• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bottom_half.h>
21 #include <linux/cpu.h>
22 #include <linux/cpu_pm.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/percpu.h>
26 #include <linux/preempt.h>
27 #include <linux/sched/signal.h>
28 #include <linux/signal.h>
29 
30 #include <asm/fpsimd.h>
31 #include <asm/cpufeature.h>
32 #include <asm/cputype.h>
33 #include <asm/simd.h>
34 
35 #define FPEXC_IOF	(1 << 0)
36 #define FPEXC_DZF	(1 << 1)
37 #define FPEXC_OFF	(1 << 2)
38 #define FPEXC_UFF	(1 << 3)
39 #define FPEXC_IXF	(1 << 4)
40 #define FPEXC_IDF	(1 << 7)
41 
42 /*
43  * In order to reduce the number of times the FPSIMD state is needlessly saved
44  * and restored, we need to keep track of two things:
45  * (a) for each task, we need to remember which CPU was the last one to have
46  *     the task's FPSIMD state loaded into its FPSIMD registers;
47  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
48  *     been loaded into its FPSIMD registers most recently, or whether it has
49  *     been used to perform kernel mode NEON in the meantime.
50  *
51  * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
52  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
53  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
54  * address of the userland FPSIMD state of the task that was loaded onto the CPU
55  * the most recently, or NULL if kernel mode NEON has been performed after that.
56  *
57  * With this in place, we no longer have to restore the next FPSIMD state right
58  * when switching between tasks. Instead, we can defer this check to userland
59  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
60  * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
61  * can omit the FPSIMD restore.
62  *
63  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
64  * indicate whether or not the userland FPSIMD state of the current task is
65  * present in the registers. The flag is set unless the FPSIMD registers of this
66  * CPU currently contain the most recent userland FPSIMD state of the current
67  * task.
68  *
69  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
70  * save the task's FPSIMD context back to task_struct from softirq context.
71  * To prevent this from racing with the manipulation of the task's FPSIMD state
72  * from task context and thereby corrupting the state, it is necessary to
73  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
74  * flag with local_bh_disable() unless softirqs are already masked.
75  *
76  * For a certain task, the sequence may look something like this:
77  * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
78  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
79  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
80  *   cleared, otherwise it is set;
81  *
82  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
83  *   userland FPSIMD state is copied from memory to the registers, the task's
84  *   fpsimd_state.cpu field is set to the id of the current CPU, the current
85  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
86  *   TIF_FOREIGN_FPSTATE flag is cleared;
87  *
88  * - the task executes an ordinary syscall; upon return to userland, the
89  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
90  *   restored;
91  *
92  * - the task executes a syscall which executes some NEON instructions; this is
93  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
94  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
95  *   and sets the TIF_FOREIGN_FPSTATE flag;
96  *
97  * - the task gets preempted after kernel_neon_end() is called; as we have not
98  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
99  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
100  */
101 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
102 
103 /*
104  * Trapped FP/ASIMD access.
105  */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)106 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
107 {
108 	/* TODO: implement lazy context saving/restoring */
109 	WARN_ON(1);
110 }
111 
112 /*
113  * Raise a SIGFPE for the current process.
114  */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)115 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
116 {
117 	siginfo_t info;
118 	unsigned int si_code = 0;
119 
120 	if (esr & FPEXC_IOF)
121 		si_code = FPE_FLTINV;
122 	else if (esr & FPEXC_DZF)
123 		si_code = FPE_FLTDIV;
124 	else if (esr & FPEXC_OFF)
125 		si_code = FPE_FLTOVF;
126 	else if (esr & FPEXC_UFF)
127 		si_code = FPE_FLTUND;
128 	else if (esr & FPEXC_IXF)
129 		si_code = FPE_FLTRES;
130 
131 	memset(&info, 0, sizeof(info));
132 	info.si_signo = SIGFPE;
133 	info.si_code = si_code;
134 	info.si_addr = (void __user *)instruction_pointer(regs);
135 
136 	send_sig_info(SIGFPE, &info, current);
137 }
138 
fpsimd_thread_switch(struct task_struct * next)139 void fpsimd_thread_switch(struct task_struct *next)
140 {
141 	if (!system_supports_fpsimd())
142 		return;
143 	/*
144 	 * Save the current FPSIMD state to memory, but only if whatever is in
145 	 * the registers is in fact the most recent userland FPSIMD state of
146 	 * 'current'.
147 	 */
148 	if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
149 		fpsimd_save_state(&current->thread.fpsimd_state);
150 
151 	if (next->mm) {
152 		/*
153 		 * If we are switching to a task whose most recent userland
154 		 * FPSIMD state is already in the registers of *this* cpu,
155 		 * we can skip loading the state from memory. Otherwise, set
156 		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
157 		 * upon the next return to userland.
158 		 */
159 		struct fpsimd_state *st = &next->thread.fpsimd_state;
160 
161 		if (__this_cpu_read(fpsimd_last_state) == st
162 		    && st->cpu == smp_processor_id())
163 			clear_ti_thread_flag(task_thread_info(next),
164 					     TIF_FOREIGN_FPSTATE);
165 		else
166 			set_ti_thread_flag(task_thread_info(next),
167 					   TIF_FOREIGN_FPSTATE);
168 	}
169 }
170 
fpsimd_flush_thread(void)171 void fpsimd_flush_thread(void)
172 {
173 	if (!system_supports_fpsimd())
174 		return;
175 
176 	local_bh_disable();
177 
178 	memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
179 	fpsimd_flush_task_state(current);
180 	set_thread_flag(TIF_FOREIGN_FPSTATE);
181 
182 	local_bh_enable();
183 }
184 
185 /*
186  * Save the userland FPSIMD state of 'current' to memory, but only if the state
187  * currently held in the registers does in fact belong to 'current'
188  */
fpsimd_preserve_current_state(void)189 void fpsimd_preserve_current_state(void)
190 {
191 	if (!system_supports_fpsimd())
192 		return;
193 
194 	local_bh_disable();
195 
196 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
197 		fpsimd_save_state(&current->thread.fpsimd_state);
198 
199 	local_bh_enable();
200 }
201 
202 /*
203  * Load the userland FPSIMD state of 'current' from memory, but only if the
204  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
205  * state of 'current'
206  */
fpsimd_restore_current_state(void)207 void fpsimd_restore_current_state(void)
208 {
209 	/*
210 	 * For the tasks that were created before we detected the absence of
211 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
212 	 * e.g, init. This could be then inherited by the children processes.
213 	 * If we later detect that the system doesn't support FP/SIMD,
214 	 * we must clear the flag for  all the tasks to indicate that the
215 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
216 	 * do_notify_resume().
217 	 */
218 	if (!system_supports_fpsimd()) {
219 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
220 		return;
221 	}
222 
223 	local_bh_disable();
224 
225 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
226 		struct fpsimd_state *st = &current->thread.fpsimd_state;
227 
228 		fpsimd_load_state(st);
229 		__this_cpu_write(fpsimd_last_state, st);
230 		st->cpu = smp_processor_id();
231 	}
232 
233 	local_bh_enable();
234 }
235 
236 /*
237  * Load an updated userland FPSIMD state for 'current' from memory and set the
238  * flag that indicates that the FPSIMD register contents are the most recent
239  * FPSIMD state of 'current'
240  */
fpsimd_update_current_state(struct fpsimd_state * state)241 void fpsimd_update_current_state(struct fpsimd_state *state)
242 {
243 	if (WARN_ON(!system_supports_fpsimd()))
244 		return;
245 
246 	local_bh_disable();
247 
248 	fpsimd_load_state(state);
249 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
250 		struct fpsimd_state *st = &current->thread.fpsimd_state;
251 
252 		__this_cpu_write(fpsimd_last_state, st);
253 		st->cpu = smp_processor_id();
254 	}
255 
256 	local_bh_enable();
257 }
258 
259 /*
260  * Invalidate live CPU copies of task t's FPSIMD state
261  */
fpsimd_flush_task_state(struct task_struct * t)262 void fpsimd_flush_task_state(struct task_struct *t)
263 {
264 	t->thread.fpsimd_state.cpu = NR_CPUS;
265 }
266 
267 #ifdef CONFIG_KERNEL_MODE_NEON
268 
269 DEFINE_PER_CPU(bool, kernel_neon_busy);
270 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
271 
272 /*
273  * Kernel-side NEON support functions
274  */
275 
276 /*
277  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
278  * context
279  *
280  * Must not be called unless may_use_simd() returns true.
281  * Task context in the FPSIMD registers is saved back to memory as necessary.
282  *
283  * A matching call to kernel_neon_end() must be made before returning from the
284  * calling context.
285  *
286  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
287  * called.
288  */
kernel_neon_begin(void)289 void kernel_neon_begin(void)
290 {
291 	if (WARN_ON(!system_supports_fpsimd()))
292 		return;
293 
294 	BUG_ON(!may_use_simd());
295 
296 	local_bh_disable();
297 
298 	__this_cpu_write(kernel_neon_busy, true);
299 
300 	/* Save unsaved task fpsimd state, if any: */
301 	if (current->mm && !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
302 		fpsimd_save_state(&current->thread.fpsimd_state);
303 
304 	/* Invalidate any task state remaining in the fpsimd regs: */
305 	__this_cpu_write(fpsimd_last_state, NULL);
306 
307 	preempt_disable();
308 
309 	local_bh_enable();
310 }
311 EXPORT_SYMBOL(kernel_neon_begin);
312 
313 /*
314  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
315  *
316  * Must be called from a context in which kernel_neon_begin() was previously
317  * called, with no call to kernel_neon_end() in the meantime.
318  *
319  * The caller must not use the FPSIMD registers after this function is called,
320  * unless kernel_neon_begin() is called again in the meantime.
321  */
kernel_neon_end(void)322 void kernel_neon_end(void)
323 {
324 	bool busy;
325 
326 	if (!system_supports_fpsimd())
327 		return;
328 
329 	busy = __this_cpu_xchg(kernel_neon_busy, false);
330 	WARN_ON(!busy);	/* No matching kernel_neon_begin()? */
331 
332 	preempt_enable();
333 }
334 EXPORT_SYMBOL(kernel_neon_end);
335 
336 #ifdef CONFIG_EFI
337 
338 static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state);
339 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
340 
341 /*
342  * EFI runtime services support functions
343  *
344  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
345  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
346  * is always used rather than being an optional accelerator.
347  *
348  * These functions provide the necessary support for ensuring FPSIMD
349  * save/restore in the contexts from which EFI is used.
350  *
351  * Do not use them for any other purpose -- if tempted to do so, you are
352  * either doing something wrong or you need to propose some refactoring.
353  */
354 
355 /*
356  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
357  */
__efi_fpsimd_begin(void)358 void __efi_fpsimd_begin(void)
359 {
360 	if (!system_supports_fpsimd())
361 		return;
362 
363 	WARN_ON(preemptible());
364 
365 	if (may_use_simd())
366 		kernel_neon_begin();
367 	else {
368 		fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
369 		__this_cpu_write(efi_fpsimd_state_used, true);
370 	}
371 }
372 
373 /*
374  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
375  */
__efi_fpsimd_end(void)376 void __efi_fpsimd_end(void)
377 {
378 	if (!system_supports_fpsimd())
379 		return;
380 
381 	if (__this_cpu_xchg(efi_fpsimd_state_used, false))
382 		fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
383 	else
384 		kernel_neon_end();
385 }
386 
387 #endif /* CONFIG_EFI */
388 
389 #endif /* CONFIG_KERNEL_MODE_NEON */
390 
391 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)392 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
393 				  unsigned long cmd, void *v)
394 {
395 	switch (cmd) {
396 	case CPU_PM_ENTER:
397 		if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
398 			fpsimd_save_state(&current->thread.fpsimd_state);
399 		this_cpu_write(fpsimd_last_state, NULL);
400 		break;
401 	case CPU_PM_EXIT:
402 		if (current->mm)
403 			set_thread_flag(TIF_FOREIGN_FPSTATE);
404 		break;
405 	case CPU_PM_ENTER_FAILED:
406 	default:
407 		return NOTIFY_DONE;
408 	}
409 	return NOTIFY_OK;
410 }
411 
412 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
413 	.notifier_call = fpsimd_cpu_pm_notifier,
414 };
415 
fpsimd_pm_init(void)416 static void __init fpsimd_pm_init(void)
417 {
418 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
419 }
420 
421 #else
fpsimd_pm_init(void)422 static inline void fpsimd_pm_init(void) { }
423 #endif /* CONFIG_CPU_PM */
424 
425 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)426 static int fpsimd_cpu_dead(unsigned int cpu)
427 {
428 	per_cpu(fpsimd_last_state, cpu) = NULL;
429 	return 0;
430 }
431 
fpsimd_hotplug_init(void)432 static inline void fpsimd_hotplug_init(void)
433 {
434 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
435 				  NULL, fpsimd_cpu_dead);
436 }
437 
438 #else
fpsimd_hotplug_init(void)439 static inline void fpsimd_hotplug_init(void) { }
440 #endif
441 
442 /*
443  * FP/SIMD support code initialisation.
444  */
fpsimd_init(void)445 static int __init fpsimd_init(void)
446 {
447 	if (elf_hwcap & HWCAP_FP) {
448 		fpsimd_pm_init();
449 		fpsimd_hotplug_init();
450 	} else {
451 		pr_notice("Floating-point is not implemented\n");
452 	}
453 
454 	if (!(elf_hwcap & HWCAP_ASIMD))
455 		pr_notice("Advanced SIMD is not implemented\n");
456 
457 	return 0;
458 }
459 core_initcall(fpsimd_init);
460