1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45 /*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha.h>
269
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278
279 /* #define ADD_INTERRUPT_BENCH */
280
281 /*
282 * Configuration information
283 */
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
290
291
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
294 /*
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
300 */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
304 /*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
308 static int random_read_wakeup_bits = 64;
309
310 /*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316
317 /*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373 #if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399 #endif
400 };
401
402 /*
403 * Static global variables
404 */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411
412 struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416 };
417
418 struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421
422 /*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
440
441 static struct ratelimit_state unseeded_warning =
442 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
443 static struct ratelimit_state urandom_warning =
444 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
445
446 static int ratelimit_disable __read_mostly;
447
448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
450
451 /**********************************************************************
452 *
453 * OS independent entropy store. Here are the functions which handle
454 * storing entropy in an entropy pool.
455 *
456 **********************************************************************/
457
458 struct entropy_store;
459 struct entropy_store {
460 /* read-only data: */
461 const struct poolinfo *poolinfo;
462 __u32 *pool;
463 const char *name;
464 struct entropy_store *pull;
465 struct work_struct push_work;
466
467 /* read-write data: */
468 unsigned long last_pulled;
469 spinlock_t lock;
470 unsigned short add_ptr;
471 unsigned short input_rotate;
472 int entropy_count;
473 int entropy_total;
474 unsigned int initialized:1;
475 unsigned int last_data_init:1;
476 __u8 last_data[EXTRACT_SIZE];
477 };
478
479 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
480 size_t nbytes, int min, int rsvd);
481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
482 size_t nbytes, int fips);
483
484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
485 static void push_to_pool(struct work_struct *work);
486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
488
489 static struct entropy_store input_pool = {
490 .poolinfo = &poolinfo_table[0],
491 .name = "input",
492 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
493 .pool = input_pool_data
494 };
495
496 static struct entropy_store blocking_pool = {
497 .poolinfo = &poolinfo_table[1],
498 .name = "blocking",
499 .pull = &input_pool,
500 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
501 .pool = blocking_pool_data,
502 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
503 push_to_pool),
504 };
505
506 static __u32 const twist_table[8] = {
507 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
508 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
509
510 /*
511 * This function adds bytes into the entropy "pool". It does not
512 * update the entropy estimate. The caller should call
513 * credit_entropy_bits if this is appropriate.
514 *
515 * The pool is stirred with a primitive polynomial of the appropriate
516 * degree, and then twisted. We twist by three bits at a time because
517 * it's cheap to do so and helps slightly in the expected case where
518 * the entropy is concentrated in the low-order bits.
519 */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)520 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
521 int nbytes)
522 {
523 unsigned long i, tap1, tap2, tap3, tap4, tap5;
524 int input_rotate;
525 int wordmask = r->poolinfo->poolwords - 1;
526 const char *bytes = in;
527 __u32 w;
528
529 tap1 = r->poolinfo->tap1;
530 tap2 = r->poolinfo->tap2;
531 tap3 = r->poolinfo->tap3;
532 tap4 = r->poolinfo->tap4;
533 tap5 = r->poolinfo->tap5;
534
535 input_rotate = r->input_rotate;
536 i = r->add_ptr;
537
538 /* mix one byte at a time to simplify size handling and churn faster */
539 while (nbytes--) {
540 w = rol32(*bytes++, input_rotate);
541 i = (i - 1) & wordmask;
542
543 /* XOR in the various taps */
544 w ^= r->pool[i];
545 w ^= r->pool[(i + tap1) & wordmask];
546 w ^= r->pool[(i + tap2) & wordmask];
547 w ^= r->pool[(i + tap3) & wordmask];
548 w ^= r->pool[(i + tap4) & wordmask];
549 w ^= r->pool[(i + tap5) & wordmask];
550
551 /* Mix the result back in with a twist */
552 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
553
554 /*
555 * Normally, we add 7 bits of rotation to the pool.
556 * At the beginning of the pool, add an extra 7 bits
557 * rotation, so that successive passes spread the
558 * input bits across the pool evenly.
559 */
560 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
561 }
562
563 r->input_rotate = input_rotate;
564 r->add_ptr = i;
565 }
566
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)567 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
568 int nbytes)
569 {
570 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
571 _mix_pool_bytes(r, in, nbytes);
572 }
573
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)574 static void mix_pool_bytes(struct entropy_store *r, const void *in,
575 int nbytes)
576 {
577 unsigned long flags;
578
579 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
580 spin_lock_irqsave(&r->lock, flags);
581 _mix_pool_bytes(r, in, nbytes);
582 spin_unlock_irqrestore(&r->lock, flags);
583 }
584
585 struct fast_pool {
586 __u32 pool[4];
587 unsigned long last;
588 unsigned short reg_idx;
589 unsigned char count;
590 };
591
592 /*
593 * This is a fast mixing routine used by the interrupt randomness
594 * collector. It's hardcoded for an 128 bit pool and assumes that any
595 * locks that might be needed are taken by the caller.
596 */
fast_mix(struct fast_pool * f)597 static void fast_mix(struct fast_pool *f)
598 {
599 __u32 a = f->pool[0], b = f->pool[1];
600 __u32 c = f->pool[2], d = f->pool[3];
601
602 a += b; c += d;
603 b = rol32(b, 6); d = rol32(d, 27);
604 d ^= a; b ^= c;
605
606 a += b; c += d;
607 b = rol32(b, 16); d = rol32(d, 14);
608 d ^= a; b ^= c;
609
610 a += b; c += d;
611 b = rol32(b, 6); d = rol32(d, 27);
612 d ^= a; b ^= c;
613
614 a += b; c += d;
615 b = rol32(b, 16); d = rol32(d, 14);
616 d ^= a; b ^= c;
617
618 f->pool[0] = a; f->pool[1] = b;
619 f->pool[2] = c; f->pool[3] = d;
620 f->count++;
621 }
622
process_random_ready_list(void)623 static void process_random_ready_list(void)
624 {
625 unsigned long flags;
626 struct random_ready_callback *rdy, *tmp;
627
628 spin_lock_irqsave(&random_ready_list_lock, flags);
629 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
630 struct module *owner = rdy->owner;
631
632 list_del_init(&rdy->list);
633 rdy->func(rdy);
634 module_put(owner);
635 }
636 spin_unlock_irqrestore(&random_ready_list_lock, flags);
637 }
638
639 /*
640 * Credit (or debit) the entropy store with n bits of entropy.
641 * Use credit_entropy_bits_safe() if the value comes from userspace
642 * or otherwise should be checked for extreme values.
643 */
credit_entropy_bits(struct entropy_store * r,int nbits)644 static void credit_entropy_bits(struct entropy_store *r, int nbits)
645 {
646 int entropy_count, orig;
647 const int pool_size = r->poolinfo->poolfracbits;
648 int nfrac = nbits << ENTROPY_SHIFT;
649
650 if (!nbits)
651 return;
652
653 retry:
654 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
655 if (nfrac < 0) {
656 /* Debit */
657 entropy_count += nfrac;
658 } else {
659 /*
660 * Credit: we have to account for the possibility of
661 * overwriting already present entropy. Even in the
662 * ideal case of pure Shannon entropy, new contributions
663 * approach the full value asymptotically:
664 *
665 * entropy <- entropy + (pool_size - entropy) *
666 * (1 - exp(-add_entropy/pool_size))
667 *
668 * For add_entropy <= pool_size/2 then
669 * (1 - exp(-add_entropy/pool_size)) >=
670 * (add_entropy/pool_size)*0.7869...
671 * so we can approximate the exponential with
672 * 3/4*add_entropy/pool_size and still be on the
673 * safe side by adding at most pool_size/2 at a time.
674 *
675 * The use of pool_size-2 in the while statement is to
676 * prevent rounding artifacts from making the loop
677 * arbitrarily long; this limits the loop to log2(pool_size)*2
678 * turns no matter how large nbits is.
679 */
680 int pnfrac = nfrac;
681 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
682 /* The +2 corresponds to the /4 in the denominator */
683
684 do {
685 unsigned int anfrac = min(pnfrac, pool_size/2);
686 unsigned int add =
687 ((pool_size - entropy_count)*anfrac*3) >> s;
688
689 entropy_count += add;
690 pnfrac -= anfrac;
691 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
692 }
693
694 if (unlikely(entropy_count < 0)) {
695 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
696 r->name, entropy_count);
697 WARN_ON(1);
698 entropy_count = 0;
699 } else if (entropy_count > pool_size)
700 entropy_count = pool_size;
701 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
702 goto retry;
703
704 r->entropy_total += nbits;
705 if (!r->initialized && r->entropy_total > 128) {
706 r->initialized = 1;
707 r->entropy_total = 0;
708 }
709
710 trace_credit_entropy_bits(r->name, nbits,
711 entropy_count >> ENTROPY_SHIFT,
712 r->entropy_total, _RET_IP_);
713
714 if (r == &input_pool) {
715 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
716
717 if (crng_init < 2 && entropy_bits >= 128) {
718 crng_reseed(&primary_crng, r);
719 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
720 }
721
722 /* should we wake readers? */
723 if (entropy_bits >= random_read_wakeup_bits) {
724 wake_up_interruptible(&random_read_wait);
725 kill_fasync(&fasync, SIGIO, POLL_IN);
726 }
727 /* If the input pool is getting full, send some
728 * entropy to the blocking pool until it is 75% full.
729 */
730 if (entropy_bits > random_write_wakeup_bits &&
731 r->initialized &&
732 r->entropy_total >= 2*random_read_wakeup_bits) {
733 struct entropy_store *other = &blocking_pool;
734
735 if (other->entropy_count <=
736 3 * other->poolinfo->poolfracbits / 4) {
737 schedule_work(&other->push_work);
738 r->entropy_total = 0;
739 }
740 }
741 }
742 }
743
credit_entropy_bits_safe(struct entropy_store * r,int nbits)744 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
745 {
746 const int nbits_max = r->poolinfo->poolwords * 32;
747
748 if (nbits < 0)
749 return -EINVAL;
750
751 /* Cap the value to avoid overflows */
752 nbits = min(nbits, nbits_max);
753
754 credit_entropy_bits(r, nbits);
755 return 0;
756 }
757
758 /*********************************************************************
759 *
760 * CRNG using CHACHA20
761 *
762 *********************************************************************/
763
764 #define CRNG_RESEED_INTERVAL (300*HZ)
765
766 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
767
768 #ifdef CONFIG_NUMA
769 /*
770 * Hack to deal with crazy userspace progams when they are all trying
771 * to access /dev/urandom in parallel. The programs are almost
772 * certainly doing something terribly wrong, but we'll work around
773 * their brain damage.
774 */
775 static struct crng_state **crng_node_pool __read_mostly;
776 #endif
777
778 static void invalidate_batched_entropy(void);
779
crng_initialize(struct crng_state * crng)780 static void crng_initialize(struct crng_state *crng)
781 {
782 int i;
783 unsigned long rv;
784
785 memcpy(&crng->state[0], "expand 32-byte k", 16);
786 if (crng == &primary_crng)
787 _extract_entropy(&input_pool, &crng->state[4],
788 sizeof(__u32) * 12, 0);
789 else
790 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
791 for (i = 4; i < 16; i++) {
792 if (!arch_get_random_seed_long(&rv) &&
793 !arch_get_random_long(&rv))
794 rv = random_get_entropy();
795 crng->state[i] ^= rv;
796 }
797 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
798 }
799
800 #ifdef CONFIG_NUMA
do_numa_crng_init(struct work_struct * work)801 static void do_numa_crng_init(struct work_struct *work)
802 {
803 int i;
804 struct crng_state *crng;
805 struct crng_state **pool;
806
807 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
808 for_each_online_node(i) {
809 crng = kmalloc_node(sizeof(struct crng_state),
810 GFP_KERNEL | __GFP_NOFAIL, i);
811 spin_lock_init(&crng->lock);
812 crng_initialize(crng);
813 pool[i] = crng;
814 }
815 mb();
816 if (cmpxchg(&crng_node_pool, NULL, pool)) {
817 for_each_node(i)
818 kfree(pool[i]);
819 kfree(pool);
820 }
821 }
822
823 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
824
numa_crng_init(void)825 static void numa_crng_init(void)
826 {
827 schedule_work(&numa_crng_init_work);
828 }
829 #else
numa_crng_init(void)830 static void numa_crng_init(void) {}
831 #endif
832
833 /*
834 * crng_fast_load() can be called by code in the interrupt service
835 * path. So we can't afford to dilly-dally.
836 */
crng_fast_load(const char * cp,size_t len)837 static int crng_fast_load(const char *cp, size_t len)
838 {
839 unsigned long flags;
840 char *p;
841
842 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
843 return 0;
844 if (crng_init != 0) {
845 spin_unlock_irqrestore(&primary_crng.lock, flags);
846 return 0;
847 }
848 p = (unsigned char *) &primary_crng.state[4];
849 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
850 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
851 cp++; crng_init_cnt++; len--;
852 }
853 spin_unlock_irqrestore(&primary_crng.lock, flags);
854 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
855 invalidate_batched_entropy();
856 crng_init = 1;
857 wake_up_interruptible(&crng_init_wait);
858 pr_notice("random: fast init done\n");
859 }
860 return 1;
861 }
862
863 /*
864 * crng_slow_load() is called by add_device_randomness, which has two
865 * attributes. (1) We can't trust the buffer passed to it is
866 * guaranteed to be unpredictable (so it might not have any entropy at
867 * all), and (2) it doesn't have the performance constraints of
868 * crng_fast_load().
869 *
870 * So we do something more comprehensive which is guaranteed to touch
871 * all of the primary_crng's state, and which uses a LFSR with a
872 * period of 255 as part of the mixing algorithm. Finally, we do
873 * *not* advance crng_init_cnt since buffer we may get may be something
874 * like a fixed DMI table (for example), which might very well be
875 * unique to the machine, but is otherwise unvarying.
876 */
crng_slow_load(const char * cp,size_t len)877 static int crng_slow_load(const char *cp, size_t len)
878 {
879 unsigned long flags;
880 static unsigned char lfsr = 1;
881 unsigned char tmp;
882 unsigned i, max = CHACHA_KEY_SIZE;
883 const char * src_buf = cp;
884 char * dest_buf = (char *) &primary_crng.state[4];
885
886 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
887 return 0;
888 if (crng_init != 0) {
889 spin_unlock_irqrestore(&primary_crng.lock, flags);
890 return 0;
891 }
892 if (len > max)
893 max = len;
894
895 for (i = 0; i < max ; i++) {
896 tmp = lfsr;
897 lfsr >>= 1;
898 if (tmp & 1)
899 lfsr ^= 0xE1;
900 tmp = dest_buf[i % CHACHA_KEY_SIZE];
901 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
902 lfsr += (tmp << 3) | (tmp >> 5);
903 }
904 spin_unlock_irqrestore(&primary_crng.lock, flags);
905 return 1;
906 }
907
crng_reseed(struct crng_state * crng,struct entropy_store * r)908 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
909 {
910 unsigned long flags;
911 int i, num;
912 union {
913 __u8 block[CHACHA_BLOCK_SIZE];
914 __u32 key[8];
915 } buf;
916
917 if (r) {
918 num = extract_entropy(r, &buf, 32, 16, 0);
919 if (num == 0)
920 return;
921 } else {
922 _extract_crng(&primary_crng, buf.block);
923 _crng_backtrack_protect(&primary_crng, buf.block,
924 CHACHA_KEY_SIZE);
925 }
926 spin_lock_irqsave(&crng->lock, flags);
927 for (i = 0; i < 8; i++) {
928 unsigned long rv;
929 if (!arch_get_random_seed_long(&rv) &&
930 !arch_get_random_long(&rv))
931 rv = random_get_entropy();
932 crng->state[i+4] ^= buf.key[i] ^ rv;
933 }
934 memzero_explicit(&buf, sizeof(buf));
935 crng->init_time = jiffies;
936 spin_unlock_irqrestore(&crng->lock, flags);
937 if (crng == &primary_crng && crng_init < 2) {
938 invalidate_batched_entropy();
939 numa_crng_init();
940 crng_init = 2;
941 process_random_ready_list();
942 wake_up_interruptible(&crng_init_wait);
943 pr_notice("random: crng init done\n");
944 if (unseeded_warning.missed) {
945 pr_notice("random: %d get_random_xx warning(s) missed "
946 "due to ratelimiting\n",
947 unseeded_warning.missed);
948 unseeded_warning.missed = 0;
949 }
950 if (urandom_warning.missed) {
951 pr_notice("random: %d urandom warning(s) missed "
952 "due to ratelimiting\n",
953 urandom_warning.missed);
954 urandom_warning.missed = 0;
955 }
956 }
957 }
958
_extract_crng(struct crng_state * crng,__u8 out[CHACHA_BLOCK_SIZE])959 static void _extract_crng(struct crng_state *crng,
960 __u8 out[CHACHA_BLOCK_SIZE])
961 {
962 unsigned long v, flags;
963
964 if (crng_ready() &&
965 (time_after(crng_global_init_time, crng->init_time) ||
966 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
967 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
968 spin_lock_irqsave(&crng->lock, flags);
969 if (arch_get_random_long(&v))
970 crng->state[14] ^= v;
971 chacha20_block(&crng->state[0], out);
972 if (crng->state[12] == 0)
973 crng->state[13]++;
974 spin_unlock_irqrestore(&crng->lock, flags);
975 }
976
extract_crng(__u8 out[CHACHA_BLOCK_SIZE])977 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
978 {
979 struct crng_state *crng = NULL;
980
981 #ifdef CONFIG_NUMA
982 if (crng_node_pool)
983 crng = crng_node_pool[numa_node_id()];
984 if (crng == NULL)
985 #endif
986 crng = &primary_crng;
987 _extract_crng(crng, out);
988 }
989
990 /*
991 * Use the leftover bytes from the CRNG block output (if there is
992 * enough) to mutate the CRNG key to provide backtracking protection.
993 */
_crng_backtrack_protect(struct crng_state * crng,__u8 tmp[CHACHA_BLOCK_SIZE],int used)994 static void _crng_backtrack_protect(struct crng_state *crng,
995 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
996 {
997 unsigned long flags;
998 __u32 *s, *d;
999 int i;
1000
1001 used = round_up(used, sizeof(__u32));
1002 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1003 extract_crng(tmp);
1004 used = 0;
1005 }
1006 spin_lock_irqsave(&crng->lock, flags);
1007 s = (__u32 *) &tmp[used];
1008 d = &crng->state[4];
1009 for (i=0; i < 8; i++)
1010 *d++ ^= *s++;
1011 spin_unlock_irqrestore(&crng->lock, flags);
1012 }
1013
crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE],int used)1014 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1015 {
1016 struct crng_state *crng = NULL;
1017
1018 #ifdef CONFIG_NUMA
1019 if (crng_node_pool)
1020 crng = crng_node_pool[numa_node_id()];
1021 if (crng == NULL)
1022 #endif
1023 crng = &primary_crng;
1024 _crng_backtrack_protect(crng, tmp, used);
1025 }
1026
extract_crng_user(void __user * buf,size_t nbytes)1027 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1028 {
1029 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1030 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1031 int large_request = (nbytes > 256);
1032
1033 while (nbytes) {
1034 if (large_request && need_resched()) {
1035 if (signal_pending(current)) {
1036 if (ret == 0)
1037 ret = -ERESTARTSYS;
1038 break;
1039 }
1040 schedule();
1041 }
1042
1043 extract_crng(tmp);
1044 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1045 if (copy_to_user(buf, tmp, i)) {
1046 ret = -EFAULT;
1047 break;
1048 }
1049
1050 nbytes -= i;
1051 buf += i;
1052 ret += i;
1053 }
1054 crng_backtrack_protect(tmp, i);
1055
1056 /* Wipe data just written to memory */
1057 memzero_explicit(tmp, sizeof(tmp));
1058
1059 return ret;
1060 }
1061
1062
1063 /*********************************************************************
1064 *
1065 * Entropy input management
1066 *
1067 *********************************************************************/
1068
1069 /* There is one of these per entropy source */
1070 struct timer_rand_state {
1071 cycles_t last_time;
1072 long last_delta, last_delta2;
1073 unsigned dont_count_entropy:1;
1074 };
1075
1076 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1077
1078 /*
1079 * Add device- or boot-specific data to the input pool to help
1080 * initialize it.
1081 *
1082 * None of this adds any entropy; it is meant to avoid the problem of
1083 * the entropy pool having similar initial state across largely
1084 * identical devices.
1085 */
add_device_randomness(const void * buf,unsigned int size)1086 void add_device_randomness(const void *buf, unsigned int size)
1087 {
1088 unsigned long time = random_get_entropy() ^ jiffies;
1089 unsigned long flags;
1090
1091 if (!crng_ready() && size)
1092 crng_slow_load(buf, size);
1093
1094 trace_add_device_randomness(size, _RET_IP_);
1095 spin_lock_irqsave(&input_pool.lock, flags);
1096 _mix_pool_bytes(&input_pool, buf, size);
1097 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1098 spin_unlock_irqrestore(&input_pool.lock, flags);
1099 }
1100 EXPORT_SYMBOL(add_device_randomness);
1101
1102 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1103
1104 /*
1105 * This function adds entropy to the entropy "pool" by using timing
1106 * delays. It uses the timer_rand_state structure to make an estimate
1107 * of how many bits of entropy this call has added to the pool.
1108 *
1109 * The number "num" is also added to the pool - it should somehow describe
1110 * the type of event which just happened. This is currently 0-255 for
1111 * keyboard scan codes, and 256 upwards for interrupts.
1112 *
1113 */
add_timer_randomness(struct timer_rand_state * state,unsigned num)1114 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1115 {
1116 struct entropy_store *r;
1117 struct {
1118 long jiffies;
1119 unsigned cycles;
1120 unsigned num;
1121 } sample;
1122 long delta, delta2, delta3;
1123
1124 preempt_disable();
1125
1126 sample.jiffies = jiffies;
1127 sample.cycles = random_get_entropy();
1128 sample.num = num;
1129 r = &input_pool;
1130 mix_pool_bytes(r, &sample, sizeof(sample));
1131
1132 /*
1133 * Calculate number of bits of randomness we probably added.
1134 * We take into account the first, second and third-order deltas
1135 * in order to make our estimate.
1136 */
1137
1138 if (!state->dont_count_entropy) {
1139 delta = sample.jiffies - state->last_time;
1140 state->last_time = sample.jiffies;
1141
1142 delta2 = delta - state->last_delta;
1143 state->last_delta = delta;
1144
1145 delta3 = delta2 - state->last_delta2;
1146 state->last_delta2 = delta2;
1147
1148 if (delta < 0)
1149 delta = -delta;
1150 if (delta2 < 0)
1151 delta2 = -delta2;
1152 if (delta3 < 0)
1153 delta3 = -delta3;
1154 if (delta > delta2)
1155 delta = delta2;
1156 if (delta > delta3)
1157 delta = delta3;
1158
1159 /*
1160 * delta is now minimum absolute delta.
1161 * Round down by 1 bit on general principles,
1162 * and limit entropy entimate to 12 bits.
1163 */
1164 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1165 }
1166 preempt_enable();
1167 }
1168
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1169 void add_input_randomness(unsigned int type, unsigned int code,
1170 unsigned int value)
1171 {
1172 static unsigned char last_value;
1173
1174 /* ignore autorepeat and the like */
1175 if (value == last_value)
1176 return;
1177
1178 last_value = value;
1179 add_timer_randomness(&input_timer_state,
1180 (type << 4) ^ code ^ (code >> 4) ^ value);
1181 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1182 }
1183 EXPORT_SYMBOL_GPL(add_input_randomness);
1184
1185 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1186
1187 #ifdef ADD_INTERRUPT_BENCH
1188 static unsigned long avg_cycles, avg_deviation;
1189
1190 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1191 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1192
add_interrupt_bench(cycles_t start)1193 static void add_interrupt_bench(cycles_t start)
1194 {
1195 long delta = random_get_entropy() - start;
1196
1197 /* Use a weighted moving average */
1198 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1199 avg_cycles += delta;
1200 /* And average deviation */
1201 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1202 avg_deviation += delta;
1203 }
1204 #else
1205 #define add_interrupt_bench(x)
1206 #endif
1207
get_reg(struct fast_pool * f,struct pt_regs * regs)1208 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1209 {
1210 __u32 *ptr = (__u32 *) regs;
1211 unsigned int idx;
1212
1213 if (regs == NULL)
1214 return 0;
1215 idx = READ_ONCE(f->reg_idx);
1216 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1217 idx = 0;
1218 ptr += idx++;
1219 WRITE_ONCE(f->reg_idx, idx);
1220 return *ptr;
1221 }
1222
add_interrupt_randomness(int irq,int irq_flags)1223 void add_interrupt_randomness(int irq, int irq_flags)
1224 {
1225 struct entropy_store *r;
1226 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1227 struct pt_regs *regs = get_irq_regs();
1228 unsigned long now = jiffies;
1229 cycles_t cycles = random_get_entropy();
1230 __u32 c_high, j_high;
1231 __u64 ip;
1232 unsigned long seed;
1233 int credit = 0;
1234
1235 if (cycles == 0)
1236 cycles = get_reg(fast_pool, regs);
1237 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1238 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1239 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1240 fast_pool->pool[1] ^= now ^ c_high;
1241 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1242 fast_pool->pool[2] ^= ip;
1243 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1244 get_reg(fast_pool, regs);
1245
1246 fast_mix(fast_pool);
1247 add_interrupt_bench(cycles);
1248
1249 if (unlikely(crng_init == 0)) {
1250 if ((fast_pool->count >= 64) &&
1251 crng_fast_load((char *) fast_pool->pool,
1252 sizeof(fast_pool->pool))) {
1253 fast_pool->count = 0;
1254 fast_pool->last = now;
1255 }
1256 return;
1257 }
1258
1259 if ((fast_pool->count < 64) &&
1260 !time_after(now, fast_pool->last + HZ))
1261 return;
1262
1263 r = &input_pool;
1264 if (!spin_trylock(&r->lock))
1265 return;
1266
1267 fast_pool->last = now;
1268 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1269
1270 /*
1271 * If we have architectural seed generator, produce a seed and
1272 * add it to the pool. For the sake of paranoia don't let the
1273 * architectural seed generator dominate the input from the
1274 * interrupt noise.
1275 */
1276 if (arch_get_random_seed_long(&seed)) {
1277 __mix_pool_bytes(r, &seed, sizeof(seed));
1278 credit = 1;
1279 }
1280 spin_unlock(&r->lock);
1281
1282 fast_pool->count = 0;
1283
1284 /* award one bit for the contents of the fast pool */
1285 credit_entropy_bits(r, credit + 1);
1286 }
1287 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1288
1289 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1290 void add_disk_randomness(struct gendisk *disk)
1291 {
1292 if (!disk || !disk->random)
1293 return;
1294 /* first major is 1, so we get >= 0x200 here */
1295 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1296 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1297 }
1298 EXPORT_SYMBOL_GPL(add_disk_randomness);
1299 #endif
1300
1301 /*********************************************************************
1302 *
1303 * Entropy extraction routines
1304 *
1305 *********************************************************************/
1306
1307 /*
1308 * This utility inline function is responsible for transferring entropy
1309 * from the primary pool to the secondary extraction pool. We make
1310 * sure we pull enough for a 'catastrophic reseed'.
1311 */
1312 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1313 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1314 {
1315 if (!r->pull ||
1316 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1317 r->entropy_count > r->poolinfo->poolfracbits)
1318 return;
1319
1320 _xfer_secondary_pool(r, nbytes);
1321 }
1322
_xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1323 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1324 {
1325 __u32 tmp[OUTPUT_POOL_WORDS];
1326
1327 int bytes = nbytes;
1328
1329 /* pull at least as much as a wakeup */
1330 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1331 /* but never more than the buffer size */
1332 bytes = min_t(int, bytes, sizeof(tmp));
1333
1334 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1335 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1336 bytes = extract_entropy(r->pull, tmp, bytes,
1337 random_read_wakeup_bits / 8, 0);
1338 mix_pool_bytes(r, tmp, bytes);
1339 credit_entropy_bits(r, bytes*8);
1340 }
1341
1342 /*
1343 * Used as a workqueue function so that when the input pool is getting
1344 * full, we can "spill over" some entropy to the output pools. That
1345 * way the output pools can store some of the excess entropy instead
1346 * of letting it go to waste.
1347 */
push_to_pool(struct work_struct * work)1348 static void push_to_pool(struct work_struct *work)
1349 {
1350 struct entropy_store *r = container_of(work, struct entropy_store,
1351 push_work);
1352 BUG_ON(!r);
1353 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1354 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1355 r->pull->entropy_count >> ENTROPY_SHIFT);
1356 }
1357
1358 /*
1359 * This function decides how many bytes to actually take from the
1360 * given pool, and also debits the entropy count accordingly.
1361 */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1362 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1363 int reserved)
1364 {
1365 int entropy_count, orig, have_bytes;
1366 size_t ibytes, nfrac;
1367
1368 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1369
1370 /* Can we pull enough? */
1371 retry:
1372 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1373 ibytes = nbytes;
1374 /* never pull more than available */
1375 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1376
1377 if ((have_bytes -= reserved) < 0)
1378 have_bytes = 0;
1379 ibytes = min_t(size_t, ibytes, have_bytes);
1380 if (ibytes < min)
1381 ibytes = 0;
1382
1383 if (unlikely(entropy_count < 0)) {
1384 pr_warn("random: negative entropy count: pool %s count %d\n",
1385 r->name, entropy_count);
1386 WARN_ON(1);
1387 entropy_count = 0;
1388 }
1389 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1390 if ((size_t) entropy_count > nfrac)
1391 entropy_count -= nfrac;
1392 else
1393 entropy_count = 0;
1394
1395 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1396 goto retry;
1397
1398 trace_debit_entropy(r->name, 8 * ibytes);
1399 if (ibytes &&
1400 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1401 wake_up_interruptible(&random_write_wait);
1402 kill_fasync(&fasync, SIGIO, POLL_OUT);
1403 }
1404
1405 return ibytes;
1406 }
1407
1408 /*
1409 * This function does the actual extraction for extract_entropy and
1410 * extract_entropy_user.
1411 *
1412 * Note: we assume that .poolwords is a multiple of 16 words.
1413 */
extract_buf(struct entropy_store * r,__u8 * out)1414 static void extract_buf(struct entropy_store *r, __u8 *out)
1415 {
1416 int i;
1417 union {
1418 __u32 w[5];
1419 unsigned long l[LONGS(20)];
1420 } hash;
1421 __u32 workspace[SHA_WORKSPACE_WORDS];
1422 unsigned long flags;
1423
1424 /*
1425 * If we have an architectural hardware random number
1426 * generator, use it for SHA's initial vector
1427 */
1428 sha_init(hash.w);
1429 for (i = 0; i < LONGS(20); i++) {
1430 unsigned long v;
1431 if (!arch_get_random_long(&v))
1432 break;
1433 hash.l[i] = v;
1434 }
1435
1436 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1437 spin_lock_irqsave(&r->lock, flags);
1438 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1439 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1440
1441 /*
1442 * We mix the hash back into the pool to prevent backtracking
1443 * attacks (where the attacker knows the state of the pool
1444 * plus the current outputs, and attempts to find previous
1445 * ouputs), unless the hash function can be inverted. By
1446 * mixing at least a SHA1 worth of hash data back, we make
1447 * brute-forcing the feedback as hard as brute-forcing the
1448 * hash.
1449 */
1450 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1451 spin_unlock_irqrestore(&r->lock, flags);
1452
1453 memzero_explicit(workspace, sizeof(workspace));
1454
1455 /*
1456 * In case the hash function has some recognizable output
1457 * pattern, we fold it in half. Thus, we always feed back
1458 * twice as much data as we output.
1459 */
1460 hash.w[0] ^= hash.w[3];
1461 hash.w[1] ^= hash.w[4];
1462 hash.w[2] ^= rol32(hash.w[2], 16);
1463
1464 memcpy(out, &hash, EXTRACT_SIZE);
1465 memzero_explicit(&hash, sizeof(hash));
1466 }
1467
_extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int fips)1468 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1469 size_t nbytes, int fips)
1470 {
1471 ssize_t ret = 0, i;
1472 __u8 tmp[EXTRACT_SIZE];
1473 unsigned long flags;
1474
1475 while (nbytes) {
1476 extract_buf(r, tmp);
1477
1478 if (fips) {
1479 spin_lock_irqsave(&r->lock, flags);
1480 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1481 panic("Hardware RNG duplicated output!\n");
1482 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1483 spin_unlock_irqrestore(&r->lock, flags);
1484 }
1485 i = min_t(int, nbytes, EXTRACT_SIZE);
1486 memcpy(buf, tmp, i);
1487 nbytes -= i;
1488 buf += i;
1489 ret += i;
1490 }
1491
1492 /* Wipe data just returned from memory */
1493 memzero_explicit(tmp, sizeof(tmp));
1494
1495 return ret;
1496 }
1497
1498 /*
1499 * This function extracts randomness from the "entropy pool", and
1500 * returns it in a buffer.
1501 *
1502 * The min parameter specifies the minimum amount we can pull before
1503 * failing to avoid races that defeat catastrophic reseeding while the
1504 * reserved parameter indicates how much entropy we must leave in the
1505 * pool after each pull to avoid starving other readers.
1506 */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1507 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1508 size_t nbytes, int min, int reserved)
1509 {
1510 __u8 tmp[EXTRACT_SIZE];
1511 unsigned long flags;
1512
1513 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1514 if (fips_enabled) {
1515 spin_lock_irqsave(&r->lock, flags);
1516 if (!r->last_data_init) {
1517 r->last_data_init = 1;
1518 spin_unlock_irqrestore(&r->lock, flags);
1519 trace_extract_entropy(r->name, EXTRACT_SIZE,
1520 ENTROPY_BITS(r), _RET_IP_);
1521 xfer_secondary_pool(r, EXTRACT_SIZE);
1522 extract_buf(r, tmp);
1523 spin_lock_irqsave(&r->lock, flags);
1524 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1525 }
1526 spin_unlock_irqrestore(&r->lock, flags);
1527 }
1528
1529 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1530 xfer_secondary_pool(r, nbytes);
1531 nbytes = account(r, nbytes, min, reserved);
1532
1533 return _extract_entropy(r, buf, nbytes, fips_enabled);
1534 }
1535
1536 /*
1537 * This function extracts randomness from the "entropy pool", and
1538 * returns it in a userspace buffer.
1539 */
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)1540 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1541 size_t nbytes)
1542 {
1543 ssize_t ret = 0, i;
1544 __u8 tmp[EXTRACT_SIZE];
1545 int large_request = (nbytes > 256);
1546
1547 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1548 xfer_secondary_pool(r, nbytes);
1549 nbytes = account(r, nbytes, 0, 0);
1550
1551 while (nbytes) {
1552 if (large_request && need_resched()) {
1553 if (signal_pending(current)) {
1554 if (ret == 0)
1555 ret = -ERESTARTSYS;
1556 break;
1557 }
1558 schedule();
1559 }
1560
1561 extract_buf(r, tmp);
1562 i = min_t(int, nbytes, EXTRACT_SIZE);
1563 if (copy_to_user(buf, tmp, i)) {
1564 ret = -EFAULT;
1565 break;
1566 }
1567
1568 nbytes -= i;
1569 buf += i;
1570 ret += i;
1571 }
1572
1573 /* Wipe data just returned from memory */
1574 memzero_explicit(tmp, sizeof(tmp));
1575
1576 return ret;
1577 }
1578
1579 #define warn_unseeded_randomness(previous) \
1580 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1581
_warn_unseeded_randomness(const char * func_name,void * caller,void ** previous)1582 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1583 void **previous)
1584 {
1585 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1586 const bool print_once = false;
1587 #else
1588 static bool print_once __read_mostly;
1589 #endif
1590
1591 if (print_once ||
1592 crng_ready() ||
1593 (previous && (caller == READ_ONCE(*previous))))
1594 return;
1595 WRITE_ONCE(*previous, caller);
1596 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1597 print_once = true;
1598 #endif
1599 if (__ratelimit(&unseeded_warning))
1600 pr_notice("random: %s called from %pS with crng_init=%d\n",
1601 func_name, caller, crng_init);
1602 }
1603
1604 /*
1605 * This function is the exported kernel interface. It returns some
1606 * number of good random numbers, suitable for key generation, seeding
1607 * TCP sequence numbers, etc. It does not rely on the hardware random
1608 * number generator. For random bytes direct from the hardware RNG
1609 * (when available), use get_random_bytes_arch(). In order to ensure
1610 * that the randomness provided by this function is okay, the function
1611 * wait_for_random_bytes() should be called and return 0 at least once
1612 * at any point prior.
1613 */
_get_random_bytes(void * buf,int nbytes)1614 static void _get_random_bytes(void *buf, int nbytes)
1615 {
1616 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1617
1618 trace_get_random_bytes(nbytes, _RET_IP_);
1619
1620 while (nbytes >= CHACHA_BLOCK_SIZE) {
1621 extract_crng(buf);
1622 buf += CHACHA_BLOCK_SIZE;
1623 nbytes -= CHACHA_BLOCK_SIZE;
1624 }
1625
1626 if (nbytes > 0) {
1627 extract_crng(tmp);
1628 memcpy(buf, tmp, nbytes);
1629 crng_backtrack_protect(tmp, nbytes);
1630 } else
1631 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1632 memzero_explicit(tmp, sizeof(tmp));
1633 }
1634
get_random_bytes(void * buf,int nbytes)1635 void get_random_bytes(void *buf, int nbytes)
1636 {
1637 static void *previous;
1638
1639 warn_unseeded_randomness(&previous);
1640 _get_random_bytes(buf, nbytes);
1641 }
1642 EXPORT_SYMBOL(get_random_bytes);
1643
1644 /*
1645 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1646 * cryptographically secure random numbers. This applies to: the /dev/urandom
1647 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1648 * family of functions. Using any of these functions without first calling
1649 * this function forfeits the guarantee of security.
1650 *
1651 * Returns: 0 if the urandom pool has been seeded.
1652 * -ERESTARTSYS if the function was interrupted by a signal.
1653 */
wait_for_random_bytes(void)1654 int wait_for_random_bytes(void)
1655 {
1656 if (likely(crng_ready()))
1657 return 0;
1658 return wait_event_interruptible(crng_init_wait, crng_ready());
1659 }
1660 EXPORT_SYMBOL(wait_for_random_bytes);
1661
1662 /*
1663 * Add a callback function that will be invoked when the nonblocking
1664 * pool is initialised.
1665 *
1666 * returns: 0 if callback is successfully added
1667 * -EALREADY if pool is already initialised (callback not called)
1668 * -ENOENT if module for callback is not alive
1669 */
add_random_ready_callback(struct random_ready_callback * rdy)1670 int add_random_ready_callback(struct random_ready_callback *rdy)
1671 {
1672 struct module *owner;
1673 unsigned long flags;
1674 int err = -EALREADY;
1675
1676 if (crng_ready())
1677 return err;
1678
1679 owner = rdy->owner;
1680 if (!try_module_get(owner))
1681 return -ENOENT;
1682
1683 spin_lock_irqsave(&random_ready_list_lock, flags);
1684 if (crng_ready())
1685 goto out;
1686
1687 owner = NULL;
1688
1689 list_add(&rdy->list, &random_ready_list);
1690 err = 0;
1691
1692 out:
1693 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1694
1695 module_put(owner);
1696
1697 return err;
1698 }
1699 EXPORT_SYMBOL(add_random_ready_callback);
1700
1701 /*
1702 * Delete a previously registered readiness callback function.
1703 */
del_random_ready_callback(struct random_ready_callback * rdy)1704 void del_random_ready_callback(struct random_ready_callback *rdy)
1705 {
1706 unsigned long flags;
1707 struct module *owner = NULL;
1708
1709 spin_lock_irqsave(&random_ready_list_lock, flags);
1710 if (!list_empty(&rdy->list)) {
1711 list_del_init(&rdy->list);
1712 owner = rdy->owner;
1713 }
1714 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1715
1716 module_put(owner);
1717 }
1718 EXPORT_SYMBOL(del_random_ready_callback);
1719
1720 /*
1721 * This function will use the architecture-specific hardware random
1722 * number generator if it is available. The arch-specific hw RNG will
1723 * almost certainly be faster than what we can do in software, but it
1724 * is impossible to verify that it is implemented securely (as
1725 * opposed, to, say, the AES encryption of a sequence number using a
1726 * key known by the NSA). So it's useful if we need the speed, but
1727 * only if we're willing to trust the hardware manufacturer not to
1728 * have put in a back door.
1729 */
get_random_bytes_arch(void * buf,int nbytes)1730 void get_random_bytes_arch(void *buf, int nbytes)
1731 {
1732 char *p = buf;
1733
1734 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1735 while (nbytes) {
1736 unsigned long v;
1737 int chunk = min(nbytes, (int)sizeof(unsigned long));
1738
1739 if (!arch_get_random_long(&v))
1740 break;
1741
1742 memcpy(p, &v, chunk);
1743 p += chunk;
1744 nbytes -= chunk;
1745 }
1746
1747 if (nbytes)
1748 get_random_bytes(p, nbytes);
1749 }
1750 EXPORT_SYMBOL(get_random_bytes_arch);
1751
1752
1753 /*
1754 * init_std_data - initialize pool with system data
1755 *
1756 * @r: pool to initialize
1757 *
1758 * This function clears the pool's entropy count and mixes some system
1759 * data into the pool to prepare it for use. The pool is not cleared
1760 * as that can only decrease the entropy in the pool.
1761 */
init_std_data(struct entropy_store * r)1762 static void init_std_data(struct entropy_store *r)
1763 {
1764 int i;
1765 ktime_t now = ktime_get_real();
1766 unsigned long rv;
1767
1768 r->last_pulled = jiffies;
1769 mix_pool_bytes(r, &now, sizeof(now));
1770 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1771 if (!arch_get_random_seed_long(&rv) &&
1772 !arch_get_random_long(&rv))
1773 rv = random_get_entropy();
1774 mix_pool_bytes(r, &rv, sizeof(rv));
1775 }
1776 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1777 }
1778
1779 /*
1780 * Note that setup_arch() may call add_device_randomness()
1781 * long before we get here. This allows seeding of the pools
1782 * with some platform dependent data very early in the boot
1783 * process. But it limits our options here. We must use
1784 * statically allocated structures that already have all
1785 * initializations complete at compile time. We should also
1786 * take care not to overwrite the precious per platform data
1787 * we were given.
1788 */
rand_initialize(void)1789 static int rand_initialize(void)
1790 {
1791 init_std_data(&input_pool);
1792 init_std_data(&blocking_pool);
1793 crng_initialize(&primary_crng);
1794 crng_global_init_time = jiffies;
1795 if (ratelimit_disable) {
1796 urandom_warning.interval = 0;
1797 unseeded_warning.interval = 0;
1798 }
1799 return 0;
1800 }
1801 early_initcall(rand_initialize);
1802
1803 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1804 void rand_initialize_disk(struct gendisk *disk)
1805 {
1806 struct timer_rand_state *state;
1807
1808 /*
1809 * If kzalloc returns null, we just won't use that entropy
1810 * source.
1811 */
1812 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1813 if (state) {
1814 state->last_time = INITIAL_JIFFIES;
1815 disk->random = state;
1816 }
1817 }
1818 #endif
1819
1820 static ssize_t
_random_read(int nonblock,char __user * buf,size_t nbytes)1821 _random_read(int nonblock, char __user *buf, size_t nbytes)
1822 {
1823 ssize_t n;
1824
1825 if (nbytes == 0)
1826 return 0;
1827
1828 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1829 while (1) {
1830 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1831 if (n < 0)
1832 return n;
1833 trace_random_read(n*8, (nbytes-n)*8,
1834 ENTROPY_BITS(&blocking_pool),
1835 ENTROPY_BITS(&input_pool));
1836 if (n > 0)
1837 return n;
1838
1839 /* Pool is (near) empty. Maybe wait and retry. */
1840 if (nonblock)
1841 return -EAGAIN;
1842
1843 wait_event_interruptible(random_read_wait,
1844 ENTROPY_BITS(&input_pool) >=
1845 random_read_wakeup_bits);
1846 if (signal_pending(current))
1847 return -ERESTARTSYS;
1848 }
1849 }
1850
1851 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1852 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1853 {
1854 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1855 }
1856
1857 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1858 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1859 {
1860 unsigned long flags;
1861 static int maxwarn = 10;
1862 int ret;
1863
1864 if (!crng_ready() && maxwarn > 0) {
1865 maxwarn--;
1866 if (__ratelimit(&urandom_warning))
1867 printk(KERN_NOTICE "random: %s: uninitialized "
1868 "urandom read (%zd bytes read)\n",
1869 current->comm, nbytes);
1870 spin_lock_irqsave(&primary_crng.lock, flags);
1871 crng_init_cnt = 0;
1872 spin_unlock_irqrestore(&primary_crng.lock, flags);
1873 }
1874 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1875 ret = extract_crng_user(buf, nbytes);
1876 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1877 return ret;
1878 }
1879
1880 static unsigned int
random_poll(struct file * file,poll_table * wait)1881 random_poll(struct file *file, poll_table * wait)
1882 {
1883 unsigned int mask;
1884
1885 poll_wait(file, &random_read_wait, wait);
1886 poll_wait(file, &random_write_wait, wait);
1887 mask = 0;
1888 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1889 mask |= POLLIN | POLLRDNORM;
1890 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1891 mask |= POLLOUT | POLLWRNORM;
1892 return mask;
1893 }
1894
1895 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1896 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1897 {
1898 size_t bytes;
1899 __u32 t, buf[16];
1900 const char __user *p = buffer;
1901
1902 while (count > 0) {
1903 int b, i = 0;
1904
1905 bytes = min(count, sizeof(buf));
1906 if (copy_from_user(&buf, p, bytes))
1907 return -EFAULT;
1908
1909 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1910 if (!arch_get_random_int(&t))
1911 break;
1912 buf[i] ^= t;
1913 }
1914
1915 count -= bytes;
1916 p += bytes;
1917
1918 mix_pool_bytes(r, buf, bytes);
1919 cond_resched();
1920 }
1921
1922 return 0;
1923 }
1924
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1925 static ssize_t random_write(struct file *file, const char __user *buffer,
1926 size_t count, loff_t *ppos)
1927 {
1928 size_t ret;
1929
1930 ret = write_pool(&input_pool, buffer, count);
1931 if (ret)
1932 return ret;
1933
1934 return (ssize_t)count;
1935 }
1936
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1937 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1938 {
1939 int size, ent_count;
1940 int __user *p = (int __user *)arg;
1941 int retval;
1942
1943 switch (cmd) {
1944 case RNDGETENTCNT:
1945 /* inherently racy, no point locking */
1946 ent_count = ENTROPY_BITS(&input_pool);
1947 if (put_user(ent_count, p))
1948 return -EFAULT;
1949 return 0;
1950 case RNDADDTOENTCNT:
1951 if (!capable(CAP_SYS_ADMIN))
1952 return -EPERM;
1953 if (get_user(ent_count, p))
1954 return -EFAULT;
1955 return credit_entropy_bits_safe(&input_pool, ent_count);
1956 case RNDADDENTROPY:
1957 if (!capable(CAP_SYS_ADMIN))
1958 return -EPERM;
1959 if (get_user(ent_count, p++))
1960 return -EFAULT;
1961 if (ent_count < 0)
1962 return -EINVAL;
1963 if (get_user(size, p++))
1964 return -EFAULT;
1965 retval = write_pool(&input_pool, (const char __user *)p,
1966 size);
1967 if (retval < 0)
1968 return retval;
1969 return credit_entropy_bits_safe(&input_pool, ent_count);
1970 case RNDZAPENTCNT:
1971 case RNDCLEARPOOL:
1972 /*
1973 * Clear the entropy pool counters. We no longer clear
1974 * the entropy pool, as that's silly.
1975 */
1976 if (!capable(CAP_SYS_ADMIN))
1977 return -EPERM;
1978 input_pool.entropy_count = 0;
1979 blocking_pool.entropy_count = 0;
1980 return 0;
1981 case RNDRESEEDCRNG:
1982 if (!capable(CAP_SYS_ADMIN))
1983 return -EPERM;
1984 if (crng_init < 2)
1985 return -ENODATA;
1986 crng_reseed(&primary_crng, NULL);
1987 crng_global_init_time = jiffies - 1;
1988 return 0;
1989 default:
1990 return -EINVAL;
1991 }
1992 }
1993
random_fasync(int fd,struct file * filp,int on)1994 static int random_fasync(int fd, struct file *filp, int on)
1995 {
1996 return fasync_helper(fd, filp, on, &fasync);
1997 }
1998
1999 const struct file_operations random_fops = {
2000 .read = random_read,
2001 .write = random_write,
2002 .poll = random_poll,
2003 .unlocked_ioctl = random_ioctl,
2004 .fasync = random_fasync,
2005 .llseek = noop_llseek,
2006 };
2007
2008 const struct file_operations urandom_fops = {
2009 .read = urandom_read,
2010 .write = random_write,
2011 .unlocked_ioctl = random_ioctl,
2012 .fasync = random_fasync,
2013 .llseek = noop_llseek,
2014 };
2015
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)2016 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2017 unsigned int, flags)
2018 {
2019 int ret;
2020
2021 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2022 return -EINVAL;
2023
2024 if (count > INT_MAX)
2025 count = INT_MAX;
2026
2027 if (flags & GRND_RANDOM)
2028 return _random_read(flags & GRND_NONBLOCK, buf, count);
2029
2030 if (!crng_ready()) {
2031 if (flags & GRND_NONBLOCK)
2032 return -EAGAIN;
2033 ret = wait_for_random_bytes();
2034 if (unlikely(ret))
2035 return ret;
2036 }
2037 return urandom_read(NULL, buf, count, NULL);
2038 }
2039
2040 /********************************************************************
2041 *
2042 * Sysctl interface
2043 *
2044 ********************************************************************/
2045
2046 #ifdef CONFIG_SYSCTL
2047
2048 #include <linux/sysctl.h>
2049
2050 static int min_read_thresh = 8, min_write_thresh;
2051 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2052 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2053 static int random_min_urandom_seed = 60;
2054 static char sysctl_bootid[16];
2055
2056 /*
2057 * This function is used to return both the bootid UUID, and random
2058 * UUID. The difference is in whether table->data is NULL; if it is,
2059 * then a new UUID is generated and returned to the user.
2060 *
2061 * If the user accesses this via the proc interface, the UUID will be
2062 * returned as an ASCII string in the standard UUID format; if via the
2063 * sysctl system call, as 16 bytes of binary data.
2064 */
proc_do_uuid(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2065 static int proc_do_uuid(struct ctl_table *table, int write,
2066 void __user *buffer, size_t *lenp, loff_t *ppos)
2067 {
2068 struct ctl_table fake_table;
2069 unsigned char buf[64], tmp_uuid[16], *uuid;
2070
2071 uuid = table->data;
2072 if (!uuid) {
2073 uuid = tmp_uuid;
2074 generate_random_uuid(uuid);
2075 } else {
2076 static DEFINE_SPINLOCK(bootid_spinlock);
2077
2078 spin_lock(&bootid_spinlock);
2079 if (!uuid[8])
2080 generate_random_uuid(uuid);
2081 spin_unlock(&bootid_spinlock);
2082 }
2083
2084 sprintf(buf, "%pU", uuid);
2085
2086 fake_table.data = buf;
2087 fake_table.maxlen = sizeof(buf);
2088
2089 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2090 }
2091
2092 /*
2093 * Return entropy available scaled to integral bits
2094 */
proc_do_entropy(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2095 static int proc_do_entropy(struct ctl_table *table, int write,
2096 void __user *buffer, size_t *lenp, loff_t *ppos)
2097 {
2098 struct ctl_table fake_table;
2099 int entropy_count;
2100
2101 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2102
2103 fake_table.data = &entropy_count;
2104 fake_table.maxlen = sizeof(entropy_count);
2105
2106 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2107 }
2108
2109 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2110 extern struct ctl_table random_table[];
2111 struct ctl_table random_table[] = {
2112 {
2113 .procname = "poolsize",
2114 .data = &sysctl_poolsize,
2115 .maxlen = sizeof(int),
2116 .mode = 0444,
2117 .proc_handler = proc_dointvec,
2118 },
2119 {
2120 .procname = "entropy_avail",
2121 .maxlen = sizeof(int),
2122 .mode = 0444,
2123 .proc_handler = proc_do_entropy,
2124 .data = &input_pool.entropy_count,
2125 },
2126 {
2127 .procname = "read_wakeup_threshold",
2128 .data = &random_read_wakeup_bits,
2129 .maxlen = sizeof(int),
2130 .mode = 0644,
2131 .proc_handler = proc_dointvec_minmax,
2132 .extra1 = &min_read_thresh,
2133 .extra2 = &max_read_thresh,
2134 },
2135 {
2136 .procname = "write_wakeup_threshold",
2137 .data = &random_write_wakeup_bits,
2138 .maxlen = sizeof(int),
2139 .mode = 0644,
2140 .proc_handler = proc_dointvec_minmax,
2141 .extra1 = &min_write_thresh,
2142 .extra2 = &max_write_thresh,
2143 },
2144 {
2145 .procname = "urandom_min_reseed_secs",
2146 .data = &random_min_urandom_seed,
2147 .maxlen = sizeof(int),
2148 .mode = 0644,
2149 .proc_handler = proc_dointvec,
2150 },
2151 {
2152 .procname = "boot_id",
2153 .data = &sysctl_bootid,
2154 .maxlen = 16,
2155 .mode = 0444,
2156 .proc_handler = proc_do_uuid,
2157 },
2158 {
2159 .procname = "uuid",
2160 .maxlen = 16,
2161 .mode = 0444,
2162 .proc_handler = proc_do_uuid,
2163 },
2164 #ifdef ADD_INTERRUPT_BENCH
2165 {
2166 .procname = "add_interrupt_avg_cycles",
2167 .data = &avg_cycles,
2168 .maxlen = sizeof(avg_cycles),
2169 .mode = 0444,
2170 .proc_handler = proc_doulongvec_minmax,
2171 },
2172 {
2173 .procname = "add_interrupt_avg_deviation",
2174 .data = &avg_deviation,
2175 .maxlen = sizeof(avg_deviation),
2176 .mode = 0444,
2177 .proc_handler = proc_doulongvec_minmax,
2178 },
2179 #endif
2180 { }
2181 };
2182 #endif /* CONFIG_SYSCTL */
2183
2184 struct batched_entropy {
2185 union {
2186 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2187 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2188 };
2189 unsigned int position;
2190 spinlock_t batch_lock;
2191 };
2192
2193 /*
2194 * Get a random word for internal kernel use only. The quality of the random
2195 * number is either as good as RDRAND or as good as /dev/urandom, with the
2196 * goal of being quite fast and not depleting entropy. In order to ensure
2197 * that the randomness provided by this function is okay, the function
2198 * wait_for_random_bytes() should be called and return 0 at least once
2199 * at any point prior.
2200 */
2201 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2202 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2203 };
2204
get_random_u64(void)2205 u64 get_random_u64(void)
2206 {
2207 u64 ret;
2208 unsigned long flags;
2209 struct batched_entropy *batch;
2210 static void *previous;
2211
2212 #if BITS_PER_LONG == 64
2213 if (arch_get_random_long((unsigned long *)&ret))
2214 return ret;
2215 #else
2216 if (arch_get_random_long((unsigned long *)&ret) &&
2217 arch_get_random_long((unsigned long *)&ret + 1))
2218 return ret;
2219 #endif
2220
2221 warn_unseeded_randomness(&previous);
2222
2223 batch = raw_cpu_ptr(&batched_entropy_u64);
2224 spin_lock_irqsave(&batch->batch_lock, flags);
2225 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2226 extract_crng((u8 *)batch->entropy_u64);
2227 batch->position = 0;
2228 }
2229 ret = batch->entropy_u64[batch->position++];
2230 spin_unlock_irqrestore(&batch->batch_lock, flags);
2231 return ret;
2232 }
2233 EXPORT_SYMBOL(get_random_u64);
2234
2235 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2236 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2237 };
get_random_u32(void)2238 u32 get_random_u32(void)
2239 {
2240 u32 ret;
2241 unsigned long flags;
2242 struct batched_entropy *batch;
2243 static void *previous;
2244
2245 if (arch_get_random_int(&ret))
2246 return ret;
2247
2248 warn_unseeded_randomness(&previous);
2249
2250 batch = raw_cpu_ptr(&batched_entropy_u32);
2251 spin_lock_irqsave(&batch->batch_lock, flags);
2252 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2253 extract_crng((u8 *)batch->entropy_u32);
2254 batch->position = 0;
2255 }
2256 ret = batch->entropy_u32[batch->position++];
2257 spin_unlock_irqrestore(&batch->batch_lock, flags);
2258 return ret;
2259 }
2260 EXPORT_SYMBOL(get_random_u32);
2261
2262 /* It's important to invalidate all potential batched entropy that might
2263 * be stored before the crng is initialized, which we can do lazily by
2264 * simply resetting the counter to zero so that it's re-extracted on the
2265 * next usage. */
invalidate_batched_entropy(void)2266 static void invalidate_batched_entropy(void)
2267 {
2268 int cpu;
2269 unsigned long flags;
2270
2271 for_each_possible_cpu (cpu) {
2272 struct batched_entropy *batched_entropy;
2273
2274 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2275 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2276 batched_entropy->position = 0;
2277 spin_unlock(&batched_entropy->batch_lock);
2278
2279 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2280 spin_lock(&batched_entropy->batch_lock);
2281 batched_entropy->position = 0;
2282 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2283 }
2284 }
2285
2286 /**
2287 * randomize_page - Generate a random, page aligned address
2288 * @start: The smallest acceptable address the caller will take.
2289 * @range: The size of the area, starting at @start, within which the
2290 * random address must fall.
2291 *
2292 * If @start + @range would overflow, @range is capped.
2293 *
2294 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2295 * @start was already page aligned. We now align it regardless.
2296 *
2297 * Return: A page aligned address within [start, start + range). On error,
2298 * @start is returned.
2299 */
2300 unsigned long
randomize_page(unsigned long start,unsigned long range)2301 randomize_page(unsigned long start, unsigned long range)
2302 {
2303 if (!PAGE_ALIGNED(start)) {
2304 range -= PAGE_ALIGN(start) - start;
2305 start = PAGE_ALIGN(start);
2306 }
2307
2308 if (start > ULONG_MAX - range)
2309 range = ULONG_MAX - start;
2310
2311 range >>= PAGE_SHIFT;
2312
2313 if (range == 0)
2314 return start;
2315
2316 return start + (get_random_long() % range << PAGE_SHIFT);
2317 }
2318
2319 /* Interface for in-kernel drivers of true hardware RNGs.
2320 * Those devices may produce endless random bits and will be throttled
2321 * when our pool is full.
2322 */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)2323 void add_hwgenerator_randomness(const char *buffer, size_t count,
2324 size_t entropy)
2325 {
2326 struct entropy_store *poolp = &input_pool;
2327
2328 if (unlikely(crng_init == 0)) {
2329 crng_fast_load(buffer, count);
2330 return;
2331 }
2332
2333 /* Suspend writing if we're above the trickle threshold.
2334 * We'll be woken up again once below random_write_wakeup_thresh,
2335 * or when the calling thread is about to terminate.
2336 */
2337 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2338 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2339 mix_pool_bytes(poolp, buffer, count);
2340 credit_entropy_bits(poolp, entropy);
2341 }
2342 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2343