• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9 
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/ioport.h>
14 #include <linux/kernel.h>
15 #include <linux/pfn_t.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/rbtree.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/x86_init.h>
25 #include <asm/pgtable.h>
26 #include <asm/fcntl.h>
27 #include <asm/e820/api.h>
28 #include <asm/mtrr.h>
29 #include <asm/page.h>
30 #include <asm/msr.h>
31 #include <asm/pat.h>
32 #include <asm/io.h>
33 
34 #include "pat_internal.h"
35 #include "mm_internal.h"
36 
37 #undef pr_fmt
38 #define pr_fmt(fmt) "" fmt
39 
40 static bool __read_mostly boot_cpu_done;
41 static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
42 static bool __read_mostly pat_initialized;
43 static bool __read_mostly init_cm_done;
44 
pat_disable(const char * reason)45 void pat_disable(const char *reason)
46 {
47 	if (pat_disabled)
48 		return;
49 
50 	if (boot_cpu_done) {
51 		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
52 		return;
53 	}
54 
55 	pat_disabled = true;
56 	pr_info("x86/PAT: %s\n", reason);
57 }
58 
nopat(char * str)59 static int __init nopat(char *str)
60 {
61 	pat_disable("PAT support disabled.");
62 	return 0;
63 }
64 early_param("nopat", nopat);
65 
pat_enabled(void)66 bool pat_enabled(void)
67 {
68 	return pat_initialized;
69 }
70 EXPORT_SYMBOL_GPL(pat_enabled);
71 
72 int pat_debug_enable;
73 
pat_debug_setup(char * str)74 static int __init pat_debug_setup(char *str)
75 {
76 	pat_debug_enable = 1;
77 	return 0;
78 }
79 __setup("debugpat", pat_debug_setup);
80 
81 #ifdef CONFIG_X86_PAT
82 /*
83  * X86 PAT uses page flags arch_1 and uncached together to keep track of
84  * memory type of pages that have backing page struct.
85  *
86  * X86 PAT supports 4 different memory types:
87  *  - _PAGE_CACHE_MODE_WB
88  *  - _PAGE_CACHE_MODE_WC
89  *  - _PAGE_CACHE_MODE_UC_MINUS
90  *  - _PAGE_CACHE_MODE_WT
91  *
92  * _PAGE_CACHE_MODE_WB is the default type.
93  */
94 
95 #define _PGMT_WB		0
96 #define _PGMT_WC		(1UL << PG_arch_1)
97 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
98 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
101 
get_page_memtype(struct page * pg)102 static inline enum page_cache_mode get_page_memtype(struct page *pg)
103 {
104 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
105 
106 	if (pg_flags == _PGMT_WB)
107 		return _PAGE_CACHE_MODE_WB;
108 	else if (pg_flags == _PGMT_WC)
109 		return _PAGE_CACHE_MODE_WC;
110 	else if (pg_flags == _PGMT_UC_MINUS)
111 		return _PAGE_CACHE_MODE_UC_MINUS;
112 	else
113 		return _PAGE_CACHE_MODE_WT;
114 }
115 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)116 static inline void set_page_memtype(struct page *pg,
117 				    enum page_cache_mode memtype)
118 {
119 	unsigned long memtype_flags;
120 	unsigned long old_flags;
121 	unsigned long new_flags;
122 
123 	switch (memtype) {
124 	case _PAGE_CACHE_MODE_WC:
125 		memtype_flags = _PGMT_WC;
126 		break;
127 	case _PAGE_CACHE_MODE_UC_MINUS:
128 		memtype_flags = _PGMT_UC_MINUS;
129 		break;
130 	case _PAGE_CACHE_MODE_WT:
131 		memtype_flags = _PGMT_WT;
132 		break;
133 	case _PAGE_CACHE_MODE_WB:
134 	default:
135 		memtype_flags = _PGMT_WB;
136 		break;
137 	}
138 
139 	do {
140 		old_flags = pg->flags;
141 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
142 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
143 }
144 #else
get_page_memtype(struct page * pg)145 static inline enum page_cache_mode get_page_memtype(struct page *pg)
146 {
147 	return -1;
148 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)149 static inline void set_page_memtype(struct page *pg,
150 				    enum page_cache_mode memtype)
151 {
152 }
153 #endif
154 
155 enum {
156 	PAT_UC = 0,		/* uncached */
157 	PAT_WC = 1,		/* Write combining */
158 	PAT_WT = 4,		/* Write Through */
159 	PAT_WP = 5,		/* Write Protected */
160 	PAT_WB = 6,		/* Write Back (default) */
161 	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
162 };
163 
164 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
165 
pat_get_cache_mode(unsigned pat_val,char * msg)166 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
167 {
168 	enum page_cache_mode cache;
169 	char *cache_mode;
170 
171 	switch (pat_val) {
172 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
173 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
174 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
175 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
176 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
177 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
178 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
179 	}
180 
181 	memcpy(msg, cache_mode, 4);
182 
183 	return cache;
184 }
185 
186 #undef CM
187 
188 /*
189  * Update the cache mode to pgprot translation tables according to PAT
190  * configuration.
191  * Using lower indices is preferred, so we start with highest index.
192  */
__init_cache_modes(u64 pat)193 static void __init_cache_modes(u64 pat)
194 {
195 	enum page_cache_mode cache;
196 	char pat_msg[33];
197 	int i;
198 
199 	pat_msg[32] = 0;
200 	for (i = 7; i >= 0; i--) {
201 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
202 					   pat_msg + 4 * i);
203 		update_cache_mode_entry(i, cache);
204 	}
205 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
206 
207 	init_cm_done = true;
208 }
209 
210 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
211 
pat_bsp_init(u64 pat)212 static void pat_bsp_init(u64 pat)
213 {
214 	u64 tmp_pat;
215 
216 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
217 		pat_disable("PAT not supported by CPU.");
218 		return;
219 	}
220 
221 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
222 	if (!tmp_pat) {
223 		pat_disable("PAT MSR is 0, disabled.");
224 		return;
225 	}
226 
227 	wrmsrl(MSR_IA32_CR_PAT, pat);
228 	pat_initialized = true;
229 
230 	__init_cache_modes(pat);
231 }
232 
pat_ap_init(u64 pat)233 static void pat_ap_init(u64 pat)
234 {
235 	if (!boot_cpu_has(X86_FEATURE_PAT)) {
236 		/*
237 		 * If this happens we are on a secondary CPU, but switched to
238 		 * PAT on the boot CPU. We have no way to undo PAT.
239 		 */
240 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
241 	}
242 
243 	wrmsrl(MSR_IA32_CR_PAT, pat);
244 }
245 
init_cache_modes(void)246 void init_cache_modes(void)
247 {
248 	u64 pat = 0;
249 
250 	if (init_cm_done)
251 		return;
252 
253 	if (boot_cpu_has(X86_FEATURE_PAT)) {
254 		/*
255 		 * CPU supports PAT. Set PAT table to be consistent with
256 		 * PAT MSR. This case supports "nopat" boot option, and
257 		 * virtual machine environments which support PAT without
258 		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
259 		 *
260 		 * If PAT MSR returns 0, it is considered invalid and emulates
261 		 * as No PAT.
262 		 */
263 		rdmsrl(MSR_IA32_CR_PAT, pat);
264 	}
265 
266 	if (!pat) {
267 		/*
268 		 * No PAT. Emulate the PAT table that corresponds to the two
269 		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
270 		 * This setup is also the same as the BIOS default setup.
271 		 *
272 		 * PTE encoding:
273 		 *
274 		 *       PCD
275 		 *       |PWT  PAT
276 		 *       ||    slot
277 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
278 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
279 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
280 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
281 		 *
282 		 * NOTE: When WC or WP is used, it is redirected to UC- per
283 		 * the default setup in __cachemode2pte_tbl[].
284 		 */
285 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
286 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
287 	}
288 
289 	__init_cache_modes(pat);
290 }
291 
292 /**
293  * pat_init - Initialize PAT MSR and PAT table
294  *
295  * This function initializes PAT MSR and PAT table with an OS-defined value
296  * to enable additional cache attributes, WC, WT and WP.
297  *
298  * This function must be called on all CPUs using the specific sequence of
299  * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
300  * procedure for PAT.
301  */
pat_init(void)302 void pat_init(void)
303 {
304 	u64 pat;
305 	struct cpuinfo_x86 *c = &boot_cpu_data;
306 
307 	if (pat_disabled)
308 		return;
309 
310 	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
311 	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
312 	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
313 		/*
314 		 * PAT support with the lower four entries. Intel Pentium 2,
315 		 * 3, M, and 4 are affected by PAT errata, which makes the
316 		 * upper four entries unusable. To be on the safe side, we don't
317 		 * use those.
318 		 *
319 		 *  PTE encoding:
320 		 *      PAT
321 		 *      |PCD
322 		 *      ||PWT  PAT
323 		 *      |||    slot
324 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
325 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
326 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
327 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
328 		 * PAT bit unused
329 		 *
330 		 * NOTE: When WT or WP is used, it is redirected to UC- per
331 		 * the default setup in __cachemode2pte_tbl[].
332 		 */
333 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
334 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
335 	} else {
336 		/*
337 		 * Full PAT support.  We put WT in slot 7 to improve
338 		 * robustness in the presence of errata that might cause
339 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
340 		 * access will hit slot 3, and slot 3 is UC, so at worst
341 		 * we lose performance without causing a correctness issue.
342 		 * Pentium 4 erratum N46 is an example for such an erratum,
343 		 * although we try not to use PAT at all on affected CPUs.
344 		 *
345 		 *  PTE encoding:
346 		 *      PAT
347 		 *      |PCD
348 		 *      ||PWT  PAT
349 		 *      |||    slot
350 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
351 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
352 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
353 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
354 		 *      100    4    WB : Reserved
355 		 *      101    5    WP : _PAGE_CACHE_MODE_WP
356 		 *      110    6    UC-: Reserved
357 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
358 		 *
359 		 * The reserved slots are unused, but mapped to their
360 		 * corresponding types in the presence of PAT errata.
361 		 */
362 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
363 		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
364 	}
365 
366 	if (!boot_cpu_done) {
367 		pat_bsp_init(pat);
368 		boot_cpu_done = true;
369 	} else {
370 		pat_ap_init(pat);
371 	}
372 }
373 
374 #undef PAT
375 
376 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
377 
378 /*
379  * Does intersection of PAT memory type and MTRR memory type and returns
380  * the resulting memory type as PAT understands it.
381  * (Type in pat and mtrr will not have same value)
382  * The intersection is based on "Effective Memory Type" tables in IA-32
383  * SDM vol 3a
384  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)385 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
386 				     enum page_cache_mode req_type)
387 {
388 	/*
389 	 * Look for MTRR hint to get the effective type in case where PAT
390 	 * request is for WB.
391 	 */
392 	if (req_type == _PAGE_CACHE_MODE_WB) {
393 		u8 mtrr_type, uniform;
394 
395 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
396 		if (mtrr_type != MTRR_TYPE_WRBACK)
397 			return _PAGE_CACHE_MODE_UC_MINUS;
398 
399 		return _PAGE_CACHE_MODE_WB;
400 	}
401 
402 	return req_type;
403 }
404 
405 struct pagerange_state {
406 	unsigned long		cur_pfn;
407 	int			ram;
408 	int			not_ram;
409 };
410 
411 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)412 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
413 {
414 	struct pagerange_state *state = arg;
415 
416 	state->not_ram	|= initial_pfn > state->cur_pfn;
417 	state->ram	|= total_nr_pages > 0;
418 	state->cur_pfn	 = initial_pfn + total_nr_pages;
419 
420 	return state->ram && state->not_ram;
421 }
422 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)423 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
424 {
425 	int ret = 0;
426 	unsigned long start_pfn = start >> PAGE_SHIFT;
427 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
428 	struct pagerange_state state = {start_pfn, 0, 0};
429 
430 	/*
431 	 * For legacy reasons, physical address range in the legacy ISA
432 	 * region is tracked as non-RAM. This will allow users of
433 	 * /dev/mem to map portions of legacy ISA region, even when
434 	 * some of those portions are listed(or not even listed) with
435 	 * different e820 types(RAM/reserved/..)
436 	 */
437 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
438 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
439 
440 	if (start_pfn < end_pfn) {
441 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
442 				&state, pagerange_is_ram_callback);
443 	}
444 
445 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
446 }
447 
448 /*
449  * For RAM pages, we use page flags to mark the pages with appropriate type.
450  * The page flags are limited to four types, WB (default), WC, WT and UC-.
451  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
452  * a new memory type is only allowed for a page mapped with the default WB
453  * type.
454  *
455  * Here we do two passes:
456  * - Find the memtype of all the pages in the range, look for any conflicts.
457  * - In case of no conflicts, set the new memtype for pages in the range.
458  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)459 static int reserve_ram_pages_type(u64 start, u64 end,
460 				  enum page_cache_mode req_type,
461 				  enum page_cache_mode *new_type)
462 {
463 	struct page *page;
464 	u64 pfn;
465 
466 	if (req_type == _PAGE_CACHE_MODE_WP) {
467 		if (new_type)
468 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
469 		return -EINVAL;
470 	}
471 
472 	if (req_type == _PAGE_CACHE_MODE_UC) {
473 		/* We do not support strong UC */
474 		WARN_ON_ONCE(1);
475 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
476 	}
477 
478 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
479 		enum page_cache_mode type;
480 
481 		page = pfn_to_page(pfn);
482 		type = get_page_memtype(page);
483 		if (type != _PAGE_CACHE_MODE_WB) {
484 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
485 				start, end - 1, type, req_type);
486 			if (new_type)
487 				*new_type = type;
488 
489 			return -EBUSY;
490 		}
491 	}
492 
493 	if (new_type)
494 		*new_type = req_type;
495 
496 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
497 		page = pfn_to_page(pfn);
498 		set_page_memtype(page, req_type);
499 	}
500 	return 0;
501 }
502 
free_ram_pages_type(u64 start,u64 end)503 static int free_ram_pages_type(u64 start, u64 end)
504 {
505 	struct page *page;
506 	u64 pfn;
507 
508 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
509 		page = pfn_to_page(pfn);
510 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
511 	}
512 	return 0;
513 }
514 
515 /*
516  * req_type typically has one of the:
517  * - _PAGE_CACHE_MODE_WB
518  * - _PAGE_CACHE_MODE_WC
519  * - _PAGE_CACHE_MODE_UC_MINUS
520  * - _PAGE_CACHE_MODE_UC
521  * - _PAGE_CACHE_MODE_WT
522  *
523  * If new_type is NULL, function will return an error if it cannot reserve the
524  * region with req_type. If new_type is non-NULL, function will return
525  * available type in new_type in case of no error. In case of any error
526  * it will return a negative return value.
527  */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)528 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
529 		    enum page_cache_mode *new_type)
530 {
531 	struct memtype *new;
532 	enum page_cache_mode actual_type;
533 	int is_range_ram;
534 	int err = 0;
535 
536 	BUG_ON(start >= end); /* end is exclusive */
537 
538 	if (!pat_enabled()) {
539 		/* This is identical to page table setting without PAT */
540 		if (new_type)
541 			*new_type = req_type;
542 		return 0;
543 	}
544 
545 	/* Low ISA region is always mapped WB in page table. No need to track */
546 	if (x86_platform.is_untracked_pat_range(start, end)) {
547 		if (new_type)
548 			*new_type = _PAGE_CACHE_MODE_WB;
549 		return 0;
550 	}
551 
552 	/*
553 	 * Call mtrr_lookup to get the type hint. This is an
554 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
555 	 * tools and ACPI tools). Use WB request for WB memory and use
556 	 * UC_MINUS otherwise.
557 	 */
558 	actual_type = pat_x_mtrr_type(start, end, req_type);
559 
560 	if (new_type)
561 		*new_type = actual_type;
562 
563 	is_range_ram = pat_pagerange_is_ram(start, end);
564 	if (is_range_ram == 1) {
565 
566 		err = reserve_ram_pages_type(start, end, req_type, new_type);
567 
568 		return err;
569 	} else if (is_range_ram < 0) {
570 		return -EINVAL;
571 	}
572 
573 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
574 	if (!new)
575 		return -ENOMEM;
576 
577 	new->start	= start;
578 	new->end	= end;
579 	new->type	= actual_type;
580 
581 	spin_lock(&memtype_lock);
582 
583 	err = rbt_memtype_check_insert(new, new_type);
584 	if (err) {
585 		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
586 			start, end - 1,
587 			cattr_name(new->type), cattr_name(req_type));
588 		kfree(new);
589 		spin_unlock(&memtype_lock);
590 
591 		return err;
592 	}
593 
594 	spin_unlock(&memtype_lock);
595 
596 	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
597 		start, end - 1, cattr_name(new->type), cattr_name(req_type),
598 		new_type ? cattr_name(*new_type) : "-");
599 
600 	return err;
601 }
602 
free_memtype(u64 start,u64 end)603 int free_memtype(u64 start, u64 end)
604 {
605 	int err = -EINVAL;
606 	int is_range_ram;
607 	struct memtype *entry;
608 
609 	if (!pat_enabled())
610 		return 0;
611 
612 	/* Low ISA region is always mapped WB. No need to track */
613 	if (x86_platform.is_untracked_pat_range(start, end))
614 		return 0;
615 
616 	is_range_ram = pat_pagerange_is_ram(start, end);
617 	if (is_range_ram == 1) {
618 
619 		err = free_ram_pages_type(start, end);
620 
621 		return err;
622 	} else if (is_range_ram < 0) {
623 		return -EINVAL;
624 	}
625 
626 	spin_lock(&memtype_lock);
627 	entry = rbt_memtype_erase(start, end);
628 	spin_unlock(&memtype_lock);
629 
630 	if (IS_ERR(entry)) {
631 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
632 			current->comm, current->pid, start, end - 1);
633 		return -EINVAL;
634 	}
635 
636 	kfree(entry);
637 
638 	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
639 
640 	return 0;
641 }
642 
643 
644 /**
645  * lookup_memtype - Looksup the memory type for a physical address
646  * @paddr: physical address of which memory type needs to be looked up
647  *
648  * Only to be called when PAT is enabled
649  *
650  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
651  * or _PAGE_CACHE_MODE_WT.
652  */
lookup_memtype(u64 paddr)653 static enum page_cache_mode lookup_memtype(u64 paddr)
654 {
655 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
656 	struct memtype *entry;
657 
658 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
659 		return rettype;
660 
661 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
662 		struct page *page;
663 
664 		page = pfn_to_page(paddr >> PAGE_SHIFT);
665 		return get_page_memtype(page);
666 	}
667 
668 	spin_lock(&memtype_lock);
669 
670 	entry = rbt_memtype_lookup(paddr);
671 	if (entry != NULL)
672 		rettype = entry->type;
673 	else
674 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
675 
676 	spin_unlock(&memtype_lock);
677 	return rettype;
678 }
679 
680 /**
681  * io_reserve_memtype - Request a memory type mapping for a region of memory
682  * @start: start (physical address) of the region
683  * @end: end (physical address) of the region
684  * @type: A pointer to memtype, with requested type. On success, requested
685  * or any other compatible type that was available for the region is returned
686  *
687  * On success, returns 0
688  * On failure, returns non-zero
689  */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)690 int io_reserve_memtype(resource_size_t start, resource_size_t end,
691 			enum page_cache_mode *type)
692 {
693 	resource_size_t size = end - start;
694 	enum page_cache_mode req_type = *type;
695 	enum page_cache_mode new_type;
696 	int ret;
697 
698 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
699 
700 	ret = reserve_memtype(start, end, req_type, &new_type);
701 	if (ret)
702 		goto out_err;
703 
704 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
705 		goto out_free;
706 
707 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
708 		goto out_free;
709 
710 	*type = new_type;
711 	return 0;
712 
713 out_free:
714 	free_memtype(start, end);
715 	ret = -EBUSY;
716 out_err:
717 	return ret;
718 }
719 
720 /**
721  * io_free_memtype - Release a memory type mapping for a region of memory
722  * @start: start (physical address) of the region
723  * @end: end (physical address) of the region
724  */
io_free_memtype(resource_size_t start,resource_size_t end)725 void io_free_memtype(resource_size_t start, resource_size_t end)
726 {
727 	free_memtype(start, end);
728 }
729 
arch_io_reserve_memtype_wc(resource_size_t start,resource_size_t size)730 int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
731 {
732 	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
733 
734 	return io_reserve_memtype(start, start + size, &type);
735 }
736 EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
737 
arch_io_free_memtype_wc(resource_size_t start,resource_size_t size)738 void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
739 {
740 	io_free_memtype(start, start + size);
741 }
742 EXPORT_SYMBOL(arch_io_free_memtype_wc);
743 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)744 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
745 				unsigned long size, pgprot_t vma_prot)
746 {
747 	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
748 		vma_prot = pgprot_decrypted(vma_prot);
749 
750 	return vma_prot;
751 }
752 
753 #ifdef CONFIG_STRICT_DEVMEM
754 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)755 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
756 {
757 	return 1;
758 }
759 #else
760 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)761 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
762 {
763 	u64 from = ((u64)pfn) << PAGE_SHIFT;
764 	u64 to = from + size;
765 	u64 cursor = from;
766 
767 	if (!pat_enabled())
768 		return 1;
769 
770 	while (cursor < to) {
771 		if (!devmem_is_allowed(pfn))
772 			return 0;
773 		cursor += PAGE_SIZE;
774 		pfn++;
775 	}
776 	return 1;
777 }
778 #endif /* CONFIG_STRICT_DEVMEM */
779 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)780 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
781 				unsigned long size, pgprot_t *vma_prot)
782 {
783 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
784 
785 	if (!range_is_allowed(pfn, size))
786 		return 0;
787 
788 	if (file->f_flags & O_DSYNC)
789 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
790 
791 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
792 			     cachemode2protval(pcm));
793 	return 1;
794 }
795 
796 /*
797  * Change the memory type for the physial address range in kernel identity
798  * mapping space if that range is a part of identity map.
799  */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)800 int kernel_map_sync_memtype(u64 base, unsigned long size,
801 			    enum page_cache_mode pcm)
802 {
803 	unsigned long id_sz;
804 
805 	if (base > __pa(high_memory-1))
806 		return 0;
807 
808 	/*
809 	 * some areas in the middle of the kernel identity range
810 	 * are not mapped, like the PCI space.
811 	 */
812 	if (!page_is_ram(base >> PAGE_SHIFT))
813 		return 0;
814 
815 	id_sz = (__pa(high_memory-1) <= base + size) ?
816 				__pa(high_memory) - base :
817 				size;
818 
819 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
820 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
821 			current->comm, current->pid,
822 			cattr_name(pcm),
823 			base, (unsigned long long)(base + size-1));
824 		return -EINVAL;
825 	}
826 	return 0;
827 }
828 
829 /*
830  * Internal interface to reserve a range of physical memory with prot.
831  * Reserved non RAM regions only and after successful reserve_memtype,
832  * this func also keeps identity mapping (if any) in sync with this new prot.
833  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)834 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
835 				int strict_prot)
836 {
837 	int is_ram = 0;
838 	int ret;
839 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
840 	enum page_cache_mode pcm = want_pcm;
841 
842 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
843 
844 	/*
845 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
846 	 * track of number of mappings of RAM pages. We can assert that
847 	 * the type requested matches the type of first page in the range.
848 	 */
849 	if (is_ram) {
850 		if (!pat_enabled())
851 			return 0;
852 
853 		pcm = lookup_memtype(paddr);
854 		if (want_pcm != pcm) {
855 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
856 				current->comm, current->pid,
857 				cattr_name(want_pcm),
858 				(unsigned long long)paddr,
859 				(unsigned long long)(paddr + size - 1),
860 				cattr_name(pcm));
861 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
862 					     (~_PAGE_CACHE_MASK)) |
863 					     cachemode2protval(pcm));
864 		}
865 		return 0;
866 	}
867 
868 	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
869 	if (ret)
870 		return ret;
871 
872 	if (pcm != want_pcm) {
873 		if (strict_prot ||
874 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
875 			free_memtype(paddr, paddr + size);
876 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
877 			       current->comm, current->pid,
878 			       cattr_name(want_pcm),
879 			       (unsigned long long)paddr,
880 			       (unsigned long long)(paddr + size - 1),
881 			       cattr_name(pcm));
882 			return -EINVAL;
883 		}
884 		/*
885 		 * We allow returning different type than the one requested in
886 		 * non strict case.
887 		 */
888 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
889 				      (~_PAGE_CACHE_MASK)) |
890 				     cachemode2protval(pcm));
891 	}
892 
893 	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
894 		free_memtype(paddr, paddr + size);
895 		return -EINVAL;
896 	}
897 	return 0;
898 }
899 
900 /*
901  * Internal interface to free a range of physical memory.
902  * Frees non RAM regions only.
903  */
free_pfn_range(u64 paddr,unsigned long size)904 static void free_pfn_range(u64 paddr, unsigned long size)
905 {
906 	int is_ram;
907 
908 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
909 	if (is_ram == 0)
910 		free_memtype(paddr, paddr + size);
911 }
912 
913 /*
914  * track_pfn_copy is called when vma that is covering the pfnmap gets
915  * copied through copy_page_range().
916  *
917  * If the vma has a linear pfn mapping for the entire range, we get the prot
918  * from pte and reserve the entire vma range with single reserve_pfn_range call.
919  */
track_pfn_copy(struct vm_area_struct * vma)920 int track_pfn_copy(struct vm_area_struct *vma)
921 {
922 	resource_size_t paddr;
923 	unsigned long prot;
924 	unsigned long vma_size = vma->vm_end - vma->vm_start;
925 	pgprot_t pgprot;
926 
927 	if (vma->vm_flags & VM_PAT) {
928 		/*
929 		 * reserve the whole chunk covered by vma. We need the
930 		 * starting address and protection from pte.
931 		 */
932 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
933 			WARN_ON_ONCE(1);
934 			return -EINVAL;
935 		}
936 		pgprot = __pgprot(prot);
937 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
938 	}
939 
940 	return 0;
941 }
942 
943 /*
944  * prot is passed in as a parameter for the new mapping. If the vma has
945  * a linear pfn mapping for the entire range, or no vma is provided,
946  * reserve the entire pfn + size range with single reserve_pfn_range
947  * call.
948  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)949 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
950 		    unsigned long pfn, unsigned long addr, unsigned long size)
951 {
952 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
953 	enum page_cache_mode pcm;
954 
955 	/* reserve the whole chunk starting from paddr */
956 	if (!vma || (addr == vma->vm_start
957 				&& size == (vma->vm_end - vma->vm_start))) {
958 		int ret;
959 
960 		ret = reserve_pfn_range(paddr, size, prot, 0);
961 		if (ret == 0 && vma)
962 			vma->vm_flags |= VM_PAT;
963 		return ret;
964 	}
965 
966 	if (!pat_enabled())
967 		return 0;
968 
969 	/*
970 	 * For anything smaller than the vma size we set prot based on the
971 	 * lookup.
972 	 */
973 	pcm = lookup_memtype(paddr);
974 
975 	/* Check memtype for the remaining pages */
976 	while (size > PAGE_SIZE) {
977 		size -= PAGE_SIZE;
978 		paddr += PAGE_SIZE;
979 		if (pcm != lookup_memtype(paddr))
980 			return -EINVAL;
981 	}
982 
983 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
984 			 cachemode2protval(pcm));
985 
986 	return 0;
987 }
988 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)989 void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
990 {
991 	enum page_cache_mode pcm;
992 
993 	if (!pat_enabled())
994 		return;
995 
996 	/* Set prot based on lookup */
997 	pcm = lookup_memtype(pfn_t_to_phys(pfn));
998 	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
999 			 cachemode2protval(pcm));
1000 }
1001 
1002 /*
1003  * untrack_pfn is called while unmapping a pfnmap for a region.
1004  * untrack can be called for a specific region indicated by pfn and size or
1005  * can be for the entire vma (in which case pfn, size are zero).
1006  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1007 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1008 		 unsigned long size)
1009 {
1010 	resource_size_t paddr;
1011 	unsigned long prot;
1012 
1013 	if (vma && !(vma->vm_flags & VM_PAT))
1014 		return;
1015 
1016 	/* free the chunk starting from pfn or the whole chunk */
1017 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1018 	if (!paddr && !size) {
1019 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1020 			WARN_ON_ONCE(1);
1021 			return;
1022 		}
1023 
1024 		size = vma->vm_end - vma->vm_start;
1025 	}
1026 	free_pfn_range(paddr, size);
1027 	if (vma)
1028 		vma->vm_flags &= ~VM_PAT;
1029 }
1030 
1031 /*
1032  * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1033  * with the old vma after its pfnmap page table has been removed.  The new
1034  * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1035  */
untrack_pfn_moved(struct vm_area_struct * vma)1036 void untrack_pfn_moved(struct vm_area_struct *vma)
1037 {
1038 	vma->vm_flags &= ~VM_PAT;
1039 }
1040 
pgprot_writecombine(pgprot_t prot)1041 pgprot_t pgprot_writecombine(pgprot_t prot)
1042 {
1043 	return __pgprot(pgprot_val(prot) |
1044 				cachemode2protval(_PAGE_CACHE_MODE_WC));
1045 }
1046 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1047 
pgprot_writethrough(pgprot_t prot)1048 pgprot_t pgprot_writethrough(pgprot_t prot)
1049 {
1050 	return __pgprot(pgprot_val(prot) |
1051 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1052 }
1053 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1054 
1055 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1056 
memtype_get_idx(loff_t pos)1057 static struct memtype *memtype_get_idx(loff_t pos)
1058 {
1059 	struct memtype *print_entry;
1060 	int ret;
1061 
1062 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1063 	if (!print_entry)
1064 		return NULL;
1065 
1066 	spin_lock(&memtype_lock);
1067 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1068 	spin_unlock(&memtype_lock);
1069 
1070 	if (!ret) {
1071 		return print_entry;
1072 	} else {
1073 		kfree(print_entry);
1074 		return NULL;
1075 	}
1076 }
1077 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1078 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1079 {
1080 	if (*pos == 0) {
1081 		++*pos;
1082 		seq_puts(seq, "PAT memtype list:\n");
1083 	}
1084 
1085 	return memtype_get_idx(*pos);
1086 }
1087 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1088 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1089 {
1090 	++*pos;
1091 	return memtype_get_idx(*pos);
1092 }
1093 
memtype_seq_stop(struct seq_file * seq,void * v)1094 static void memtype_seq_stop(struct seq_file *seq, void *v)
1095 {
1096 }
1097 
memtype_seq_show(struct seq_file * seq,void * v)1098 static int memtype_seq_show(struct seq_file *seq, void *v)
1099 {
1100 	struct memtype *print_entry = (struct memtype *)v;
1101 
1102 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1103 			print_entry->start, print_entry->end);
1104 	kfree(print_entry);
1105 
1106 	return 0;
1107 }
1108 
1109 static const struct seq_operations memtype_seq_ops = {
1110 	.start = memtype_seq_start,
1111 	.next  = memtype_seq_next,
1112 	.stop  = memtype_seq_stop,
1113 	.show  = memtype_seq_show,
1114 };
1115 
memtype_seq_open(struct inode * inode,struct file * file)1116 static int memtype_seq_open(struct inode *inode, struct file *file)
1117 {
1118 	return seq_open(file, &memtype_seq_ops);
1119 }
1120 
1121 static const struct file_operations memtype_fops = {
1122 	.open    = memtype_seq_open,
1123 	.read    = seq_read,
1124 	.llseek  = seq_lseek,
1125 	.release = seq_release,
1126 };
1127 
pat_memtype_list_init(void)1128 static int __init pat_memtype_list_init(void)
1129 {
1130 	if (pat_enabled()) {
1131 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1132 				    arch_debugfs_dir, NULL, &memtype_fops);
1133 	}
1134 	return 0;
1135 }
1136 
1137 late_initcall(pat_memtype_list_init);
1138 
1139 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1140