1 /*
2 * Copyright 2005, Paul Mackerras, IBM Corporation.
3 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14 #include <linux/mm.h>
15
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/sections.h>
19 #include <asm/mmu.h>
20 #include <asm/tlb.h>
21
22 #include "mmu_decl.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thp.h>
26
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29 * vmemmap is the starting address of the virtual address space where
30 * struct pages are allocated for all possible PFNs present on the system
31 * including holes and bad memory (hence sparse). These virtual struct
32 * pages are stored in sequence in this virtual address space irrespective
33 * of the fact whether the corresponding PFN is valid or not. This achieves
34 * constant relationship between address of struct page and its PFN.
35 *
36 * During boot or memory hotplug operation when a new memory section is
37 * added, physical memory allocation (including hash table bolting) will
38 * be performed for the set of struct pages which are part of the memory
39 * section. This saves memory by not allocating struct pages for PFNs
40 * which are not valid.
41 *
42 * ----------------------------------------------
43 * | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44 * ----------------------------------------------
45 *
46 * f000000000000000 c000000000000000
47 * vmemmap +--------------+ +--------------+
48 * + | page struct | +--------------> | page struct |
49 * | +--------------+ +--------------+
50 * | | page struct | +--------------> | page struct |
51 * | +--------------+ | +--------------+
52 * | | page struct | + +------> | page struct |
53 * | +--------------+ | +--------------+
54 * | | page struct | | +--> | page struct |
55 * | +--------------+ | | +--------------+
56 * | | page struct | | |
57 * | +--------------+ | |
58 * | | page struct | | |
59 * | +--------------+ | |
60 * | | page struct | | |
61 * | +--------------+ | |
62 * | | page struct | | |
63 * | +--------------+ | |
64 * | | page struct | +-------+ |
65 * | +--------------+ |
66 * | | page struct | +-----------+
67 * | +--------------+
68 * | | page struct | No mapping
69 * | +--------------+
70 * | | page struct | No mapping
71 * v +--------------+
72 *
73 * -----------------------------------------
74 * | RELATION BETWEEN STRUCT PAGES AND PFNS|
75 * -----------------------------------------
76 *
77 * vmemmap +--------------+ +---------------+
78 * + | page struct | +-------------> | PFN |
79 * | +--------------+ +---------------+
80 * | | page struct | +-------------> | PFN |
81 * | +--------------+ +---------------+
82 * | | page struct | +-------------> | PFN |
83 * | +--------------+ +---------------+
84 * | | page struct | +-------------> | PFN |
85 * | +--------------+ +---------------+
86 * | | |
87 * | +--------------+
88 * | | |
89 * | +--------------+
90 * | | |
91 * | +--------------+ +---------------+
92 * | | page struct | +-------------> | PFN |
93 * | +--------------+ +---------------+
94 * | | |
95 * | +--------------+
96 * | | |
97 * | +--------------+ +---------------+
98 * | | page struct | +-------------> | PFN |
99 * | +--------------+ +---------------+
100 * | | page struct | +-------------> | PFN |
101 * v +--------------+ +---------------+
102 */
103 /*
104 * On hash-based CPUs, the vmemmap is bolted in the hash table.
105 *
106 */
hash__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108 unsigned long page_size,
109 unsigned long phys)
110 {
111 int rc = htab_bolt_mapping(start, start + page_size, phys,
112 pgprot_val(PAGE_KERNEL),
113 mmu_vmemmap_psize, mmu_kernel_ssize);
114 if (rc < 0) {
115 int rc2 = htab_remove_mapping(start, start + page_size,
116 mmu_vmemmap_psize,
117 mmu_kernel_ssize);
118 BUG_ON(rc2 && (rc2 != -ENOENT));
119 }
120 return rc;
121 }
122
123 #ifdef CONFIG_MEMORY_HOTPLUG
hash__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)124 void hash__vmemmap_remove_mapping(unsigned long start,
125 unsigned long page_size)
126 {
127 int rc = htab_remove_mapping(start, start + page_size,
128 mmu_vmemmap_psize,
129 mmu_kernel_ssize);
130 BUG_ON((rc < 0) && (rc != -ENOENT));
131 WARN_ON(rc == -ENOENT);
132 }
133 #endif
134 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
135
136 /*
137 * map_kernel_page currently only called by __ioremap
138 * map_kernel_page adds an entry to the ioremap page table
139 * and adds an entry to the HPT, possibly bolting it
140 */
hash__map_kernel_page(unsigned long ea,unsigned long pa,unsigned long flags)141 int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
142 {
143 pgd_t *pgdp;
144 pud_t *pudp;
145 pmd_t *pmdp;
146 pte_t *ptep;
147
148 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
149 if (slab_is_available()) {
150 pgdp = pgd_offset_k(ea);
151 pudp = pud_alloc(&init_mm, pgdp, ea);
152 if (!pudp)
153 return -ENOMEM;
154 pmdp = pmd_alloc(&init_mm, pudp, ea);
155 if (!pmdp)
156 return -ENOMEM;
157 ptep = pte_alloc_kernel(pmdp, ea);
158 if (!ptep)
159 return -ENOMEM;
160 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
161 __pgprot(flags)));
162 } else {
163 /*
164 * If the mm subsystem is not fully up, we cannot create a
165 * linux page table entry for this mapping. Simply bolt an
166 * entry in the hardware page table.
167 *
168 */
169 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
170 mmu_io_psize, mmu_kernel_ssize)) {
171 printk(KERN_ERR "Failed to do bolted mapping IO "
172 "memory at %016lx !\n", pa);
173 return -ENOMEM;
174 }
175 }
176
177 smp_wmb();
178 return 0;
179 }
180
181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
182
hash__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)183 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
184 pmd_t *pmdp, unsigned long clr,
185 unsigned long set)
186 {
187 __be64 old_be, tmp;
188 unsigned long old;
189
190 #ifdef CONFIG_DEBUG_VM
191 WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
192 assert_spin_locked(&mm->page_table_lock);
193 #endif
194
195 __asm__ __volatile__(
196 "1: ldarx %0,0,%3\n\
197 and. %1,%0,%6\n\
198 bne- 1b \n\
199 andc %1,%0,%4 \n\
200 or %1,%1,%7\n\
201 stdcx. %1,0,%3 \n\
202 bne- 1b"
203 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
204 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
205 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
206 : "cc" );
207
208 old = be64_to_cpu(old_be);
209
210 trace_hugepage_update(addr, old, clr, set);
211 if (old & H_PAGE_HASHPTE)
212 hpte_do_hugepage_flush(mm, addr, pmdp, old);
213 return old;
214 }
215
hash__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)216 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
217 pmd_t *pmdp)
218 {
219 pmd_t pmd;
220
221 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
222 VM_BUG_ON(pmd_trans_huge(*pmdp));
223 VM_BUG_ON(pmd_devmap(*pmdp));
224
225 pmd = *pmdp;
226 pmd_clear(pmdp);
227 /*
228 * Wait for all pending hash_page to finish. This is needed
229 * in case of subpage collapse. When we collapse normal pages
230 * to hugepage, we first clear the pmd, then invalidate all
231 * the PTE entries. The assumption here is that any low level
232 * page fault will see a none pmd and take the slow path that
233 * will wait on mmap_sem. But we could very well be in a
234 * hash_page with local ptep pointer value. Such a hash page
235 * can result in adding new HPTE entries for normal subpages.
236 * That means we could be modifying the page content as we
237 * copy them to a huge page. So wait for parallel hash_page
238 * to finish before invalidating HPTE entries. We can do this
239 * by sending an IPI to all the cpus and executing a dummy
240 * function there.
241 */
242 serialize_against_pte_lookup(vma->vm_mm);
243 /*
244 * Now invalidate the hpte entries in the range
245 * covered by pmd. This make sure we take a
246 * fault and will find the pmd as none, which will
247 * result in a major fault which takes mmap_sem and
248 * hence wait for collapse to complete. Without this
249 * the __collapse_huge_page_copy can result in copying
250 * the old content.
251 */
252 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
253 return pmd;
254 }
255
256 /*
257 * We want to put the pgtable in pmd and use pgtable for tracking
258 * the base page size hptes
259 */
hash__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)260 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
261 pgtable_t pgtable)
262 {
263 pgtable_t *pgtable_slot;
264 assert_spin_locked(&mm->page_table_lock);
265 /*
266 * we store the pgtable in the second half of PMD
267 */
268 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
269 *pgtable_slot = pgtable;
270 /*
271 * expose the deposited pgtable to other cpus.
272 * before we set the hugepage PTE at pmd level
273 * hash fault code looks at the deposted pgtable
274 * to store hash index values.
275 */
276 smp_wmb();
277 }
278
hash__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)279 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
280 {
281 pgtable_t pgtable;
282 pgtable_t *pgtable_slot;
283
284 assert_spin_locked(&mm->page_table_lock);
285 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
286 pgtable = *pgtable_slot;
287 /*
288 * Once we withdraw, mark the entry NULL.
289 */
290 *pgtable_slot = NULL;
291 /*
292 * We store HPTE information in the deposited PTE fragment.
293 * zero out the content on withdraw.
294 */
295 memset(pgtable, 0, PTE_FRAG_SIZE);
296 return pgtable;
297 }
298
hash__pmdp_huge_split_prepare(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)299 void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
300 unsigned long address, pmd_t *pmdp)
301 {
302 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
303 VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
304 VM_BUG_ON(pmd_devmap(*pmdp));
305
306 /*
307 * We can't mark the pmd none here, because that will cause a race
308 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
309 * we spilt, but at the same time we wan't rest of the ppc64 code
310 * not to insert hash pte on this, because we will be modifying
311 * the deposited pgtable in the caller of this function. Hence
312 * clear the _PAGE_USER so that we move the fault handling to
313 * higher level function and that will serialize against ptl.
314 * We need to flush existing hash pte entries here even though,
315 * the translation is still valid, because we will withdraw
316 * pgtable_t after this.
317 */
318 pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
319 }
320
321 /*
322 * A linux hugepage PMD was changed and the corresponding hash table entries
323 * neesd to be flushed.
324 */
hpte_do_hugepage_flush(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long old_pmd)325 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
326 pmd_t *pmdp, unsigned long old_pmd)
327 {
328 int ssize;
329 unsigned int psize;
330 unsigned long vsid;
331 unsigned long flags = 0;
332
333 /* get the base page size,vsid and segment size */
334 #ifdef CONFIG_DEBUG_VM
335 psize = get_slice_psize(mm, addr);
336 BUG_ON(psize == MMU_PAGE_16M);
337 #endif
338 if (old_pmd & H_PAGE_COMBO)
339 psize = MMU_PAGE_4K;
340 else
341 psize = MMU_PAGE_64K;
342
343 if (!is_kernel_addr(addr)) {
344 ssize = user_segment_size(addr);
345 vsid = get_vsid(mm->context.id, addr, ssize);
346 WARN_ON(vsid == 0);
347 } else {
348 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
349 ssize = mmu_kernel_ssize;
350 }
351
352 if (mm_is_thread_local(mm))
353 flags |= HPTE_LOCAL_UPDATE;
354
355 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
356 }
357
hash__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)358 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
359 unsigned long addr, pmd_t *pmdp)
360 {
361 pmd_t old_pmd;
362 pgtable_t pgtable;
363 unsigned long old;
364 pgtable_t *pgtable_slot;
365
366 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
367 old_pmd = __pmd(old);
368 /*
369 * We have pmd == none and we are holding page_table_lock.
370 * So we can safely go and clear the pgtable hash
371 * index info.
372 */
373 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
374 pgtable = *pgtable_slot;
375 /*
376 * Let's zero out old valid and hash index details
377 * hash fault look at them.
378 */
379 memset(pgtable, 0, PTE_FRAG_SIZE);
380 /*
381 * Serialize against find_current_mm_pte variants which does lock-less
382 * lookup in page tables with local interrupts disabled. For huge pages
383 * it casts pmd_t to pte_t. Since format of pte_t is different from
384 * pmd_t we want to prevent transit from pmd pointing to page table
385 * to pmd pointing to huge page (and back) while interrupts are disabled.
386 * We clear pmd to possibly replace it with page table pointer in
387 * different code paths. So make sure we wait for the parallel
388 * find_curren_mm_pte to finish.
389 */
390 serialize_against_pte_lookup(mm);
391 return old_pmd;
392 }
393
hash__has_transparent_hugepage(void)394 int hash__has_transparent_hugepage(void)
395 {
396
397 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
398 return 0;
399 /*
400 * We support THP only if PMD_SIZE is 16MB.
401 */
402 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
403 return 0;
404 /*
405 * We need to make sure that we support 16MB hugepage in a segement
406 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
407 * of 64K.
408 */
409 /*
410 * If we have 64K HPTE, we will be using that by default
411 */
412 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
413 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
414 return 0;
415 /*
416 * Ok we only have 4K HPTE
417 */
418 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
419 return 0;
420
421 return 1;
422 }
423 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
424
425 #ifdef CONFIG_STRICT_KERNEL_RWX
hash__change_memory_range(unsigned long start,unsigned long end,unsigned long newpp)426 static bool hash__change_memory_range(unsigned long start, unsigned long end,
427 unsigned long newpp)
428 {
429 unsigned long idx;
430 unsigned int step, shift;
431
432 shift = mmu_psize_defs[mmu_linear_psize].shift;
433 step = 1 << shift;
434
435 start = ALIGN_DOWN(start, step);
436 end = ALIGN(end, step); // aligns up
437
438 if (start >= end)
439 return false;
440
441 pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
442 start, end, newpp, step);
443
444 for (idx = start; idx < end; idx += step)
445 /* Not sure if we can do much with the return value */
446 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
447 mmu_kernel_ssize);
448
449 return true;
450 }
451
hash__mark_rodata_ro(void)452 void hash__mark_rodata_ro(void)
453 {
454 unsigned long start, end;
455
456 start = (unsigned long)_stext;
457 end = (unsigned long)__init_begin;
458
459 WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
460 }
461
hash__mark_initmem_nx(void)462 void hash__mark_initmem_nx(void)
463 {
464 unsigned long start, end, pp;
465
466 start = (unsigned long)__init_begin;
467 end = (unsigned long)__init_end;
468
469 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
470
471 WARN_ON(!hash__change_memory_range(start, end, pp));
472 }
473 #endif
474