• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2005, Paul Mackerras, IBM Corporation.
3  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14 #include <linux/mm.h>
15 
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/sections.h>
19 #include <asm/mmu.h>
20 #include <asm/tlb.h>
21 
22 #include "mmu_decl.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thp.h>
26 
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29  * vmemmap is the starting address of the virtual address space where
30  * struct pages are allocated for all possible PFNs present on the system
31  * including holes and bad memory (hence sparse). These virtual struct
32  * pages are stored in sequence in this virtual address space irrespective
33  * of the fact whether the corresponding PFN is valid or not. This achieves
34  * constant relationship between address of struct page and its PFN.
35  *
36  * During boot or memory hotplug operation when a new memory section is
37  * added, physical memory allocation (including hash table bolting) will
38  * be performed for the set of struct pages which are part of the memory
39  * section. This saves memory by not allocating struct pages for PFNs
40  * which are not valid.
41  *
42  *		----------------------------------------------
43  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44  *		----------------------------------------------
45  *
46  *	   f000000000000000                  c000000000000000
47  * vmemmap +--------------+                  +--------------+
48  *  +      |  page struct | +--------------> |  page struct |
49  *  |      +--------------+                  +--------------+
50  *  |      |  page struct | +--------------> |  page struct |
51  *  |      +--------------+ |                +--------------+
52  *  |      |  page struct | +       +------> |  page struct |
53  *  |      +--------------+         |        +--------------+
54  *  |      |  page struct |         |   +--> |  page struct |
55  *  |      +--------------+         |   |    +--------------+
56  *  |      |  page struct |         |   |
57  *  |      +--------------+         |   |
58  *  |      |  page struct |         |   |
59  *  |      +--------------+         |   |
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct | +-------+   |
65  *  |      +--------------+             |
66  *  |      |  page struct | +-----------+
67  *  |      +--------------+
68  *  |      |  page struct | No mapping
69  *  |      +--------------+
70  *  |      |  page struct | No mapping
71  *  v      +--------------+
72  *
73  *		-----------------------------------------
74  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
75  *		-----------------------------------------
76  *
77  * vmemmap +--------------+                 +---------------+
78  *  +      |  page struct | +-------------> |      PFN      |
79  *  |      +--------------+                 +---------------+
80  *  |      |  page struct | +-------------> |      PFN      |
81  *  |      +--------------+                 +---------------+
82  *  |      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |              |
87  *  |      +--------------+
88  *  |      |              |
89  *  |      +--------------+
90  *  |      |              |
91  *  |      +--------------+                 +---------------+
92  *  |      |  page struct | +-------------> |      PFN      |
93  *  |      +--------------+                 +---------------+
94  *  |      |              |
95  *  |      +--------------+
96  *  |      |              |
97  *  |      +--------------+                 +---------------+
98  *  |      |  page struct | +-------------> |      PFN      |
99  *  |      +--------------+                 +---------------+
100  *  |      |  page struct | +-------------> |      PFN      |
101  *  v      +--------------+                 +---------------+
102  */
103 /*
104  * On hash-based CPUs, the vmemmap is bolted in the hash table.
105  *
106  */
hash__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108 				       unsigned long page_size,
109 				       unsigned long phys)
110 {
111 	int rc = htab_bolt_mapping(start, start + page_size, phys,
112 				   pgprot_val(PAGE_KERNEL),
113 				   mmu_vmemmap_psize, mmu_kernel_ssize);
114 	if (rc < 0) {
115 		int rc2 = htab_remove_mapping(start, start + page_size,
116 					      mmu_vmemmap_psize,
117 					      mmu_kernel_ssize);
118 		BUG_ON(rc2 && (rc2 != -ENOENT));
119 	}
120 	return rc;
121 }
122 
123 #ifdef CONFIG_MEMORY_HOTPLUG
hash__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)124 void hash__vmemmap_remove_mapping(unsigned long start,
125 			      unsigned long page_size)
126 {
127 	int rc = htab_remove_mapping(start, start + page_size,
128 				     mmu_vmemmap_psize,
129 				     mmu_kernel_ssize);
130 	BUG_ON((rc < 0) && (rc != -ENOENT));
131 	WARN_ON(rc == -ENOENT);
132 }
133 #endif
134 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
135 
136 /*
137  * map_kernel_page currently only called by __ioremap
138  * map_kernel_page adds an entry to the ioremap page table
139  * and adds an entry to the HPT, possibly bolting it
140  */
hash__map_kernel_page(unsigned long ea,unsigned long pa,unsigned long flags)141 int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
142 {
143 	pgd_t *pgdp;
144 	pud_t *pudp;
145 	pmd_t *pmdp;
146 	pte_t *ptep;
147 
148 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
149 	if (slab_is_available()) {
150 		pgdp = pgd_offset_k(ea);
151 		pudp = pud_alloc(&init_mm, pgdp, ea);
152 		if (!pudp)
153 			return -ENOMEM;
154 		pmdp = pmd_alloc(&init_mm, pudp, ea);
155 		if (!pmdp)
156 			return -ENOMEM;
157 		ptep = pte_alloc_kernel(pmdp, ea);
158 		if (!ptep)
159 			return -ENOMEM;
160 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
161 							  __pgprot(flags)));
162 	} else {
163 		/*
164 		 * If the mm subsystem is not fully up, we cannot create a
165 		 * linux page table entry for this mapping.  Simply bolt an
166 		 * entry in the hardware page table.
167 		 *
168 		 */
169 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
170 				      mmu_io_psize, mmu_kernel_ssize)) {
171 			printk(KERN_ERR "Failed to do bolted mapping IO "
172 			       "memory at %016lx !\n", pa);
173 			return -ENOMEM;
174 		}
175 	}
176 
177 	smp_wmb();
178 	return 0;
179 }
180 
181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
182 
hash__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)183 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
184 				    pmd_t *pmdp, unsigned long clr,
185 				    unsigned long set)
186 {
187 	__be64 old_be, tmp;
188 	unsigned long old;
189 
190 #ifdef CONFIG_DEBUG_VM
191 	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
192 	assert_spin_locked(&mm->page_table_lock);
193 #endif
194 
195 	__asm__ __volatile__(
196 	"1:	ldarx	%0,0,%3\n\
197 		and.	%1,%0,%6\n\
198 		bne-	1b \n\
199 		andc	%1,%0,%4 \n\
200 		or	%1,%1,%7\n\
201 		stdcx.	%1,0,%3 \n\
202 		bne-	1b"
203 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
204 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
205 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
206 	: "cc" );
207 
208 	old = be64_to_cpu(old_be);
209 
210 	trace_hugepage_update(addr, old, clr, set);
211 	if (old & H_PAGE_HASHPTE)
212 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
213 	return old;
214 }
215 
hash__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)216 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
217 			    pmd_t *pmdp)
218 {
219 	pmd_t pmd;
220 
221 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
222 	VM_BUG_ON(pmd_trans_huge(*pmdp));
223 	VM_BUG_ON(pmd_devmap(*pmdp));
224 
225 	pmd = *pmdp;
226 	pmd_clear(pmdp);
227 	/*
228 	 * Wait for all pending hash_page to finish. This is needed
229 	 * in case of subpage collapse. When we collapse normal pages
230 	 * to hugepage, we first clear the pmd, then invalidate all
231 	 * the PTE entries. The assumption here is that any low level
232 	 * page fault will see a none pmd and take the slow path that
233 	 * will wait on mmap_sem. But we could very well be in a
234 	 * hash_page with local ptep pointer value. Such a hash page
235 	 * can result in adding new HPTE entries for normal subpages.
236 	 * That means we could be modifying the page content as we
237 	 * copy them to a huge page. So wait for parallel hash_page
238 	 * to finish before invalidating HPTE entries. We can do this
239 	 * by sending an IPI to all the cpus and executing a dummy
240 	 * function there.
241 	 */
242 	serialize_against_pte_lookup(vma->vm_mm);
243 	/*
244 	 * Now invalidate the hpte entries in the range
245 	 * covered by pmd. This make sure we take a
246 	 * fault and will find the pmd as none, which will
247 	 * result in a major fault which takes mmap_sem and
248 	 * hence wait for collapse to complete. Without this
249 	 * the __collapse_huge_page_copy can result in copying
250 	 * the old content.
251 	 */
252 	flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
253 	return pmd;
254 }
255 
256 /*
257  * We want to put the pgtable in pmd and use pgtable for tracking
258  * the base page size hptes
259  */
hash__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)260 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
261 				  pgtable_t pgtable)
262 {
263 	pgtable_t *pgtable_slot;
264 	assert_spin_locked(&mm->page_table_lock);
265 	/*
266 	 * we store the pgtable in the second half of PMD
267 	 */
268 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
269 	*pgtable_slot = pgtable;
270 	/*
271 	 * expose the deposited pgtable to other cpus.
272 	 * before we set the hugepage PTE at pmd level
273 	 * hash fault code looks at the deposted pgtable
274 	 * to store hash index values.
275 	 */
276 	smp_wmb();
277 }
278 
hash__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)279 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
280 {
281 	pgtable_t pgtable;
282 	pgtable_t *pgtable_slot;
283 
284 	assert_spin_locked(&mm->page_table_lock);
285 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
286 	pgtable = *pgtable_slot;
287 	/*
288 	 * Once we withdraw, mark the entry NULL.
289 	 */
290 	*pgtable_slot = NULL;
291 	/*
292 	 * We store HPTE information in the deposited PTE fragment.
293 	 * zero out the content on withdraw.
294 	 */
295 	memset(pgtable, 0, PTE_FRAG_SIZE);
296 	return pgtable;
297 }
298 
hash__pmdp_huge_split_prepare(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)299 void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
300 			       unsigned long address, pmd_t *pmdp)
301 {
302 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
303 	VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
304 	VM_BUG_ON(pmd_devmap(*pmdp));
305 
306 	/*
307 	 * We can't mark the pmd none here, because that will cause a race
308 	 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
309 	 * we spilt, but at the same time we wan't rest of the ppc64 code
310 	 * not to insert hash pte on this, because we will be modifying
311 	 * the deposited pgtable in the caller of this function. Hence
312 	 * clear the _PAGE_USER so that we move the fault handling to
313 	 * higher level function and that will serialize against ptl.
314 	 * We need to flush existing hash pte entries here even though,
315 	 * the translation is still valid, because we will withdraw
316 	 * pgtable_t after this.
317 	 */
318 	pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
319 }
320 
321 /*
322  * A linux hugepage PMD was changed and the corresponding hash table entries
323  * neesd to be flushed.
324  */
hpte_do_hugepage_flush(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long old_pmd)325 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
326 			    pmd_t *pmdp, unsigned long old_pmd)
327 {
328 	int ssize;
329 	unsigned int psize;
330 	unsigned long vsid;
331 	unsigned long flags = 0;
332 
333 	/* get the base page size,vsid and segment size */
334 #ifdef CONFIG_DEBUG_VM
335 	psize = get_slice_psize(mm, addr);
336 	BUG_ON(psize == MMU_PAGE_16M);
337 #endif
338 	if (old_pmd & H_PAGE_COMBO)
339 		psize = MMU_PAGE_4K;
340 	else
341 		psize = MMU_PAGE_64K;
342 
343 	if (!is_kernel_addr(addr)) {
344 		ssize = user_segment_size(addr);
345 		vsid = get_vsid(mm->context.id, addr, ssize);
346 		WARN_ON(vsid == 0);
347 	} else {
348 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
349 		ssize = mmu_kernel_ssize;
350 	}
351 
352 	if (mm_is_thread_local(mm))
353 		flags |= HPTE_LOCAL_UPDATE;
354 
355 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
356 }
357 
hash__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)358 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
359 				unsigned long addr, pmd_t *pmdp)
360 {
361 	pmd_t old_pmd;
362 	pgtable_t pgtable;
363 	unsigned long old;
364 	pgtable_t *pgtable_slot;
365 
366 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
367 	old_pmd = __pmd(old);
368 	/*
369 	 * We have pmd == none and we are holding page_table_lock.
370 	 * So we can safely go and clear the pgtable hash
371 	 * index info.
372 	 */
373 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
374 	pgtable = *pgtable_slot;
375 	/*
376 	 * Let's zero out old valid and hash index details
377 	 * hash fault look at them.
378 	 */
379 	memset(pgtable, 0, PTE_FRAG_SIZE);
380 	/*
381 	 * Serialize against find_current_mm_pte variants which does lock-less
382 	 * lookup in page tables with local interrupts disabled. For huge pages
383 	 * it casts pmd_t to pte_t. Since format of pte_t is different from
384 	 * pmd_t we want to prevent transit from pmd pointing to page table
385 	 * to pmd pointing to huge page (and back) while interrupts are disabled.
386 	 * We clear pmd to possibly replace it with page table pointer in
387 	 * different code paths. So make sure we wait for the parallel
388 	 * find_curren_mm_pte to finish.
389 	 */
390 	serialize_against_pte_lookup(mm);
391 	return old_pmd;
392 }
393 
hash__has_transparent_hugepage(void)394 int hash__has_transparent_hugepage(void)
395 {
396 
397 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
398 		return 0;
399 	/*
400 	 * We support THP only if PMD_SIZE is 16MB.
401 	 */
402 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
403 		return 0;
404 	/*
405 	 * We need to make sure that we support 16MB hugepage in a segement
406 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
407 	 * of 64K.
408 	 */
409 	/*
410 	 * If we have 64K HPTE, we will be using that by default
411 	 */
412 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
413 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
414 		return 0;
415 	/*
416 	 * Ok we only have 4K HPTE
417 	 */
418 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
419 		return 0;
420 
421 	return 1;
422 }
423 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
424 
425 #ifdef CONFIG_STRICT_KERNEL_RWX
hash__change_memory_range(unsigned long start,unsigned long end,unsigned long newpp)426 static bool hash__change_memory_range(unsigned long start, unsigned long end,
427 				      unsigned long newpp)
428 {
429 	unsigned long idx;
430 	unsigned int step, shift;
431 
432 	shift = mmu_psize_defs[mmu_linear_psize].shift;
433 	step = 1 << shift;
434 
435 	start = ALIGN_DOWN(start, step);
436 	end = ALIGN(end, step); // aligns up
437 
438 	if (start >= end)
439 		return false;
440 
441 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
442 		 start, end, newpp, step);
443 
444 	for (idx = start; idx < end; idx += step)
445 		/* Not sure if we can do much with the return value */
446 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
447 							mmu_kernel_ssize);
448 
449 	return true;
450 }
451 
hash__mark_rodata_ro(void)452 void hash__mark_rodata_ro(void)
453 {
454 	unsigned long start, end;
455 
456 	start = (unsigned long)_stext;
457 	end = (unsigned long)__init_begin;
458 
459 	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
460 }
461 
hash__mark_initmem_nx(void)462 void hash__mark_initmem_nx(void)
463 {
464 	unsigned long start, end, pp;
465 
466 	start = (unsigned long)__init_begin;
467 	end = (unsigned long)__init_end;
468 
469 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
470 
471 	WARN_ON(!hash__change_memory_range(start, end, pp));
472 }
473 #endif
474