_scan; i++) {
1333 struct page *page;
1334
1335 page = radix_tree_lookup(&mapping->page_tree, index);
1336 if (!page || radix_tree_exceptional_entry(page))
1337 break;
1338 index--;
1339 if (index == ULONG_MAX)
1340 break;
1341 }
1342
1343 return index;
1344 }
1345 EXPORT_SYMBOL(page_cache_prev_hole);
1346
1347 /**
1348 * find_get_entry - find and get a page cache entry
1349 * @mapping: the address_space to search
1350 * @offset: the page cache index
1351 *
1352 * Looks up the page cache slot at @mapping & @offset. If there is a
1353 * page cache page, it is returned with an increased refcount.
1354 *
1355 * If the slot holds a shadow entry of a previously evicted page, or a
1356 * swap entry from shmem/tmpfs, it is returned.
1357 *
1358 * Otherwise, %NULL is returned.
1359 */
find_get_entry(struct address_space * mapping,pgoff_t offset)1360 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1361 {
1362 void **pagep;
1363 struct page *head, *page;
1364
1365 rcu_read_lock();
1366 repeat:
1367 page = NULL;
1368 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1369 if (pagep) {
1370 page = radix_tree_deref_slot(pagep);
1371 if (unlikely(!page))
1372 goto out;
1373 if (radix_tree_exception(page)) {
1374 if (radix_tree_deref_retry(page))
1375 goto repeat;
1376 /*
1377 * A shadow entry of a recently evicted page,
1378 * or a swap entry from shmem/tmpfs. Return
1379 * it without attempting to raise page count.
1380 */
1381 goto out;
1382 }
1383
1384 head = compound_head(page);
1385 if (!page_cache_get_speculative(head))
1386 goto repeat;
1387
1388 /* The page was split under us? */
1389 if (compound_head(page) != head) {
1390 put_page(head);
1391 goto repeat;
1392 }
1393
1394 /*
1395 * Has the page moved?
1396 * This is part of the lockless pagecache protocol. See
1397 * include/linux/pagemap.h for details.
1398 */
1399 if (unlikely(page != *pagep)) {
1400 put_page(head);
1401 goto repeat;
1402 }
1403 }
1404 out:
1405 rcu_read_unlock();
1406
1407 return page;
1408 }
1409 EXPORT_SYMBOL(find_get_entry);
1410
1411 /**
1412 * find_lock_entry - locate, pin and lock a page cache entry
1413 * @mapping: the address_space to search
1414 * @offset: the page cache index
1415 *
1416 * Looks up the page cache slot at @mapping & @offset. If there is a
1417 * page cache page, it is returned locked and with an increased
1418 * refcount.
1419 *
1420 * If the slot holds a shadow entry of a previously evicted page, or a
1421 * swap entry from shmem/tmpfs, it is returned.
1422 *
1423 * Otherwise, %NULL is returned.
1424 *
1425 * find_lock_entry() may sleep.
1426 */
find_lock_entry(struct address_space * mapping,pgoff_t offset)1427 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1428 {
1429 struct page *page;
1430
1431 repeat:
1432 page = find_get_entry(mapping, offset);
1433 if (page && !radix_tree_exception(page)) {
1434 lock_page(page);
1435 /* Has the page been truncated? */
1436 if (unlikely(page_mapping(page) != mapping)) {
1437 unlock_page(page);
1438 put_page(page);
1439 goto repeat;
1440 }
1441 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1442 }
1443 return page;
1444 }
1445 EXPORT_SYMBOL(find_lock_entry);
1446
1447 /**
1448 * pagecache_get_page - find and get a page reference
1449 * @mapping: the address_space to search
1450 * @offset: the page index
1451 * @fgp_flags: PCG flags
1452 * @gfp_mask: gfp mask to use for the page cache data page allocation
1453 *
1454 * Looks up the page cache slot at @mapping & @offset.
1455 *
1456 * PCG flags modify how the page is returned.
1457 *
1458 * @fgp_flags can be:
1459 *
1460 * - FGP_ACCESSED: the page will be marked accessed
1461 * - FGP_LOCK: Page is return locked
1462 * - FGP_CREAT: If page is not present then a new page is allocated using
1463 * @gfp_mask and added to the page cache and the VM's LRU
1464 * list. The page is returned locked and with an increased
1465 * refcount.
1466 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1467 * its own locking dance if the page is already in cache, or unlock the page
1468 * before returning if we had to add the page to pagecache.
1469 *
1470 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1471 * if the GFP flags specified for FGP_CREAT are atomic.
1472 *
1473 * If there is a page cache page, it is returned with an increased refcount.
1474 */
pagecache_get_page(struct address_space * mapping,pgoff_t offset,int fgp_flags,gfp_t gfp_mask)1475 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1476 int fgp_flags, gfp_t gfp_mask)
1477 {
1478 struct page *page;
1479
1480 repeat:
1481 page = find_get_entry(mapping, offset);
1482 if (radix_tree_exceptional_entry(page))
1483 page = NULL;
1484 if (!page)
1485 goto no_page;
1486
1487 if (fgp_flags & FGP_LOCK) {
1488 if (fgp_flags & FGP_NOWAIT) {
1489 if (!trylock_page(page)) {
1490 put_page(page);
1491 return NULL;
1492 }
1493 } else {
1494 lock_page(page);
1495 }
1496
1497 /* Has the page been truncated? */
1498 if (unlikely(page->mapping != mapping)) {
1499 unlock_page(page);
1500 put_page(page);
1501 goto repeat;
1502 }
1503 VM_BUG_ON_PAGE(page->index != offset, page);
1504 }
1505
1506 if (page && (fgp_flags & FGP_ACCESSED))
1507 mark_page_accessed(page);
1508
1509 no_page:
1510 if (!page && (fgp_flags & FGP_CREAT)) {
1511 int err;
1512 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1513 gfp_mask |= __GFP_WRITE;
1514 if (fgp_flags & FGP_NOFS)
1515 gfp_mask &= ~__GFP_FS;
1516
1517 page = __page_cache_alloc(gfp_mask);
1518 if (!page)
1519 return NULL;
1520
1521 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1522 fgp_flags |= FGP_LOCK;
1523
1524 /* Init accessed so avoid atomic mark_page_accessed later */
1525 if (fgp_flags & FGP_ACCESSED)
1526 __SetPageReferenced(page);
1527
1528 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1529 if (unlikely(err)) {
1530 put_page(page);
1531 page = NULL;
1532 if (err == -EEXIST)
1533 goto repeat;
1534 }
1535
1536 /*
1537 * add_to_page_cache_lru locks the page, and for mmap we expect
1538 * an unlocked page.
1539 */
1540 if (page && (fgp_flags & FGP_FOR_MMAP))
1541 unlock_page(page);
1542 }
1543
1544 return page;
1545 }
1546 EXPORT_SYMBOL(pagecache_get_page);
1547
1548 /**
1549 * find_get_entries - gang pagecache lookup
1550 * @mapping: The address_space to search
1551 * @start: The starting page cache index
1552 * @nr_entries: The maximum number of entries
1553 * @entries: Where the resulting entries are placed
1554 * @indices: The cache indices corresponding to the entries in @entries
1555 *
1556 * find_get_entries() will search for and return a group of up to
1557 * @nr_entries entries in the mapping. The entries are placed at
1558 * @entries. find_get_entries() takes a reference against any actual
1559 * pages it returns.
1560 *
1561 * The search returns a group of mapping-contiguous page cache entries
1562 * with ascending indexes. There may be holes in the indices due to
1563 * not-present pages.
1564 *
1565 * Any shadow entries of evicted pages, or swap entries from
1566 * shmem/tmpfs, are included in the returned array.
1567 *
1568 * find_get_entries() returns the number of pages and shadow entries
1569 * which were found.
1570 */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1571 unsigned find_get_entries(struct address_space *mapping,
1572 pgoff_t start, unsigned int nr_entries,
1573 struct page **entries, pgoff_t *indices)
1574 {
1575 void **slot;
1576 unsigned int ret = 0;
1577 struct radix_tree_iter iter;
1578
1579 if (!nr_entries)
1580 return 0;
1581
1582 rcu_read_lock();
1583 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1584 struct page *head, *page;
1585 repeat:
1586 page = radix_tree_deref_slot(slot);
1587 if (unlikely(!page))
1588 continue;
1589 if (radix_tree_exception(page)) {
1590 if (radix_tree_deref_retry(page)) {
1591 slot = radix_tree_iter_retry(&iter);
1592 continue;
1593 }
1594 /*
1595 * A shadow entry of a recently evicted page, a swap
1596 * entry from shmem/tmpfs or a DAX entry. Return it
1597 * without attempting to raise page count.
1598 */
1599 goto export;
1600 }
1601
1602 head = compound_head(page);
1603 if (!page_cache_get_speculative(head))
1604 goto repeat;
1605
1606 /* The page was split under us? */
1607 if (compound_head(page) != head) {
1608 put_page(head);
1609 goto repeat;
1610 }
1611
1612 /* Has the page moved? */
1613 if (unlikely(page != *slot)) {
1614 put_page(head);
1615 goto repeat;
1616 }
1617 export:
1618 indices[ret] = iter.index;
1619 entries[ret] = page;
1620 if (++ret == nr_entries)
1621 break;
1622 }
1623 rcu_read_unlock();
1624 return ret;
1625 }
1626
1627 /**
1628 * find_get_pages_range - gang pagecache lookup
1629 * @mapping: The address_space to search
1630 * @start: The starting page index
1631 * @end: The final page index (inclusive)
1632 * @nr_pages: The maximum number of pages
1633 * @pages: Where the resulting pages are placed
1634 *
1635 * find_get_pages_range() will search for and return a group of up to @nr_pages
1636 * pages in the mapping starting at index @start and up to index @end
1637 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1638 * a reference against the returned pages.
1639 *
1640 * The search returns a group of mapping-contiguous pages with ascending
1641 * indexes. There may be holes in the indices due to not-present pages.
1642 * We also update @start to index the next page for the traversal.
1643 *
1644 * find_get_pages_range() returns the number of pages which were found. If this
1645 * number is smaller than @nr_pages, the end of specified range has been
1646 * reached.
1647 */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)1648 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1649 pgoff_t end, unsigned int nr_pages,
1650 struct page **pages)
1651 {
1652 struct radix_tree_iter iter;
1653 void **slot;
1654 unsigned ret = 0;
1655
1656 if (unlikely(!nr_pages))
1657 return 0;
1658
1659 rcu_read_lock();
1660 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1661 struct page *head, *page;
1662
1663 if (iter.index > end)
1664 break;
1665 repeat:
1666 page = radix_tree_deref_slot(slot);
1667 if (unlikely(!page))
1668 continue;
1669
1670 if (radix_tree_exception(page)) {
1671 if (radix_tree_deref_retry(page)) {
1672 slot = radix_tree_iter_retry(&iter);
1673 continue;
1674 }
1675 /*
1676 * A shadow entry of a recently evicted page,
1677 * or a swap entry from shmem/tmpfs. Skip
1678 * over it.
1679 */
1680 continue;
1681 }
1682
1683 head = compound_head(page);
1684 if (!page_cache_get_speculative(head))
1685 goto repeat;
1686
1687 /* The page was split under us? */
1688 if (compound_head(page) != head) {
1689 put_page(head);
1690 goto repeat;
1691 }
1692
1693 /* Has the page moved? */
1694 if (unlikely(page != *slot)) {
1695 put_page(head);
1696 goto repeat;
1697 }
1698
1699 pages[ret] = page;
1700 if (++ret == nr_pages) {
1701 *start = pages[ret - 1]->index + 1;
1702 goto out;
1703 }
1704 }
1705
1706 /*
1707 * We come here when there is no page beyond @end. We take care to not
1708 * overflow the index @start as it confuses some of the callers. This
1709 * breaks the iteration when there is page at index -1 but that is
1710 * already broken anyway.
1711 */
1712 if (end == (pgoff_t)-1)
1713 *start = (pgoff_t)-1;
1714 else
1715 *start = end + 1;
1716 out:
1717 rcu_read_unlock();
1718
1719 return ret;
1720 }
1721
1722 /**
1723 * find_get_pages_contig - gang contiguous pagecache lookup
1724 * @mapping: The address_space to search
1725 * @index: The starting page index
1726 * @nr_pages: The maximum number of pages
1727 * @pages: Where the resulting pages are placed
1728 *
1729 * find_get_pages_contig() works exactly like find_get_pages(), except
1730 * that the returned number of pages are guaranteed to be contiguous.
1731 *
1732 * find_get_pages_contig() returns the number of pages which were found.
1733 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)1734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1735 unsigned int nr_pages, struct page **pages)
1736 {
1737 struct radix_tree_iter iter;
1738 void **slot;
1739 unsigned int ret = 0;
1740
1741 if (unlikely(!nr_pages))
1742 return 0;
1743
1744 rcu_read_lock();
1745 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1746 struct page *head, *page;
1747 repeat:
1748 page = radix_tree_deref_slot(slot);
1749 /* The hole, there no reason to continue */
1750 if (unlikely(!page))
1751 break;
1752
1753 if (radix_tree_exception(page)) {
1754 if (radix_tree_deref_retry(page)) {
1755 slot = radix_tree_iter_retry(&iter);
1756 continue;
1757 }
1758 /*
1759 * A shadow entry of a recently evicted page,
1760 * or a swap entry from shmem/tmpfs. Stop
1761 * looking for contiguous pages.
1762 */
1763 break;
1764 }
1765
1766 head = compound_head(page);
1767 if (!page_cache_get_speculative(head))
1768 goto repeat;
1769
1770 /* The page was split under us? */
1771 if (compound_head(page) != head) {
1772 put_page(head);
1773 goto repeat;
1774 }
1775
1776 /* Has the page moved? */
1777 if (unlikely(page != *slot)) {
1778 put_page(head);
1779 goto repeat;
1780 }
1781
1782 /*
1783 * must check mapping and index after taking the ref.
1784 * otherwise we can get both false positives and false
1785 * negatives, which is just confusing to the caller.
1786 */
1787 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1788 put_page(page);
1789 break;
1790 }
1791
1792 pages[ret] = page;
1793 if (++ret == nr_pages)
1794 break;
1795 }
1796 rcu_read_unlock();
1797 return ret;
1798 }
1799 EXPORT_SYMBOL(find_get_pages_contig);
1800
1801 /**
1802 * find_get_pages_range_tag - find and return pages in given range matching @tag
1803 * @mapping: the address_space to search
1804 * @index: the starting page index
1805 * @end: The final page index (inclusive)
1806 * @tag: the tag index
1807 * @nr_pages: the maximum number of pages
1808 * @pages: where the resulting pages are placed
1809 *
1810 * Like find_get_pages, except we only return pages which are tagged with
1811 * @tag. We update @index to index the next page for the traversal.
1812 */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,int tag,unsigned int nr_pages,struct page ** pages)1813 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1814 pgoff_t end, int tag, unsigned int nr_pages,
1815 struct page **pages)
1816 {
1817 struct radix_tree_iter iter;
1818 void **slot;
1819 unsigned ret = 0;
1820
1821 if (unlikely(!nr_pages))
1822 return 0;
1823
1824 rcu_read_lock();
1825 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1826 &iter, *index, tag) {
1827 struct page *head, *page;
1828
1829 if (iter.index > end)
1830 break;
1831 repeat:
1832 page = radix_tree_deref_slot(slot);
1833 if (unlikely(!page))
1834 continue;
1835
1836 if (radix_tree_exception(page)) {
1837 if (radix_tree_deref_retry(page)) {
1838 slot = radix_tree_iter_retry(&iter);
1839 continue;
1840 }
1841 /*
1842 * A shadow entry of a recently evicted page.
1843 *
1844 * Those entries should never be tagged, but
1845 * this tree walk is lockless and the tags are
1846 * looked up in bulk, one radix tree node at a
1847 * time, so there is a sizable window for page
1848 * reclaim to evict a page we saw tagged.
1849 *
1850 * Skip over it.
1851 */
1852 continue;
1853 }
1854
1855 head = compound_head(page);
1856 if (!page_cache_get_speculative(head))
1857 goto repeat;
1858
1859 /* The page was split under us? */
1860 if (compound_head(page) != head) {
1861 put_page(head);
1862 goto repeat;
1863 }
1864
1865 /* Has the page moved? */
1866 if (unlikely(page != *slot)) {
1867 put_page(head);
1868 goto repeat;
1869 }
1870
1871 pages[ret] = page;
1872 if (++ret == nr_pages) {
1873 *index = pages[ret - 1]->index + 1;
1874 goto out;
1875 }
1876 }
1877
1878 /*
1879 * We come here when we got at @end. We take care to not overflow the
1880 * index @index as it confuses some of the callers. This breaks the
1881 * iteration when there is page at index -1 but that is already broken
1882 * anyway.
1883 */
1884 if (end == (pgoff_t)-1)
1885 *index = (pgoff_t)-1;
1886 else
1887 *index = end + 1;
1888 out:
1889 rcu_read_unlock();
1890
1891 return ret;
1892 }
1893 EXPORT_SYMBOL(find_get_pages_range_tag);
1894
1895 /**
1896 * find_get_entries_tag - find and return entries that match @tag
1897 * @mapping: the address_space to search
1898 * @start: the starting page cache index
1899 * @tag: the tag index
1900 * @nr_entries: the maximum number of entries
1901 * @entries: where the resulting entries are placed
1902 * @indices: the cache indices corresponding to the entries in @entries
1903 *
1904 * Like find_get_entries, except we only return entries which are tagged with
1905 * @tag.
1906 */
find_get_entries_tag(struct address_space * mapping,pgoff_t start,int tag,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1907 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1908 int tag, unsigned int nr_entries,
1909 struct page **entries, pgoff_t *indices)
1910 {
1911 void **slot;
1912 unsigned int ret = 0;
1913 struct radix_tree_iter iter;
1914
1915 if (!nr_entries)
1916 return 0;
1917
1918 rcu_read_lock();
1919 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1920 &iter, start, tag) {
1921 struct page *head, *page;
1922 repeat:
1923 page = radix_tree_deref_slot(slot);
1924 if (unlikely(!page))
1925 continue;
1926 if (radix_tree_exception(page)) {
1927 if (radix_tree_deref_retry(page)) {
1928 slot = radix_tree_iter_retry(&iter);
1929 continue;
1930 }
1931
1932 /*
1933 * A shadow entry of a recently evicted page, a swap
1934 * entry from shmem/tmpfs or a DAX entry. Return it
1935 * without attempting to raise page count.
1936 */
1937 goto export;
1938 }
1939
1940 head = compound_head(page);
1941 if (!page_cache_get_speculative(head))
1942 goto repeat;
1943
1944 /* The page was split under us? */
1945 if (compound_head(page) != head) {
1946 put_page(head);
1947 goto repeat;
1948 }
1949
1950 /* Has the page moved? */
1951 if (unlikely(page != *slot)) {
1952 put_page(head);
1953 goto repeat;
1954 }
1955 export:
1956 indices[ret] = iter.index;
1957 entries[ret] = page;
1958 if (++ret == nr_entries)
1959 break;
1960 }
1961 rcu_read_unlock();
1962 return ret;
1963 }
1964 EXPORT_SYMBOL(find_get_entries_tag);
1965
1966 /*
1967 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1968 * a _large_ part of the i/o request. Imagine the worst scenario:
1969 *
1970 * ---R__________________________________________B__________
1971 * ^ reading here ^ bad block(assume 4k)
1972 *
1973 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1974 * => failing the whole request => read(R) => read(R+1) =>
1975 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1976 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1977 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1978 *
1979 * It is going insane. Fix it by quickly scaling down the readahead size.
1980 */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)1981 static void shrink_readahead_size_eio(struct file *filp,
1982 struct file_ra_state *ra)
1983 {
1984 ra->ra_pages /= 4;
1985 }
1986
1987 /**
1988 * generic_file_buffered_read - generic file read routine
1989 * @iocb: the iocb to read
1990 * @iter: data destination
1991 * @written: already copied
1992 *
1993 * This is a generic file read routine, and uses the
1994 * mapping->a_ops->readpage() function for the actual low-level stuff.
1995 *
1996 * This is really ugly. But the goto's actually try to clarify some
1997 * of the logic when it comes to error handling etc.
1998 */
generic_file_buffered_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t written)1999 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2000 struct iov_iter *iter, ssize_t written)
2001 {
2002 struct file *filp = iocb->ki_filp;
2003 struct address_space *mapping = filp->f_mapping;
2004 struct inode *inode = mapping->host;
2005 struct file_ra_state *ra = &filp->f_ra;
2006 loff_t *ppos = &iocb->ki_pos;
2007 pgoff_t index;
2008 pgoff_t last_index;
2009 pgoff_t prev_index;
2010 unsigned long offset; /* offset into pagecache page */
2011 unsigned int prev_offset;
2012 int error = 0;
2013
2014 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2015 return 0;
2016 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2017
2018 index = *ppos >> PAGE_SHIFT;
2019 prev_index = ra->prev_pos >> PAGE_SHIFT;
2020 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2021 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2022 offset = *ppos & ~PAGE_MASK;
2023
2024 for (;;) {
2025 struct page *page;
2026 pgoff_t end_index;
2027 loff_t isize;
2028 unsigned long nr, ret;
2029
2030 cond_resched();
2031 find_page:
2032 if (fatal_signal_pending(current)) {
2033 error = -EINTR;
2034 goto out;
2035 }
2036
2037 page = find_get_page(mapping, index);
2038 if (!page) {
2039 if (iocb->ki_flags & IOCB_NOWAIT)
2040 goto would_block;
2041 page_cache_sync_readahead(mapping,
2042 ra, filp,
2043 index, last_index - index);
2044 page = find_get_page(mapping, index);
2045 if (unlikely(page == NULL))
2046 goto no_cached_page;
2047 }
2048 if (PageReadahead(page)) {
2049 page_cache_async_readahead(mapping,
2050 ra, filp, page,
2051 index, last_index - index);
2052 }
2053 if (!PageUptodate(page)) {
2054 if (iocb->ki_flags & IOCB_NOWAIT) {
2055 put_page(page);
2056 goto would_block;
2057 }
2058
2059 /*
2060 * See comment in do_read_cache_page on why
2061 * wait_on_page_locked is used to avoid unnecessarily
2062 * serialisations and why it's safe.
2063 */
2064 error = wait_on_page_locked_killable(page);
2065 if (unlikely(error))
2066 goto readpage_error;
2067 if (PageUptodate(page))
2068 goto page_ok;
2069
2070 if (inode->i_blkbits == PAGE_SHIFT ||
2071 !mapping->a_ops->is_partially_uptodate)
2072 goto page_not_up_to_date;
2073 /* pipes can't handle partially uptodate pages */
2074 if (unlikely(iter->type & ITER_PIPE))
2075 goto page_not_up_to_date;
2076 if (!trylock_page(page))
2077 goto page_not_up_to_date;
2078 /* Did it get truncated before we got the lock? */
2079 if (!page->mapping)
2080 goto page_not_up_to_date_locked;
2081 if (!mapping->a_ops->is_partially_uptodate(page,
2082 offset, iter->count))
2083 goto page_not_up_to_date_locked;
2084 unlock_page(page);
2085 }
2086 page_ok:
2087 /*
2088 * i_size must be checked after we know the page is Uptodate.
2089 *
2090 * Checking i_size after the check allows us to calculate
2091 * the correct value for "nr", which means the zero-filled
2092 * part of the page is not copied back to userspace (unless
2093 * another truncate extends the file - this is desired though).
2094 */
2095
2096 isize = i_size_read(inode);
2097 end_index = (isize - 1) >> PAGE_SHIFT;
2098 if (unlikely(!isize || index > end_index)) {
2099 put_page(page);
2100 goto out;
2101 }
2102
2103 /* nr is the maximum number of bytes to copy from this page */
2104 nr = PAGE_SIZE;
2105 if (index == end_index) {
2106 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2107 if (nr <= offset) {
2108 put_page(page);
2109 goto out;
2110 }
2111 }
2112 nr = nr - offset;
2113
2114 /* If users can be writing to this page using arbitrary
2115 * virtual addresses, take care about potential aliasing
2116 * before reading the page on the kernel side.
2117 */
2118 if (mapping_writably_mapped(mapping))
2119 flush_dcache_page(page);
2120
2121 /*
2122 * When a sequential read accesses a page several times,
2123 * only mark it as accessed the first time.
2124 */
2125 if (prev_index != index || offset != prev_offset)
2126 mark_page_accessed(page);
2127 prev_index = index;
2128
2129 /*
2130 * Ok, we have the page, and it's up-to-date, so
2131 * now we can copy it to user space...
2132 */
2133
2134 ret = copy_page_to_iter(page, offset, nr, iter);
2135 offset += ret;
2136 index += offset >> PAGE_SHIFT;
2137 offset &= ~PAGE_MASK;
2138 prev_offset = offset;
2139
2140 put_page(page);
2141 written += ret;
2142 if (!iov_iter_count(iter))
2143 goto out;
2144 if (ret < nr) {
2145 error = -EFAULT;
2146 goto out;
2147 }
2148 continue;
2149
2150 page_not_up_to_date:
2151 /* Get exclusive access to the page ... */
2152 error = lock_page_killable(page);
2153 if (unlikely(error))
2154 goto readpage_error;
2155
2156 page_not_up_to_date_locked:
2157 /* Did it get truncated before we got the lock? */
2158 if (!page->mapping) {
2159 unlock_page(page);
2160 put_page(page);
2161 continue;
2162 }
2163
2164 /* Did somebody else fill it already? */
2165 if (PageUptodate(page)) {
2166 unlock_page(page);
2167 goto page_ok;
2168 }
2169
2170 readpage:
2171 /*
2172 * A previous I/O error may have been due to temporary
2173 * failures, eg. multipath errors.
2174 * PG_error will be set again if readpage fails.
2175 */
2176 ClearPageError(page);
2177 /* Start the actual read. The read will unlock the page. */
2178 error = mapping->a_ops->readpage(filp, page);
2179
2180 if (unlikely(error)) {
2181 if (error == AOP_TRUNCATED_PAGE) {
2182 put_page(page);
2183 error = 0;
2184 goto find_page;
2185 }
2186 goto readpage_error;
2187 }
2188
2189 if (!PageUptodate(page)) {
2190 error = lock_page_killable(page);
2191 if (unlikely(error))
2192 goto readpage_error;
2193 if (!PageUptodate(page)) {
2194 if (page->mapping == NULL) {
2195 /*
2196 * invalidate_mapping_pages got it
2197 */
2198 unlock_page(page);
2199 put_page(page);
2200 goto find_page;
2201 }
2202 unlock_page(page);
2203 shrink_readahead_size_eio(filp, ra);
2204 error = -EIO;
2205 goto readpage_error;
2206 }
2207 unlock_page(page);
2208 }
2209
2210 goto page_ok;
2211
2212 readpage_error:
2213 /* UHHUH! A synchronous read error occurred. Report it */
2214 put_page(page);
2215 goto out;
2216
2217 no_cached_page:
2218 /*
2219 * Ok, it wasn't cached, so we need to create a new
2220 * page..
2221 */
2222 page = page_cache_alloc_cold(mapping);
2223 if (!page) {
2224 error = -ENOMEM;
2225 goto out;
2226 }
2227 error = add_to_page_cache_lru(page, mapping, index,
2228 mapping_gfp_constraint(mapping, GFP_KERNEL));
2229 if (error) {
2230 put_page(page);
2231 if (error == -EEXIST) {
2232 error = 0;
2233 goto find_page;
2234 }
2235 goto out;
2236 }
2237 goto readpage;
2238 }
2239
2240 would_block:
2241 error = -EAGAIN;
2242 out:
2243 ra->prev_pos = prev_index;
2244 ra->prev_pos <<= PAGE_SHIFT;
2245 ra->prev_pos |= prev_offset;
2246
2247 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2248 file_accessed(filp);
2249 return written ? written : error;
2250 }
2251
2252 /**
2253 * generic_file_read_iter - generic filesystem read routine
2254 * @iocb: kernel I/O control block
2255 * @iter: destination for the data read
2256 *
2257 * This is the "read_iter()" routine for all filesystems
2258 * that can use the page cache directly.
2259 */
2260 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2261 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2262 {
2263 size_t count = iov_iter_count(iter);
2264 ssize_t retval = 0;
2265
2266 if (!count)
2267 goto out; /* skip atime */
2268
2269 if (iocb->ki_flags & IOCB_DIRECT) {
2270 struct file *file = iocb->ki_filp;
2271 struct address_space *mapping = file->f_mapping;
2272 struct inode *inode = mapping->host;
2273 loff_t size;
2274
2275 size = i_size_read(inode);
2276 if (iocb->ki_flags & IOCB_NOWAIT) {
2277 if (filemap_range_has_page(mapping, iocb->ki_pos,
2278 iocb->ki_pos + count - 1))
2279 return -EAGAIN;
2280 } else {
2281 retval = filemap_write_and_wait_range(mapping,
2282 iocb->ki_pos,
2283 iocb->ki_pos + count - 1);
2284 if (retval < 0)
2285 goto out;
2286 }
2287
2288 file_accessed(file);
2289
2290 retval = mapping->a_ops->direct_IO(iocb, iter);
2291 if (retval >= 0) {
2292 iocb->ki_pos += retval;
2293 count -= retval;
2294 }
2295 iov_iter_revert(iter, count - iov_iter_count(iter));
2296
2297 /*
2298 * Btrfs can have a short DIO read if we encounter
2299 * compressed extents, so if there was an error, or if
2300 * we've already read everything we wanted to, or if
2301 * there was a short read because we hit EOF, go ahead
2302 * and return. Otherwise fallthrough to buffered io for
2303 * the rest of the read. Buffered reads will not work for
2304 * DAX files, so don't bother trying.
2305 */
2306 if (retval < 0 || !count || iocb->ki_pos >= size ||
2307 IS_DAX(inode))
2308 goto out;
2309 }
2310
2311 retval = generic_file_buffered_read(iocb, iter, retval);
2312 out:
2313 return retval;
2314 }
2315 EXPORT_SYMBOL(generic_file_read_iter);
2316
2317 #ifdef CONFIG_MMU
2318 #define MMAP_LOTSAMISS (100)
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)2319 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2320 struct file *fpin)
2321 {
2322 int flags = vmf->flags;
2323
2324 if (fpin)
2325 return fpin;
2326
2327 /*
2328 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2329 * anything, so we only pin the file and drop the mmap_sem if only
2330 * FAULT_FLAG_ALLOW_RETRY is set.
2331 */
2332 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2333 FAULT_FLAG_ALLOW_RETRY) {
2334 fpin = get_file(vmf->vma->vm_file);
2335 up_read(&vmf->vma->vm_mm->mmap_sem);
2336 }
2337 return fpin;
2338 }
2339
2340 /*
2341 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2342 * @vmf - the vm_fault for this fault.
2343 * @page - the page to lock.
2344 * @fpin - the pointer to the file we may pin (or is already pinned).
2345 *
2346 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2347 * It differs in that it actually returns the page locked if it returns 1 and 0
2348 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2349 * will point to the pinned file and needs to be fput()'ed at a later point.
2350 */
lock_page_maybe_drop_mmap(struct vm_fault * vmf,struct page * page,struct file ** fpin)2351 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2352 struct file **fpin)
2353 {
2354 if (trylock_page(page))
2355 return 1;
2356
2357 /*
2358 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2359 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2360 * is supposed to work. We have way too many special cases..
2361 */
2362 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2363 return 0;
2364
2365 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2366 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2367 if (__lock_page_killable(page)) {
2368 /*
2369 * We didn't have the right flags to drop the mmap_sem,
2370 * but all fault_handlers only check for fatal signals
2371 * if we return VM_FAULT_RETRY, so we need to drop the
2372 * mmap_sem here and return 0 if we don't have a fpin.
2373 */
2374 if (*fpin == NULL)
2375 up_read(&vmf->vma->vm_mm->mmap_sem);
2376 return 0;
2377 }
2378 } else
2379 __lock_page(page);
2380 return 1;
2381 }
2382
2383
2384 /*
2385 * Synchronous readahead happens when we don't even find a page in the page
2386 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2387 * to drop the mmap sem we return the file that was pinned in order for us to do
2388 * that. If we didn't pin a file then we return NULL. The file that is
2389 * returned needs to be fput()'ed when we're done with it.
2390 */
do_sync_mmap_readahead(struct vm_fault * vmf)2391 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2392 {
2393 struct file *file = vmf->vma->vm_file;
2394 struct file_ra_state *ra = &file->f_ra;
2395 struct address_space *mapping = file->f_mapping;
2396 struct file *fpin = NULL;
2397 pgoff_t offset = vmf->pgoff;
2398
2399 /* If we don't want any read-ahead, don't bother */
2400 if (vmf->vma->vm_flags & VM_RAND_READ)
2401 return fpin;
2402 if (!ra->ra_pages)
2403 return fpin;
2404
2405 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2406 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2407 page_cache_sync_readahead(mapping, ra, file, offset,
2408 ra->ra_pages);
2409 return fpin;
2410 }
2411
2412 /* Avoid banging the cache line if not needed */
2413 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2414 ra->mmap_miss++;
2415
2416 /*
2417 * Do we miss much more than hit in this file? If so,
2418 * stop bothering with read-ahead. It will only hurt.
2419 */
2420 if (ra->mmap_miss > MMAP_LOTSAMISS)
2421 return fpin;
2422
2423 /*
2424 * mmap read-around
2425 */
2426 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2427 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2428 ra->size = ra->ra_pages;
2429 ra->async_size = ra->ra_pages / 4;
2430 ra_submit(ra, mapping, file);
2431 return fpin;
2432 }
2433
2434 /*
2435 * Asynchronous readahead happens when we find the page and PG_readahead,
2436 * so we want to possibly extend the readahead further. We return the file that
2437 * was pinned if we have to drop the mmap_sem in order to do IO.
2438 */
do_async_mmap_readahead(struct vm_fault * vmf,struct page * page)2439 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2440 struct page *page)
2441 {
2442 struct file *file = vmf->vma->vm_file;
2443 struct file_ra_state *ra = &file->f_ra;
2444 struct address_space *mapping = file->f_mapping;
2445 struct file *fpin = NULL;
2446 pgoff_t offset = vmf->pgoff;
2447
2448 /* If we don't want any read-ahead, don't bother */
2449 if (vmf->vma->vm_flags & VM_RAND_READ)
2450 return fpin;
2451 if (ra->mmap_miss > 0)
2452 ra->mmap_miss--;
2453 if (PageReadahead(page)) {
2454 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2455 page_cache_async_readahead(mapping, ra, file,
2456 page, offset, ra->ra_pages);
2457 }
2458 return fpin;
2459 }
2460
2461 /**
2462 * filemap_fault - read in file data for page fault handling
2463 * @vmf: struct vm_fault containing details of the fault
2464 *
2465 * filemap_fault() is invoked via the vma operations vector for a
2466 * mapped memory region to read in file data during a page fault.
2467 *
2468 * The goto's are kind of ugly, but this streamlines the normal case of having
2469 * it in the page cache, and handles the special cases reasonably without
2470 * having a lot of duplicated code.
2471 *
2472 * vma->vm_mm->mmap_sem must be held on entry.
2473 *
2474 * If our return value has VM_FAULT_RETRY set, it's because
2475 * lock_page_or_retry() returned 0.
2476 * The mmap_sem has usually been released in this case.
2477 * See __lock_page_or_retry() for the exception.
2478 *
2479 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2480 * has not been released.
2481 *
2482 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2483 */
filemap_fault(struct vm_fault * vmf)2484 int filemap_fault(struct vm_fault *vmf)
2485 {
2486 int error;
2487 struct file *file = vmf->vma->vm_file;
2488 struct file *fpin = NULL;
2489 struct address_space *mapping = file->f_mapping;
2490 struct file_ra_state *ra = &file->f_ra;
2491 struct inode *inode = mapping->host;
2492 pgoff_t offset = vmf->pgoff;
2493 pgoff_t max_off;
2494 struct page *page;
2495 int ret = 0;
2496
2497 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2498 if (unlikely(offset >= max_off))
2499 return VM_FAULT_SIGBUS;
2500
2501 /*
2502 * Do we have something in the page cache already?
2503 */
2504 page = find_get_page(mapping, offset);
2505 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2506 /*
2507 * We found the page, so try async readahead before
2508 * waiting for the lock.
2509 */
2510 fpin = do_async_mmap_readahead(vmf, page);
2511 } else if (!page) {
2512 /* No page in the page cache at all */
2513 count_vm_event(PGMAJFAULT);
2514 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2515 ret = VM_FAULT_MAJOR;
2516 fpin = do_sync_mmap_readahead(vmf);
2517 retry_find:
2518 page = pagecache_get_page(mapping, offset,
2519 FGP_CREAT|FGP_FOR_MMAP,
2520 vmf->gfp_mask);
2521 if (!page) {
2522 if (fpin)
2523 goto out_retry;
2524 return VM_FAULT_OOM;
2525 }
2526 }
2527
2528 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2529 goto out_retry;
2530
2531 /* Did it get truncated? */
2532 if (unlikely(page->mapping != mapping)) {
2533 unlock_page(page);
2534 put_page(page);
2535 goto retry_find;
2536 }
2537 VM_BUG_ON_PAGE(page->index != offset, page);
2538
2539 /*
2540 * We have a locked page in the page cache, now we need to check
2541 * that it's up-to-date. If not, it is going to be due to an error.
2542 */
2543 if (unlikely(!PageUptodate(page)))
2544 goto page_not_uptodate;
2545
2546 /*
2547 * We've made it this far and we had to drop our mmap_sem, now is the
2548 * time to return to the upper layer and have it re-find the vma and
2549 * redo the fault.
2550 */
2551 if (fpin) {
2552 unlock_page(page);
2553 goto out_retry;
2554 }
2555
2556 /*
2557 * Found the page and have a reference on it.
2558 * We must recheck i_size under page lock.
2559 */
2560 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2561 if (unlikely(offset >= max_off)) {
2562 unlock_page(page);
2563 put_page(page);
2564 return VM_FAULT_SIGBUS;
2565 }
2566
2567 vmf->page = page;
2568 return ret | VM_FAULT_LOCKED;
2569
2570 page_not_uptodate:
2571 /*
2572 * Umm, take care of errors if the page isn't up-to-date.
2573 * Try to re-read it _once_. We do this synchronously,
2574 * because there really aren't any performance issues here
2575 * and we need to check for errors.
2576 */
2577 ClearPageError(page);
2578 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2579 error = mapping->a_ops->readpage(file, page);
2580 if (!error) {
2581 wait_on_page_locked(page);
2582 if (!PageUptodate(page))
2583 error = -EIO;
2584 }
2585 if (fpin)
2586 goto out_retry;
2587 put_page(page);
2588
2589 if (!error || error == AOP_TRUNCATED_PAGE)
2590 goto retry_find;
2591
2592 /* Things didn't work out. Return zero to tell the mm layer so. */
2593 shrink_readahead_size_eio(file, ra);
2594 return VM_FAULT_SIGBUS;
2595
2596 out_retry:
2597 /*
2598 * We dropped the mmap_sem, we need to return to the fault handler to
2599 * re-find the vma and come back and find our hopefully still populated
2600 * page.
2601 */
2602 if (page)
2603 put_page(page);
2604 if (fpin)
2605 fput(fpin);
2606 return ret | VM_FAULT_RETRY;
2607 }
2608 EXPORT_SYMBOL(filemap_fault);
2609
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)2610 void filemap_map_pages(struct vm_fault *vmf,
2611 pgoff_t start_pgoff, pgoff_t end_pgoff)
2612 {
2613 struct radix_tree_iter iter;
2614 void **slot;
2615 struct file *file = vmf->vma->vm_file;
2616 struct address_space *mapping = file->f_mapping;
2617 pgoff_t last_pgoff = start_pgoff;
2618 unsigned long max_idx;
2619 struct page *head, *page;
2620
2621 rcu_read_lock();
2622 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2623 start_pgoff) {
2624 if (iter.index > end_pgoff)
2625 break;
2626 repeat:
2627 page = radix_tree_deref_slot(slot);
2628 if (unlikely(!page))
2629 goto next;
2630 if (radix_tree_exception(page)) {
2631 if (radix_tree_deref_retry(page)) {
2632 slot = radix_tree_iter_retry(&iter);
2633 continue;
2634 }
2635 goto next;
2636 }
2637
2638 head = compound_head(page);
2639 if (!page_cache_get_speculative(head))
2640 goto repeat;
2641
2642 /* The page was split under us? */
2643 if (compound_head(page) != head) {
2644 put_page(head);
2645 goto repeat;
2646 }
2647
2648 /* Has the page moved? */
2649 if (unlikely(page != *slot)) {
2650 put_page(head);
2651 goto repeat;
2652 }
2653
2654 if (!PageUptodate(page) ||
2655 PageReadahead(page) ||
2656 PageHWPoison(page))
2657 goto skip;
2658 if (!trylock_page(page))
2659 goto skip;
2660
2661 if (page->mapping != mapping || !PageUptodate(page))
2662 goto unlock;
2663
2664 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2665 if (page->index >= max_idx)
2666 goto unlock;
2667
2668 if (file->f_ra.mmap_miss > 0)
2669 file->f_ra.mmap_miss--;
2670
2671 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2672 if (vmf->pte)
2673 vmf->pte += iter.index - last_pgoff;
2674 last_pgoff = iter.index;
2675 if (alloc_set_pte(vmf, NULL, page))
2676 goto unlock;
2677 unlock_page(page);
2678 goto next;
2679 unlock:
2680 unlock_page(page);
2681 skip:
2682 put_page(page);
2683 next:
2684 /* Huge page is mapped? No need to proceed. */
2685 if (pmd_trans_huge(*vmf->pmd))
2686 break;
2687 if (iter.index == end_pgoff)
2688 break;
2689 }
2690 rcu_read_unlock();
2691 }
2692 EXPORT_SYMBOL(filemap_map_pages);
2693
filemap_page_mkwrite(struct vm_fault * vmf)2694 int filemap_page_mkwrite(struct vm_fault *vmf)
2695 {
2696 struct page *page = vmf->page;
2697 struct inode *inode = file_inode(vmf->vma->vm_file);
2698 int ret = VM_FAULT_LOCKED;
2699
2700 sb_start_pagefault(inode->i_sb);
2701 file_update_time(vmf->vma->vm_file);
2702 lock_page(page);
2703 if (page->mapping != inode->i_mapping) {
2704 unlock_page(page);
2705 ret = VM_FAULT_NOPAGE;
2706 goto out;
2707 }
2708 /*
2709 * We mark the page dirty already here so that when freeze is in
2710 * progress, we are guaranteed that writeback during freezing will
2711 * see the dirty page and writeprotect it again.
2712 */
2713 set_page_dirty(page);
2714 wait_for_stable_page(page);
2715 out:
2716 sb_end_pagefault(inode->i_sb);
2717 return ret;
2718 }
2719 EXPORT_SYMBOL(filemap_page_mkwrite);
2720
2721 const struct vm_operations_struct generic_file_vm_ops = {
2722 .fault = filemap_fault,
2723 .map_pages = filemap_map_pages,
2724 .page_mkwrite = filemap_page_mkwrite,
2725 };
2726
2727 /* This is used for a general mmap of a disk file */
2728
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2729 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2730 {
2731 struct address_space *mapping = file->f_mapping;
2732
2733 if (!mapping->a_ops->readpage)
2734 return -ENOEXEC;
2735 file_accessed(file);
2736 vma->vm_ops = &generic_file_vm_ops;
2737 return 0;
2738 }
2739
2740 /*
2741 * This is for filesystems which do not implement ->writepage.
2742 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2743 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2744 {
2745 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2746 return -EINVAL;
2747 return generic_file_mmap(file, vma);
2748 }
2749 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)2750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2751 {
2752 return -ENOSYS;
2753 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)2754 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2755 {
2756 return -ENOSYS;
2757 }
2758 #endif /* CONFIG_MMU */
2759
2760 EXPORT_SYMBOL(generic_file_mmap);
2761 EXPORT_SYMBOL(generic_file_readonly_mmap);
2762
wait_on_page_read(struct page * page)2763 static struct page *wait_on_page_read(struct page *page)
2764 {
2765 if (!IS_ERR(page)) {
2766 wait_on_page_locked(page);
2767 if (!PageUptodate(page)) {
2768 put_page(page);
2769 page = ERR_PTR(-EIO);
2770 }
2771 }
2772 return page;
2773 }
2774
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(struct file *,struct page *),void * data,gfp_t gfp)2775 static struct page *do_read_cache_page(struct address_space *mapping,
2776 pgoff_t index,
2777 int (*filler)(struct file *, struct page *),
2778 void *data,
2779 gfp_t gfp)
2780 {
2781 struct page *page;
2782 int err;
2783 repeat:
2784 page = find_get_page(mapping, index);
2785 if (!page) {
2786 page = __page_cache_alloc(gfp | __GFP_COLD);
2787 if (!page)
2788 return ERR_PTR(-ENOMEM);
2789 err = add_to_page_cache_lru(page, mapping, index, gfp);
2790 if (unlikely(err)) {
2791 put_page(page);
2792 if (err == -EEXIST)
2793 goto repeat;
2794 /* Presumably ENOMEM for radix tree node */
2795 return ERR_PTR(err);
2796 }
2797
2798 filler:
2799 err = filler(data, page);
2800 if (err < 0) {
2801 put_page(page);
2802 return ERR_PTR(err);
2803 }
2804
2805 page = wait_on_page_read(page);
2806 if (IS_ERR(page))
2807 return page;
2808 goto out;
2809 }
2810 if (PageUptodate(page))
2811 goto out;
2812
2813 /*
2814 * Page is not up to date and may be locked due one of the following
2815 * case a: Page is being filled and the page lock is held
2816 * case b: Read/write error clearing the page uptodate status
2817 * case c: Truncation in progress (page locked)
2818 * case d: Reclaim in progress
2819 *
2820 * Case a, the page will be up to date when the page is unlocked.
2821 * There is no need to serialise on the page lock here as the page
2822 * is pinned so the lock gives no additional protection. Even if the
2823 * the page is truncated, the data is still valid if PageUptodate as
2824 * it's a race vs truncate race.
2825 * Case b, the page will not be up to date
2826 * Case c, the page may be truncated but in itself, the data may still
2827 * be valid after IO completes as it's a read vs truncate race. The
2828 * operation must restart if the page is not uptodate on unlock but
2829 * otherwise serialising on page lock to stabilise the mapping gives
2830 * no additional guarantees to the caller as the page lock is
2831 * released before return.
2832 * Case d, similar to truncation. If reclaim holds the page lock, it
2833 * will be a race with remove_mapping that determines if the mapping
2834 * is valid on unlock but otherwise the data is valid and there is
2835 * no need to serialise with page lock.
2836 *
2837 * As the page lock gives no additional guarantee, we optimistically
2838 * wait on the page to be unlocked and check if it's up to date and
2839 * use the page if it is. Otherwise, the page lock is required to
2840 * distinguish between the different cases. The motivation is that we
2841 * avoid spurious serialisations and wakeups when multiple processes
2842 * wait on the same page for IO to complete.
2843 */
2844 wait_on_page_locked(page);
2845 if (PageUptodate(page))
2846 goto out;
2847
2848 /* Distinguish between all the cases under the safety of the lock */
2849 lock_page(page);
2850
2851 /* Case c or d, restart the operation */
2852 if (!page->mapping) {
2853 unlock_page(page);
2854 put_page(page);
2855 goto repeat;
2856 }
2857
2858 /* Someone else locked and filled the page in a very small window */
2859 if (PageUptodate(page)) {
2860 unlock_page(page);
2861 goto out;
2862 }
2863 goto filler;
2864
2865 out:
2866 mark_page_accessed(page);
2867 return page;
2868 }
2869
2870 /**
2871 * read_cache_page - read into page cache, fill it if needed
2872 * @mapping: the page's address_space
2873 * @index: the page index
2874 * @filler: function to perform the read
2875 * @data: first arg to filler(data, page) function, often left as NULL
2876 *
2877 * Read into the page cache. If a page already exists, and PageUptodate() is
2878 * not set, try to fill the page and wait for it to become unlocked.
2879 *
2880 * If the page does not get brought uptodate, return -EIO.
2881 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(struct file *,struct page *),void * data)2882 struct page *read_cache_page(struct address_space *mapping,
2883 pgoff_t index,
2884 int (*filler)(struct file *, struct page *),
2885 void *data)
2886 {
2887 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2888 }
2889 EXPORT_SYMBOL(read_cache_page);
2890
2891 /**
2892 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2893 * @mapping: the page's address_space
2894 * @index: the page index
2895 * @gfp: the page allocator flags to use if allocating
2896 *
2897 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2898 * any new page allocations done using the specified allocation flags.
2899 *
2900 * If the page does not get brought uptodate, return -EIO.
2901 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)2902 struct page *read_cache_page_gfp(struct address_space *mapping,
2903 pgoff_t index,
2904 gfp_t gfp)
2905 {
2906 filler_t *filler = mapping->a_ops->readpage;
2907
2908 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2909 }
2910 EXPORT_SYMBOL(read_cache_page_gfp);
2911
2912 /*
2913 * Performs necessary checks before doing a write
2914 *
2915 * Can adjust writing position or amount of bytes to write.
2916 * Returns appropriate error code that caller should return or
2917 * zero in case that write should be allowed.
2918 */
generic_write_checks(struct kiocb * iocb,struct iov_iter * from)2919 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2920 {
2921 struct file *file = iocb->ki_filp;
2922 struct inode *inode = file->f_mapping->host;
2923 unsigned long limit = rlimit(RLIMIT_FSIZE);
2924 loff_t pos;
2925
2926 if (!iov_iter_count(from))
2927 return 0;
2928
2929 /* FIXME: this is for backwards compatibility with 2.4 */
2930 if (iocb->ki_flags & IOCB_APPEND)
2931 iocb->ki_pos = i_size_read(inode);
2932
2933 pos = iocb->ki_pos;
2934
2935 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2936 return -EINVAL;
2937
2938 if (limit != RLIM_INFINITY) {
2939 if (iocb->ki_pos >= limit) {
2940 send_sig(SIGXFSZ, current, 0);
2941 return -EFBIG;
2942 }
2943 iov_iter_truncate(from, limit - (unsigned long)pos);
2944 }
2945
2946 /*
2947 * LFS rule
2948 */
2949 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2950 !(file->f_flags & O_LARGEFILE))) {
2951 if (pos >= MAX_NON_LFS)
2952 return -EFBIG;
2953 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2954 }
2955
2956 /*
2957 * Are we about to exceed the fs block limit ?
2958 *
2959 * If we have written data it becomes a short write. If we have
2960 * exceeded without writing data we send a signal and return EFBIG.
2961 * Linus frestrict idea will clean these up nicely..
2962 */
2963 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2964 return -EFBIG;
2965
2966 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2967 return iov_iter_count(from);
2968 }
2969 EXPORT_SYMBOL(generic_write_checks);
2970
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2971 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2972 loff_t pos, unsigned len, unsigned flags,
2973 struct page **pagep, void **fsdata)
2974 {
2975 const struct address_space_operations *aops = mapping->a_ops;
2976
2977 return aops->write_begin(file, mapping, pos, len, flags,
2978 pagep, fsdata);
2979 }
2980 EXPORT_SYMBOL(pagecache_write_begin);
2981
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2982 int pagecache_write_end(struct file *file, struct address_space *mapping,
2983 loff_t pos, unsigned len, unsigned copied,
2984 struct page *page, void *fsdata)
2985 {
2986 const struct address_space_operations *aops = mapping->a_ops;
2987
2988 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2989 }
2990 EXPORT_SYMBOL(pagecache_write_end);
2991
2992 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)2993 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2994 {
2995 struct file *file = iocb->ki_filp;
2996 struct address_space *mapping = file->f_mapping;
2997 struct inode *inode = mapping->host;
2998 loff_t pos = iocb->ki_pos;
2999 ssize_t written;
3000 size_t write_len;
3001 pgoff_t end;
3002
3003 write_len = iov_iter_count(from);
3004 end = (pos + write_len - 1) >> PAGE_SHIFT;
3005
3006 if (iocb->ki_flags & IOCB_NOWAIT) {
3007 /* If there are pages to writeback, return */
3008 if (filemap_range_has_page(inode->i_mapping, pos,
3009 pos + iov_iter_count(from)))
3010 return -EAGAIN;
3011 } else {
3012 written = filemap_write_and_wait_range(mapping, pos,
3013 pos + write_len - 1);
3014 if (written)
3015 goto out;
3016 }
3017
3018 /*
3019 * After a write we want buffered reads to be sure to go to disk to get
3020 * the new data. We invalidate clean cached page from the region we're
3021 * about to write. We do this *before* the write so that we can return
3022 * without clobbering -EIOCBQUEUED from ->direct_IO().
3023 */
3024 written = invalidate_inode_pages2_range(mapping,
3025 pos >> PAGE_SHIFT, end);
3026 /*
3027 * If a page can not be invalidated, return 0 to fall back
3028 * to buffered write.
3029 */
3030 if (written) {
3031 if (written == -EBUSY)
3032 return 0;
3033 goto out;
3034 }
3035
3036 written = mapping->a_ops->direct_IO(iocb, from);
3037
3038 /*
3039 * Finally, try again to invalidate clean pages which might have been
3040 * cached by non-direct readahead, or faulted in by get_user_pages()
3041 * if the source of the write was an mmap'ed region of the file
3042 * we're writing. Either one is a pretty crazy thing to do,
3043 * so we don't support it 100%. If this invalidation
3044 * fails, tough, the write still worked...
3045 *
3046 * Most of the time we do not need this since dio_complete() will do
3047 * the invalidation for us. However there are some file systems that
3048 * do not end up with dio_complete() being called, so let's not break
3049 * them by removing it completely
3050 */
3051 if (mapping->nrpages)
3052 invalidate_inode_pages2_range(mapping,
3053 pos >> PAGE_SHIFT, end);
3054
3055 if (written > 0) {
3056 pos += written;
3057 write_len -= written;
3058 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3059 i_size_write(inode, pos);
3060 mark_inode_dirty(inode);
3061 }
3062 iocb->ki_pos = pos;
3063 }
3064 iov_iter_revert(from, write_len - iov_iter_count(from));
3065 out:
3066 return written;
3067 }
3068 EXPORT_SYMBOL(generic_file_direct_write);
3069
3070 /*
3071 * Find or create a page at the given pagecache position. Return the locked
3072 * page. This function is specifically for buffered writes.
3073 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3074 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3075 pgoff_t index, unsigned flags)
3076 {
3077 struct page *page;
3078 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3079
3080 if (flags & AOP_FLAG_NOFS)
3081 fgp_flags |= FGP_NOFS;
3082
3083 page = pagecache_get_page(mapping, index, fgp_flags,
3084 mapping_gfp_mask(mapping));
3085 if (page)
3086 wait_for_stable_page(page);
3087
3088 return page;
3089 }
3090 EXPORT_SYMBOL(grab_cache_page_write_begin);
3091
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3092 ssize_t generic_perform_write(struct file *file,
3093 struct iov_iter *i, loff_t pos)
3094 {
3095 struct address_space *mapping = file->f_mapping;
3096 const struct address_space_operations *a_ops = mapping->a_ops;
3097 long status = 0;
3098 ssize_t written = 0;
3099 unsigned int flags = 0;
3100
3101 do {
3102 struct page *page;
3103 unsigned long offset; /* Offset into pagecache page */
3104 unsigned long bytes; /* Bytes to write to page */
3105 size_t copied; /* Bytes copied from user */
3106 void *fsdata;
3107
3108 offset = (pos & (PAGE_SIZE - 1));
3109 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3110 iov_iter_count(i));
3111
3112 again:
3113 /*
3114 * Bring in the user page that we will copy from _first_.
3115 * Otherwise there's a nasty deadlock on copying from the
3116 * same page as we're writing to, without it being marked
3117 * up-to-date.
3118 *
3119 * Not only is this an optimisation, but it is also required
3120 * to check that the address is actually valid, when atomic
3121 * usercopies are used, below.
3122 */
3123 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3124 status = -EFAULT;
3125 break;
3126 }
3127
3128 if (fatal_signal_pending(current)) {
3129 status = -EINTR;
3130 break;
3131 }
3132
3133 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3134 &page, &fsdata);
3135 if (unlikely(status < 0))
3136 break;
3137
3138 if (mapping_writably_mapped(mapping))
3139 flush_dcache_page(page);
3140
3141 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3142 flush_dcache_page(page);
3143
3144 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3145 page, fsdata);
3146 if (unlikely(status < 0))
3147 break;
3148 copied = status;
3149
3150 cond_resched();
3151
3152 iov_iter_advance(i, copied);
3153 if (unlikely(copied == 0)) {
3154 /*
3155 * If we were unable to copy any data at all, we must
3156 * fall back to a single segment length write.
3157 *
3158 * If we didn't fallback here, we could livelock
3159 * because not all segments in the iov can be copied at
3160 * once without a pagefault.
3161 */
3162 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3163 iov_iter_single_seg_count(i));
3164 goto again;
3165 }
3166 pos += copied;
3167 written += copied;
3168
3169 balance_dirty_pages_ratelimited(mapping);
3170 } while (iov_iter_count(i));
3171
3172 return written ? written : status;
3173 }
3174 EXPORT_SYMBOL(generic_perform_write);
3175
3176 /**
3177 * __generic_file_write_iter - write data to a file
3178 * @iocb: IO state structure (file, offset, etc.)
3179 * @from: iov_iter with data to write
3180 *
3181 * This function does all the work needed for actually writing data to a
3182 * file. It does all basic checks, removes SUID from the file, updates
3183 * modification times and calls proper subroutines depending on whether we
3184 * do direct IO or a standard buffered write.
3185 *
3186 * It expects i_mutex to be grabbed unless we work on a block device or similar
3187 * object which does not need locking at all.
3188 *
3189 * This function does *not* take care of syncing data in case of O_SYNC write.
3190 * A caller has to handle it. This is mainly due to the fact that we want to
3191 * avoid syncing under i_mutex.
3192 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3193 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3194 {
3195 struct file *file = iocb->ki_filp;
3196 struct address_space * mapping = file->f_mapping;
3197 struct inode *inode = mapping->host;
3198 ssize_t written = 0;
3199 ssize_t err;
3200 ssize_t status;
3201
3202 /* We can write back this queue in page reclaim */
3203 current->backing_dev_info = inode_to_bdi(inode);
3204 err = file_remove_privs(file);
3205 if (err)
3206 goto out;
3207
3208 err = file_update_time(file);
3209 if (err)
3210 goto out;
3211
3212 if (iocb->ki_flags & IOCB_DIRECT) {
3213 loff_t pos, endbyte;
3214
3215 written = generic_file_direct_write(iocb, from);
3216 /*
3217 * If the write stopped short of completing, fall back to
3218 * buffered writes. Some filesystems do this for writes to
3219 * holes, for example. For DAX files, a buffered write will
3220 * not succeed (even if it did, DAX does not handle dirty
3221 * page-cache pages correctly).
3222 */
3223 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3224 goto out;
3225
3226 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3227 /*
3228 * If generic_perform_write() returned a synchronous error
3229 * then we want to return the number of bytes which were
3230 * direct-written, or the error code if that was zero. Note
3231 * that this differs from normal direct-io semantics, which
3232 * will return -EFOO even if some bytes were written.
3233 */
3234 if (unlikely(status < 0)) {
3235 err = status;
3236 goto out;
3237 }
3238 /*
3239 * We need to ensure that the page cache pages are written to
3240 * disk and invalidated to preserve the expected O_DIRECT
3241 * semantics.
3242 */
3243 endbyte = pos + status - 1;
3244 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3245 if (err == 0) {
3246 iocb->ki_pos = endbyte + 1;
3247 written += status;
3248 invalidate_mapping_pages(mapping,
3249 pos >> PAGE_SHIFT,
3250 endbyte >> PAGE_SHIFT);
3251 } else {
3252 /*
3253 * We don't know how much we wrote, so just return
3254 * the number of bytes which were direct-written
3255 */
3256 }
3257 } else {
3258 written = generic_perform_write(file, from, iocb->ki_pos);
3259 if (likely(written > 0))
3260 iocb->ki_pos += written;
3261 }
3262 out:
3263 current->backing_dev_info = NULL;
3264 return written ? written : err;
3265 }
3266 EXPORT_SYMBOL(__generic_file_write_iter);
3267
3268 /**
3269 * generic_file_write_iter - write data to a file
3270 * @iocb: IO state structure
3271 * @from: iov_iter with data to write
3272 *
3273 * This is a wrapper around __generic_file_write_iter() to be used by most
3274 * filesystems. It takes care of syncing the file in case of O_SYNC file
3275 * and acquires i_mutex as needed.
3276 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3277 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3278 {
3279 struct file *file = iocb->ki_filp;
3280 struct inode *inode = file->f_mapping->host;
3281 ssize_t ret;
3282
3283 inode_lock(inode);
3284 ret = generic_write_checks(iocb, from);
3285 if (ret > 0)
3286 ret = __generic_file_write_iter(iocb, from);
3287 inode_unlock(inode);
3288
3289 if (ret > 0)
3290 ret = generic_write_sync(iocb, ret);
3291 return ret;
3292 }
3293 EXPORT_SYMBOL(generic_file_write_iter);
3294
3295 /**
3296 * try_to_release_page() - release old fs-specific metadata on a page
3297 *
3298 * @page: the page which the kernel is trying to free
3299 * @gfp_mask: memory allocation flags (and I/O mode)
3300 *
3301 * The address_space is to try to release any data against the page
3302 * (presumably at page->private). If the release was successful, return '1'.
3303 * Otherwise return zero.
3304 *
3305 * This may also be called if PG_fscache is set on a page, indicating that the
3306 * page is known to the local caching routines.
3307 *
3308 * The @gfp_mask argument specifies whether I/O may be performed to release
3309 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3310 *
3311 */
try_to_release_page(struct page * page,gfp_t gfp_mask)3312 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3313 {
3314 struct address_space * const mapping = page->mapping;
3315
3316 BUG_ON(!PageLocked(page));
3317 if (PageWriteback(page))
3318 return 0;
3319
3320 if (mapping && mapping->a_ops->releasepage)
3321 return mapping->a_ops->releasepage(page, gfp_mask);
3322 return try_to_free_buffers(page);
3323 }
3324
3325 EXPORT_SYMBOL(try_to_release_page);
3326