• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 
294 /*
295  * To allow fractional bits to be tracked, the entropy_count field is
296  * denominated in units of 1/8th bits.
297  *
298  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299  * credit_entropy_bits() needs to be 64 bits wide.
300  */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 
304 /*
305  * The minimum number of bits of entropy before we wake up a read on
306  * /dev/random.  Should be enough to do a significant reseed.
307  */
308 static int random_read_wakeup_bits = 64;
309 
310 /*
311  * If the entropy count falls under this number of bits, then we
312  * should wake up processes which are selecting or polling on write
313  * access to /dev/random.
314  */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 
317 /*
318  * Originally, we used a primitive polynomial of degree .poolwords
319  * over GF(2).  The taps for various sizes are defined below.  They
320  * were chosen to be evenly spaced except for the last tap, which is 1
321  * to get the twisting happening as fast as possible.
322  *
323  * For the purposes of better mixing, we use the CRC-32 polynomial as
324  * well to make a (modified) twisted Generalized Feedback Shift
325  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
326  * generators.  ACM Transactions on Modeling and Computer Simulation
327  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
328  * GFSR generators II.  ACM Transactions on Modeling and Computer
329  * Simulation 4:254-266)
330  *
331  * Thanks to Colin Plumb for suggesting this.
332  *
333  * The mixing operation is much less sensitive than the output hash,
334  * where we use SHA-1.  All that we want of mixing operation is that
335  * it be a good non-cryptographic hash; i.e. it not produce collisions
336  * when fed "random" data of the sort we expect to see.  As long as
337  * the pool state differs for different inputs, we have preserved the
338  * input entropy and done a good job.  The fact that an intelligent
339  * attacker can construct inputs that will produce controlled
340  * alterations to the pool's state is not important because we don't
341  * consider such inputs to contribute any randomness.  The only
342  * property we need with respect to them is that the attacker can't
343  * increase his/her knowledge of the pool's state.  Since all
344  * additions are reversible (knowing the final state and the input,
345  * you can reconstruct the initial state), if an attacker has any
346  * uncertainty about the initial state, he/she can only shuffle that
347  * uncertainty about, but never cause any collisions (which would
348  * decrease the uncertainty).
349  *
350  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351  * Videau in their paper, "The Linux Pseudorandom Number Generator
352  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
353  * paper, they point out that we are not using a true Twisted GFSR,
354  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355  * is, with only three taps, instead of the six that we are using).
356  * As a result, the resulting polynomial is neither primitive nor
357  * irreducible, and hence does not have a maximal period over
358  * GF(2**32).  They suggest a slight change to the generator
359  * polynomial which improves the resulting TGFSR polynomial to be
360  * irreducible, which we have made here.
361  */
362 static struct poolinfo {
363 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 	int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 	{ S(128),	104,	76,	51,	25,	1 },
370 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 	{ S(32),	26,	19,	14,	7,	1 },
373 #if 0
374 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
375 	{ S(2048),	1638,	1231,	819,	411,	1 },
376 
377 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 	{ S(1024),	817,	615,	412,	204,	1 },
379 
380 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 	{ S(1024),	819,	616,	410,	207,	2 },
382 
383 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 	{ S(512),	411,	308,	208,	104,	1 },
385 
386 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	307,	206,	102,	2 },
388 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 	{ S(512),	409,	309,	205,	103,	2 },
390 
391 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 	{ S(256),	205,	155,	101,	52,	1 },
393 
394 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 	{ S(128),	103,	78,	51,	27,	2 },
396 
397 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 	{ S(64),	52,	39,	26,	14,	1 },
399 #endif
400 };
401 
402 /*
403  * Static global variables
404  */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408 
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411 
412 struct crng_state {
413 	__u32		state[16];
414 	unsigned long	init_time;
415 	spinlock_t	lock;
416 };
417 
418 struct crng_state primary_crng = {
419 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421 
422 /*
423  * crng_init =  0 --> Uninitialized
424  *		1 --> Initialized
425  *		2 --> Initialized from input_pool
426  *
427  * crng_init is protected by primary_crng->lock, and only increases
428  * its value (from 0->1->2).
429  */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
440 
441 static struct ratelimit_state unseeded_warning =
442 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
443 static struct ratelimit_state urandom_warning =
444 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
445 
446 static int ratelimit_disable __read_mostly;
447 
448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
450 
451 /**********************************************************************
452  *
453  * OS independent entropy store.   Here are the functions which handle
454  * storing entropy in an entropy pool.
455  *
456  **********************************************************************/
457 
458 struct entropy_store;
459 struct entropy_store {
460 	/* read-only data: */
461 	const struct poolinfo *poolinfo;
462 	__u32 *pool;
463 	const char *name;
464 	struct entropy_store *pull;
465 	struct work_struct push_work;
466 
467 	/* read-write data: */
468 	unsigned long last_pulled;
469 	spinlock_t lock;
470 	unsigned short add_ptr;
471 	unsigned short input_rotate;
472 	int entropy_count;
473 	int entropy_total;
474 	unsigned int initialized:1;
475 	unsigned int last_data_init:1;
476 	__u8 last_data[EXTRACT_SIZE];
477 };
478 
479 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
480 			       size_t nbytes, int min, int rsvd);
481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
482 				size_t nbytes, int fips);
483 
484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
485 static void push_to_pool(struct work_struct *work);
486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
488 
489 static struct entropy_store input_pool = {
490 	.poolinfo = &poolinfo_table[0],
491 	.name = "input",
492 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
493 	.pool = input_pool_data
494 };
495 
496 static struct entropy_store blocking_pool = {
497 	.poolinfo = &poolinfo_table[1],
498 	.name = "blocking",
499 	.pull = &input_pool,
500 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
501 	.pool = blocking_pool_data,
502 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
503 					push_to_pool),
504 };
505 
506 static __u32 const twist_table[8] = {
507 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
508 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
509 
510 /*
511  * This function adds bytes into the entropy "pool".  It does not
512  * update the entropy estimate.  The caller should call
513  * credit_entropy_bits if this is appropriate.
514  *
515  * The pool is stirred with a primitive polynomial of the appropriate
516  * degree, and then twisted.  We twist by three bits at a time because
517  * it's cheap to do so and helps slightly in the expected case where
518  * the entropy is concentrated in the low-order bits.
519  */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)520 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
521 			    int nbytes)
522 {
523 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
524 	int input_rotate;
525 	int wordmask = r->poolinfo->poolwords - 1;
526 	const char *bytes = in;
527 	__u32 w;
528 
529 	tap1 = r->poolinfo->tap1;
530 	tap2 = r->poolinfo->tap2;
531 	tap3 = r->poolinfo->tap3;
532 	tap4 = r->poolinfo->tap4;
533 	tap5 = r->poolinfo->tap5;
534 
535 	input_rotate = r->input_rotate;
536 	i = r->add_ptr;
537 
538 	/* mix one byte at a time to simplify size handling and churn faster */
539 	while (nbytes--) {
540 		w = rol32(*bytes++, input_rotate);
541 		i = (i - 1) & wordmask;
542 
543 		/* XOR in the various taps */
544 		w ^= r->pool[i];
545 		w ^= r->pool[(i + tap1) & wordmask];
546 		w ^= r->pool[(i + tap2) & wordmask];
547 		w ^= r->pool[(i + tap3) & wordmask];
548 		w ^= r->pool[(i + tap4) & wordmask];
549 		w ^= r->pool[(i + tap5) & wordmask];
550 
551 		/* Mix the result back in with a twist */
552 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
553 
554 		/*
555 		 * Normally, we add 7 bits of rotation to the pool.
556 		 * At the beginning of the pool, add an extra 7 bits
557 		 * rotation, so that successive passes spread the
558 		 * input bits across the pool evenly.
559 		 */
560 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
561 	}
562 
563 	r->input_rotate = input_rotate;
564 	r->add_ptr = i;
565 }
566 
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)567 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
568 			     int nbytes)
569 {
570 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
571 	_mix_pool_bytes(r, in, nbytes);
572 }
573 
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)574 static void mix_pool_bytes(struct entropy_store *r, const void *in,
575 			   int nbytes)
576 {
577 	unsigned long flags;
578 
579 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
580 	spin_lock_irqsave(&r->lock, flags);
581 	_mix_pool_bytes(r, in, nbytes);
582 	spin_unlock_irqrestore(&r->lock, flags);
583 }
584 
585 struct fast_pool {
586 	__u32		pool[4];
587 	unsigned long	last;
588 	unsigned short	reg_idx;
589 	unsigned char	count;
590 };
591 
592 /*
593  * This is a fast mixing routine used by the interrupt randomness
594  * collector.  It's hardcoded for an 128 bit pool and assumes that any
595  * locks that might be needed are taken by the caller.
596  */
fast_mix(struct fast_pool * f)597 static void fast_mix(struct fast_pool *f)
598 {
599 	__u32 a = f->pool[0],	b = f->pool[1];
600 	__u32 c = f->pool[2],	d = f->pool[3];
601 
602 	a += b;			c += d;
603 	b = rol32(b, 6);	d = rol32(d, 27);
604 	d ^= a;			b ^= c;
605 
606 	a += b;			c += d;
607 	b = rol32(b, 16);	d = rol32(d, 14);
608 	d ^= a;			b ^= c;
609 
610 	a += b;			c += d;
611 	b = rol32(b, 6);	d = rol32(d, 27);
612 	d ^= a;			b ^= c;
613 
614 	a += b;			c += d;
615 	b = rol32(b, 16);	d = rol32(d, 14);
616 	d ^= a;			b ^= c;
617 
618 	f->pool[0] = a;  f->pool[1] = b;
619 	f->pool[2] = c;  f->pool[3] = d;
620 	f->count++;
621 }
622 
process_random_ready_list(void)623 static void process_random_ready_list(void)
624 {
625 	unsigned long flags;
626 	struct random_ready_callback *rdy, *tmp;
627 
628 	spin_lock_irqsave(&random_ready_list_lock, flags);
629 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
630 		struct module *owner = rdy->owner;
631 
632 		list_del_init(&rdy->list);
633 		rdy->func(rdy);
634 		module_put(owner);
635 	}
636 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
637 }
638 
639 /*
640  * Credit (or debit) the entropy store with n bits of entropy.
641  * Use credit_entropy_bits_safe() if the value comes from userspace
642  * or otherwise should be checked for extreme values.
643  */
credit_entropy_bits(struct entropy_store * r,int nbits)644 static void credit_entropy_bits(struct entropy_store *r, int nbits)
645 {
646 	int entropy_count, orig;
647 	const int pool_size = r->poolinfo->poolfracbits;
648 	int nfrac = nbits << ENTROPY_SHIFT;
649 
650 	if (!nbits)
651 		return;
652 
653 retry:
654 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
655 	if (nfrac < 0) {
656 		/* Debit */
657 		entropy_count += nfrac;
658 	} else {
659 		/*
660 		 * Credit: we have to account for the possibility of
661 		 * overwriting already present entropy.	 Even in the
662 		 * ideal case of pure Shannon entropy, new contributions
663 		 * approach the full value asymptotically:
664 		 *
665 		 * entropy <- entropy + (pool_size - entropy) *
666 		 *	(1 - exp(-add_entropy/pool_size))
667 		 *
668 		 * For add_entropy <= pool_size/2 then
669 		 * (1 - exp(-add_entropy/pool_size)) >=
670 		 *    (add_entropy/pool_size)*0.7869...
671 		 * so we can approximate the exponential with
672 		 * 3/4*add_entropy/pool_size and still be on the
673 		 * safe side by adding at most pool_size/2 at a time.
674 		 *
675 		 * The use of pool_size-2 in the while statement is to
676 		 * prevent rounding artifacts from making the loop
677 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
678 		 * turns no matter how large nbits is.
679 		 */
680 		int pnfrac = nfrac;
681 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
682 		/* The +2 corresponds to the /4 in the denominator */
683 
684 		do {
685 			unsigned int anfrac = min(pnfrac, pool_size/2);
686 			unsigned int add =
687 				((pool_size - entropy_count)*anfrac*3) >> s;
688 
689 			entropy_count += add;
690 			pnfrac -= anfrac;
691 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
692 	}
693 
694 	if (unlikely(entropy_count < 0)) {
695 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
696 			r->name, entropy_count);
697 		WARN_ON(1);
698 		entropy_count = 0;
699 	} else if (entropy_count > pool_size)
700 		entropy_count = pool_size;
701 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
702 		goto retry;
703 
704 	r->entropy_total += nbits;
705 	if (!r->initialized && r->entropy_total > 128) {
706 		r->initialized = 1;
707 		r->entropy_total = 0;
708 	}
709 
710 	trace_credit_entropy_bits(r->name, nbits,
711 				  entropy_count >> ENTROPY_SHIFT,
712 				  r->entropy_total, _RET_IP_);
713 
714 	if (r == &input_pool) {
715 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
716 
717 		if (crng_init < 2 && entropy_bits >= 128) {
718 			crng_reseed(&primary_crng, r);
719 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
720 		}
721 
722 		/* should we wake readers? */
723 		if (entropy_bits >= random_read_wakeup_bits) {
724 			wake_up_interruptible(&random_read_wait);
725 			kill_fasync(&fasync, SIGIO, POLL_IN);
726 		}
727 		/* If the input pool is getting full, send some
728 		 * entropy to the blocking pool until it is 75% full.
729 		 */
730 		if (entropy_bits > random_write_wakeup_bits &&
731 		    r->initialized &&
732 		    r->entropy_total >= 2*random_read_wakeup_bits) {
733 			struct entropy_store *other = &blocking_pool;
734 
735 			if (other->entropy_count <=
736 			    3 * other->poolinfo->poolfracbits / 4) {
737 				schedule_work(&other->push_work);
738 				r->entropy_total = 0;
739 			}
740 		}
741 	}
742 }
743 
credit_entropy_bits_safe(struct entropy_store * r,int nbits)744 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
745 {
746 	const int nbits_max = r->poolinfo->poolwords * 32;
747 
748 	if (nbits < 0)
749 		return -EINVAL;
750 
751 	/* Cap the value to avoid overflows */
752 	nbits = min(nbits,  nbits_max);
753 
754 	credit_entropy_bits(r, nbits);
755 	return 0;
756 }
757 
758 /*********************************************************************
759  *
760  * CRNG using CHACHA20
761  *
762  *********************************************************************/
763 
764 #define CRNG_RESEED_INTERVAL (300*HZ)
765 
766 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
767 
768 #ifdef CONFIG_NUMA
769 /*
770  * Hack to deal with crazy userspace progams when they are all trying
771  * to access /dev/urandom in parallel.  The programs are almost
772  * certainly doing something terribly wrong, but we'll work around
773  * their brain damage.
774  */
775 static struct crng_state **crng_node_pool __read_mostly;
776 #endif
777 
778 static void invalidate_batched_entropy(void);
779 
crng_initialize(struct crng_state * crng)780 static void crng_initialize(struct crng_state *crng)
781 {
782 	int		i;
783 	unsigned long	rv;
784 
785 	memcpy(&crng->state[0], "expand 32-byte k", 16);
786 	if (crng == &primary_crng)
787 		_extract_entropy(&input_pool, &crng->state[4],
788 				 sizeof(__u32) * 12, 0);
789 	else
790 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
791 	for (i = 4; i < 16; i++) {
792 		if (!arch_get_random_seed_long(&rv) &&
793 		    !arch_get_random_long(&rv))
794 			rv = random_get_entropy();
795 		crng->state[i] ^= rv;
796 	}
797 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
798 }
799 
800 #ifdef CONFIG_NUMA
do_numa_crng_init(struct work_struct * work)801 static void do_numa_crng_init(struct work_struct *work)
802 {
803 	int i;
804 	struct crng_state *crng;
805 	struct crng_state **pool;
806 
807 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
808 	for_each_online_node(i) {
809 		crng = kmalloc_node(sizeof(struct crng_state),
810 				    GFP_KERNEL | __GFP_NOFAIL, i);
811 		spin_lock_init(&crng->lock);
812 		crng_initialize(crng);
813 		pool[i] = crng;
814 	}
815 	mb();
816 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
817 		for_each_node(i)
818 			kfree(pool[i]);
819 		kfree(pool);
820 	}
821 }
822 
823 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
824 
numa_crng_init(void)825 static void numa_crng_init(void)
826 {
827 	schedule_work(&numa_crng_init_work);
828 }
829 #else
numa_crng_init(void)830 static void numa_crng_init(void) {}
831 #endif
832 
833 /*
834  * crng_fast_load() can be called by code in the interrupt service
835  * path.  So we can't afford to dilly-dally.
836  */
crng_fast_load(const char * cp,size_t len)837 static int crng_fast_load(const char *cp, size_t len)
838 {
839 	unsigned long flags;
840 	char *p;
841 
842 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
843 		return 0;
844 	if (crng_init != 0) {
845 		spin_unlock_irqrestore(&primary_crng.lock, flags);
846 		return 0;
847 	}
848 	p = (unsigned char *) &primary_crng.state[4];
849 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
850 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
851 		cp++; crng_init_cnt++; len--;
852 	}
853 	spin_unlock_irqrestore(&primary_crng.lock, flags);
854 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
855 		invalidate_batched_entropy();
856 		crng_init = 1;
857 		wake_up_interruptible(&crng_init_wait);
858 		pr_notice("random: fast init done\n");
859 	}
860 	return 1;
861 }
862 
863 /*
864  * crng_slow_load() is called by add_device_randomness, which has two
865  * attributes.  (1) We can't trust the buffer passed to it is
866  * guaranteed to be unpredictable (so it might not have any entropy at
867  * all), and (2) it doesn't have the performance constraints of
868  * crng_fast_load().
869  *
870  * So we do something more comprehensive which is guaranteed to touch
871  * all of the primary_crng's state, and which uses a LFSR with a
872  * period of 255 as part of the mixing algorithm.  Finally, we do
873  * *not* advance crng_init_cnt since buffer we may get may be something
874  * like a fixed DMI table (for example), which might very well be
875  * unique to the machine, but is otherwise unvarying.
876  */
crng_slow_load(const char * cp,size_t len)877 static int crng_slow_load(const char *cp, size_t len)
878 {
879 	unsigned long		flags;
880 	static unsigned char	lfsr = 1;
881 	unsigned char		tmp;
882 	unsigned		i, max = CHACHA_KEY_SIZE;
883 	const char *		src_buf = cp;
884 	char *			dest_buf = (char *) &primary_crng.state[4];
885 
886 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
887 		return 0;
888 	if (crng_init != 0) {
889 		spin_unlock_irqrestore(&primary_crng.lock, flags);
890 		return 0;
891 	}
892 	if (len > max)
893 		max = len;
894 
895 	for (i = 0; i < max ; i++) {
896 		tmp = lfsr;
897 		lfsr >>= 1;
898 		if (tmp & 1)
899 			lfsr ^= 0xE1;
900 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
901 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
902 		lfsr += (tmp << 3) | (tmp >> 5);
903 	}
904 	spin_unlock_irqrestore(&primary_crng.lock, flags);
905 	return 1;
906 }
907 
crng_reseed(struct crng_state * crng,struct entropy_store * r)908 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
909 {
910 	unsigned long	flags;
911 	int		i, num;
912 	union {
913 		__u8	block[CHACHA_BLOCK_SIZE];
914 		__u32	key[8];
915 	} buf;
916 
917 	if (r) {
918 		num = extract_entropy(r, &buf, 32, 16, 0);
919 		if (num == 0)
920 			return;
921 	} else {
922 		_extract_crng(&primary_crng, buf.block);
923 		_crng_backtrack_protect(&primary_crng, buf.block,
924 					CHACHA_KEY_SIZE);
925 	}
926 	spin_lock_irqsave(&crng->lock, flags);
927 	for (i = 0; i < 8; i++) {
928 		unsigned long	rv;
929 		if (!arch_get_random_seed_long(&rv) &&
930 		    !arch_get_random_long(&rv))
931 			rv = random_get_entropy();
932 		crng->state[i+4] ^= buf.key[i] ^ rv;
933 	}
934 	memzero_explicit(&buf, sizeof(buf));
935 	crng->init_time = jiffies;
936 	spin_unlock_irqrestore(&crng->lock, flags);
937 	if (crng == &primary_crng && crng_init < 2) {
938 		invalidate_batched_entropy();
939 		numa_crng_init();
940 		crng_init = 2;
941 		process_random_ready_list();
942 		wake_up_interruptible(&crng_init_wait);
943 		pr_notice("random: crng init done\n");
944 		if (unseeded_warning.missed) {
945 			pr_notice("random: %d get_random_xx warning(s) missed "
946 				  "due to ratelimiting\n",
947 				  unseeded_warning.missed);
948 			unseeded_warning.missed = 0;
949 		}
950 		if (urandom_warning.missed) {
951 			pr_notice("random: %d urandom warning(s) missed "
952 				  "due to ratelimiting\n",
953 				  urandom_warning.missed);
954 			urandom_warning.missed = 0;
955 		}
956 	}
957 }
958 
_extract_crng(struct crng_state * crng,__u8 out[CHACHA_BLOCK_SIZE])959 static void _extract_crng(struct crng_state *crng,
960 			  __u8 out[CHACHA_BLOCK_SIZE])
961 {
962 	unsigned long v, flags;
963 
964 	if (crng_ready() &&
965 	    (time_after(crng_global_init_time, crng->init_time) ||
966 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
967 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
968 	spin_lock_irqsave(&crng->lock, flags);
969 	if (arch_get_random_long(&v))
970 		crng->state[14] ^= v;
971 	chacha20_block(&crng->state[0], out);
972 	if (crng->state[12] == 0)
973 		crng->state[13]++;
974 	spin_unlock_irqrestore(&crng->lock, flags);
975 }
976 
extract_crng(__u8 out[CHACHA_BLOCK_SIZE])977 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
978 {
979 	struct crng_state *crng = NULL;
980 
981 #ifdef CONFIG_NUMA
982 	if (crng_node_pool)
983 		crng = crng_node_pool[numa_node_id()];
984 	if (crng == NULL)
985 #endif
986 		crng = &primary_crng;
987 	_extract_crng(crng, out);
988 }
989 
990 /*
991  * Use the leftover bytes from the CRNG block output (if there is
992  * enough) to mutate the CRNG key to provide backtracking protection.
993  */
_crng_backtrack_protect(struct crng_state * crng,__u8 tmp[CHACHA_BLOCK_SIZE],int used)994 static void _crng_backtrack_protect(struct crng_state *crng,
995 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
996 {
997 	unsigned long	flags;
998 	__u32		*s, *d;
999 	int		i;
1000 
1001 	used = round_up(used, sizeof(__u32));
1002 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1003 		extract_crng(tmp);
1004 		used = 0;
1005 	}
1006 	spin_lock_irqsave(&crng->lock, flags);
1007 	s = (__u32 *) &tmp[used];
1008 	d = &crng->state[4];
1009 	for (i=0; i < 8; i++)
1010 		*d++ ^= *s++;
1011 	spin_unlock_irqrestore(&crng->lock, flags);
1012 }
1013 
crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE],int used)1014 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1015 {
1016 	struct crng_state *crng = NULL;
1017 
1018 #ifdef CONFIG_NUMA
1019 	if (crng_node_pool)
1020 		crng = crng_node_pool[numa_node_id()];
1021 	if (crng == NULL)
1022 #endif
1023 		crng = &primary_crng;
1024 	_crng_backtrack_protect(crng, tmp, used);
1025 }
1026 
extract_crng_user(void __user * buf,size_t nbytes)1027 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1028 {
1029 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1030 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1031 	int large_request = (nbytes > 256);
1032 
1033 	while (nbytes) {
1034 		if (large_request && need_resched()) {
1035 			if (signal_pending(current)) {
1036 				if (ret == 0)
1037 					ret = -ERESTARTSYS;
1038 				break;
1039 			}
1040 			schedule();
1041 		}
1042 
1043 		extract_crng(tmp);
1044 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1045 		if (copy_to_user(buf, tmp, i)) {
1046 			ret = -EFAULT;
1047 			break;
1048 		}
1049 
1050 		nbytes -= i;
1051 		buf += i;
1052 		ret += i;
1053 	}
1054 	crng_backtrack_protect(tmp, i);
1055 
1056 	/* Wipe data just written to memory */
1057 	memzero_explicit(tmp, sizeof(tmp));
1058 
1059 	return ret;
1060 }
1061 
1062 
1063 /*********************************************************************
1064  *
1065  * Entropy input management
1066  *
1067  *********************************************************************/
1068 
1069 /* There is one of these per entropy source */
1070 struct timer_rand_state {
1071 	cycles_t last_time;
1072 	long last_delta, last_delta2;
1073 	unsigned dont_count_entropy:1;
1074 };
1075 
1076 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1077 
1078 /*
1079  * Add device- or boot-specific data to the input pool to help
1080  * initialize it.
1081  *
1082  * None of this adds any entropy; it is meant to avoid the problem of
1083  * the entropy pool having similar initial state across largely
1084  * identical devices.
1085  */
add_device_randomness(const void * buf,unsigned int size)1086 void add_device_randomness(const void *buf, unsigned int size)
1087 {
1088 	unsigned long time = random_get_entropy() ^ jiffies;
1089 	unsigned long flags;
1090 
1091 	if (!crng_ready() && size)
1092 		crng_slow_load(buf, size);
1093 
1094 	trace_add_device_randomness(size, _RET_IP_);
1095 	spin_lock_irqsave(&input_pool.lock, flags);
1096 	_mix_pool_bytes(&input_pool, buf, size);
1097 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1098 	spin_unlock_irqrestore(&input_pool.lock, flags);
1099 }
1100 EXPORT_SYMBOL(add_device_randomness);
1101 
1102 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1103 
1104 /*
1105  * This function adds entropy to the entropy "pool" by using timing
1106  * delays.  It uses the timer_rand_state structure to make an estimate
1107  * of how many bits of entropy this call has added to the pool.
1108  *
1109  * The number "num" is also added to the pool - it should somehow describe
1110  * the type of event which just happened.  This is currently 0-255 for
1111  * keyboard scan codes, and 256 upwards for interrupts.
1112  *
1113  */
add_timer_randomness(struct timer_rand_state * state,unsigned num)1114 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1115 {
1116 	struct entropy_store	*r;
1117 	struct {
1118 		long jiffies;
1119 		unsigned cycles;
1120 		unsigned num;
1121 	} sample;
1122 	long delta, delta2, delta3;
1123 
1124 	preempt_disable();
1125 
1126 	sample.jiffies = jiffies;
1127 	sample.cycles = random_get_entropy();
1128 	sample.num = num;
1129 	r = &input_pool;
1130 	mix_pool_bytes(r, &sample, sizeof(sample));
1131 
1132 	/*
1133 	 * Calculate number of bits of randomness we probably added.
1134 	 * We take into account the first, second and third-order deltas
1135 	 * in order to make our estimate.
1136 	 */
1137 
1138 	if (!state->dont_count_entropy) {
1139 		delta = sample.jiffies - state->last_time;
1140 		state->last_time = sample.jiffies;
1141 
1142 		delta2 = delta - state->last_delta;
1143 		state->last_delta = delta;
1144 
1145 		delta3 = delta2 - state->last_delta2;
1146 		state->last_delta2 = delta2;
1147 
1148 		if (delta < 0)
1149 			delta = -delta;
1150 		if (delta2 < 0)
1151 			delta2 = -delta2;
1152 		if (delta3 < 0)
1153 			delta3 = -delta3;
1154 		if (delta > delta2)
1155 			delta = delta2;
1156 		if (delta > delta3)
1157 			delta = delta3;
1158 
1159 		/*
1160 		 * delta is now minimum absolute delta.
1161 		 * Round down by 1 bit on general principles,
1162 		 * and limit entropy entimate to 12 bits.
1163 		 */
1164 		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1165 	}
1166 	preempt_enable();
1167 }
1168 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1169 void add_input_randomness(unsigned int type, unsigned int code,
1170 				 unsigned int value)
1171 {
1172 	static unsigned char last_value;
1173 
1174 	/* ignore autorepeat and the like */
1175 	if (value == last_value)
1176 		return;
1177 
1178 	last_value = value;
1179 	add_timer_randomness(&input_timer_state,
1180 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1181 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1182 }
1183 EXPORT_SYMBOL_GPL(add_input_randomness);
1184 
1185 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1186 
1187 #ifdef ADD_INTERRUPT_BENCH
1188 static unsigned long avg_cycles, avg_deviation;
1189 
1190 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1191 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1192 
add_interrupt_bench(cycles_t start)1193 static void add_interrupt_bench(cycles_t start)
1194 {
1195         long delta = random_get_entropy() - start;
1196 
1197         /* Use a weighted moving average */
1198         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1199         avg_cycles += delta;
1200         /* And average deviation */
1201         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1202         avg_deviation += delta;
1203 }
1204 #else
1205 #define add_interrupt_bench(x)
1206 #endif
1207 
get_reg(struct fast_pool * f,struct pt_regs * regs)1208 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1209 {
1210 	__u32 *ptr = (__u32 *) regs;
1211 	unsigned int idx;
1212 
1213 	if (regs == NULL)
1214 		return 0;
1215 	idx = READ_ONCE(f->reg_idx);
1216 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1217 		idx = 0;
1218 	ptr += idx++;
1219 	WRITE_ONCE(f->reg_idx, idx);
1220 	return *ptr;
1221 }
1222 
add_interrupt_randomness(int irq,int irq_flags)1223 void add_interrupt_randomness(int irq, int irq_flags)
1224 {
1225 	struct entropy_store	*r;
1226 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1227 	struct pt_regs		*regs = get_irq_regs();
1228 	unsigned long		now = jiffies;
1229 	cycles_t		cycles = random_get_entropy();
1230 	__u32			c_high, j_high;
1231 	__u64			ip;
1232 	unsigned long		seed;
1233 	int			credit = 0;
1234 
1235 	if (cycles == 0)
1236 		cycles = get_reg(fast_pool, regs);
1237 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1238 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1239 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1240 	fast_pool->pool[1] ^= now ^ c_high;
1241 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1242 	fast_pool->pool[2] ^= ip;
1243 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1244 		get_reg(fast_pool, regs);
1245 
1246 	fast_mix(fast_pool);
1247 	add_interrupt_bench(cycles);
1248 
1249 	if (unlikely(crng_init == 0)) {
1250 		if ((fast_pool->count >= 64) &&
1251 		    crng_fast_load((char *) fast_pool->pool,
1252 				   sizeof(fast_pool->pool))) {
1253 			fast_pool->count = 0;
1254 			fast_pool->last = now;
1255 		}
1256 		return;
1257 	}
1258 
1259 	if ((fast_pool->count < 64) &&
1260 	    !time_after(now, fast_pool->last + HZ))
1261 		return;
1262 
1263 	r = &input_pool;
1264 	if (!spin_trylock(&r->lock))
1265 		return;
1266 
1267 	fast_pool->last = now;
1268 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1269 
1270 	/*
1271 	 * If we have architectural seed generator, produce a seed and
1272 	 * add it to the pool.  For the sake of paranoia don't let the
1273 	 * architectural seed generator dominate the input from the
1274 	 * interrupt noise.
1275 	 */
1276 	if (arch_get_random_seed_long(&seed)) {
1277 		__mix_pool_bytes(r, &seed, sizeof(seed));
1278 		credit = 1;
1279 	}
1280 	spin_unlock(&r->lock);
1281 
1282 	fast_pool->count = 0;
1283 
1284 	/* award one bit for the contents of the fast pool */
1285 	credit_entropy_bits(r, credit + 1);
1286 }
1287 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1288 
1289 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1290 void add_disk_randomness(struct gendisk *disk)
1291 {
1292 	if (!disk || !disk->random)
1293 		return;
1294 	/* first major is 1, so we get >= 0x200 here */
1295 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1296 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1297 }
1298 EXPORT_SYMBOL_GPL(add_disk_randomness);
1299 #endif
1300 
1301 /*********************************************************************
1302  *
1303  * Entropy extraction routines
1304  *
1305  *********************************************************************/
1306 
1307 /*
1308  * This utility inline function is responsible for transferring entropy
1309  * from the primary pool to the secondary extraction pool. We make
1310  * sure we pull enough for a 'catastrophic reseed'.
1311  */
1312 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1313 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1314 {
1315 	if (!r->pull ||
1316 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1317 	    r->entropy_count > r->poolinfo->poolfracbits)
1318 		return;
1319 
1320 	_xfer_secondary_pool(r, nbytes);
1321 }
1322 
_xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1323 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1324 {
1325 	__u32	tmp[OUTPUT_POOL_WORDS];
1326 
1327 	int bytes = nbytes;
1328 
1329 	/* pull at least as much as a wakeup */
1330 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1331 	/* but never more than the buffer size */
1332 	bytes = min_t(int, bytes, sizeof(tmp));
1333 
1334 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1335 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1336 	bytes = extract_entropy(r->pull, tmp, bytes,
1337 				random_read_wakeup_bits / 8, 0);
1338 	mix_pool_bytes(r, tmp, bytes);
1339 	credit_entropy_bits(r, bytes*8);
1340 }
1341 
1342 /*
1343  * Used as a workqueue function so that when the input pool is getting
1344  * full, we can "spill over" some entropy to the output pools.  That
1345  * way the output pools can store some of the excess entropy instead
1346  * of letting it go to waste.
1347  */
push_to_pool(struct work_struct * work)1348 static void push_to_pool(struct work_struct *work)
1349 {
1350 	struct entropy_store *r = container_of(work, struct entropy_store,
1351 					      push_work);
1352 	BUG_ON(!r);
1353 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1354 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1355 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1356 }
1357 
1358 /*
1359  * This function decides how many bytes to actually take from the
1360  * given pool, and also debits the entropy count accordingly.
1361  */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1362 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1363 		      int reserved)
1364 {
1365 	int entropy_count, orig, have_bytes;
1366 	size_t ibytes, nfrac;
1367 
1368 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1369 
1370 	/* Can we pull enough? */
1371 retry:
1372 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1373 	ibytes = nbytes;
1374 	/* never pull more than available */
1375 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1376 
1377 	if ((have_bytes -= reserved) < 0)
1378 		have_bytes = 0;
1379 	ibytes = min_t(size_t, ibytes, have_bytes);
1380 	if (ibytes < min)
1381 		ibytes = 0;
1382 
1383 	if (unlikely(entropy_count < 0)) {
1384 		pr_warn("random: negative entropy count: pool %s count %d\n",
1385 			r->name, entropy_count);
1386 		WARN_ON(1);
1387 		entropy_count = 0;
1388 	}
1389 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1390 	if ((size_t) entropy_count > nfrac)
1391 		entropy_count -= nfrac;
1392 	else
1393 		entropy_count = 0;
1394 
1395 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1396 		goto retry;
1397 
1398 	trace_debit_entropy(r->name, 8 * ibytes);
1399 	if (ibytes &&
1400 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1401 		wake_up_interruptible(&random_write_wait);
1402 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1403 	}
1404 
1405 	return ibytes;
1406 }
1407 
1408 /*
1409  * This function does the actual extraction for extract_entropy and
1410  * extract_entropy_user.
1411  *
1412  * Note: we assume that .poolwords is a multiple of 16 words.
1413  */
extract_buf(struct entropy_store * r,__u8 * out)1414 static void extract_buf(struct entropy_store *r, __u8 *out)
1415 {
1416 	int i;
1417 	union {
1418 		__u32 w[5];
1419 		unsigned long l[LONGS(20)];
1420 	} hash;
1421 	__u32 workspace[SHA_WORKSPACE_WORDS];
1422 	unsigned long flags;
1423 
1424 	/*
1425 	 * If we have an architectural hardware random number
1426 	 * generator, use it for SHA's initial vector
1427 	 */
1428 	sha_init(hash.w);
1429 	for (i = 0; i < LONGS(20); i++) {
1430 		unsigned long v;
1431 		if (!arch_get_random_long(&v))
1432 			break;
1433 		hash.l[i] = v;
1434 	}
1435 
1436 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1437 	spin_lock_irqsave(&r->lock, flags);
1438 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1439 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1440 
1441 	/*
1442 	 * We mix the hash back into the pool to prevent backtracking
1443 	 * attacks (where the attacker knows the state of the pool
1444 	 * plus the current outputs, and attempts to find previous
1445 	 * ouputs), unless the hash function can be inverted. By
1446 	 * mixing at least a SHA1 worth of hash data back, we make
1447 	 * brute-forcing the feedback as hard as brute-forcing the
1448 	 * hash.
1449 	 */
1450 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1451 	spin_unlock_irqrestore(&r->lock, flags);
1452 
1453 	memzero_explicit(workspace, sizeof(workspace));
1454 
1455 	/*
1456 	 * In case the hash function has some recognizable output
1457 	 * pattern, we fold it in half. Thus, we always feed back
1458 	 * twice as much data as we output.
1459 	 */
1460 	hash.w[0] ^= hash.w[3];
1461 	hash.w[1] ^= hash.w[4];
1462 	hash.w[2] ^= rol32(hash.w[2], 16);
1463 
1464 	memcpy(out, &hash, EXTRACT_SIZE);
1465 	memzero_explicit(&hash, sizeof(hash));
1466 }
1467 
_extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int fips)1468 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1469 				size_t nbytes, int fips)
1470 {
1471 	ssize_t ret = 0, i;
1472 	__u8 tmp[EXTRACT_SIZE];
1473 	unsigned long flags;
1474 
1475 	while (nbytes) {
1476 		extract_buf(r, tmp);
1477 
1478 		if (fips) {
1479 			spin_lock_irqsave(&r->lock, flags);
1480 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1481 				panic("Hardware RNG duplicated output!\n");
1482 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1483 			spin_unlock_irqrestore(&r->lock, flags);
1484 		}
1485 		i = min_t(int, nbytes, EXTRACT_SIZE);
1486 		memcpy(buf, tmp, i);
1487 		nbytes -= i;
1488 		buf += i;
1489 		ret += i;
1490 	}
1491 
1492 	/* Wipe data just returned from memory */
1493 	memzero_explicit(tmp, sizeof(tmp));
1494 
1495 	return ret;
1496 }
1497 
1498 /*
1499  * This function extracts randomness from the "entropy pool", and
1500  * returns it in a buffer.
1501  *
1502  * The min parameter specifies the minimum amount we can pull before
1503  * failing to avoid races that defeat catastrophic reseeding while the
1504  * reserved parameter indicates how much entropy we must leave in the
1505  * pool after each pull to avoid starving other readers.
1506  */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1507 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1508 				 size_t nbytes, int min, int reserved)
1509 {
1510 	__u8 tmp[EXTRACT_SIZE];
1511 	unsigned long flags;
1512 
1513 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1514 	if (fips_enabled) {
1515 		spin_lock_irqsave(&r->lock, flags);
1516 		if (!r->last_data_init) {
1517 			r->last_data_init = 1;
1518 			spin_unlock_irqrestore(&r->lock, flags);
1519 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1520 					      ENTROPY_BITS(r), _RET_IP_);
1521 			xfer_secondary_pool(r, EXTRACT_SIZE);
1522 			extract_buf(r, tmp);
1523 			spin_lock_irqsave(&r->lock, flags);
1524 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1525 		}
1526 		spin_unlock_irqrestore(&r->lock, flags);
1527 	}
1528 
1529 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1530 	xfer_secondary_pool(r, nbytes);
1531 	nbytes = account(r, nbytes, min, reserved);
1532 
1533 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1534 }
1535 
1536 /*
1537  * This function extracts randomness from the "entropy pool", and
1538  * returns it in a userspace buffer.
1539  */
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)1540 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1541 				    size_t nbytes)
1542 {
1543 	ssize_t ret = 0, i;
1544 	__u8 tmp[EXTRACT_SIZE];
1545 	int large_request = (nbytes > 256);
1546 
1547 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1548 	xfer_secondary_pool(r, nbytes);
1549 	nbytes = account(r, nbytes, 0, 0);
1550 
1551 	while (nbytes) {
1552 		if (large_request && need_resched()) {
1553 			if (signal_pending(current)) {
1554 				if (ret == 0)
1555 					ret = -ERESTARTSYS;
1556 				break;
1557 			}
1558 			schedule();
1559 		}
1560 
1561 		extract_buf(r, tmp);
1562 		i = min_t(int, nbytes, EXTRACT_SIZE);
1563 		if (copy_to_user(buf, tmp, i)) {
1564 			ret = -EFAULT;
1565 			break;
1566 		}
1567 
1568 		nbytes -= i;
1569 		buf += i;
1570 		ret += i;
1571 	}
1572 
1573 	/* Wipe data just returned from memory */
1574 	memzero_explicit(tmp, sizeof(tmp));
1575 
1576 	return ret;
1577 }
1578 
1579 #define warn_unseeded_randomness(previous) \
1580 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1581 
_warn_unseeded_randomness(const char * func_name,void * caller,void ** previous)1582 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1583 				      void **previous)
1584 {
1585 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1586 	const bool print_once = false;
1587 #else
1588 	static bool print_once __read_mostly;
1589 #endif
1590 
1591 	if (print_once ||
1592 	    crng_ready() ||
1593 	    (previous && (caller == READ_ONCE(*previous))))
1594 		return;
1595 	WRITE_ONCE(*previous, caller);
1596 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1597 	print_once = true;
1598 #endif
1599 	if (__ratelimit(&unseeded_warning))
1600 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1601 			  func_name, caller, crng_init);
1602 }
1603 
1604 /*
1605  * This function is the exported kernel interface.  It returns some
1606  * number of good random numbers, suitable for key generation, seeding
1607  * TCP sequence numbers, etc.  It does not rely on the hardware random
1608  * number generator.  For random bytes direct from the hardware RNG
1609  * (when available), use get_random_bytes_arch(). In order to ensure
1610  * that the randomness provided by this function is okay, the function
1611  * wait_for_random_bytes() should be called and return 0 at least once
1612  * at any point prior.
1613  */
_get_random_bytes(void * buf,int nbytes)1614 static void _get_random_bytes(void *buf, int nbytes)
1615 {
1616 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1617 
1618 	trace_get_random_bytes(nbytes, _RET_IP_);
1619 
1620 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1621 		extract_crng(buf);
1622 		buf += CHACHA_BLOCK_SIZE;
1623 		nbytes -= CHACHA_BLOCK_SIZE;
1624 	}
1625 
1626 	if (nbytes > 0) {
1627 		extract_crng(tmp);
1628 		memcpy(buf, tmp, nbytes);
1629 		crng_backtrack_protect(tmp, nbytes);
1630 	} else
1631 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1632 	memzero_explicit(tmp, sizeof(tmp));
1633 }
1634 
get_random_bytes(void * buf,int nbytes)1635 void get_random_bytes(void *buf, int nbytes)
1636 {
1637 	static void *previous;
1638 
1639 	warn_unseeded_randomness(&previous);
1640 	_get_random_bytes(buf, nbytes);
1641 }
1642 EXPORT_SYMBOL(get_random_bytes);
1643 
1644 /*
1645  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1646  * cryptographically secure random numbers. This applies to: the /dev/urandom
1647  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1648  * family of functions. Using any of these functions without first calling
1649  * this function forfeits the guarantee of security.
1650  *
1651  * Returns: 0 if the urandom pool has been seeded.
1652  *          -ERESTARTSYS if the function was interrupted by a signal.
1653  */
wait_for_random_bytes(void)1654 int wait_for_random_bytes(void)
1655 {
1656 	if (likely(crng_ready()))
1657 		return 0;
1658 	return wait_event_interruptible(crng_init_wait, crng_ready());
1659 }
1660 EXPORT_SYMBOL(wait_for_random_bytes);
1661 
1662 /*
1663  * Add a callback function that will be invoked when the nonblocking
1664  * pool is initialised.
1665  *
1666  * returns: 0 if callback is successfully added
1667  *	    -EALREADY if pool is already initialised (callback not called)
1668  *	    -ENOENT if module for callback is not alive
1669  */
add_random_ready_callback(struct random_ready_callback * rdy)1670 int add_random_ready_callback(struct random_ready_callback *rdy)
1671 {
1672 	struct module *owner;
1673 	unsigned long flags;
1674 	int err = -EALREADY;
1675 
1676 	if (crng_ready())
1677 		return err;
1678 
1679 	owner = rdy->owner;
1680 	if (!try_module_get(owner))
1681 		return -ENOENT;
1682 
1683 	spin_lock_irqsave(&random_ready_list_lock, flags);
1684 	if (crng_ready())
1685 		goto out;
1686 
1687 	owner = NULL;
1688 
1689 	list_add(&rdy->list, &random_ready_list);
1690 	err = 0;
1691 
1692 out:
1693 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1694 
1695 	module_put(owner);
1696 
1697 	return err;
1698 }
1699 EXPORT_SYMBOL(add_random_ready_callback);
1700 
1701 /*
1702  * Delete a previously registered readiness callback function.
1703  */
del_random_ready_callback(struct random_ready_callback * rdy)1704 void del_random_ready_callback(struct random_ready_callback *rdy)
1705 {
1706 	unsigned long flags;
1707 	struct module *owner = NULL;
1708 
1709 	spin_lock_irqsave(&random_ready_list_lock, flags);
1710 	if (!list_empty(&rdy->list)) {
1711 		list_del_init(&rdy->list);
1712 		owner = rdy->owner;
1713 	}
1714 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1715 
1716 	module_put(owner);
1717 }
1718 EXPORT_SYMBOL(del_random_ready_callback);
1719 
1720 /*
1721  * This function will use the architecture-specific hardware random
1722  * number generator if it is available.  The arch-specific hw RNG will
1723  * almost certainly be faster than what we can do in software, but it
1724  * is impossible to verify that it is implemented securely (as
1725  * opposed, to, say, the AES encryption of a sequence number using a
1726  * key known by the NSA).  So it's useful if we need the speed, but
1727  * only if we're willing to trust the hardware manufacturer not to
1728  * have put in a back door.
1729  */
get_random_bytes_arch(void * buf,int nbytes)1730 void get_random_bytes_arch(void *buf, int nbytes)
1731 {
1732 	char *p = buf;
1733 
1734 	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1735 	while (nbytes) {
1736 		unsigned long v;
1737 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1738 
1739 		if (!arch_get_random_long(&v))
1740 			break;
1741 
1742 		memcpy(p, &v, chunk);
1743 		p += chunk;
1744 		nbytes -= chunk;
1745 	}
1746 
1747 	if (nbytes)
1748 		get_random_bytes(p, nbytes);
1749 }
1750 EXPORT_SYMBOL(get_random_bytes_arch);
1751 
1752 
1753 /*
1754  * init_std_data - initialize pool with system data
1755  *
1756  * @r: pool to initialize
1757  *
1758  * This function clears the pool's entropy count and mixes some system
1759  * data into the pool to prepare it for use. The pool is not cleared
1760  * as that can only decrease the entropy in the pool.
1761  */
init_std_data(struct entropy_store * r)1762 static void init_std_data(struct entropy_store *r)
1763 {
1764 	int i;
1765 	ktime_t now = ktime_get_real();
1766 	unsigned long rv;
1767 
1768 	r->last_pulled = jiffies;
1769 	mix_pool_bytes(r, &now, sizeof(now));
1770 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1771 		if (!arch_get_random_seed_long(&rv) &&
1772 		    !arch_get_random_long(&rv))
1773 			rv = random_get_entropy();
1774 		mix_pool_bytes(r, &rv, sizeof(rv));
1775 	}
1776 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1777 }
1778 
1779 /*
1780  * Note that setup_arch() may call add_device_randomness()
1781  * long before we get here. This allows seeding of the pools
1782  * with some platform dependent data very early in the boot
1783  * process. But it limits our options here. We must use
1784  * statically allocated structures that already have all
1785  * initializations complete at compile time. We should also
1786  * take care not to overwrite the precious per platform data
1787  * we were given.
1788  */
rand_initialize(void)1789 static int rand_initialize(void)
1790 {
1791 	init_std_data(&input_pool);
1792 	init_std_data(&blocking_pool);
1793 	crng_initialize(&primary_crng);
1794 	crng_global_init_time = jiffies;
1795 	if (ratelimit_disable) {
1796 		urandom_warning.interval = 0;
1797 		unseeded_warning.interval = 0;
1798 	}
1799 	return 0;
1800 }
1801 early_initcall(rand_initialize);
1802 
1803 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1804 void rand_initialize_disk(struct gendisk *disk)
1805 {
1806 	struct timer_rand_state *state;
1807 
1808 	/*
1809 	 * If kzalloc returns null, we just won't use that entropy
1810 	 * source.
1811 	 */
1812 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1813 	if (state) {
1814 		state->last_time = INITIAL_JIFFIES;
1815 		disk->random = state;
1816 	}
1817 }
1818 #endif
1819 
1820 static ssize_t
_random_read(int nonblock,char __user * buf,size_t nbytes)1821 _random_read(int nonblock, char __user *buf, size_t nbytes)
1822 {
1823 	ssize_t n;
1824 
1825 	if (nbytes == 0)
1826 		return 0;
1827 
1828 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1829 	while (1) {
1830 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1831 		if (n < 0)
1832 			return n;
1833 		trace_random_read(n*8, (nbytes-n)*8,
1834 				  ENTROPY_BITS(&blocking_pool),
1835 				  ENTROPY_BITS(&input_pool));
1836 		if (n > 0)
1837 			return n;
1838 
1839 		/* Pool is (near) empty.  Maybe wait and retry. */
1840 		if (nonblock)
1841 			return -EAGAIN;
1842 
1843 		wait_event_interruptible(random_read_wait,
1844 			ENTROPY_BITS(&input_pool) >=
1845 			random_read_wakeup_bits);
1846 		if (signal_pending(current))
1847 			return -ERESTARTSYS;
1848 	}
1849 }
1850 
1851 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1852 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1853 {
1854 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1855 }
1856 
1857 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1858 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1859 {
1860 	unsigned long flags;
1861 	static int maxwarn = 10;
1862 	int ret;
1863 
1864 	if (!crng_ready() && maxwarn > 0) {
1865 		maxwarn--;
1866 		if (__ratelimit(&urandom_warning))
1867 			printk(KERN_NOTICE "random: %s: uninitialized "
1868 			       "urandom read (%zd bytes read)\n",
1869 			       current->comm, nbytes);
1870 		spin_lock_irqsave(&primary_crng.lock, flags);
1871 		crng_init_cnt = 0;
1872 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1873 	}
1874 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1875 	ret = extract_crng_user(buf, nbytes);
1876 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1877 	return ret;
1878 }
1879 
1880 static unsigned int
random_poll(struct file * file,poll_table * wait)1881 random_poll(struct file *file, poll_table * wait)
1882 {
1883 	unsigned int mask;
1884 
1885 	poll_wait(file, &random_read_wait, wait);
1886 	poll_wait(file, &random_write_wait, wait);
1887 	mask = 0;
1888 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1889 		mask |= POLLIN | POLLRDNORM;
1890 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1891 		mask |= POLLOUT | POLLWRNORM;
1892 	return mask;
1893 }
1894 
1895 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1896 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1897 {
1898 	size_t bytes;
1899 	__u32 t, buf[16];
1900 	const char __user *p = buffer;
1901 
1902 	while (count > 0) {
1903 		int b, i = 0;
1904 
1905 		bytes = min(count, sizeof(buf));
1906 		if (copy_from_user(&buf, p, bytes))
1907 			return -EFAULT;
1908 
1909 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1910 			if (!arch_get_random_int(&t))
1911 				break;
1912 			buf[i] ^= t;
1913 		}
1914 
1915 		count -= bytes;
1916 		p += bytes;
1917 
1918 		mix_pool_bytes(r, buf, bytes);
1919 		cond_resched();
1920 	}
1921 
1922 	return 0;
1923 }
1924 
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1925 static ssize_t random_write(struct file *file, const char __user *buffer,
1926 			    size_t count, loff_t *ppos)
1927 {
1928 	size_t ret;
1929 
1930 	ret = write_pool(&input_pool, buffer, count);
1931 	if (ret)
1932 		return ret;
1933 
1934 	return (ssize_t)count;
1935 }
1936 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1937 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1938 {
1939 	int size, ent_count;
1940 	int __user *p = (int __user *)arg;
1941 	int retval;
1942 
1943 	switch (cmd) {
1944 	case RNDGETENTCNT:
1945 		/* inherently racy, no point locking */
1946 		ent_count = ENTROPY_BITS(&input_pool);
1947 		if (put_user(ent_count, p))
1948 			return -EFAULT;
1949 		return 0;
1950 	case RNDADDTOENTCNT:
1951 		if (!capable(CAP_SYS_ADMIN))
1952 			return -EPERM;
1953 		if (get_user(ent_count, p))
1954 			return -EFAULT;
1955 		return credit_entropy_bits_safe(&input_pool, ent_count);
1956 	case RNDADDENTROPY:
1957 		if (!capable(CAP_SYS_ADMIN))
1958 			return -EPERM;
1959 		if (get_user(ent_count, p++))
1960 			return -EFAULT;
1961 		if (ent_count < 0)
1962 			return -EINVAL;
1963 		if (get_user(size, p++))
1964 			return -EFAULT;
1965 		retval = write_pool(&input_pool, (const char __user *)p,
1966 				    size);
1967 		if (retval < 0)
1968 			return retval;
1969 		return credit_entropy_bits_safe(&input_pool, ent_count);
1970 	case RNDZAPENTCNT:
1971 	case RNDCLEARPOOL:
1972 		/*
1973 		 * Clear the entropy pool counters. We no longer clear
1974 		 * the entropy pool, as that's silly.
1975 		 */
1976 		if (!capable(CAP_SYS_ADMIN))
1977 			return -EPERM;
1978 		input_pool.entropy_count = 0;
1979 		blocking_pool.entropy_count = 0;
1980 		return 0;
1981 	case RNDRESEEDCRNG:
1982 		if (!capable(CAP_SYS_ADMIN))
1983 			return -EPERM;
1984 		if (crng_init < 2)
1985 			return -ENODATA;
1986 		crng_reseed(&primary_crng, NULL);
1987 		crng_global_init_time = jiffies - 1;
1988 		return 0;
1989 	default:
1990 		return -EINVAL;
1991 	}
1992 }
1993 
random_fasync(int fd,struct file * filp,int on)1994 static int random_fasync(int fd, struct file *filp, int on)
1995 {
1996 	return fasync_helper(fd, filp, on, &fasync);
1997 }
1998 
1999 const struct file_operations random_fops = {
2000 	.read  = random_read,
2001 	.write = random_write,
2002 	.poll  = random_poll,
2003 	.unlocked_ioctl = random_ioctl,
2004 	.fasync = random_fasync,
2005 	.llseek = noop_llseek,
2006 };
2007 
2008 const struct file_operations urandom_fops = {
2009 	.read  = urandom_read,
2010 	.write = random_write,
2011 	.unlocked_ioctl = random_ioctl,
2012 	.fasync = random_fasync,
2013 	.llseek = noop_llseek,
2014 };
2015 
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)2016 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2017 		unsigned int, flags)
2018 {
2019 	int ret;
2020 
2021 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2022 		return -EINVAL;
2023 
2024 	if (count > INT_MAX)
2025 		count = INT_MAX;
2026 
2027 	if (flags & GRND_RANDOM)
2028 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2029 
2030 	if (!crng_ready()) {
2031 		if (flags & GRND_NONBLOCK)
2032 			return -EAGAIN;
2033 		ret = wait_for_random_bytes();
2034 		if (unlikely(ret))
2035 			return ret;
2036 	}
2037 	return urandom_read(NULL, buf, count, NULL);
2038 }
2039 
2040 /********************************************************************
2041  *
2042  * Sysctl interface
2043  *
2044  ********************************************************************/
2045 
2046 #ifdef CONFIG_SYSCTL
2047 
2048 #include <linux/sysctl.h>
2049 
2050 static int min_read_thresh = 8, min_write_thresh;
2051 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2052 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2053 static int random_min_urandom_seed = 60;
2054 static char sysctl_bootid[16];
2055 
2056 /*
2057  * This function is used to return both the bootid UUID, and random
2058  * UUID.  The difference is in whether table->data is NULL; if it is,
2059  * then a new UUID is generated and returned to the user.
2060  *
2061  * If the user accesses this via the proc interface, the UUID will be
2062  * returned as an ASCII string in the standard UUID format; if via the
2063  * sysctl system call, as 16 bytes of binary data.
2064  */
proc_do_uuid(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2065 static int proc_do_uuid(struct ctl_table *table, int write,
2066 			void __user *buffer, size_t *lenp, loff_t *ppos)
2067 {
2068 	struct ctl_table fake_table;
2069 	unsigned char buf[64], tmp_uuid[16], *uuid;
2070 
2071 	uuid = table->data;
2072 	if (!uuid) {
2073 		uuid = tmp_uuid;
2074 		generate_random_uuid(uuid);
2075 	} else {
2076 		static DEFINE_SPINLOCK(bootid_spinlock);
2077 
2078 		spin_lock(&bootid_spinlock);
2079 		if (!uuid[8])
2080 			generate_random_uuid(uuid);
2081 		spin_unlock(&bootid_spinlock);
2082 	}
2083 
2084 	sprintf(buf, "%pU", uuid);
2085 
2086 	fake_table.data = buf;
2087 	fake_table.maxlen = sizeof(buf);
2088 
2089 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2090 }
2091 
2092 /*
2093  * Return entropy available scaled to integral bits
2094  */
proc_do_entropy(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2095 static int proc_do_entropy(struct ctl_table *table, int write,
2096 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2097 {
2098 	struct ctl_table fake_table;
2099 	int entropy_count;
2100 
2101 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2102 
2103 	fake_table.data = &entropy_count;
2104 	fake_table.maxlen = sizeof(entropy_count);
2105 
2106 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2107 }
2108 
2109 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2110 extern struct ctl_table random_table[];
2111 struct ctl_table random_table[] = {
2112 	{
2113 		.procname	= "poolsize",
2114 		.data		= &sysctl_poolsize,
2115 		.maxlen		= sizeof(int),
2116 		.mode		= 0444,
2117 		.proc_handler	= proc_dointvec,
2118 	},
2119 	{
2120 		.procname	= "entropy_avail",
2121 		.maxlen		= sizeof(int),
2122 		.mode		= 0444,
2123 		.proc_handler	= proc_do_entropy,
2124 		.data		= &input_pool.entropy_count,
2125 	},
2126 	{
2127 		.procname	= "read_wakeup_threshold",
2128 		.data		= &random_read_wakeup_bits,
2129 		.maxlen		= sizeof(int),
2130 		.mode		= 0644,
2131 		.proc_handler	= proc_dointvec_minmax,
2132 		.extra1		= &min_read_thresh,
2133 		.extra2		= &max_read_thresh,
2134 	},
2135 	{
2136 		.procname	= "write_wakeup_threshold",
2137 		.data		= &random_write_wakeup_bits,
2138 		.maxlen		= sizeof(int),
2139 		.mode		= 0644,
2140 		.proc_handler	= proc_dointvec_minmax,
2141 		.extra1		= &min_write_thresh,
2142 		.extra2		= &max_write_thresh,
2143 	},
2144 	{
2145 		.procname	= "urandom_min_reseed_secs",
2146 		.data		= &random_min_urandom_seed,
2147 		.maxlen		= sizeof(int),
2148 		.mode		= 0644,
2149 		.proc_handler	= proc_dointvec,
2150 	},
2151 	{
2152 		.procname	= "boot_id",
2153 		.data		= &sysctl_bootid,
2154 		.maxlen		= 16,
2155 		.mode		= 0444,
2156 		.proc_handler	= proc_do_uuid,
2157 	},
2158 	{
2159 		.procname	= "uuid",
2160 		.maxlen		= 16,
2161 		.mode		= 0444,
2162 		.proc_handler	= proc_do_uuid,
2163 	},
2164 #ifdef ADD_INTERRUPT_BENCH
2165 	{
2166 		.procname	= "add_interrupt_avg_cycles",
2167 		.data		= &avg_cycles,
2168 		.maxlen		= sizeof(avg_cycles),
2169 		.mode		= 0444,
2170 		.proc_handler	= proc_doulongvec_minmax,
2171 	},
2172 	{
2173 		.procname	= "add_interrupt_avg_deviation",
2174 		.data		= &avg_deviation,
2175 		.maxlen		= sizeof(avg_deviation),
2176 		.mode		= 0444,
2177 		.proc_handler	= proc_doulongvec_minmax,
2178 	},
2179 #endif
2180 	{ }
2181 };
2182 #endif 	/* CONFIG_SYSCTL */
2183 
2184 struct batched_entropy {
2185 	union {
2186 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2187 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2188 	};
2189 	unsigned int position;
2190 	spinlock_t batch_lock;
2191 };
2192 
2193 /*
2194  * Get a random word for internal kernel use only. The quality of the random
2195  * number is either as good as RDRAND or as good as /dev/urandom, with the
2196  * goal of being quite fast and not depleting entropy. In order to ensure
2197  * that the randomness provided by this function is okay, the function
2198  * wait_for_random_bytes() should be called and return 0 at least once
2199  * at any point prior.
2200  */
2201 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2202 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2203 };
2204 
get_random_u64(void)2205 u64 get_random_u64(void)
2206 {
2207 	u64 ret;
2208 	unsigned long flags;
2209 	struct batched_entropy *batch;
2210 	static void *previous;
2211 
2212 #if BITS_PER_LONG == 64
2213 	if (arch_get_random_long((unsigned long *)&ret))
2214 		return ret;
2215 #else
2216 	if (arch_get_random_long((unsigned long *)&ret) &&
2217 	    arch_get_random_long((unsigned long *)&ret + 1))
2218 	    return ret;
2219 #endif
2220 
2221 	warn_unseeded_randomness(&previous);
2222 
2223 	batch = raw_cpu_ptr(&batched_entropy_u64);
2224 	spin_lock_irqsave(&batch->batch_lock, flags);
2225 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2226 		extract_crng((u8 *)batch->entropy_u64);
2227 		batch->position = 0;
2228 	}
2229 	ret = batch->entropy_u64[batch->position++];
2230 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2231 	return ret;
2232 }
2233 EXPORT_SYMBOL(get_random_u64);
2234 
2235 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2236 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2237 };
get_random_u32(void)2238 u32 get_random_u32(void)
2239 {
2240 	u32 ret;
2241 	unsigned long flags;
2242 	struct batched_entropy *batch;
2243 	static void *previous;
2244 
2245 	if (arch_get_random_int(&ret))
2246 		return ret;
2247 
2248 	warn_unseeded_randomness(&previous);
2249 
2250 	batch = raw_cpu_ptr(&batched_entropy_u32);
2251 	spin_lock_irqsave(&batch->batch_lock, flags);
2252 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2253 		extract_crng((u8 *)batch->entropy_u32);
2254 		batch->position = 0;
2255 	}
2256 	ret = batch->entropy_u32[batch->position++];
2257 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(get_random_u32);
2261 
2262 /* It's important to invalidate all potential batched entropy that might
2263  * be stored before the crng is initialized, which we can do lazily by
2264  * simply resetting the counter to zero so that it's re-extracted on the
2265  * next usage. */
invalidate_batched_entropy(void)2266 static void invalidate_batched_entropy(void)
2267 {
2268 	int cpu;
2269 	unsigned long flags;
2270 
2271 	for_each_possible_cpu (cpu) {
2272 		struct batched_entropy *batched_entropy;
2273 
2274 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2275 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2276 		batched_entropy->position = 0;
2277 		spin_unlock(&batched_entropy->batch_lock);
2278 
2279 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2280 		spin_lock(&batched_entropy->batch_lock);
2281 		batched_entropy->position = 0;
2282 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2283 	}
2284 }
2285 
2286 /**
2287  * randomize_page - Generate a random, page aligned address
2288  * @start:	The smallest acceptable address the caller will take.
2289  * @range:	The size of the area, starting at @start, within which the
2290  *		random address must fall.
2291  *
2292  * If @start + @range would overflow, @range is capped.
2293  *
2294  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2295  * @start was already page aligned.  We now align it regardless.
2296  *
2297  * Return: A page aligned address within [start, start + range).  On error,
2298  * @start is returned.
2299  */
2300 unsigned long
randomize_page(unsigned long start,unsigned long range)2301 randomize_page(unsigned long start, unsigned long range)
2302 {
2303 	if (!PAGE_ALIGNED(start)) {
2304 		range -= PAGE_ALIGN(start) - start;
2305 		start = PAGE_ALIGN(start);
2306 	}
2307 
2308 	if (start > ULONG_MAX - range)
2309 		range = ULONG_MAX - start;
2310 
2311 	range >>= PAGE_SHIFT;
2312 
2313 	if (range == 0)
2314 		return start;
2315 
2316 	return start + (get_random_long() % range << PAGE_SHIFT);
2317 }
2318 
2319 /* Interface for in-kernel drivers of true hardware RNGs.
2320  * Those devices may produce endless random bits and will be throttled
2321  * when our pool is full.
2322  */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)2323 void add_hwgenerator_randomness(const char *buffer, size_t count,
2324 				size_t entropy)
2325 {
2326 	struct entropy_store *poolp = &input_pool;
2327 
2328 	if (unlikely(crng_init == 0)) {
2329 		crng_fast_load(buffer, count);
2330 		return;
2331 	}
2332 
2333 	/* Suspend writing if we're above the trickle threshold.
2334 	 * We'll be woken up again once below random_write_wakeup_thresh,
2335 	 * or when the calling thread is about to terminate.
2336 	 */
2337 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2338 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2339 	mix_pool_bytes(poolp, buffer, count);
2340 	credit_entropy_bits(poolp, entropy);
2341 }
2342 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2343