1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/bootmem.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
88 *
89 * The waker side modifies the user space value of the futex and calls
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
93 *
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
119 *
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
128 *
129 * waiters++; (a)
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
140 * if (uval == val)
141 * queue();
142 * unlock(hash_bucket(futex));
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
147 *
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
175 */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED 0x01
189 #else
190 /*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194 # define FLAGS_SHARED 0x00
195 #endif
196 #define FLAGS_CLOCKRT 0x02
197 #define FLAGS_HAS_TIMEOUT 0x04
198
199 /*
200 * Priority Inheritance state:
201 */
202 struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
218 } __randomize_layout;
219
220 /**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
222 * @list: priority-sorted list of tasks waiting on this futex
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236 * The order of wakeup is always to make the first condition true, then
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
241 */
242 struct futex_q {
243 struct plist_node list;
244
245 struct task_struct *task;
246 spinlock_t *lock_ptr;
247 union futex_key key;
248 struct futex_pi_state *pi_state;
249 struct rt_mutex_waiter *rt_waiter;
250 union futex_key *requeue_pi_key;
251 u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
264 */
265 struct futex_hash_bucket {
266 atomic_t waiters;
267 spinlock_t lock;
268 struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276 static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285 * Fault injections for futexes.
286 */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290 struct fault_attr attr;
291
292 bool ignore_private;
293 } fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
295 .ignore_private = false,
296 };
297
setup_fail_futex(char * str)298 static int __init setup_fail_futex(char *str)
299 {
300 return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
should_fail_futex(bool fshared)304 static bool should_fail_futex(bool fshared)
305 {
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
fail_futex_debugfs(void)314 static int __init fail_futex_debugfs(void)
315 {
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
should_fail_futex(bool fshared)338 static inline bool should_fail_futex(bool fshared)
339 {
340 return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 #ifdef CONFIG_COMPAT
345 static void compat_exit_robust_list(struct task_struct *curr);
346 #else
compat_exit_robust_list(struct task_struct * curr)347 static inline void compat_exit_robust_list(struct task_struct *curr) { }
348 #endif
349
futex_get_mm(union futex_key * key)350 static inline void futex_get_mm(union futex_key *key)
351 {
352 mmgrab(key->private.mm);
353 /*
354 * Ensure futex_get_mm() implies a full barrier such that
355 * get_futex_key() implies a full barrier. This is relied upon
356 * as smp_mb(); (B), see the ordering comment above.
357 */
358 smp_mb__after_atomic();
359 }
360
361 /*
362 * Reflects a new waiter being added to the waitqueue.
363 */
hb_waiters_inc(struct futex_hash_bucket * hb)364 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367 atomic_inc(&hb->waiters);
368 /*
369 * Full barrier (A), see the ordering comment above.
370 */
371 smp_mb__after_atomic();
372 #endif
373 }
374
375 /*
376 * Reflects a waiter being removed from the waitqueue by wakeup
377 * paths.
378 */
hb_waiters_dec(struct futex_hash_bucket * hb)379 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
380 {
381 #ifdef CONFIG_SMP
382 atomic_dec(&hb->waiters);
383 #endif
384 }
385
hb_waiters_pending(struct futex_hash_bucket * hb)386 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
387 {
388 #ifdef CONFIG_SMP
389 return atomic_read(&hb->waiters);
390 #else
391 return 1;
392 #endif
393 }
394
395 /**
396 * hash_futex - Return the hash bucket in the global hash
397 * @key: Pointer to the futex key for which the hash is calculated
398 *
399 * We hash on the keys returned from get_futex_key (see below) and return the
400 * corresponding hash bucket in the global hash.
401 */
hash_futex(union futex_key * key)402 static struct futex_hash_bucket *hash_futex(union futex_key *key)
403 {
404 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
405 key->both.offset);
406
407 return &futex_queues[hash & (futex_hashsize - 1)];
408 }
409
410
411 /**
412 * match_futex - Check whether two futex keys are equal
413 * @key1: Pointer to key1
414 * @key2: Pointer to key2
415 *
416 * Return 1 if two futex_keys are equal, 0 otherwise.
417 */
match_futex(union futex_key * key1,union futex_key * key2)418 static inline int match_futex(union futex_key *key1, union futex_key *key2)
419 {
420 return (key1 && key2
421 && key1->both.word == key2->both.word
422 && key1->both.ptr == key2->both.ptr
423 && key1->both.offset == key2->both.offset);
424 }
425
426 /*
427 * Take a reference to the resource addressed by a key.
428 * Can be called while holding spinlocks.
429 *
430 */
get_futex_key_refs(union futex_key * key)431 static void get_futex_key_refs(union futex_key *key)
432 {
433 if (!key->both.ptr)
434 return;
435
436 /*
437 * On MMU less systems futexes are always "private" as there is no per
438 * process address space. We need the smp wmb nevertheless - yes,
439 * arch/blackfin has MMU less SMP ...
440 */
441 if (!IS_ENABLED(CONFIG_MMU)) {
442 smp_mb(); /* explicit smp_mb(); (B) */
443 return;
444 }
445
446 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
447 case FUT_OFF_INODE:
448 smp_mb(); /* explicit smp_mb(); (B) */
449 break;
450 case FUT_OFF_MMSHARED:
451 futex_get_mm(key); /* implies smp_mb(); (B) */
452 break;
453 default:
454 /*
455 * Private futexes do not hold reference on an inode or
456 * mm, therefore the only purpose of calling get_futex_key_refs
457 * is because we need the barrier for the lockless waiter check.
458 */
459 smp_mb(); /* explicit smp_mb(); (B) */
460 }
461 }
462
463 /*
464 * Drop a reference to the resource addressed by a key.
465 * The hash bucket spinlock must not be held. This is
466 * a no-op for private futexes, see comment in the get
467 * counterpart.
468 */
drop_futex_key_refs(union futex_key * key)469 static void drop_futex_key_refs(union futex_key *key)
470 {
471 if (!key->both.ptr) {
472 /* If we're here then we tried to put a key we failed to get */
473 WARN_ON_ONCE(1);
474 return;
475 }
476
477 if (!IS_ENABLED(CONFIG_MMU))
478 return;
479
480 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
481 case FUT_OFF_INODE:
482 break;
483 case FUT_OFF_MMSHARED:
484 mmdrop(key->private.mm);
485 break;
486 }
487 }
488
489 /*
490 * Generate a machine wide unique identifier for this inode.
491 *
492 * This relies on u64 not wrapping in the life-time of the machine; which with
493 * 1ns resolution means almost 585 years.
494 *
495 * This further relies on the fact that a well formed program will not unmap
496 * the file while it has a (shared) futex waiting on it. This mapping will have
497 * a file reference which pins the mount and inode.
498 *
499 * If for some reason an inode gets evicted and read back in again, it will get
500 * a new sequence number and will _NOT_ match, even though it is the exact same
501 * file.
502 *
503 * It is important that match_futex() will never have a false-positive, esp.
504 * for PI futexes that can mess up the state. The above argues that false-negatives
505 * are only possible for malformed programs.
506 */
get_inode_sequence_number(struct inode * inode)507 static u64 get_inode_sequence_number(struct inode *inode)
508 {
509 static atomic64_t i_seq;
510 u64 old;
511
512 /* Does the inode already have a sequence number? */
513 old = atomic64_read(&inode->i_sequence);
514 if (likely(old))
515 return old;
516
517 for (;;) {
518 u64 new = atomic64_add_return(1, &i_seq);
519 if (WARN_ON_ONCE(!new))
520 continue;
521
522 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
523 if (old)
524 return old;
525 return new;
526 }
527 }
528
529 /**
530 * get_futex_key() - Get parameters which are the keys for a futex
531 * @uaddr: virtual address of the futex
532 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
533 * @key: address where result is stored.
534 * @rw: mapping needs to be read/write (values: VERIFY_READ,
535 * VERIFY_WRITE)
536 *
537 * Return: a negative error code or 0
538 *
539 * The key words are stored in @key on success.
540 *
541 * For shared mappings (when @fshared), the key is:
542 * ( inode->i_sequence, page->index, offset_within_page )
543 * [ also see get_inode_sequence_number() ]
544 *
545 * For private mappings (or when !@fshared), the key is:
546 * ( current->mm, address, 0 )
547 *
548 * This allows (cross process, where applicable) identification of the futex
549 * without keeping the page pinned for the duration of the FUTEX_WAIT.
550 *
551 * lock_page() might sleep, the caller should not hold a spinlock.
552 */
553 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)554 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
555 {
556 unsigned long address = (unsigned long)uaddr;
557 struct mm_struct *mm = current->mm;
558 struct page *page, *tail;
559 struct address_space *mapping;
560 int err, ro = 0;
561
562 /*
563 * The futex address must be "naturally" aligned.
564 */
565 key->both.offset = address % PAGE_SIZE;
566 if (unlikely((address % sizeof(u32)) != 0))
567 return -EINVAL;
568 address -= key->both.offset;
569
570 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
571 return -EFAULT;
572
573 if (unlikely(should_fail_futex(fshared)))
574 return -EFAULT;
575
576 /*
577 * PROCESS_PRIVATE futexes are fast.
578 * As the mm cannot disappear under us and the 'key' only needs
579 * virtual address, we dont even have to find the underlying vma.
580 * Note : We do have to check 'uaddr' is a valid user address,
581 * but access_ok() should be faster than find_vma()
582 */
583 if (!fshared) {
584 key->private.mm = mm;
585 key->private.address = address;
586 get_futex_key_refs(key); /* implies smp_mb(); (B) */
587 return 0;
588 }
589
590 again:
591 /* Ignore any VERIFY_READ mapping (futex common case) */
592 if (unlikely(should_fail_futex(fshared)))
593 return -EFAULT;
594
595 err = get_user_pages_fast(address, 1, 1, &page);
596 /*
597 * If write access is not required (eg. FUTEX_WAIT), try
598 * and get read-only access.
599 */
600 if (err == -EFAULT && rw == VERIFY_READ) {
601 err = get_user_pages_fast(address, 1, 0, &page);
602 ro = 1;
603 }
604 if (err < 0)
605 return err;
606 else
607 err = 0;
608
609 /*
610 * The treatment of mapping from this point on is critical. The page
611 * lock protects many things but in this context the page lock
612 * stabilizes mapping, prevents inode freeing in the shared
613 * file-backed region case and guards against movement to swap cache.
614 *
615 * Strictly speaking the page lock is not needed in all cases being
616 * considered here and page lock forces unnecessarily serialization
617 * From this point on, mapping will be re-verified if necessary and
618 * page lock will be acquired only if it is unavoidable
619 *
620 * Mapping checks require the head page for any compound page so the
621 * head page and mapping is looked up now. For anonymous pages, it
622 * does not matter if the page splits in the future as the key is
623 * based on the address. For filesystem-backed pages, the tail is
624 * required as the index of the page determines the key. For
625 * base pages, there is no tail page and tail == page.
626 */
627 tail = page;
628 page = compound_head(page);
629 mapping = READ_ONCE(page->mapping);
630
631 /*
632 * If page->mapping is NULL, then it cannot be a PageAnon
633 * page; but it might be the ZERO_PAGE or in the gate area or
634 * in a special mapping (all cases which we are happy to fail);
635 * or it may have been a good file page when get_user_pages_fast
636 * found it, but truncated or holepunched or subjected to
637 * invalidate_complete_page2 before we got the page lock (also
638 * cases which we are happy to fail). And we hold a reference,
639 * so refcount care in invalidate_complete_page's remove_mapping
640 * prevents drop_caches from setting mapping to NULL beneath us.
641 *
642 * The case we do have to guard against is when memory pressure made
643 * shmem_writepage move it from filecache to swapcache beneath us:
644 * an unlikely race, but we do need to retry for page->mapping.
645 */
646 if (unlikely(!mapping)) {
647 int shmem_swizzled;
648
649 /*
650 * Page lock is required to identify which special case above
651 * applies. If this is really a shmem page then the page lock
652 * will prevent unexpected transitions.
653 */
654 lock_page(page);
655 shmem_swizzled = PageSwapCache(page) || page->mapping;
656 unlock_page(page);
657 put_page(page);
658
659 if (shmem_swizzled)
660 goto again;
661
662 return -EFAULT;
663 }
664
665 /*
666 * Private mappings are handled in a simple way.
667 *
668 * If the futex key is stored on an anonymous page, then the associated
669 * object is the mm which is implicitly pinned by the calling process.
670 *
671 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
672 * it's a read-only handle, it's expected that futexes attach to
673 * the object not the particular process.
674 */
675 if (PageAnon(page)) {
676 /*
677 * A RO anonymous page will never change and thus doesn't make
678 * sense for futex operations.
679 */
680 if (unlikely(should_fail_futex(fshared)) || ro) {
681 err = -EFAULT;
682 goto out;
683 }
684
685 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
686 key->private.mm = mm;
687 key->private.address = address;
688
689 } else {
690 struct inode *inode;
691
692 /*
693 * The associated futex object in this case is the inode and
694 * the page->mapping must be traversed. Ordinarily this should
695 * be stabilised under page lock but it's not strictly
696 * necessary in this case as we just want to pin the inode, not
697 * update the radix tree or anything like that.
698 *
699 * The RCU read lock is taken as the inode is finally freed
700 * under RCU. If the mapping still matches expectations then the
701 * mapping->host can be safely accessed as being a valid inode.
702 */
703 rcu_read_lock();
704
705 if (READ_ONCE(page->mapping) != mapping) {
706 rcu_read_unlock();
707 put_page(page);
708
709 goto again;
710 }
711
712 inode = READ_ONCE(mapping->host);
713 if (!inode) {
714 rcu_read_unlock();
715 put_page(page);
716
717 goto again;
718 }
719
720 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
721 key->shared.i_seq = get_inode_sequence_number(inode);
722 key->shared.pgoff = basepage_index(tail);
723 rcu_read_unlock();
724 }
725
726 get_futex_key_refs(key); /* implies smp_mb(); (B) */
727
728 out:
729 put_page(page);
730 return err;
731 }
732
put_futex_key(union futex_key * key)733 static inline void put_futex_key(union futex_key *key)
734 {
735 drop_futex_key_refs(key);
736 }
737
738 /**
739 * fault_in_user_writeable() - Fault in user address and verify RW access
740 * @uaddr: pointer to faulting user space address
741 *
742 * Slow path to fixup the fault we just took in the atomic write
743 * access to @uaddr.
744 *
745 * We have no generic implementation of a non-destructive write to the
746 * user address. We know that we faulted in the atomic pagefault
747 * disabled section so we can as well avoid the #PF overhead by
748 * calling get_user_pages() right away.
749 */
fault_in_user_writeable(u32 __user * uaddr)750 static int fault_in_user_writeable(u32 __user *uaddr)
751 {
752 struct mm_struct *mm = current->mm;
753 int ret;
754
755 down_read(&mm->mmap_sem);
756 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
757 FAULT_FLAG_WRITE, NULL);
758 up_read(&mm->mmap_sem);
759
760 return ret < 0 ? ret : 0;
761 }
762
763 /**
764 * futex_top_waiter() - Return the highest priority waiter on a futex
765 * @hb: the hash bucket the futex_q's reside in
766 * @key: the futex key (to distinguish it from other futex futex_q's)
767 *
768 * Must be called with the hb lock held.
769 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)770 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
771 union futex_key *key)
772 {
773 struct futex_q *this;
774
775 plist_for_each_entry(this, &hb->chain, list) {
776 if (match_futex(&this->key, key))
777 return this;
778 }
779 return NULL;
780 }
781
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)782 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
783 u32 uval, u32 newval)
784 {
785 int ret;
786
787 pagefault_disable();
788 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
789 pagefault_enable();
790
791 return ret;
792 }
793
get_futex_value_locked(u32 * dest,u32 __user * from)794 static int get_futex_value_locked(u32 *dest, u32 __user *from)
795 {
796 int ret;
797
798 pagefault_disable();
799 ret = __get_user(*dest, from);
800 pagefault_enable();
801
802 return ret ? -EFAULT : 0;
803 }
804
805
806 /*
807 * PI code:
808 */
refill_pi_state_cache(void)809 static int refill_pi_state_cache(void)
810 {
811 struct futex_pi_state *pi_state;
812
813 if (likely(current->pi_state_cache))
814 return 0;
815
816 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
817
818 if (!pi_state)
819 return -ENOMEM;
820
821 INIT_LIST_HEAD(&pi_state->list);
822 /* pi_mutex gets initialized later */
823 pi_state->owner = NULL;
824 atomic_set(&pi_state->refcount, 1);
825 pi_state->key = FUTEX_KEY_INIT;
826
827 current->pi_state_cache = pi_state;
828
829 return 0;
830 }
831
alloc_pi_state(void)832 static struct futex_pi_state *alloc_pi_state(void)
833 {
834 struct futex_pi_state *pi_state = current->pi_state_cache;
835
836 WARN_ON(!pi_state);
837 current->pi_state_cache = NULL;
838
839 return pi_state;
840 }
841
get_pi_state(struct futex_pi_state * pi_state)842 static void get_pi_state(struct futex_pi_state *pi_state)
843 {
844 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
845 }
846
847 /*
848 * Drops a reference to the pi_state object and frees or caches it
849 * when the last reference is gone.
850 */
put_pi_state(struct futex_pi_state * pi_state)851 static void put_pi_state(struct futex_pi_state *pi_state)
852 {
853 if (!pi_state)
854 return;
855
856 if (!atomic_dec_and_test(&pi_state->refcount))
857 return;
858
859 /*
860 * If pi_state->owner is NULL, the owner is most probably dying
861 * and has cleaned up the pi_state already
862 */
863 if (pi_state->owner) {
864 struct task_struct *owner;
865
866 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
867 owner = pi_state->owner;
868 if (owner) {
869 raw_spin_lock(&owner->pi_lock);
870 list_del_init(&pi_state->list);
871 raw_spin_unlock(&owner->pi_lock);
872 }
873 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
874 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
875 }
876
877 if (current->pi_state_cache) {
878 kfree(pi_state);
879 } else {
880 /*
881 * pi_state->list is already empty.
882 * clear pi_state->owner.
883 * refcount is at 0 - put it back to 1.
884 */
885 pi_state->owner = NULL;
886 atomic_set(&pi_state->refcount, 1);
887 current->pi_state_cache = pi_state;
888 }
889 }
890
891 /*
892 * Look up the task based on what TID userspace gave us.
893 * We dont trust it.
894 */
futex_find_get_task(pid_t pid)895 static struct task_struct *futex_find_get_task(pid_t pid)
896 {
897 struct task_struct *p;
898
899 rcu_read_lock();
900 p = find_task_by_vpid(pid);
901 if (p)
902 get_task_struct(p);
903
904 rcu_read_unlock();
905
906 return p;
907 }
908
909 #ifdef CONFIG_FUTEX_PI
910
911 /*
912 * This task is holding PI mutexes at exit time => bad.
913 * Kernel cleans up PI-state, but userspace is likely hosed.
914 * (Robust-futex cleanup is separate and might save the day for userspace.)
915 */
exit_pi_state_list(struct task_struct * curr)916 static void exit_pi_state_list(struct task_struct *curr)
917 {
918 struct list_head *next, *head = &curr->pi_state_list;
919 struct futex_pi_state *pi_state;
920 struct futex_hash_bucket *hb;
921 union futex_key key = FUTEX_KEY_INIT;
922
923 if (!futex_cmpxchg_enabled)
924 return;
925 /*
926 * We are a ZOMBIE and nobody can enqueue itself on
927 * pi_state_list anymore, but we have to be careful
928 * versus waiters unqueueing themselves:
929 */
930 raw_spin_lock_irq(&curr->pi_lock);
931 while (!list_empty(head)) {
932 next = head->next;
933 pi_state = list_entry(next, struct futex_pi_state, list);
934 key = pi_state->key;
935 hb = hash_futex(&key);
936
937 /*
938 * We can race against put_pi_state() removing itself from the
939 * list (a waiter going away). put_pi_state() will first
940 * decrement the reference count and then modify the list, so
941 * its possible to see the list entry but fail this reference
942 * acquire.
943 *
944 * In that case; drop the locks to let put_pi_state() make
945 * progress and retry the loop.
946 */
947 if (!atomic_inc_not_zero(&pi_state->refcount)) {
948 raw_spin_unlock_irq(&curr->pi_lock);
949 cpu_relax();
950 raw_spin_lock_irq(&curr->pi_lock);
951 continue;
952 }
953 raw_spin_unlock_irq(&curr->pi_lock);
954
955 spin_lock(&hb->lock);
956 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
957 raw_spin_lock(&curr->pi_lock);
958 /*
959 * We dropped the pi-lock, so re-check whether this
960 * task still owns the PI-state:
961 */
962 if (head->next != next) {
963 /* retain curr->pi_lock for the loop invariant */
964 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
965 spin_unlock(&hb->lock);
966 put_pi_state(pi_state);
967 continue;
968 }
969
970 WARN_ON(pi_state->owner != curr);
971 WARN_ON(list_empty(&pi_state->list));
972 list_del_init(&pi_state->list);
973 pi_state->owner = NULL;
974
975 raw_spin_unlock(&curr->pi_lock);
976 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
977 spin_unlock(&hb->lock);
978
979 rt_mutex_futex_unlock(&pi_state->pi_mutex);
980 put_pi_state(pi_state);
981
982 raw_spin_lock_irq(&curr->pi_lock);
983 }
984 raw_spin_unlock_irq(&curr->pi_lock);
985 }
986 #else
exit_pi_state_list(struct task_struct * curr)987 static inline void exit_pi_state_list(struct task_struct *curr) { }
988 #endif
989
990 /*
991 * We need to check the following states:
992 *
993 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
994 *
995 * [1] NULL | --- | --- | 0 | 0/1 | Valid
996 * [2] NULL | --- | --- | >0 | 0/1 | Valid
997 *
998 * [3] Found | NULL | -- | Any | 0/1 | Invalid
999 *
1000 * [4] Found | Found | NULL | 0 | 1 | Valid
1001 * [5] Found | Found | NULL | >0 | 1 | Invalid
1002 *
1003 * [6] Found | Found | task | 0 | 1 | Valid
1004 *
1005 * [7] Found | Found | NULL | Any | 0 | Invalid
1006 *
1007 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
1008 * [9] Found | Found | task | 0 | 0 | Invalid
1009 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
1010 *
1011 * [1] Indicates that the kernel can acquire the futex atomically. We
1012 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1013 *
1014 * [2] Valid, if TID does not belong to a kernel thread. If no matching
1015 * thread is found then it indicates that the owner TID has died.
1016 *
1017 * [3] Invalid. The waiter is queued on a non PI futex
1018 *
1019 * [4] Valid state after exit_robust_list(), which sets the user space
1020 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1021 *
1022 * [5] The user space value got manipulated between exit_robust_list()
1023 * and exit_pi_state_list()
1024 *
1025 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1026 * the pi_state but cannot access the user space value.
1027 *
1028 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1029 *
1030 * [8] Owner and user space value match
1031 *
1032 * [9] There is no transient state which sets the user space TID to 0
1033 * except exit_robust_list(), but this is indicated by the
1034 * FUTEX_OWNER_DIED bit. See [4]
1035 *
1036 * [10] There is no transient state which leaves owner and user space
1037 * TID out of sync.
1038 *
1039 *
1040 * Serialization and lifetime rules:
1041 *
1042 * hb->lock:
1043 *
1044 * hb -> futex_q, relation
1045 * futex_q -> pi_state, relation
1046 *
1047 * (cannot be raw because hb can contain arbitrary amount
1048 * of futex_q's)
1049 *
1050 * pi_mutex->wait_lock:
1051 *
1052 * {uval, pi_state}
1053 *
1054 * (and pi_mutex 'obviously')
1055 *
1056 * p->pi_lock:
1057 *
1058 * p->pi_state_list -> pi_state->list, relation
1059 *
1060 * pi_state->refcount:
1061 *
1062 * pi_state lifetime
1063 *
1064 *
1065 * Lock order:
1066 *
1067 * hb->lock
1068 * pi_mutex->wait_lock
1069 * p->pi_lock
1070 *
1071 */
1072
1073 /*
1074 * Validate that the existing waiter has a pi_state and sanity check
1075 * the pi_state against the user space value. If correct, attach to
1076 * it.
1077 */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1078 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1079 struct futex_pi_state *pi_state,
1080 struct futex_pi_state **ps)
1081 {
1082 pid_t pid = uval & FUTEX_TID_MASK;
1083 u32 uval2;
1084 int ret;
1085
1086 /*
1087 * Userspace might have messed up non-PI and PI futexes [3]
1088 */
1089 if (unlikely(!pi_state))
1090 return -EINVAL;
1091
1092 /*
1093 * We get here with hb->lock held, and having found a
1094 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1095 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1096 * which in turn means that futex_lock_pi() still has a reference on
1097 * our pi_state.
1098 *
1099 * The waiter holding a reference on @pi_state also protects against
1100 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1101 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1102 * free pi_state before we can take a reference ourselves.
1103 */
1104 WARN_ON(!atomic_read(&pi_state->refcount));
1105
1106 /*
1107 * Now that we have a pi_state, we can acquire wait_lock
1108 * and do the state validation.
1109 */
1110 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1111
1112 /*
1113 * Since {uval, pi_state} is serialized by wait_lock, and our current
1114 * uval was read without holding it, it can have changed. Verify it
1115 * still is what we expect it to be, otherwise retry the entire
1116 * operation.
1117 */
1118 if (get_futex_value_locked(&uval2, uaddr))
1119 goto out_efault;
1120
1121 if (uval != uval2)
1122 goto out_eagain;
1123
1124 /*
1125 * Handle the owner died case:
1126 */
1127 if (uval & FUTEX_OWNER_DIED) {
1128 /*
1129 * exit_pi_state_list sets owner to NULL and wakes the
1130 * topmost waiter. The task which acquires the
1131 * pi_state->rt_mutex will fixup owner.
1132 */
1133 if (!pi_state->owner) {
1134 /*
1135 * No pi state owner, but the user space TID
1136 * is not 0. Inconsistent state. [5]
1137 */
1138 if (pid)
1139 goto out_einval;
1140 /*
1141 * Take a ref on the state and return success. [4]
1142 */
1143 goto out_attach;
1144 }
1145
1146 /*
1147 * If TID is 0, then either the dying owner has not
1148 * yet executed exit_pi_state_list() or some waiter
1149 * acquired the rtmutex in the pi state, but did not
1150 * yet fixup the TID in user space.
1151 *
1152 * Take a ref on the state and return success. [6]
1153 */
1154 if (!pid)
1155 goto out_attach;
1156 } else {
1157 /*
1158 * If the owner died bit is not set, then the pi_state
1159 * must have an owner. [7]
1160 */
1161 if (!pi_state->owner)
1162 goto out_einval;
1163 }
1164
1165 /*
1166 * Bail out if user space manipulated the futex value. If pi
1167 * state exists then the owner TID must be the same as the
1168 * user space TID. [9/10]
1169 */
1170 if (pid != task_pid_vnr(pi_state->owner))
1171 goto out_einval;
1172
1173 out_attach:
1174 get_pi_state(pi_state);
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 *ps = pi_state;
1177 return 0;
1178
1179 out_einval:
1180 ret = -EINVAL;
1181 goto out_error;
1182
1183 out_eagain:
1184 ret = -EAGAIN;
1185 goto out_error;
1186
1187 out_efault:
1188 ret = -EFAULT;
1189 goto out_error;
1190
1191 out_error:
1192 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1193 return ret;
1194 }
1195
1196 /**
1197 * wait_for_owner_exiting - Block until the owner has exited
1198 * @exiting: Pointer to the exiting task
1199 *
1200 * Caller must hold a refcount on @exiting.
1201 */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1202 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1203 {
1204 if (ret != -EBUSY) {
1205 WARN_ON_ONCE(exiting);
1206 return;
1207 }
1208
1209 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1210 return;
1211
1212 mutex_lock(&exiting->futex_exit_mutex);
1213 /*
1214 * No point in doing state checking here. If the waiter got here
1215 * while the task was in exec()->exec_futex_release() then it can
1216 * have any FUTEX_STATE_* value when the waiter has acquired the
1217 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1218 * already. Highly unlikely and not a problem. Just one more round
1219 * through the futex maze.
1220 */
1221 mutex_unlock(&exiting->futex_exit_mutex);
1222
1223 put_task_struct(exiting);
1224 }
1225
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1226 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1227 struct task_struct *tsk)
1228 {
1229 u32 uval2;
1230
1231 /*
1232 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1233 * caller that the alleged owner is busy.
1234 */
1235 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1236 return -EBUSY;
1237
1238 /*
1239 * Reread the user space value to handle the following situation:
1240 *
1241 * CPU0 CPU1
1242 *
1243 * sys_exit() sys_futex()
1244 * do_exit() futex_lock_pi()
1245 * futex_lock_pi_atomic()
1246 * exit_signals(tsk) No waiters:
1247 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1248 * mm_release(tsk) Set waiter bit
1249 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1250 * Set owner died attach_to_pi_owner() {
1251 * *uaddr = 0xC0000000; tsk = get_task(PID);
1252 * } if (!tsk->flags & PF_EXITING) {
1253 * ... attach();
1254 * tsk->futex_state = } else {
1255 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1256 * FUTEX_STATE_DEAD)
1257 * return -EAGAIN;
1258 * return -ESRCH; <--- FAIL
1259 * }
1260 *
1261 * Returning ESRCH unconditionally is wrong here because the
1262 * user space value has been changed by the exiting task.
1263 *
1264 * The same logic applies to the case where the exiting task is
1265 * already gone.
1266 */
1267 if (get_futex_value_locked(&uval2, uaddr))
1268 return -EFAULT;
1269
1270 /* If the user space value has changed, try again. */
1271 if (uval2 != uval)
1272 return -EAGAIN;
1273
1274 /*
1275 * The exiting task did not have a robust list, the robust list was
1276 * corrupted or the user space value in *uaddr is simply bogus.
1277 * Give up and tell user space.
1278 */
1279 return -ESRCH;
1280 }
1281
1282 /*
1283 * Lookup the task for the TID provided from user space and attach to
1284 * it after doing proper sanity checks.
1285 */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1286 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1287 struct futex_pi_state **ps,
1288 struct task_struct **exiting)
1289 {
1290 pid_t pid = uval & FUTEX_TID_MASK;
1291 struct futex_pi_state *pi_state;
1292 struct task_struct *p;
1293
1294 /*
1295 * We are the first waiter - try to look up the real owner and attach
1296 * the new pi_state to it, but bail out when TID = 0 [1]
1297 *
1298 * The !pid check is paranoid. None of the call sites should end up
1299 * with pid == 0, but better safe than sorry. Let the caller retry
1300 */
1301 if (!pid)
1302 return -EAGAIN;
1303 p = futex_find_get_task(pid);
1304 if (!p)
1305 return handle_exit_race(uaddr, uval, NULL);
1306
1307 if (unlikely(p->flags & PF_KTHREAD)) {
1308 put_task_struct(p);
1309 return -EPERM;
1310 }
1311
1312 /*
1313 * We need to look at the task state to figure out, whether the
1314 * task is exiting. To protect against the change of the task state
1315 * in futex_exit_release(), we do this protected by p->pi_lock:
1316 */
1317 raw_spin_lock_irq(&p->pi_lock);
1318 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1319 /*
1320 * The task is on the way out. When the futex state is
1321 * FUTEX_STATE_DEAD, we know that the task has finished
1322 * the cleanup:
1323 */
1324 int ret = handle_exit_race(uaddr, uval, p);
1325
1326 raw_spin_unlock_irq(&p->pi_lock);
1327 /*
1328 * If the owner task is between FUTEX_STATE_EXITING and
1329 * FUTEX_STATE_DEAD then store the task pointer and keep
1330 * the reference on the task struct. The calling code will
1331 * drop all locks, wait for the task to reach
1332 * FUTEX_STATE_DEAD and then drop the refcount. This is
1333 * required to prevent a live lock when the current task
1334 * preempted the exiting task between the two states.
1335 */
1336 if (ret == -EBUSY)
1337 *exiting = p;
1338 else
1339 put_task_struct(p);
1340 return ret;
1341 }
1342
1343 /*
1344 * No existing pi state. First waiter. [2]
1345 *
1346 * This creates pi_state, we have hb->lock held, this means nothing can
1347 * observe this state, wait_lock is irrelevant.
1348 */
1349 pi_state = alloc_pi_state();
1350
1351 /*
1352 * Initialize the pi_mutex in locked state and make @p
1353 * the owner of it:
1354 */
1355 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1356
1357 /* Store the key for possible exit cleanups: */
1358 pi_state->key = *key;
1359
1360 WARN_ON(!list_empty(&pi_state->list));
1361 list_add(&pi_state->list, &p->pi_state_list);
1362 /*
1363 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1364 * because there is no concurrency as the object is not published yet.
1365 */
1366 pi_state->owner = p;
1367 raw_spin_unlock_irq(&p->pi_lock);
1368
1369 put_task_struct(p);
1370
1371 *ps = pi_state;
1372
1373 return 0;
1374 }
1375
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1376 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1377 struct futex_hash_bucket *hb,
1378 union futex_key *key, struct futex_pi_state **ps,
1379 struct task_struct **exiting)
1380 {
1381 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1382
1383 /*
1384 * If there is a waiter on that futex, validate it and
1385 * attach to the pi_state when the validation succeeds.
1386 */
1387 if (top_waiter)
1388 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1389
1390 /*
1391 * We are the first waiter - try to look up the owner based on
1392 * @uval and attach to it.
1393 */
1394 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1395 }
1396
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1397 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1398 {
1399 int err;
1400 u32 uninitialized_var(curval);
1401
1402 if (unlikely(should_fail_futex(true)))
1403 return -EFAULT;
1404
1405 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1406 if (unlikely(err))
1407 return err;
1408
1409 /* If user space value changed, let the caller retry */
1410 return curval != uval ? -EAGAIN : 0;
1411 }
1412
1413 /**
1414 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1415 * @uaddr: the pi futex user address
1416 * @hb: the pi futex hash bucket
1417 * @key: the futex key associated with uaddr and hb
1418 * @ps: the pi_state pointer where we store the result of the
1419 * lookup
1420 * @task: the task to perform the atomic lock work for. This will
1421 * be "current" except in the case of requeue pi.
1422 * @exiting: Pointer to store the task pointer of the owner task
1423 * which is in the middle of exiting
1424 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1425 *
1426 * Return:
1427 * - 0 - ready to wait;
1428 * - 1 - acquired the lock;
1429 * - <0 - error
1430 *
1431 * The hb->lock and futex_key refs shall be held by the caller.
1432 *
1433 * @exiting is only set when the return value is -EBUSY. If so, this holds
1434 * a refcount on the exiting task on return and the caller needs to drop it
1435 * after waiting for the exit to complete.
1436 */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1437 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1438 union futex_key *key,
1439 struct futex_pi_state **ps,
1440 struct task_struct *task,
1441 struct task_struct **exiting,
1442 int set_waiters)
1443 {
1444 u32 uval, newval, vpid = task_pid_vnr(task);
1445 struct futex_q *top_waiter;
1446 int ret;
1447
1448 /*
1449 * Read the user space value first so we can validate a few
1450 * things before proceeding further.
1451 */
1452 if (get_futex_value_locked(&uval, uaddr))
1453 return -EFAULT;
1454
1455 if (unlikely(should_fail_futex(true)))
1456 return -EFAULT;
1457
1458 /*
1459 * Detect deadlocks.
1460 */
1461 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1462 return -EDEADLK;
1463
1464 if ((unlikely(should_fail_futex(true))))
1465 return -EDEADLK;
1466
1467 /*
1468 * Lookup existing state first. If it exists, try to attach to
1469 * its pi_state.
1470 */
1471 top_waiter = futex_top_waiter(hb, key);
1472 if (top_waiter)
1473 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1474
1475 /*
1476 * No waiter and user TID is 0. We are here because the
1477 * waiters or the owner died bit is set or called from
1478 * requeue_cmp_pi or for whatever reason something took the
1479 * syscall.
1480 */
1481 if (!(uval & FUTEX_TID_MASK)) {
1482 /*
1483 * We take over the futex. No other waiters and the user space
1484 * TID is 0. We preserve the owner died bit.
1485 */
1486 newval = uval & FUTEX_OWNER_DIED;
1487 newval |= vpid;
1488
1489 /* The futex requeue_pi code can enforce the waiters bit */
1490 if (set_waiters)
1491 newval |= FUTEX_WAITERS;
1492
1493 ret = lock_pi_update_atomic(uaddr, uval, newval);
1494 /* If the take over worked, return 1 */
1495 return ret < 0 ? ret : 1;
1496 }
1497
1498 /*
1499 * First waiter. Set the waiters bit before attaching ourself to
1500 * the owner. If owner tries to unlock, it will be forced into
1501 * the kernel and blocked on hb->lock.
1502 */
1503 newval = uval | FUTEX_WAITERS;
1504 ret = lock_pi_update_atomic(uaddr, uval, newval);
1505 if (ret)
1506 return ret;
1507 /*
1508 * If the update of the user space value succeeded, we try to
1509 * attach to the owner. If that fails, no harm done, we only
1510 * set the FUTEX_WAITERS bit in the user space variable.
1511 */
1512 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1513 }
1514
1515 /**
1516 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1517 * @q: The futex_q to unqueue
1518 *
1519 * The q->lock_ptr must not be NULL and must be held by the caller.
1520 */
__unqueue_futex(struct futex_q * q)1521 static void __unqueue_futex(struct futex_q *q)
1522 {
1523 struct futex_hash_bucket *hb;
1524
1525 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1526 || WARN_ON(plist_node_empty(&q->list)))
1527 return;
1528
1529 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1530 plist_del(&q->list, &hb->chain);
1531 hb_waiters_dec(hb);
1532 }
1533
1534 /*
1535 * The hash bucket lock must be held when this is called.
1536 * Afterwards, the futex_q must not be accessed. Callers
1537 * must ensure to later call wake_up_q() for the actual
1538 * wakeups to occur.
1539 */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1540 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1541 {
1542 struct task_struct *p = q->task;
1543
1544 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1545 return;
1546
1547 get_task_struct(p);
1548 __unqueue_futex(q);
1549 /*
1550 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1551 * is written, without taking any locks. This is possible in the event
1552 * of a spurious wakeup, for example. A memory barrier is required here
1553 * to prevent the following store to lock_ptr from getting ahead of the
1554 * plist_del in __unqueue_futex().
1555 */
1556 smp_store_release(&q->lock_ptr, NULL);
1557
1558 /*
1559 * Queue the task for later wakeup for after we've released
1560 * the hb->lock. wake_q_add() grabs reference to p.
1561 */
1562 wake_q_add(wake_q, p);
1563 put_task_struct(p);
1564 }
1565
1566 /*
1567 * Caller must hold a reference on @pi_state.
1568 */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1569 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1570 {
1571 u32 uninitialized_var(curval), newval;
1572 struct task_struct *new_owner;
1573 bool postunlock = false;
1574 DEFINE_WAKE_Q(wake_q);
1575 int ret = 0;
1576
1577 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1578 if (WARN_ON_ONCE(!new_owner)) {
1579 /*
1580 * As per the comment in futex_unlock_pi() this should not happen.
1581 *
1582 * When this happens, give up our locks and try again, giving
1583 * the futex_lock_pi() instance time to complete, either by
1584 * waiting on the rtmutex or removing itself from the futex
1585 * queue.
1586 */
1587 ret = -EAGAIN;
1588 goto out_unlock;
1589 }
1590
1591 /*
1592 * We pass it to the next owner. The WAITERS bit is always kept
1593 * enabled while there is PI state around. We cleanup the owner
1594 * died bit, because we are the owner.
1595 */
1596 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1597
1598 if (unlikely(should_fail_futex(true)))
1599 ret = -EFAULT;
1600
1601 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1602 if (!ret && (curval != uval)) {
1603 /*
1604 * If a unconditional UNLOCK_PI operation (user space did not
1605 * try the TID->0 transition) raced with a waiter setting the
1606 * FUTEX_WAITERS flag between get_user() and locking the hash
1607 * bucket lock, retry the operation.
1608 */
1609 if ((FUTEX_TID_MASK & curval) == uval)
1610 ret = -EAGAIN;
1611 else
1612 ret = -EINVAL;
1613 }
1614
1615 if (ret)
1616 goto out_unlock;
1617
1618 /*
1619 * This is a point of no return; once we modify the uval there is no
1620 * going back and subsequent operations must not fail.
1621 */
1622
1623 raw_spin_lock(&pi_state->owner->pi_lock);
1624 WARN_ON(list_empty(&pi_state->list));
1625 list_del_init(&pi_state->list);
1626 raw_spin_unlock(&pi_state->owner->pi_lock);
1627
1628 raw_spin_lock(&new_owner->pi_lock);
1629 WARN_ON(!list_empty(&pi_state->list));
1630 list_add(&pi_state->list, &new_owner->pi_state_list);
1631 pi_state->owner = new_owner;
1632 raw_spin_unlock(&new_owner->pi_lock);
1633
1634 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1635
1636 out_unlock:
1637 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1638
1639 if (postunlock)
1640 rt_mutex_postunlock(&wake_q);
1641
1642 return ret;
1643 }
1644
1645 /*
1646 * Express the locking dependencies for lockdep:
1647 */
1648 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1649 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1650 {
1651 if (hb1 <= hb2) {
1652 spin_lock(&hb1->lock);
1653 if (hb1 < hb2)
1654 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1655 } else { /* hb1 > hb2 */
1656 spin_lock(&hb2->lock);
1657 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1658 }
1659 }
1660
1661 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1662 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1663 {
1664 spin_unlock(&hb1->lock);
1665 if (hb1 != hb2)
1666 spin_unlock(&hb2->lock);
1667 }
1668
1669 /*
1670 * Wake up waiters matching bitset queued on this futex (uaddr).
1671 */
1672 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1673 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1674 {
1675 struct futex_hash_bucket *hb;
1676 struct futex_q *this, *next;
1677 union futex_key key = FUTEX_KEY_INIT;
1678 int ret;
1679 DEFINE_WAKE_Q(wake_q);
1680
1681 if (!bitset)
1682 return -EINVAL;
1683
1684 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1685 if (unlikely(ret != 0))
1686 goto out;
1687
1688 hb = hash_futex(&key);
1689
1690 /* Make sure we really have tasks to wakeup */
1691 if (!hb_waiters_pending(hb))
1692 goto out_put_key;
1693
1694 spin_lock(&hb->lock);
1695
1696 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1697 if (match_futex (&this->key, &key)) {
1698 if (this->pi_state || this->rt_waiter) {
1699 ret = -EINVAL;
1700 break;
1701 }
1702
1703 /* Check if one of the bits is set in both bitsets */
1704 if (!(this->bitset & bitset))
1705 continue;
1706
1707 mark_wake_futex(&wake_q, this);
1708 if (++ret >= nr_wake)
1709 break;
1710 }
1711 }
1712
1713 spin_unlock(&hb->lock);
1714 wake_up_q(&wake_q);
1715 out_put_key:
1716 put_futex_key(&key);
1717 out:
1718 return ret;
1719 }
1720
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1721 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1722 {
1723 unsigned int op = (encoded_op & 0x70000000) >> 28;
1724 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1725 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1726 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1727 int oldval, ret;
1728
1729 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1730 if (oparg < 0 || oparg > 31) {
1731 char comm[sizeof(current->comm)];
1732 /*
1733 * kill this print and return -EINVAL when userspace
1734 * is sane again
1735 */
1736 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1737 get_task_comm(comm, current), oparg);
1738 oparg &= 31;
1739 }
1740 oparg = 1 << oparg;
1741 }
1742
1743 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1744 return -EFAULT;
1745
1746 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1747 if (ret)
1748 return ret;
1749
1750 switch (cmp) {
1751 case FUTEX_OP_CMP_EQ:
1752 return oldval == cmparg;
1753 case FUTEX_OP_CMP_NE:
1754 return oldval != cmparg;
1755 case FUTEX_OP_CMP_LT:
1756 return oldval < cmparg;
1757 case FUTEX_OP_CMP_GE:
1758 return oldval >= cmparg;
1759 case FUTEX_OP_CMP_LE:
1760 return oldval <= cmparg;
1761 case FUTEX_OP_CMP_GT:
1762 return oldval > cmparg;
1763 default:
1764 return -ENOSYS;
1765 }
1766 }
1767
1768 /*
1769 * Wake up all waiters hashed on the physical page that is mapped
1770 * to this virtual address:
1771 */
1772 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1773 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1774 int nr_wake, int nr_wake2, int op)
1775 {
1776 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1777 struct futex_hash_bucket *hb1, *hb2;
1778 struct futex_q *this, *next;
1779 int ret, op_ret;
1780 DEFINE_WAKE_Q(wake_q);
1781
1782 retry:
1783 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1784 if (unlikely(ret != 0))
1785 goto out;
1786 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1787 if (unlikely(ret != 0))
1788 goto out_put_key1;
1789
1790 hb1 = hash_futex(&key1);
1791 hb2 = hash_futex(&key2);
1792
1793 retry_private:
1794 double_lock_hb(hb1, hb2);
1795 op_ret = futex_atomic_op_inuser(op, uaddr2);
1796 if (unlikely(op_ret < 0)) {
1797 double_unlock_hb(hb1, hb2);
1798
1799 if (!IS_ENABLED(CONFIG_MMU) ||
1800 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1801 /*
1802 * we don't get EFAULT from MMU faults if we don't have
1803 * an MMU, but we might get them from range checking
1804 */
1805 ret = op_ret;
1806 goto out_put_keys;
1807 }
1808
1809 if (op_ret == -EFAULT) {
1810 ret = fault_in_user_writeable(uaddr2);
1811 if (ret)
1812 goto out_put_keys;
1813 }
1814
1815 if (!(flags & FLAGS_SHARED)) {
1816 cond_resched();
1817 goto retry_private;
1818 }
1819
1820 put_futex_key(&key2);
1821 put_futex_key(&key1);
1822 cond_resched();
1823 goto retry;
1824 }
1825
1826 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1827 if (match_futex (&this->key, &key1)) {
1828 if (this->pi_state || this->rt_waiter) {
1829 ret = -EINVAL;
1830 goto out_unlock;
1831 }
1832 mark_wake_futex(&wake_q, this);
1833 if (++ret >= nr_wake)
1834 break;
1835 }
1836 }
1837
1838 if (op_ret > 0) {
1839 op_ret = 0;
1840 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1841 if (match_futex (&this->key, &key2)) {
1842 if (this->pi_state || this->rt_waiter) {
1843 ret = -EINVAL;
1844 goto out_unlock;
1845 }
1846 mark_wake_futex(&wake_q, this);
1847 if (++op_ret >= nr_wake2)
1848 break;
1849 }
1850 }
1851 ret += op_ret;
1852 }
1853
1854 out_unlock:
1855 double_unlock_hb(hb1, hb2);
1856 wake_up_q(&wake_q);
1857 out_put_keys:
1858 put_futex_key(&key2);
1859 out_put_key1:
1860 put_futex_key(&key1);
1861 out:
1862 return ret;
1863 }
1864
1865 /**
1866 * requeue_futex() - Requeue a futex_q from one hb to another
1867 * @q: the futex_q to requeue
1868 * @hb1: the source hash_bucket
1869 * @hb2: the target hash_bucket
1870 * @key2: the new key for the requeued futex_q
1871 */
1872 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1873 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1874 struct futex_hash_bucket *hb2, union futex_key *key2)
1875 {
1876
1877 /*
1878 * If key1 and key2 hash to the same bucket, no need to
1879 * requeue.
1880 */
1881 if (likely(&hb1->chain != &hb2->chain)) {
1882 plist_del(&q->list, &hb1->chain);
1883 hb_waiters_dec(hb1);
1884 hb_waiters_inc(hb2);
1885 plist_add(&q->list, &hb2->chain);
1886 q->lock_ptr = &hb2->lock;
1887 }
1888 get_futex_key_refs(key2);
1889 q->key = *key2;
1890 }
1891
1892 /**
1893 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1894 * @q: the futex_q
1895 * @key: the key of the requeue target futex
1896 * @hb: the hash_bucket of the requeue target futex
1897 *
1898 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1899 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1900 * to the requeue target futex so the waiter can detect the wakeup on the right
1901 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1902 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1903 * to protect access to the pi_state to fixup the owner later. Must be called
1904 * with both q->lock_ptr and hb->lock held.
1905 */
1906 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1907 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1908 struct futex_hash_bucket *hb)
1909 {
1910 get_futex_key_refs(key);
1911 q->key = *key;
1912
1913 __unqueue_futex(q);
1914
1915 WARN_ON(!q->rt_waiter);
1916 q->rt_waiter = NULL;
1917
1918 q->lock_ptr = &hb->lock;
1919
1920 wake_up_state(q->task, TASK_NORMAL);
1921 }
1922
1923 /**
1924 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1925 * @pifutex: the user address of the to futex
1926 * @hb1: the from futex hash bucket, must be locked by the caller
1927 * @hb2: the to futex hash bucket, must be locked by the caller
1928 * @key1: the from futex key
1929 * @key2: the to futex key
1930 * @ps: address to store the pi_state pointer
1931 * @exiting: Pointer to store the task pointer of the owner task
1932 * which is in the middle of exiting
1933 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1934 *
1935 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1936 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1937 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1938 * hb1 and hb2 must be held by the caller.
1939 *
1940 * @exiting is only set when the return value is -EBUSY. If so, this holds
1941 * a refcount on the exiting task on return and the caller needs to drop it
1942 * after waiting for the exit to complete.
1943 *
1944 * Return:
1945 * - 0 - failed to acquire the lock atomically;
1946 * - >0 - acquired the lock, return value is vpid of the top_waiter
1947 * - <0 - error
1948 */
1949 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1950 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1951 struct futex_hash_bucket *hb2, union futex_key *key1,
1952 union futex_key *key2, struct futex_pi_state **ps,
1953 struct task_struct **exiting, int set_waiters)
1954 {
1955 struct futex_q *top_waiter = NULL;
1956 u32 curval;
1957 int ret, vpid;
1958
1959 if (get_futex_value_locked(&curval, pifutex))
1960 return -EFAULT;
1961
1962 if (unlikely(should_fail_futex(true)))
1963 return -EFAULT;
1964
1965 /*
1966 * Find the top_waiter and determine if there are additional waiters.
1967 * If the caller intends to requeue more than 1 waiter to pifutex,
1968 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1969 * as we have means to handle the possible fault. If not, don't set
1970 * the bit unecessarily as it will force the subsequent unlock to enter
1971 * the kernel.
1972 */
1973 top_waiter = futex_top_waiter(hb1, key1);
1974
1975 /* There are no waiters, nothing for us to do. */
1976 if (!top_waiter)
1977 return 0;
1978
1979 /* Ensure we requeue to the expected futex. */
1980 if (!match_futex(top_waiter->requeue_pi_key, key2))
1981 return -EINVAL;
1982
1983 /*
1984 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1985 * the contended case or if set_waiters is 1. The pi_state is returned
1986 * in ps in contended cases.
1987 */
1988 vpid = task_pid_vnr(top_waiter->task);
1989 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1990 exiting, set_waiters);
1991 if (ret == 1) {
1992 requeue_pi_wake_futex(top_waiter, key2, hb2);
1993 return vpid;
1994 }
1995 return ret;
1996 }
1997
1998 /**
1999 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2000 * @uaddr1: source futex user address
2001 * @flags: futex flags (FLAGS_SHARED, etc.)
2002 * @uaddr2: target futex user address
2003 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
2004 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2005 * @cmpval: @uaddr1 expected value (or %NULL)
2006 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2007 * pi futex (pi to pi requeue is not supported)
2008 *
2009 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2010 * uaddr2 atomically on behalf of the top waiter.
2011 *
2012 * Return:
2013 * - >=0 - on success, the number of tasks requeued or woken;
2014 * - <0 - on error
2015 */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)2016 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2017 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2018 u32 *cmpval, int requeue_pi)
2019 {
2020 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2021 int drop_count = 0, task_count = 0, ret;
2022 struct futex_pi_state *pi_state = NULL;
2023 struct futex_hash_bucket *hb1, *hb2;
2024 struct futex_q *this, *next;
2025 DEFINE_WAKE_Q(wake_q);
2026
2027 if (nr_wake < 0 || nr_requeue < 0)
2028 return -EINVAL;
2029
2030 /*
2031 * When PI not supported: return -ENOSYS if requeue_pi is true,
2032 * consequently the compiler knows requeue_pi is always false past
2033 * this point which will optimize away all the conditional code
2034 * further down.
2035 */
2036 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2037 return -ENOSYS;
2038
2039 if (requeue_pi) {
2040 /*
2041 * Requeue PI only works on two distinct uaddrs. This
2042 * check is only valid for private futexes. See below.
2043 */
2044 if (uaddr1 == uaddr2)
2045 return -EINVAL;
2046
2047 /*
2048 * requeue_pi requires a pi_state, try to allocate it now
2049 * without any locks in case it fails.
2050 */
2051 if (refill_pi_state_cache())
2052 return -ENOMEM;
2053 /*
2054 * requeue_pi must wake as many tasks as it can, up to nr_wake
2055 * + nr_requeue, since it acquires the rt_mutex prior to
2056 * returning to userspace, so as to not leave the rt_mutex with
2057 * waiters and no owner. However, second and third wake-ups
2058 * cannot be predicted as they involve race conditions with the
2059 * first wake and a fault while looking up the pi_state. Both
2060 * pthread_cond_signal() and pthread_cond_broadcast() should
2061 * use nr_wake=1.
2062 */
2063 if (nr_wake != 1)
2064 return -EINVAL;
2065 }
2066
2067 retry:
2068 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2069 if (unlikely(ret != 0))
2070 goto out;
2071 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2072 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2073 if (unlikely(ret != 0))
2074 goto out_put_key1;
2075
2076 /*
2077 * The check above which compares uaddrs is not sufficient for
2078 * shared futexes. We need to compare the keys:
2079 */
2080 if (requeue_pi && match_futex(&key1, &key2)) {
2081 ret = -EINVAL;
2082 goto out_put_keys;
2083 }
2084
2085 hb1 = hash_futex(&key1);
2086 hb2 = hash_futex(&key2);
2087
2088 retry_private:
2089 hb_waiters_inc(hb2);
2090 double_lock_hb(hb1, hb2);
2091
2092 if (likely(cmpval != NULL)) {
2093 u32 curval;
2094
2095 ret = get_futex_value_locked(&curval, uaddr1);
2096
2097 if (unlikely(ret)) {
2098 double_unlock_hb(hb1, hb2);
2099 hb_waiters_dec(hb2);
2100
2101 ret = get_user(curval, uaddr1);
2102 if (ret)
2103 goto out_put_keys;
2104
2105 if (!(flags & FLAGS_SHARED))
2106 goto retry_private;
2107
2108 put_futex_key(&key2);
2109 put_futex_key(&key1);
2110 goto retry;
2111 }
2112 if (curval != *cmpval) {
2113 ret = -EAGAIN;
2114 goto out_unlock;
2115 }
2116 }
2117
2118 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2119 struct task_struct *exiting = NULL;
2120
2121 /*
2122 * Attempt to acquire uaddr2 and wake the top waiter. If we
2123 * intend to requeue waiters, force setting the FUTEX_WAITERS
2124 * bit. We force this here where we are able to easily handle
2125 * faults rather in the requeue loop below.
2126 */
2127 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2128 &key2, &pi_state,
2129 &exiting, nr_requeue);
2130
2131 /*
2132 * At this point the top_waiter has either taken uaddr2 or is
2133 * waiting on it. If the former, then the pi_state will not
2134 * exist yet, look it up one more time to ensure we have a
2135 * reference to it. If the lock was taken, ret contains the
2136 * vpid of the top waiter task.
2137 * If the lock was not taken, we have pi_state and an initial
2138 * refcount on it. In case of an error we have nothing.
2139 */
2140 if (ret > 0) {
2141 WARN_ON(pi_state);
2142 drop_count++;
2143 task_count++;
2144 /*
2145 * If we acquired the lock, then the user space value
2146 * of uaddr2 should be vpid. It cannot be changed by
2147 * the top waiter as it is blocked on hb2 lock if it
2148 * tries to do so. If something fiddled with it behind
2149 * our back the pi state lookup might unearth it. So
2150 * we rather use the known value than rereading and
2151 * handing potential crap to lookup_pi_state.
2152 *
2153 * If that call succeeds then we have pi_state and an
2154 * initial refcount on it.
2155 */
2156 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2157 &pi_state, &exiting);
2158 }
2159
2160 switch (ret) {
2161 case 0:
2162 /* We hold a reference on the pi state. */
2163 break;
2164
2165 /* If the above failed, then pi_state is NULL */
2166 case -EFAULT:
2167 double_unlock_hb(hb1, hb2);
2168 hb_waiters_dec(hb2);
2169 put_futex_key(&key2);
2170 put_futex_key(&key1);
2171 ret = fault_in_user_writeable(uaddr2);
2172 if (!ret)
2173 goto retry;
2174 goto out;
2175 case -EBUSY:
2176 case -EAGAIN:
2177 /*
2178 * Two reasons for this:
2179 * - EBUSY: Owner is exiting and we just wait for the
2180 * exit to complete.
2181 * - EAGAIN: The user space value changed.
2182 */
2183 double_unlock_hb(hb1, hb2);
2184 hb_waiters_dec(hb2);
2185 put_futex_key(&key2);
2186 put_futex_key(&key1);
2187 /*
2188 * Handle the case where the owner is in the middle of
2189 * exiting. Wait for the exit to complete otherwise
2190 * this task might loop forever, aka. live lock.
2191 */
2192 wait_for_owner_exiting(ret, exiting);
2193 cond_resched();
2194 goto retry;
2195 default:
2196 goto out_unlock;
2197 }
2198 }
2199
2200 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2201 if (task_count - nr_wake >= nr_requeue)
2202 break;
2203
2204 if (!match_futex(&this->key, &key1))
2205 continue;
2206
2207 /*
2208 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2209 * be paired with each other and no other futex ops.
2210 *
2211 * We should never be requeueing a futex_q with a pi_state,
2212 * which is awaiting a futex_unlock_pi().
2213 */
2214 if ((requeue_pi && !this->rt_waiter) ||
2215 (!requeue_pi && this->rt_waiter) ||
2216 this->pi_state) {
2217 ret = -EINVAL;
2218 break;
2219 }
2220
2221 /*
2222 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2223 * lock, we already woke the top_waiter. If not, it will be
2224 * woken by futex_unlock_pi().
2225 */
2226 if (++task_count <= nr_wake && !requeue_pi) {
2227 mark_wake_futex(&wake_q, this);
2228 continue;
2229 }
2230
2231 /* Ensure we requeue to the expected futex for requeue_pi. */
2232 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2233 ret = -EINVAL;
2234 break;
2235 }
2236
2237 /*
2238 * Requeue nr_requeue waiters and possibly one more in the case
2239 * of requeue_pi if we couldn't acquire the lock atomically.
2240 */
2241 if (requeue_pi) {
2242 /*
2243 * Prepare the waiter to take the rt_mutex. Take a
2244 * refcount on the pi_state and store the pointer in
2245 * the futex_q object of the waiter.
2246 */
2247 get_pi_state(pi_state);
2248 this->pi_state = pi_state;
2249 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2250 this->rt_waiter,
2251 this->task);
2252 if (ret == 1) {
2253 /*
2254 * We got the lock. We do neither drop the
2255 * refcount on pi_state nor clear
2256 * this->pi_state because the waiter needs the
2257 * pi_state for cleaning up the user space
2258 * value. It will drop the refcount after
2259 * doing so.
2260 */
2261 requeue_pi_wake_futex(this, &key2, hb2);
2262 drop_count++;
2263 continue;
2264 } else if (ret) {
2265 /*
2266 * rt_mutex_start_proxy_lock() detected a
2267 * potential deadlock when we tried to queue
2268 * that waiter. Drop the pi_state reference
2269 * which we took above and remove the pointer
2270 * to the state from the waiters futex_q
2271 * object.
2272 */
2273 this->pi_state = NULL;
2274 put_pi_state(pi_state);
2275 /*
2276 * We stop queueing more waiters and let user
2277 * space deal with the mess.
2278 */
2279 break;
2280 }
2281 }
2282 requeue_futex(this, hb1, hb2, &key2);
2283 drop_count++;
2284 }
2285
2286 /*
2287 * We took an extra initial reference to the pi_state either
2288 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2289 * need to drop it here again.
2290 */
2291 put_pi_state(pi_state);
2292
2293 out_unlock:
2294 double_unlock_hb(hb1, hb2);
2295 wake_up_q(&wake_q);
2296 hb_waiters_dec(hb2);
2297
2298 /*
2299 * drop_futex_key_refs() must be called outside the spinlocks. During
2300 * the requeue we moved futex_q's from the hash bucket at key1 to the
2301 * one at key2 and updated their key pointer. We no longer need to
2302 * hold the references to key1.
2303 */
2304 while (--drop_count >= 0)
2305 drop_futex_key_refs(&key1);
2306
2307 out_put_keys:
2308 put_futex_key(&key2);
2309 out_put_key1:
2310 put_futex_key(&key1);
2311 out:
2312 return ret ? ret : task_count;
2313 }
2314
2315 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2316 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2317 __acquires(&hb->lock)
2318 {
2319 struct futex_hash_bucket *hb;
2320
2321 hb = hash_futex(&q->key);
2322
2323 /*
2324 * Increment the counter before taking the lock so that
2325 * a potential waker won't miss a to-be-slept task that is
2326 * waiting for the spinlock. This is safe as all queue_lock()
2327 * users end up calling queue_me(). Similarly, for housekeeping,
2328 * decrement the counter at queue_unlock() when some error has
2329 * occurred and we don't end up adding the task to the list.
2330 */
2331 hb_waiters_inc(hb);
2332
2333 q->lock_ptr = &hb->lock;
2334
2335 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2336 return hb;
2337 }
2338
2339 static inline void
queue_unlock(struct futex_hash_bucket * hb)2340 queue_unlock(struct futex_hash_bucket *hb)
2341 __releases(&hb->lock)
2342 {
2343 spin_unlock(&hb->lock);
2344 hb_waiters_dec(hb);
2345 }
2346
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2347 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2348 {
2349 int prio;
2350
2351 /*
2352 * The priority used to register this element is
2353 * - either the real thread-priority for the real-time threads
2354 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2355 * - or MAX_RT_PRIO for non-RT threads.
2356 * Thus, all RT-threads are woken first in priority order, and
2357 * the others are woken last, in FIFO order.
2358 */
2359 prio = min(current->normal_prio, MAX_RT_PRIO);
2360
2361 plist_node_init(&q->list, prio);
2362 plist_add(&q->list, &hb->chain);
2363 q->task = current;
2364 }
2365
2366 /**
2367 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2368 * @q: The futex_q to enqueue
2369 * @hb: The destination hash bucket
2370 *
2371 * The hb->lock must be held by the caller, and is released here. A call to
2372 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2373 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2374 * or nothing if the unqueue is done as part of the wake process and the unqueue
2375 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2376 * an example).
2377 */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2378 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2379 __releases(&hb->lock)
2380 {
2381 __queue_me(q, hb);
2382 spin_unlock(&hb->lock);
2383 }
2384
2385 /**
2386 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2387 * @q: The futex_q to unqueue
2388 *
2389 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2390 * be paired with exactly one earlier call to queue_me().
2391 *
2392 * Return:
2393 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2394 * - 0 - if the futex_q was already removed by the waking thread
2395 */
unqueue_me(struct futex_q * q)2396 static int unqueue_me(struct futex_q *q)
2397 {
2398 spinlock_t *lock_ptr;
2399 int ret = 0;
2400
2401 /* In the common case we don't take the spinlock, which is nice. */
2402 retry:
2403 /*
2404 * q->lock_ptr can change between this read and the following spin_lock.
2405 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2406 * optimizing lock_ptr out of the logic below.
2407 */
2408 lock_ptr = READ_ONCE(q->lock_ptr);
2409 if (lock_ptr != NULL) {
2410 spin_lock(lock_ptr);
2411 /*
2412 * q->lock_ptr can change between reading it and
2413 * spin_lock(), causing us to take the wrong lock. This
2414 * corrects the race condition.
2415 *
2416 * Reasoning goes like this: if we have the wrong lock,
2417 * q->lock_ptr must have changed (maybe several times)
2418 * between reading it and the spin_lock(). It can
2419 * change again after the spin_lock() but only if it was
2420 * already changed before the spin_lock(). It cannot,
2421 * however, change back to the original value. Therefore
2422 * we can detect whether we acquired the correct lock.
2423 */
2424 if (unlikely(lock_ptr != q->lock_ptr)) {
2425 spin_unlock(lock_ptr);
2426 goto retry;
2427 }
2428 __unqueue_futex(q);
2429
2430 BUG_ON(q->pi_state);
2431
2432 spin_unlock(lock_ptr);
2433 ret = 1;
2434 }
2435
2436 drop_futex_key_refs(&q->key);
2437 return ret;
2438 }
2439
2440 /*
2441 * PI futexes can not be requeued and must remove themself from the
2442 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2443 * and dropped here.
2444 */
unqueue_me_pi(struct futex_q * q)2445 static void unqueue_me_pi(struct futex_q *q)
2446 __releases(q->lock_ptr)
2447 {
2448 __unqueue_futex(q);
2449
2450 BUG_ON(!q->pi_state);
2451 put_pi_state(q->pi_state);
2452 q->pi_state = NULL;
2453
2454 spin_unlock(q->lock_ptr);
2455 }
2456
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2457 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2458 struct task_struct *argowner)
2459 {
2460 struct futex_pi_state *pi_state = q->pi_state;
2461 u32 uval, uninitialized_var(curval), newval;
2462 struct task_struct *oldowner, *newowner;
2463 u32 newtid;
2464 int ret, err = 0;
2465
2466 lockdep_assert_held(q->lock_ptr);
2467
2468 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470 oldowner = pi_state->owner;
2471
2472 /*
2473 * We are here because either:
2474 *
2475 * - we stole the lock and pi_state->owner needs updating to reflect
2476 * that (@argowner == current),
2477 *
2478 * or:
2479 *
2480 * - someone stole our lock and we need to fix things to point to the
2481 * new owner (@argowner == NULL).
2482 *
2483 * Either way, we have to replace the TID in the user space variable.
2484 * This must be atomic as we have to preserve the owner died bit here.
2485 *
2486 * Note: We write the user space value _before_ changing the pi_state
2487 * because we can fault here. Imagine swapped out pages or a fork
2488 * that marked all the anonymous memory readonly for cow.
2489 *
2490 * Modifying pi_state _before_ the user space value would leave the
2491 * pi_state in an inconsistent state when we fault here, because we
2492 * need to drop the locks to handle the fault. This might be observed
2493 * in the PID check in lookup_pi_state.
2494 */
2495 retry:
2496 if (!argowner) {
2497 if (oldowner != current) {
2498 /*
2499 * We raced against a concurrent self; things are
2500 * already fixed up. Nothing to do.
2501 */
2502 ret = 0;
2503 goto out_unlock;
2504 }
2505
2506 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2507 /* We got the lock after all, nothing to fix. */
2508 ret = 0;
2509 goto out_unlock;
2510 }
2511
2512 /*
2513 * Since we just failed the trylock; there must be an owner.
2514 */
2515 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2516 BUG_ON(!newowner);
2517 } else {
2518 WARN_ON_ONCE(argowner != current);
2519 if (oldowner == current) {
2520 /*
2521 * We raced against a concurrent self; things are
2522 * already fixed up. Nothing to do.
2523 */
2524 ret = 0;
2525 goto out_unlock;
2526 }
2527 newowner = argowner;
2528 }
2529
2530 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2531 /* Owner died? */
2532 if (!pi_state->owner)
2533 newtid |= FUTEX_OWNER_DIED;
2534
2535 err = get_futex_value_locked(&uval, uaddr);
2536 if (err)
2537 goto handle_err;
2538
2539 for (;;) {
2540 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2541
2542 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2543 if (err)
2544 goto handle_err;
2545
2546 if (curval == uval)
2547 break;
2548 uval = curval;
2549 }
2550
2551 /*
2552 * We fixed up user space. Now we need to fix the pi_state
2553 * itself.
2554 */
2555 if (pi_state->owner != NULL) {
2556 raw_spin_lock(&pi_state->owner->pi_lock);
2557 WARN_ON(list_empty(&pi_state->list));
2558 list_del_init(&pi_state->list);
2559 raw_spin_unlock(&pi_state->owner->pi_lock);
2560 }
2561
2562 pi_state->owner = newowner;
2563
2564 raw_spin_lock(&newowner->pi_lock);
2565 WARN_ON(!list_empty(&pi_state->list));
2566 list_add(&pi_state->list, &newowner->pi_state_list);
2567 raw_spin_unlock(&newowner->pi_lock);
2568 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2569
2570 return 0;
2571
2572 /*
2573 * In order to reschedule or handle a page fault, we need to drop the
2574 * locks here. In the case of a fault, this gives the other task
2575 * (either the highest priority waiter itself or the task which stole
2576 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2577 * are back from handling the fault we need to check the pi_state after
2578 * reacquiring the locks and before trying to do another fixup. When
2579 * the fixup has been done already we simply return.
2580 *
2581 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2582 * drop hb->lock since the caller owns the hb -> futex_q relation.
2583 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2584 */
2585 handle_err:
2586 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2587 spin_unlock(q->lock_ptr);
2588
2589 switch (err) {
2590 case -EFAULT:
2591 ret = fault_in_user_writeable(uaddr);
2592 break;
2593
2594 case -EAGAIN:
2595 cond_resched();
2596 ret = 0;
2597 break;
2598
2599 default:
2600 WARN_ON_ONCE(1);
2601 ret = err;
2602 break;
2603 }
2604
2605 spin_lock(q->lock_ptr);
2606 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2607
2608 /*
2609 * Check if someone else fixed it for us:
2610 */
2611 if (pi_state->owner != oldowner) {
2612 ret = 0;
2613 goto out_unlock;
2614 }
2615
2616 if (ret)
2617 goto out_unlock;
2618
2619 goto retry;
2620
2621 out_unlock:
2622 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2623 return ret;
2624 }
2625
2626 static long futex_wait_restart(struct restart_block *restart);
2627
2628 /**
2629 * fixup_owner() - Post lock pi_state and corner case management
2630 * @uaddr: user address of the futex
2631 * @q: futex_q (contains pi_state and access to the rt_mutex)
2632 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2633 *
2634 * After attempting to lock an rt_mutex, this function is called to cleanup
2635 * the pi_state owner as well as handle race conditions that may allow us to
2636 * acquire the lock. Must be called with the hb lock held.
2637 *
2638 * Return:
2639 * - 1 - success, lock taken;
2640 * - 0 - success, lock not taken;
2641 * - <0 - on error (-EFAULT)
2642 */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2643 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2644 {
2645 int ret = 0;
2646
2647 if (locked) {
2648 /*
2649 * Got the lock. We might not be the anticipated owner if we
2650 * did a lock-steal - fix up the PI-state in that case:
2651 *
2652 * Speculative pi_state->owner read (we don't hold wait_lock);
2653 * since we own the lock pi_state->owner == current is the
2654 * stable state, anything else needs more attention.
2655 */
2656 if (q->pi_state->owner != current)
2657 ret = fixup_pi_state_owner(uaddr, q, current);
2658 goto out;
2659 }
2660
2661 /*
2662 * If we didn't get the lock; check if anybody stole it from us. In
2663 * that case, we need to fix up the uval to point to them instead of
2664 * us, otherwise bad things happen. [10]
2665 *
2666 * Another speculative read; pi_state->owner == current is unstable
2667 * but needs our attention.
2668 */
2669 if (q->pi_state->owner == current) {
2670 ret = fixup_pi_state_owner(uaddr, q, NULL);
2671 goto out;
2672 }
2673
2674 /*
2675 * Paranoia check. If we did not take the lock, then we should not be
2676 * the owner of the rt_mutex.
2677 */
2678 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2679 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2680 "pi-state %p\n", ret,
2681 q->pi_state->pi_mutex.owner,
2682 q->pi_state->owner);
2683 }
2684
2685 out:
2686 return ret ? ret : locked;
2687 }
2688
2689 /**
2690 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2691 * @hb: the futex hash bucket, must be locked by the caller
2692 * @q: the futex_q to queue up on
2693 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2694 */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2695 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2696 struct hrtimer_sleeper *timeout)
2697 {
2698 /*
2699 * The task state is guaranteed to be set before another task can
2700 * wake it. set_current_state() is implemented using smp_store_mb() and
2701 * queue_me() calls spin_unlock() upon completion, both serializing
2702 * access to the hash list and forcing another memory barrier.
2703 */
2704 set_current_state(TASK_INTERRUPTIBLE);
2705 queue_me(q, hb);
2706
2707 /* Arm the timer */
2708 if (timeout)
2709 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2710
2711 /*
2712 * If we have been removed from the hash list, then another task
2713 * has tried to wake us, and we can skip the call to schedule().
2714 */
2715 if (likely(!plist_node_empty(&q->list))) {
2716 /*
2717 * If the timer has already expired, current will already be
2718 * flagged for rescheduling. Only call schedule if there
2719 * is no timeout, or if it has yet to expire.
2720 */
2721 if (!timeout || timeout->task)
2722 freezable_schedule();
2723 }
2724 __set_current_state(TASK_RUNNING);
2725 }
2726
2727 /**
2728 * futex_wait_setup() - Prepare to wait on a futex
2729 * @uaddr: the futex userspace address
2730 * @val: the expected value
2731 * @flags: futex flags (FLAGS_SHARED, etc.)
2732 * @q: the associated futex_q
2733 * @hb: storage for hash_bucket pointer to be returned to caller
2734 *
2735 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2736 * compare it with the expected value. Handle atomic faults internally.
2737 * Return with the hb lock held and a q.key reference on success, and unlocked
2738 * with no q.key reference on failure.
2739 *
2740 * Return:
2741 * - 0 - uaddr contains val and hb has been locked;
2742 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2743 */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2744 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2745 struct futex_q *q, struct futex_hash_bucket **hb)
2746 {
2747 u32 uval;
2748 int ret;
2749
2750 /*
2751 * Access the page AFTER the hash-bucket is locked.
2752 * Order is important:
2753 *
2754 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2755 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2756 *
2757 * The basic logical guarantee of a futex is that it blocks ONLY
2758 * if cond(var) is known to be true at the time of blocking, for
2759 * any cond. If we locked the hash-bucket after testing *uaddr, that
2760 * would open a race condition where we could block indefinitely with
2761 * cond(var) false, which would violate the guarantee.
2762 *
2763 * On the other hand, we insert q and release the hash-bucket only
2764 * after testing *uaddr. This guarantees that futex_wait() will NOT
2765 * absorb a wakeup if *uaddr does not match the desired values
2766 * while the syscall executes.
2767 */
2768 retry:
2769 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2770 if (unlikely(ret != 0))
2771 return ret;
2772
2773 retry_private:
2774 *hb = queue_lock(q);
2775
2776 ret = get_futex_value_locked(&uval, uaddr);
2777
2778 if (ret) {
2779 queue_unlock(*hb);
2780
2781 ret = get_user(uval, uaddr);
2782 if (ret)
2783 goto out;
2784
2785 if (!(flags & FLAGS_SHARED))
2786 goto retry_private;
2787
2788 put_futex_key(&q->key);
2789 goto retry;
2790 }
2791
2792 if (uval != val) {
2793 queue_unlock(*hb);
2794 ret = -EWOULDBLOCK;
2795 }
2796
2797 out:
2798 if (ret)
2799 put_futex_key(&q->key);
2800 return ret;
2801 }
2802
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2803 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2804 ktime_t *abs_time, u32 bitset)
2805 {
2806 struct hrtimer_sleeper timeout, *to = NULL;
2807 struct restart_block *restart;
2808 struct futex_hash_bucket *hb;
2809 struct futex_q q = futex_q_init;
2810 int ret;
2811
2812 if (!bitset)
2813 return -EINVAL;
2814 q.bitset = bitset;
2815
2816 if (abs_time) {
2817 to = &timeout;
2818
2819 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2820 CLOCK_REALTIME : CLOCK_MONOTONIC,
2821 HRTIMER_MODE_ABS);
2822 hrtimer_init_sleeper(to, current);
2823 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2824 current->timer_slack_ns);
2825 }
2826
2827 retry:
2828 /*
2829 * Prepare to wait on uaddr. On success, holds hb lock and increments
2830 * q.key refs.
2831 */
2832 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2833 if (ret)
2834 goto out;
2835
2836 /* queue_me and wait for wakeup, timeout, or a signal. */
2837 futex_wait_queue_me(hb, &q, to);
2838
2839 /* If we were woken (and unqueued), we succeeded, whatever. */
2840 ret = 0;
2841 /* unqueue_me() drops q.key ref */
2842 if (!unqueue_me(&q))
2843 goto out;
2844 ret = -ETIMEDOUT;
2845 if (to && !to->task)
2846 goto out;
2847
2848 /*
2849 * We expect signal_pending(current), but we might be the
2850 * victim of a spurious wakeup as well.
2851 */
2852 if (!signal_pending(current))
2853 goto retry;
2854
2855 ret = -ERESTARTSYS;
2856 if (!abs_time)
2857 goto out;
2858
2859 restart = ¤t->restart_block;
2860 restart->fn = futex_wait_restart;
2861 restart->futex.uaddr = uaddr;
2862 restart->futex.val = val;
2863 restart->futex.time = *abs_time;
2864 restart->futex.bitset = bitset;
2865 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2866
2867 ret = -ERESTART_RESTARTBLOCK;
2868
2869 out:
2870 if (to) {
2871 hrtimer_cancel(&to->timer);
2872 destroy_hrtimer_on_stack(&to->timer);
2873 }
2874 return ret;
2875 }
2876
2877
futex_wait_restart(struct restart_block * restart)2878 static long futex_wait_restart(struct restart_block *restart)
2879 {
2880 u32 __user *uaddr = restart->futex.uaddr;
2881 ktime_t t, *tp = NULL;
2882
2883 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2884 t = restart->futex.time;
2885 tp = &t;
2886 }
2887 restart->fn = do_no_restart_syscall;
2888
2889 return (long)futex_wait(uaddr, restart->futex.flags,
2890 restart->futex.val, tp, restart->futex.bitset);
2891 }
2892
2893
2894 /*
2895 * Userspace tried a 0 -> TID atomic transition of the futex value
2896 * and failed. The kernel side here does the whole locking operation:
2897 * if there are waiters then it will block as a consequence of relying
2898 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2899 * a 0 value of the futex too.).
2900 *
2901 * Also serves as futex trylock_pi()'ing, and due semantics.
2902 */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2903 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2904 ktime_t *time, int trylock)
2905 {
2906 struct hrtimer_sleeper timeout, *to = NULL;
2907 struct futex_pi_state *pi_state = NULL;
2908 struct task_struct *exiting = NULL;
2909 struct rt_mutex_waiter rt_waiter;
2910 struct futex_hash_bucket *hb;
2911 struct futex_q q = futex_q_init;
2912 int res, ret;
2913
2914 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2915 return -ENOSYS;
2916
2917 if (refill_pi_state_cache())
2918 return -ENOMEM;
2919
2920 if (time) {
2921 to = &timeout;
2922 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2923 HRTIMER_MODE_ABS);
2924 hrtimer_init_sleeper(to, current);
2925 hrtimer_set_expires(&to->timer, *time);
2926 }
2927
2928 retry:
2929 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2930 if (unlikely(ret != 0))
2931 goto out;
2932
2933 retry_private:
2934 hb = queue_lock(&q);
2935
2936 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2937 &exiting, 0);
2938 if (unlikely(ret)) {
2939 /*
2940 * Atomic work succeeded and we got the lock,
2941 * or failed. Either way, we do _not_ block.
2942 */
2943 switch (ret) {
2944 case 1:
2945 /* We got the lock. */
2946 ret = 0;
2947 goto out_unlock_put_key;
2948 case -EFAULT:
2949 goto uaddr_faulted;
2950 case -EBUSY:
2951 case -EAGAIN:
2952 /*
2953 * Two reasons for this:
2954 * - EBUSY: Task is exiting and we just wait for the
2955 * exit to complete.
2956 * - EAGAIN: The user space value changed.
2957 */
2958 queue_unlock(hb);
2959 put_futex_key(&q.key);
2960 /*
2961 * Handle the case where the owner is in the middle of
2962 * exiting. Wait for the exit to complete otherwise
2963 * this task might loop forever, aka. live lock.
2964 */
2965 wait_for_owner_exiting(ret, exiting);
2966 cond_resched();
2967 goto retry;
2968 default:
2969 goto out_unlock_put_key;
2970 }
2971 }
2972
2973 WARN_ON(!q.pi_state);
2974
2975 /*
2976 * Only actually queue now that the atomic ops are done:
2977 */
2978 __queue_me(&q, hb);
2979
2980 if (trylock) {
2981 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2982 /* Fixup the trylock return value: */
2983 ret = ret ? 0 : -EWOULDBLOCK;
2984 goto no_block;
2985 }
2986
2987 rt_mutex_init_waiter(&rt_waiter);
2988
2989 /*
2990 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2991 * hold it while doing rt_mutex_start_proxy(), because then it will
2992 * include hb->lock in the blocking chain, even through we'll not in
2993 * fact hold it while blocking. This will lead it to report -EDEADLK
2994 * and BUG when futex_unlock_pi() interleaves with this.
2995 *
2996 * Therefore acquire wait_lock while holding hb->lock, but drop the
2997 * latter before calling __rt_mutex_start_proxy_lock(). This
2998 * interleaves with futex_unlock_pi() -- which does a similar lock
2999 * handoff -- such that the latter can observe the futex_q::pi_state
3000 * before __rt_mutex_start_proxy_lock() is done.
3001 */
3002 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3003 spin_unlock(q.lock_ptr);
3004 /*
3005 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3006 * such that futex_unlock_pi() is guaranteed to observe the waiter when
3007 * it sees the futex_q::pi_state.
3008 */
3009 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3010 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3011
3012 if (ret) {
3013 if (ret == 1)
3014 ret = 0;
3015 goto cleanup;
3016 }
3017
3018 if (unlikely(to))
3019 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
3020
3021 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3022
3023 cleanup:
3024 spin_lock(q.lock_ptr);
3025 /*
3026 * If we failed to acquire the lock (deadlock/signal/timeout), we must
3027 * first acquire the hb->lock before removing the lock from the
3028 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3029 * lists consistent.
3030 *
3031 * In particular; it is important that futex_unlock_pi() can not
3032 * observe this inconsistency.
3033 */
3034 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3035 ret = 0;
3036
3037 no_block:
3038 /*
3039 * Fixup the pi_state owner and possibly acquire the lock if we
3040 * haven't already.
3041 */
3042 res = fixup_owner(uaddr, &q, !ret);
3043 /*
3044 * If fixup_owner() returned an error, proprogate that. If it acquired
3045 * the lock, clear our -ETIMEDOUT or -EINTR.
3046 */
3047 if (res)
3048 ret = (res < 0) ? res : 0;
3049
3050 /*
3051 * If fixup_owner() faulted and was unable to handle the fault, unlock
3052 * it and return the fault to userspace.
3053 */
3054 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3055 pi_state = q.pi_state;
3056 get_pi_state(pi_state);
3057 }
3058
3059 /* Unqueue and drop the lock */
3060 unqueue_me_pi(&q);
3061
3062 if (pi_state) {
3063 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3064 put_pi_state(pi_state);
3065 }
3066
3067 goto out_put_key;
3068
3069 out_unlock_put_key:
3070 queue_unlock(hb);
3071
3072 out_put_key:
3073 put_futex_key(&q.key);
3074 out:
3075 if (to) {
3076 hrtimer_cancel(&to->timer);
3077 destroy_hrtimer_on_stack(&to->timer);
3078 }
3079 return ret != -EINTR ? ret : -ERESTARTNOINTR;
3080
3081 uaddr_faulted:
3082 queue_unlock(hb);
3083
3084 ret = fault_in_user_writeable(uaddr);
3085 if (ret)
3086 goto out_put_key;
3087
3088 if (!(flags & FLAGS_SHARED))
3089 goto retry_private;
3090
3091 put_futex_key(&q.key);
3092 goto retry;
3093 }
3094
3095 /*
3096 * Userspace attempted a TID -> 0 atomic transition, and failed.
3097 * This is the in-kernel slowpath: we look up the PI state (if any),
3098 * and do the rt-mutex unlock.
3099 */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)3100 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3101 {
3102 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3103 union futex_key key = FUTEX_KEY_INIT;
3104 struct futex_hash_bucket *hb;
3105 struct futex_q *top_waiter;
3106 int ret;
3107
3108 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3109 return -ENOSYS;
3110
3111 retry:
3112 if (get_user(uval, uaddr))
3113 return -EFAULT;
3114 /*
3115 * We release only a lock we actually own:
3116 */
3117 if ((uval & FUTEX_TID_MASK) != vpid)
3118 return -EPERM;
3119
3120 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3121 if (ret)
3122 return ret;
3123
3124 hb = hash_futex(&key);
3125 spin_lock(&hb->lock);
3126
3127 /*
3128 * Check waiters first. We do not trust user space values at
3129 * all and we at least want to know if user space fiddled
3130 * with the futex value instead of blindly unlocking.
3131 */
3132 top_waiter = futex_top_waiter(hb, &key);
3133 if (top_waiter) {
3134 struct futex_pi_state *pi_state = top_waiter->pi_state;
3135
3136 ret = -EINVAL;
3137 if (!pi_state)
3138 goto out_unlock;
3139
3140 /*
3141 * If current does not own the pi_state then the futex is
3142 * inconsistent and user space fiddled with the futex value.
3143 */
3144 if (pi_state->owner != current)
3145 goto out_unlock;
3146
3147 get_pi_state(pi_state);
3148 /*
3149 * By taking wait_lock while still holding hb->lock, we ensure
3150 * there is no point where we hold neither; and therefore
3151 * wake_futex_pi() must observe a state consistent with what we
3152 * observed.
3153 *
3154 * In particular; this forces __rt_mutex_start_proxy() to
3155 * complete such that we're guaranteed to observe the
3156 * rt_waiter. Also see the WARN in wake_futex_pi().
3157 */
3158 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3159 spin_unlock(&hb->lock);
3160
3161 /* drops pi_state->pi_mutex.wait_lock */
3162 ret = wake_futex_pi(uaddr, uval, pi_state);
3163
3164 put_pi_state(pi_state);
3165
3166 /*
3167 * Success, we're done! No tricky corner cases.
3168 */
3169 if (!ret)
3170 goto out_putkey;
3171 /*
3172 * The atomic access to the futex value generated a
3173 * pagefault, so retry the user-access and the wakeup:
3174 */
3175 if (ret == -EFAULT)
3176 goto pi_faulted;
3177 /*
3178 * A unconditional UNLOCK_PI op raced against a waiter
3179 * setting the FUTEX_WAITERS bit. Try again.
3180 */
3181 if (ret == -EAGAIN)
3182 goto pi_retry;
3183 /*
3184 * wake_futex_pi has detected invalid state. Tell user
3185 * space.
3186 */
3187 goto out_putkey;
3188 }
3189
3190 /*
3191 * We have no kernel internal state, i.e. no waiters in the
3192 * kernel. Waiters which are about to queue themselves are stuck
3193 * on hb->lock. So we can safely ignore them. We do neither
3194 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3195 * owner.
3196 */
3197 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3198 spin_unlock(&hb->lock);
3199 switch (ret) {
3200 case -EFAULT:
3201 goto pi_faulted;
3202
3203 case -EAGAIN:
3204 goto pi_retry;
3205
3206 default:
3207 WARN_ON_ONCE(1);
3208 goto out_putkey;
3209 }
3210 }
3211
3212 /*
3213 * If uval has changed, let user space handle it.
3214 */
3215 ret = (curval == uval) ? 0 : -EAGAIN;
3216
3217 out_unlock:
3218 spin_unlock(&hb->lock);
3219 out_putkey:
3220 put_futex_key(&key);
3221 return ret;
3222
3223 pi_retry:
3224 put_futex_key(&key);
3225 cond_resched();
3226 goto retry;
3227
3228 pi_faulted:
3229 put_futex_key(&key);
3230
3231 ret = fault_in_user_writeable(uaddr);
3232 if (!ret)
3233 goto retry;
3234
3235 return ret;
3236 }
3237
3238 /**
3239 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3240 * @hb: the hash_bucket futex_q was original enqueued on
3241 * @q: the futex_q woken while waiting to be requeued
3242 * @key2: the futex_key of the requeue target futex
3243 * @timeout: the timeout associated with the wait (NULL if none)
3244 *
3245 * Detect if the task was woken on the initial futex as opposed to the requeue
3246 * target futex. If so, determine if it was a timeout or a signal that caused
3247 * the wakeup and return the appropriate error code to the caller. Must be
3248 * called with the hb lock held.
3249 *
3250 * Return:
3251 * - 0 = no early wakeup detected;
3252 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3253 */
3254 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3255 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3256 struct futex_q *q, union futex_key *key2,
3257 struct hrtimer_sleeper *timeout)
3258 {
3259 int ret = 0;
3260
3261 /*
3262 * With the hb lock held, we avoid races while we process the wakeup.
3263 * We only need to hold hb (and not hb2) to ensure atomicity as the
3264 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3265 * It can't be requeued from uaddr2 to something else since we don't
3266 * support a PI aware source futex for requeue.
3267 */
3268 if (!match_futex(&q->key, key2)) {
3269 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3270 /*
3271 * We were woken prior to requeue by a timeout or a signal.
3272 * Unqueue the futex_q and determine which it was.
3273 */
3274 plist_del(&q->list, &hb->chain);
3275 hb_waiters_dec(hb);
3276
3277 /* Handle spurious wakeups gracefully */
3278 ret = -EWOULDBLOCK;
3279 if (timeout && !timeout->task)
3280 ret = -ETIMEDOUT;
3281 else if (signal_pending(current))
3282 ret = -ERESTARTNOINTR;
3283 }
3284 return ret;
3285 }
3286
3287 /**
3288 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3289 * @uaddr: the futex we initially wait on (non-pi)
3290 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3291 * the same type, no requeueing from private to shared, etc.
3292 * @val: the expected value of uaddr
3293 * @abs_time: absolute timeout
3294 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3295 * @uaddr2: the pi futex we will take prior to returning to user-space
3296 *
3297 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3298 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3299 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3300 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3301 * without one, the pi logic would not know which task to boost/deboost, if
3302 * there was a need to.
3303 *
3304 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3305 * via the following--
3306 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3307 * 2) wakeup on uaddr2 after a requeue
3308 * 3) signal
3309 * 4) timeout
3310 *
3311 * If 3, cleanup and return -ERESTARTNOINTR.
3312 *
3313 * If 2, we may then block on trying to take the rt_mutex and return via:
3314 * 5) successful lock
3315 * 6) signal
3316 * 7) timeout
3317 * 8) other lock acquisition failure
3318 *
3319 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3320 *
3321 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3322 *
3323 * Return:
3324 * - 0 - On success;
3325 * - <0 - On error
3326 */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3327 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3328 u32 val, ktime_t *abs_time, u32 bitset,
3329 u32 __user *uaddr2)
3330 {
3331 struct hrtimer_sleeper timeout, *to = NULL;
3332 struct futex_pi_state *pi_state = NULL;
3333 struct rt_mutex_waiter rt_waiter;
3334 struct futex_hash_bucket *hb;
3335 union futex_key key2 = FUTEX_KEY_INIT;
3336 struct futex_q q = futex_q_init;
3337 int res, ret;
3338
3339 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3340 return -ENOSYS;
3341
3342 if (uaddr == uaddr2)
3343 return -EINVAL;
3344
3345 if (!bitset)
3346 return -EINVAL;
3347
3348 if (abs_time) {
3349 to = &timeout;
3350 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3351 CLOCK_REALTIME : CLOCK_MONOTONIC,
3352 HRTIMER_MODE_ABS);
3353 hrtimer_init_sleeper(to, current);
3354 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3355 current->timer_slack_ns);
3356 }
3357
3358 /*
3359 * The waiter is allocated on our stack, manipulated by the requeue
3360 * code while we sleep on uaddr.
3361 */
3362 rt_mutex_init_waiter(&rt_waiter);
3363
3364 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3365 if (unlikely(ret != 0))
3366 goto out;
3367
3368 q.bitset = bitset;
3369 q.rt_waiter = &rt_waiter;
3370 q.requeue_pi_key = &key2;
3371
3372 /*
3373 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3374 * count.
3375 */
3376 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3377 if (ret)
3378 goto out_key2;
3379
3380 /*
3381 * The check above which compares uaddrs is not sufficient for
3382 * shared futexes. We need to compare the keys:
3383 */
3384 if (match_futex(&q.key, &key2)) {
3385 queue_unlock(hb);
3386 ret = -EINVAL;
3387 goto out_put_keys;
3388 }
3389
3390 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3391 futex_wait_queue_me(hb, &q, to);
3392
3393 spin_lock(&hb->lock);
3394 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3395 spin_unlock(&hb->lock);
3396 if (ret)
3397 goto out_put_keys;
3398
3399 /*
3400 * In order for us to be here, we know our q.key == key2, and since
3401 * we took the hb->lock above, we also know that futex_requeue() has
3402 * completed and we no longer have to concern ourselves with a wakeup
3403 * race with the atomic proxy lock acquisition by the requeue code. The
3404 * futex_requeue dropped our key1 reference and incremented our key2
3405 * reference count.
3406 */
3407
3408 /* Check if the requeue code acquired the second futex for us. */
3409 if (!q.rt_waiter) {
3410 /*
3411 * Got the lock. We might not be the anticipated owner if we
3412 * did a lock-steal - fix up the PI-state in that case.
3413 */
3414 if (q.pi_state && (q.pi_state->owner != current)) {
3415 spin_lock(q.lock_ptr);
3416 ret = fixup_pi_state_owner(uaddr2, &q, current);
3417 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3418 pi_state = q.pi_state;
3419 get_pi_state(pi_state);
3420 }
3421 /*
3422 * Drop the reference to the pi state which
3423 * the requeue_pi() code acquired for us.
3424 */
3425 put_pi_state(q.pi_state);
3426 spin_unlock(q.lock_ptr);
3427 }
3428 } else {
3429 struct rt_mutex *pi_mutex;
3430
3431 /*
3432 * We have been woken up by futex_unlock_pi(), a timeout, or a
3433 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3434 * the pi_state.
3435 */
3436 WARN_ON(!q.pi_state);
3437 pi_mutex = &q.pi_state->pi_mutex;
3438 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3439
3440 spin_lock(q.lock_ptr);
3441 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3442 ret = 0;
3443
3444 debug_rt_mutex_free_waiter(&rt_waiter);
3445 /*
3446 * Fixup the pi_state owner and possibly acquire the lock if we
3447 * haven't already.
3448 */
3449 res = fixup_owner(uaddr2, &q, !ret);
3450 /*
3451 * If fixup_owner() returned an error, proprogate that. If it
3452 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3453 */
3454 if (res)
3455 ret = (res < 0) ? res : 0;
3456
3457 /*
3458 * If fixup_pi_state_owner() faulted and was unable to handle
3459 * the fault, unlock the rt_mutex and return the fault to
3460 * userspace.
3461 */
3462 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3463 pi_state = q.pi_state;
3464 get_pi_state(pi_state);
3465 }
3466
3467 /* Unqueue and drop the lock. */
3468 unqueue_me_pi(&q);
3469 }
3470
3471 if (pi_state) {
3472 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3473 put_pi_state(pi_state);
3474 }
3475
3476 if (ret == -EINTR) {
3477 /*
3478 * We've already been requeued, but cannot restart by calling
3479 * futex_lock_pi() directly. We could restart this syscall, but
3480 * it would detect that the user space "val" changed and return
3481 * -EWOULDBLOCK. Save the overhead of the restart and return
3482 * -EWOULDBLOCK directly.
3483 */
3484 ret = -EWOULDBLOCK;
3485 }
3486
3487 out_put_keys:
3488 put_futex_key(&q.key);
3489 out_key2:
3490 put_futex_key(&key2);
3491
3492 out:
3493 if (to) {
3494 hrtimer_cancel(&to->timer);
3495 destroy_hrtimer_on_stack(&to->timer);
3496 }
3497 return ret;
3498 }
3499
3500 /*
3501 * Support for robust futexes: the kernel cleans up held futexes at
3502 * thread exit time.
3503 *
3504 * Implementation: user-space maintains a per-thread list of locks it
3505 * is holding. Upon do_exit(), the kernel carefully walks this list,
3506 * and marks all locks that are owned by this thread with the
3507 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3508 * always manipulated with the lock held, so the list is private and
3509 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3510 * field, to allow the kernel to clean up if the thread dies after
3511 * acquiring the lock, but just before it could have added itself to
3512 * the list. There can only be one such pending lock.
3513 */
3514
3515 /**
3516 * sys_set_robust_list() - Set the robust-futex list head of a task
3517 * @head: pointer to the list-head
3518 * @len: length of the list-head, as userspace expects
3519 */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3520 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3521 size_t, len)
3522 {
3523 if (!futex_cmpxchg_enabled)
3524 return -ENOSYS;
3525 /*
3526 * The kernel knows only one size for now:
3527 */
3528 if (unlikely(len != sizeof(*head)))
3529 return -EINVAL;
3530
3531 current->robust_list = head;
3532
3533 return 0;
3534 }
3535
3536 /**
3537 * sys_get_robust_list() - Get the robust-futex list head of a task
3538 * @pid: pid of the process [zero for current task]
3539 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3540 * @len_ptr: pointer to a length field, the kernel fills in the header size
3541 */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3542 SYSCALL_DEFINE3(get_robust_list, int, pid,
3543 struct robust_list_head __user * __user *, head_ptr,
3544 size_t __user *, len_ptr)
3545 {
3546 struct robust_list_head __user *head;
3547 unsigned long ret;
3548 struct task_struct *p;
3549
3550 if (!futex_cmpxchg_enabled)
3551 return -ENOSYS;
3552
3553 rcu_read_lock();
3554
3555 ret = -ESRCH;
3556 if (!pid)
3557 p = current;
3558 else {
3559 p = find_task_by_vpid(pid);
3560 if (!p)
3561 goto err_unlock;
3562 }
3563
3564 ret = -EPERM;
3565 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3566 goto err_unlock;
3567
3568 head = p->robust_list;
3569 rcu_read_unlock();
3570
3571 if (put_user(sizeof(*head), len_ptr))
3572 return -EFAULT;
3573 return put_user(head, head_ptr);
3574
3575 err_unlock:
3576 rcu_read_unlock();
3577
3578 return ret;
3579 }
3580
3581 /* Constants for the pending_op argument of handle_futex_death */
3582 #define HANDLE_DEATH_PENDING true
3583 #define HANDLE_DEATH_LIST false
3584
3585 /*
3586 * Process a futex-list entry, check whether it's owned by the
3587 * dying task, and do notification if so:
3588 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3589 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3590 bool pi, bool pending_op)
3591 {
3592 u32 uval, uninitialized_var(nval), mval;
3593 int err;
3594
3595 /* Futex address must be 32bit aligned */
3596 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3597 return -1;
3598
3599 retry:
3600 if (get_user(uval, uaddr))
3601 return -1;
3602
3603 /*
3604 * Special case for regular (non PI) futexes. The unlock path in
3605 * user space has two race scenarios:
3606 *
3607 * 1. The unlock path releases the user space futex value and
3608 * before it can execute the futex() syscall to wake up
3609 * waiters it is killed.
3610 *
3611 * 2. A woken up waiter is killed before it can acquire the
3612 * futex in user space.
3613 *
3614 * In both cases the TID validation below prevents a wakeup of
3615 * potential waiters which can cause these waiters to block
3616 * forever.
3617 *
3618 * In both cases the following conditions are met:
3619 *
3620 * 1) task->robust_list->list_op_pending != NULL
3621 * @pending_op == true
3622 * 2) User space futex value == 0
3623 * 3) Regular futex: @pi == false
3624 *
3625 * If these conditions are met, it is safe to attempt waking up a
3626 * potential waiter without touching the user space futex value and
3627 * trying to set the OWNER_DIED bit. The user space futex value is
3628 * uncontended and the rest of the user space mutex state is
3629 * consistent, so a woken waiter will just take over the
3630 * uncontended futex. Setting the OWNER_DIED bit would create
3631 * inconsistent state and malfunction of the user space owner died
3632 * handling.
3633 */
3634 if (pending_op && !pi && !uval) {
3635 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3636 return 0;
3637 }
3638
3639 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3640 return 0;
3641
3642 /*
3643 * Ok, this dying thread is truly holding a futex
3644 * of interest. Set the OWNER_DIED bit atomically
3645 * via cmpxchg, and if the value had FUTEX_WAITERS
3646 * set, wake up a waiter (if any). (We have to do a
3647 * futex_wake() even if OWNER_DIED is already set -
3648 * to handle the rare but possible case of recursive
3649 * thread-death.) The rest of the cleanup is done in
3650 * userspace.
3651 */
3652 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3653
3654 /*
3655 * We are not holding a lock here, but we want to have
3656 * the pagefault_disable/enable() protection because
3657 * we want to handle the fault gracefully. If the
3658 * access fails we try to fault in the futex with R/W
3659 * verification via get_user_pages. get_user() above
3660 * does not guarantee R/W access. If that fails we
3661 * give up and leave the futex locked.
3662 */
3663 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3664 switch (err) {
3665 case -EFAULT:
3666 if (fault_in_user_writeable(uaddr))
3667 return -1;
3668 goto retry;
3669
3670 case -EAGAIN:
3671 cond_resched();
3672 goto retry;
3673
3674 default:
3675 WARN_ON_ONCE(1);
3676 return err;
3677 }
3678 }
3679
3680 if (nval != uval)
3681 goto retry;
3682
3683 /*
3684 * Wake robust non-PI futexes here. The wakeup of
3685 * PI futexes happens in exit_pi_state():
3686 */
3687 if (!pi && (uval & FUTEX_WAITERS))
3688 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3689
3690 return 0;
3691 }
3692
3693 /*
3694 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3695 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3696 static inline int fetch_robust_entry(struct robust_list __user **entry,
3697 struct robust_list __user * __user *head,
3698 unsigned int *pi)
3699 {
3700 unsigned long uentry;
3701
3702 if (get_user(uentry, (unsigned long __user *)head))
3703 return -EFAULT;
3704
3705 *entry = (void __user *)(uentry & ~1UL);
3706 *pi = uentry & 1;
3707
3708 return 0;
3709 }
3710
3711 /*
3712 * Walk curr->robust_list (very carefully, it's a userspace list!)
3713 * and mark any locks found there dead, and notify any waiters.
3714 *
3715 * We silently return on any sign of list-walking problem.
3716 */
exit_robust_list(struct task_struct * curr)3717 static void exit_robust_list(struct task_struct *curr)
3718 {
3719 struct robust_list_head __user *head = curr->robust_list;
3720 struct robust_list __user *entry, *next_entry, *pending;
3721 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3722 unsigned int uninitialized_var(next_pi);
3723 unsigned long futex_offset;
3724 int rc;
3725
3726 if (!futex_cmpxchg_enabled)
3727 return;
3728
3729 /*
3730 * Fetch the list head (which was registered earlier, via
3731 * sys_set_robust_list()):
3732 */
3733 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3734 return;
3735 /*
3736 * Fetch the relative futex offset:
3737 */
3738 if (get_user(futex_offset, &head->futex_offset))
3739 return;
3740 /*
3741 * Fetch any possibly pending lock-add first, and handle it
3742 * if it exists:
3743 */
3744 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3745 return;
3746
3747 next_entry = NULL; /* avoid warning with gcc */
3748 while (entry != &head->list) {
3749 /*
3750 * Fetch the next entry in the list before calling
3751 * handle_futex_death:
3752 */
3753 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3754 /*
3755 * A pending lock might already be on the list, so
3756 * don't process it twice:
3757 */
3758 if (entry != pending) {
3759 if (handle_futex_death((void __user *)entry + futex_offset,
3760 curr, pi, HANDLE_DEATH_LIST))
3761 return;
3762 }
3763 if (rc)
3764 return;
3765 entry = next_entry;
3766 pi = next_pi;
3767 /*
3768 * Avoid excessively long or circular lists:
3769 */
3770 if (!--limit)
3771 break;
3772
3773 cond_resched();
3774 }
3775
3776 if (pending) {
3777 handle_futex_death((void __user *)pending + futex_offset,
3778 curr, pip, HANDLE_DEATH_PENDING);
3779 }
3780 }
3781
futex_cleanup(struct task_struct * tsk)3782 static void futex_cleanup(struct task_struct *tsk)
3783 {
3784 if (unlikely(tsk->robust_list)) {
3785 exit_robust_list(tsk);
3786 tsk->robust_list = NULL;
3787 }
3788
3789 #ifdef CONFIG_COMPAT
3790 if (unlikely(tsk->compat_robust_list)) {
3791 compat_exit_robust_list(tsk);
3792 tsk->compat_robust_list = NULL;
3793 }
3794 #endif
3795
3796 if (unlikely(!list_empty(&tsk->pi_state_list)))
3797 exit_pi_state_list(tsk);
3798 }
3799
3800 /**
3801 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3802 * @tsk: task to set the state on
3803 *
3804 * Set the futex exit state of the task lockless. The futex waiter code
3805 * observes that state when a task is exiting and loops until the task has
3806 * actually finished the futex cleanup. The worst case for this is that the
3807 * waiter runs through the wait loop until the state becomes visible.
3808 *
3809 * This is called from the recursive fault handling path in do_exit().
3810 *
3811 * This is best effort. Either the futex exit code has run already or
3812 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3813 * take it over. If not, the problem is pushed back to user space. If the
3814 * futex exit code did not run yet, then an already queued waiter might
3815 * block forever, but there is nothing which can be done about that.
3816 */
futex_exit_recursive(struct task_struct * tsk)3817 void futex_exit_recursive(struct task_struct *tsk)
3818 {
3819 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3820 if (tsk->futex_state == FUTEX_STATE_EXITING)
3821 mutex_unlock(&tsk->futex_exit_mutex);
3822 tsk->futex_state = FUTEX_STATE_DEAD;
3823 }
3824
futex_cleanup_begin(struct task_struct * tsk)3825 static void futex_cleanup_begin(struct task_struct *tsk)
3826 {
3827 /*
3828 * Prevent various race issues against a concurrent incoming waiter
3829 * including live locks by forcing the waiter to block on
3830 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3831 * attach_to_pi_owner().
3832 */
3833 mutex_lock(&tsk->futex_exit_mutex);
3834
3835 /*
3836 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3837 *
3838 * This ensures that all subsequent checks of tsk->futex_state in
3839 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3840 * tsk->pi_lock held.
3841 *
3842 * It guarantees also that a pi_state which was queued right before
3843 * the state change under tsk->pi_lock by a concurrent waiter must
3844 * be observed in exit_pi_state_list().
3845 */
3846 raw_spin_lock_irq(&tsk->pi_lock);
3847 tsk->futex_state = FUTEX_STATE_EXITING;
3848 raw_spin_unlock_irq(&tsk->pi_lock);
3849 }
3850
futex_cleanup_end(struct task_struct * tsk,int state)3851 static void futex_cleanup_end(struct task_struct *tsk, int state)
3852 {
3853 /*
3854 * Lockless store. The only side effect is that an observer might
3855 * take another loop until it becomes visible.
3856 */
3857 tsk->futex_state = state;
3858 /*
3859 * Drop the exit protection. This unblocks waiters which observed
3860 * FUTEX_STATE_EXITING to reevaluate the state.
3861 */
3862 mutex_unlock(&tsk->futex_exit_mutex);
3863 }
3864
futex_exec_release(struct task_struct * tsk)3865 void futex_exec_release(struct task_struct *tsk)
3866 {
3867 /*
3868 * The state handling is done for consistency, but in the case of
3869 * exec() there is no way to prevent futher damage as the PID stays
3870 * the same. But for the unlikely and arguably buggy case that a
3871 * futex is held on exec(), this provides at least as much state
3872 * consistency protection which is possible.
3873 */
3874 futex_cleanup_begin(tsk);
3875 futex_cleanup(tsk);
3876 /*
3877 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3878 * exec a new binary.
3879 */
3880 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3881 }
3882
futex_exit_release(struct task_struct * tsk)3883 void futex_exit_release(struct task_struct *tsk)
3884 {
3885 futex_cleanup_begin(tsk);
3886 futex_cleanup(tsk);
3887 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3888 }
3889
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3890 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3891 u32 __user *uaddr2, u32 val2, u32 val3)
3892 {
3893 int cmd = op & FUTEX_CMD_MASK;
3894 unsigned int flags = 0;
3895
3896 if (!(op & FUTEX_PRIVATE_FLAG))
3897 flags |= FLAGS_SHARED;
3898
3899 if (op & FUTEX_CLOCK_REALTIME) {
3900 flags |= FLAGS_CLOCKRT;
3901 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3902 cmd != FUTEX_WAIT_REQUEUE_PI)
3903 return -ENOSYS;
3904 }
3905
3906 switch (cmd) {
3907 case FUTEX_LOCK_PI:
3908 case FUTEX_UNLOCK_PI:
3909 case FUTEX_TRYLOCK_PI:
3910 case FUTEX_WAIT_REQUEUE_PI:
3911 case FUTEX_CMP_REQUEUE_PI:
3912 if (!futex_cmpxchg_enabled)
3913 return -ENOSYS;
3914 }
3915
3916 switch (cmd) {
3917 case FUTEX_WAIT:
3918 val3 = FUTEX_BITSET_MATCH_ANY;
3919 case FUTEX_WAIT_BITSET:
3920 return futex_wait(uaddr, flags, val, timeout, val3);
3921 case FUTEX_WAKE:
3922 val3 = FUTEX_BITSET_MATCH_ANY;
3923 case FUTEX_WAKE_BITSET:
3924 return futex_wake(uaddr, flags, val, val3);
3925 case FUTEX_REQUEUE:
3926 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3927 case FUTEX_CMP_REQUEUE:
3928 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3929 case FUTEX_WAKE_OP:
3930 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3931 case FUTEX_LOCK_PI:
3932 return futex_lock_pi(uaddr, flags, timeout, 0);
3933 case FUTEX_UNLOCK_PI:
3934 return futex_unlock_pi(uaddr, flags);
3935 case FUTEX_TRYLOCK_PI:
3936 return futex_lock_pi(uaddr, flags, NULL, 1);
3937 case FUTEX_WAIT_REQUEUE_PI:
3938 val3 = FUTEX_BITSET_MATCH_ANY;
3939 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3940 uaddr2);
3941 case FUTEX_CMP_REQUEUE_PI:
3942 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3943 }
3944 return -ENOSYS;
3945 }
3946
3947
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3948 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3949 struct timespec __user *, utime, u32 __user *, uaddr2,
3950 u32, val3)
3951 {
3952 struct timespec ts;
3953 ktime_t t, *tp = NULL;
3954 u32 val2 = 0;
3955 int cmd = op & FUTEX_CMD_MASK;
3956
3957 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3958 cmd == FUTEX_WAIT_BITSET ||
3959 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3960 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3961 return -EFAULT;
3962 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3963 return -EFAULT;
3964 if (!timespec_valid(&ts))
3965 return -EINVAL;
3966
3967 t = timespec_to_ktime(ts);
3968 if (cmd == FUTEX_WAIT)
3969 t = ktime_add_safe(ktime_get(), t);
3970 tp = &t;
3971 }
3972 /*
3973 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3974 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3975 */
3976 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3977 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3978 val2 = (u32) (unsigned long) utime;
3979
3980 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3981 }
3982
3983 #ifdef CONFIG_COMPAT
3984 /*
3985 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3986 */
3987 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3988 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3989 compat_uptr_t __user *head, unsigned int *pi)
3990 {
3991 if (get_user(*uentry, head))
3992 return -EFAULT;
3993
3994 *entry = compat_ptr((*uentry) & ~1);
3995 *pi = (unsigned int)(*uentry) & 1;
3996
3997 return 0;
3998 }
3999
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)4000 static void __user *futex_uaddr(struct robust_list __user *entry,
4001 compat_long_t futex_offset)
4002 {
4003 compat_uptr_t base = ptr_to_compat(entry);
4004 void __user *uaddr = compat_ptr(base + futex_offset);
4005
4006 return uaddr;
4007 }
4008
4009 /*
4010 * Walk curr->robust_list (very carefully, it's a userspace list!)
4011 * and mark any locks found there dead, and notify any waiters.
4012 *
4013 * We silently return on any sign of list-walking problem.
4014 */
compat_exit_robust_list(struct task_struct * curr)4015 static void compat_exit_robust_list(struct task_struct *curr)
4016 {
4017 struct compat_robust_list_head __user *head = curr->compat_robust_list;
4018 struct robust_list __user *entry, *next_entry, *pending;
4019 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4020 unsigned int uninitialized_var(next_pi);
4021 compat_uptr_t uentry, next_uentry, upending;
4022 compat_long_t futex_offset;
4023 int rc;
4024
4025 if (!futex_cmpxchg_enabled)
4026 return;
4027
4028 /*
4029 * Fetch the list head (which was registered earlier, via
4030 * sys_set_robust_list()):
4031 */
4032 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4033 return;
4034 /*
4035 * Fetch the relative futex offset:
4036 */
4037 if (get_user(futex_offset, &head->futex_offset))
4038 return;
4039 /*
4040 * Fetch any possibly pending lock-add first, and handle it
4041 * if it exists:
4042 */
4043 if (compat_fetch_robust_entry(&upending, &pending,
4044 &head->list_op_pending, &pip))
4045 return;
4046
4047 next_entry = NULL; /* avoid warning with gcc */
4048 while (entry != (struct robust_list __user *) &head->list) {
4049 /*
4050 * Fetch the next entry in the list before calling
4051 * handle_futex_death:
4052 */
4053 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4054 (compat_uptr_t __user *)&entry->next, &next_pi);
4055 /*
4056 * A pending lock might already be on the list, so
4057 * dont process it twice:
4058 */
4059 if (entry != pending) {
4060 void __user *uaddr = futex_uaddr(entry, futex_offset);
4061
4062 if (handle_futex_death(uaddr, curr, pi,
4063 HANDLE_DEATH_LIST))
4064 return;
4065 }
4066 if (rc)
4067 return;
4068 uentry = next_uentry;
4069 entry = next_entry;
4070 pi = next_pi;
4071 /*
4072 * Avoid excessively long or circular lists:
4073 */
4074 if (!--limit)
4075 break;
4076
4077 cond_resched();
4078 }
4079 if (pending) {
4080 void __user *uaddr = futex_uaddr(pending, futex_offset);
4081
4082 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4083 }
4084 }
4085
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)4086 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4087 struct compat_robust_list_head __user *, head,
4088 compat_size_t, len)
4089 {
4090 if (!futex_cmpxchg_enabled)
4091 return -ENOSYS;
4092
4093 if (unlikely(len != sizeof(*head)))
4094 return -EINVAL;
4095
4096 current->compat_robust_list = head;
4097
4098 return 0;
4099 }
4100
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)4101 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4102 compat_uptr_t __user *, head_ptr,
4103 compat_size_t __user *, len_ptr)
4104 {
4105 struct compat_robust_list_head __user *head;
4106 unsigned long ret;
4107 struct task_struct *p;
4108
4109 if (!futex_cmpxchg_enabled)
4110 return -ENOSYS;
4111
4112 rcu_read_lock();
4113
4114 ret = -ESRCH;
4115 if (!pid)
4116 p = current;
4117 else {
4118 p = find_task_by_vpid(pid);
4119 if (!p)
4120 goto err_unlock;
4121 }
4122
4123 ret = -EPERM;
4124 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4125 goto err_unlock;
4126
4127 head = p->compat_robust_list;
4128 rcu_read_unlock();
4129
4130 if (put_user(sizeof(*head), len_ptr))
4131 return -EFAULT;
4132 return put_user(ptr_to_compat(head), head_ptr);
4133
4134 err_unlock:
4135 rcu_read_unlock();
4136
4137 return ret;
4138 }
4139
COMPAT_SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct compat_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)4140 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
4141 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
4142 u32, val3)
4143 {
4144 struct timespec ts;
4145 ktime_t t, *tp = NULL;
4146 int val2 = 0;
4147 int cmd = op & FUTEX_CMD_MASK;
4148
4149 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4150 cmd == FUTEX_WAIT_BITSET ||
4151 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4152 if (compat_get_timespec(&ts, utime))
4153 return -EFAULT;
4154 if (!timespec_valid(&ts))
4155 return -EINVAL;
4156
4157 t = timespec_to_ktime(ts);
4158 if (cmd == FUTEX_WAIT)
4159 t = ktime_add_safe(ktime_get(), t);
4160 tp = &t;
4161 }
4162 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4163 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4164 val2 = (int) (unsigned long) utime;
4165
4166 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4167 }
4168 #endif /* CONFIG_COMPAT */
4169
futex_detect_cmpxchg(void)4170 static void __init futex_detect_cmpxchg(void)
4171 {
4172 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4173 u32 curval;
4174
4175 /*
4176 * This will fail and we want it. Some arch implementations do
4177 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4178 * functionality. We want to know that before we call in any
4179 * of the complex code paths. Also we want to prevent
4180 * registration of robust lists in that case. NULL is
4181 * guaranteed to fault and we get -EFAULT on functional
4182 * implementation, the non-functional ones will return
4183 * -ENOSYS.
4184 */
4185 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4186 futex_cmpxchg_enabled = 1;
4187 #endif
4188 }
4189
futex_init(void)4190 static int __init futex_init(void)
4191 {
4192 unsigned int futex_shift;
4193 unsigned long i;
4194
4195 #if CONFIG_BASE_SMALL
4196 futex_hashsize = 16;
4197 #else
4198 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4199 #endif
4200
4201 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4202 futex_hashsize, 0,
4203 futex_hashsize < 256 ? HASH_SMALL : 0,
4204 &futex_shift, NULL,
4205 futex_hashsize, futex_hashsize);
4206 futex_hashsize = 1UL << futex_shift;
4207
4208 futex_detect_cmpxchg();
4209
4210 for (i = 0; i < futex_hashsize; i++) {
4211 atomic_set(&futex_queues[i].waiters, 0);
4212 plist_head_init(&futex_queues[i].chain);
4213 spin_lock_init(&futex_queues[i].lock);
4214 }
4215
4216 return 0;
4217 }
4218 core_initcall(futex_init);
4219