• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58 
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 
68 static unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70 		   S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
73 
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77 		 "Maximum number of protection domains to support");
78 
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82 
83 unsigned int hfi1_max_cqes = 0x2FFFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86 		 "Maximum number of completion queue entries to support");
87 
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91 
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95 
96 unsigned int hfi1_max_qps = 32768;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99 
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103 
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107 		 "Maximum number of multicast groups to support");
108 
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111 		   uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113 		 "Maximum number of attached QPs to support");
114 
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118 
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122 
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126 
127 unsigned short piothreshold = 256;
128 module_param(piothreshold, ushort, S_IRUGO);
129 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
130 
131 #define COPY_CACHELESS 1
132 #define COPY_ADAPTIVE  2
133 static unsigned int sge_copy_mode;
134 module_param(sge_copy_mode, uint, S_IRUGO);
135 MODULE_PARM_DESC(sge_copy_mode,
136 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
137 
138 static void verbs_sdma_complete(
139 	struct sdma_txreq *cookie,
140 	int status);
141 
142 static int pio_wait(struct rvt_qp *qp,
143 		    struct send_context *sc,
144 		    struct hfi1_pkt_state *ps,
145 		    u32 flag);
146 
147 /* Length of buffer to create verbs txreq cache name */
148 #define TXREQ_NAME_LEN 24
149 
150 static uint wss_threshold;
151 module_param(wss_threshold, uint, S_IRUGO);
152 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
153 static uint wss_clean_period = 256;
154 module_param(wss_clean_period, uint, S_IRUGO);
155 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
156 
157 /* memory working set size */
158 struct hfi1_wss {
159 	unsigned long *entries;
160 	atomic_t total_count;
161 	atomic_t clean_counter;
162 	atomic_t clean_entry;
163 
164 	int threshold;
165 	int num_entries;
166 	long pages_mask;
167 };
168 
169 static struct hfi1_wss wss;
170 
hfi1_wss_init(void)171 int hfi1_wss_init(void)
172 {
173 	long llc_size;
174 	long llc_bits;
175 	long table_size;
176 	long table_bits;
177 
178 	/* check for a valid percent range - default to 80 if none or invalid */
179 	if (wss_threshold < 1 || wss_threshold > 100)
180 		wss_threshold = 80;
181 	/* reject a wildly large period */
182 	if (wss_clean_period > 1000000)
183 		wss_clean_period = 256;
184 	/* reject a zero period */
185 	if (wss_clean_period == 0)
186 		wss_clean_period = 1;
187 
188 	/*
189 	 * Calculate the table size - the next power of 2 larger than the
190 	 * LLC size.  LLC size is in KiB.
191 	 */
192 	llc_size = wss_llc_size() * 1024;
193 	table_size = roundup_pow_of_two(llc_size);
194 
195 	/* one bit per page in rounded up table */
196 	llc_bits = llc_size / PAGE_SIZE;
197 	table_bits = table_size / PAGE_SIZE;
198 	wss.pages_mask = table_bits - 1;
199 	wss.num_entries = table_bits / BITS_PER_LONG;
200 
201 	wss.threshold = (llc_bits * wss_threshold) / 100;
202 	if (wss.threshold == 0)
203 		wss.threshold = 1;
204 
205 	atomic_set(&wss.clean_counter, wss_clean_period);
206 
207 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
208 			      GFP_KERNEL);
209 	if (!wss.entries) {
210 		hfi1_wss_exit();
211 		return -ENOMEM;
212 	}
213 
214 	return 0;
215 }
216 
hfi1_wss_exit(void)217 void hfi1_wss_exit(void)
218 {
219 	/* coded to handle partially initialized and repeat callers */
220 	kfree(wss.entries);
221 	wss.entries = NULL;
222 }
223 
224 /*
225  * Advance the clean counter.  When the clean period has expired,
226  * clean an entry.
227  *
228  * This is implemented in atomics to avoid locking.  Because multiple
229  * variables are involved, it can be racy which can lead to slightly
230  * inaccurate information.  Since this is only a heuristic, this is
231  * OK.  Any innaccuracies will clean themselves out as the counter
232  * advances.  That said, it is unlikely the entry clean operation will
233  * race - the next possible racer will not start until the next clean
234  * period.
235  *
236  * The clean counter is implemented as a decrement to zero.  When zero
237  * is reached an entry is cleaned.
238  */
wss_advance_clean_counter(void)239 static void wss_advance_clean_counter(void)
240 {
241 	int entry;
242 	int weight;
243 	unsigned long bits;
244 
245 	/* become the cleaner if we decrement the counter to zero */
246 	if (atomic_dec_and_test(&wss.clean_counter)) {
247 		/*
248 		 * Set, not add, the clean period.  This avoids an issue
249 		 * where the counter could decrement below the clean period.
250 		 * Doing a set can result in lost decrements, slowing the
251 		 * clean advance.  Since this a heuristic, this possible
252 		 * slowdown is OK.
253 		 *
254 		 * An alternative is to loop, advancing the counter by a
255 		 * clean period until the result is > 0. However, this could
256 		 * lead to several threads keeping another in the clean loop.
257 		 * This could be mitigated by limiting the number of times
258 		 * we stay in the loop.
259 		 */
260 		atomic_set(&wss.clean_counter, wss_clean_period);
261 
262 		/*
263 		 * Uniquely grab the entry to clean and move to next.
264 		 * The current entry is always the lower bits of
265 		 * wss.clean_entry.  The table size, wss.num_entries,
266 		 * is always a power-of-2.
267 		 */
268 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
269 			& (wss.num_entries - 1);
270 
271 		/* clear the entry and count the bits */
272 		bits = xchg(&wss.entries[entry], 0);
273 		weight = hweight64((u64)bits);
274 		/* only adjust the contended total count if needed */
275 		if (weight)
276 			atomic_sub(weight, &wss.total_count);
277 	}
278 }
279 
280 /*
281  * Insert the given address into the working set array.
282  */
wss_insert(void * address)283 static void wss_insert(void *address)
284 {
285 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
286 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
287 	u32 nr = page & (BITS_PER_LONG - 1);
288 
289 	if (!test_and_set_bit(nr, &wss.entries[entry]))
290 		atomic_inc(&wss.total_count);
291 
292 	wss_advance_clean_counter();
293 }
294 
295 /*
296  * Is the working set larger than the threshold?
297  */
wss_exceeds_threshold(void)298 static inline bool wss_exceeds_threshold(void)
299 {
300 	return atomic_read(&wss.total_count) >= wss.threshold;
301 }
302 
303 /*
304  * Translate ib_wr_opcode into ib_wc_opcode.
305  */
306 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
307 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
308 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
309 	[IB_WR_SEND] = IB_WC_SEND,
310 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
311 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
312 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
313 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
314 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
315 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
316 	[IB_WR_REG_MR] = IB_WC_REG_MR
317 };
318 
319 /*
320  * Length of header by opcode, 0 --> not supported
321  */
322 const u8 hdr_len_by_opcode[256] = {
323 	/* RC */
324 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
325 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
326 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
327 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
328 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
329 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
330 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
331 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
332 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
333 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
334 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
335 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
336 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
337 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
338 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
339 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
340 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
341 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
342 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
343 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
344 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
345 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
346 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
347 	/* UC */
348 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
349 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
350 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
351 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
352 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
353 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
354 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
355 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
356 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
357 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
358 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
359 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
360 	/* UD */
361 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
362 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
363 };
364 
365 static const opcode_handler opcode_handler_tbl[256] = {
366 	/* RC */
367 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
370 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
371 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
372 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
373 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
374 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
375 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
376 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
377 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
378 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
379 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
380 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
381 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
382 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
383 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
384 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
385 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
386 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
387 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
388 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
389 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
390 	/* UC */
391 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
392 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
393 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
394 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
395 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
396 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
397 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
398 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
399 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
400 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
401 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
402 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
403 	/* UD */
404 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
405 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
406 	/* CNP */
407 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
408 };
409 
410 #define OPMASK 0x1f
411 
412 static const u32 pio_opmask[BIT(3)] = {
413 	/* RC */
414 	[IB_OPCODE_RC >> 5] =
415 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
416 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
417 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
418 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
419 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
420 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
421 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
422 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
423 		BIT(RC_OP(FETCH_ADD) & OPMASK),
424 	/* UC */
425 	[IB_OPCODE_UC >> 5] =
426 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
427 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
428 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
429 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
430 };
431 
432 /*
433  * System image GUID.
434  */
435 __be64 ib_hfi1_sys_image_guid;
436 
437 /**
438  * hfi1_copy_sge - copy data to SGE memory
439  * @ss: the SGE state
440  * @data: the data to copy
441  * @length: the length of the data
442  * @release: boolean to release MR
443  * @copy_last: do a separate copy of the last 8 bytes
444  */
hfi1_copy_sge(struct rvt_sge_state * ss,void * data,u32 length,bool release,bool copy_last)445 void hfi1_copy_sge(
446 	struct rvt_sge_state *ss,
447 	void *data, u32 length,
448 	bool release,
449 	bool copy_last)
450 {
451 	struct rvt_sge *sge = &ss->sge;
452 	int i;
453 	bool in_last = false;
454 	bool cacheless_copy = false;
455 
456 	if (sge_copy_mode == COPY_CACHELESS) {
457 		cacheless_copy = length >= PAGE_SIZE;
458 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
459 		if (length >= PAGE_SIZE) {
460 			/*
461 			 * NOTE: this *assumes*:
462 			 * o The first vaddr is the dest.
463 			 * o If multiple pages, then vaddr is sequential.
464 			 */
465 			wss_insert(sge->vaddr);
466 			if (length >= (2 * PAGE_SIZE))
467 				wss_insert(sge->vaddr + PAGE_SIZE);
468 
469 			cacheless_copy = wss_exceeds_threshold();
470 		} else {
471 			wss_advance_clean_counter();
472 		}
473 	}
474 	if (copy_last) {
475 		if (length > 8) {
476 			length -= 8;
477 		} else {
478 			copy_last = false;
479 			in_last = true;
480 		}
481 	}
482 
483 again:
484 	while (length) {
485 		u32 len = rvt_get_sge_length(sge, length);
486 
487 		WARN_ON_ONCE(len == 0);
488 		if (unlikely(in_last)) {
489 			/* enforce byte transfer ordering */
490 			for (i = 0; i < len; i++)
491 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
492 		} else if (cacheless_copy) {
493 			cacheless_memcpy(sge->vaddr, data, len);
494 		} else {
495 			memcpy(sge->vaddr, data, len);
496 		}
497 		rvt_update_sge(ss, len, release);
498 		data += len;
499 		length -= len;
500 	}
501 
502 	if (copy_last) {
503 		copy_last = false;
504 		in_last = true;
505 		length = 8;
506 		goto again;
507 	}
508 }
509 
510 /*
511  * Make sure the QP is ready and able to accept the given opcode.
512  */
qp_ok(struct hfi1_packet * packet)513 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
514 {
515 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
516 		return NULL;
517 	if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
518 	     packet->qp->allowed_ops) ||
519 	    (packet->opcode == IB_OPCODE_CNP))
520 		return opcode_handler_tbl[packet->opcode];
521 
522 	return NULL;
523 }
524 
hfi1_fault_tx(struct rvt_qp * qp,u8 opcode,u64 pbc)525 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
526 {
527 #ifdef CONFIG_FAULT_INJECTION
528 	if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
529 		/*
530 		 * In order to drop non-IB traffic we
531 		 * set PbcInsertHrc to NONE (0x2).
532 		 * The packet will still be delivered
533 		 * to the receiving node but a
534 		 * KHdrHCRCErr (KDETH packet with a bad
535 		 * HCRC) will be triggered and the
536 		 * packet will not be delivered to the
537 		 * correct context.
538 		 */
539 		pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
540 	else
541 		/*
542 		 * In order to drop regular verbs
543 		 * traffic we set the PbcTestEbp
544 		 * flag. The packet will still be
545 		 * delivered to the receiving node but
546 		 * a 'late ebp error' will be
547 		 * triggered and will be dropped.
548 		 */
549 		pbc |= PBC_TEST_EBP;
550 #endif
551 	return pbc;
552 }
553 
hfi1_do_pkey_check(struct hfi1_packet * packet)554 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
555 {
556 	struct hfi1_ctxtdata *rcd = packet->rcd;
557 	struct hfi1_pportdata *ppd = rcd->ppd;
558 	struct hfi1_16b_header *hdr = packet->hdr;
559 	u16 pkey;
560 
561 	/* Pkey check needed only for bypass packets */
562 	if (packet->etype != RHF_RCV_TYPE_BYPASS)
563 		return 0;
564 
565 	/* Perform pkey check */
566 	pkey = hfi1_16B_get_pkey(hdr);
567 	return ingress_pkey_check(ppd, pkey, packet->sc,
568 				  packet->qp->s_pkey_index,
569 				  packet->slid, true);
570 }
571 
hfi1_handle_packet(struct hfi1_packet * packet,bool is_mcast)572 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
573 				      bool is_mcast)
574 {
575 	u32 qp_num;
576 	struct hfi1_ctxtdata *rcd = packet->rcd;
577 	struct hfi1_pportdata *ppd = rcd->ppd;
578 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
579 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
580 	opcode_handler packet_handler;
581 	unsigned long flags;
582 
583 	inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
584 
585 	if (unlikely(is_mcast)) {
586 		struct rvt_mcast *mcast;
587 		struct rvt_mcast_qp *p;
588 
589 		if (!packet->grh)
590 			goto drop;
591 		mcast = rvt_mcast_find(&ibp->rvp,
592 				       &packet->grh->dgid,
593 				       opa_get_lid(packet->dlid, 9B));
594 		if (!mcast)
595 			goto drop;
596 		rcu_read_lock();
597 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
598 			packet->qp = p->qp;
599 			if (hfi1_do_pkey_check(packet))
600 				goto unlock_drop;
601 			spin_lock_irqsave(&packet->qp->r_lock, flags);
602 			packet_handler = qp_ok(packet);
603 			if (likely(packet_handler))
604 				packet_handler(packet);
605 			else
606 				ibp->rvp.n_pkt_drops++;
607 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
608 		}
609 		rcu_read_unlock();
610 		/*
611 		 * Notify rvt_multicast_detach() if it is waiting for us
612 		 * to finish.
613 		 */
614 		if (atomic_dec_return(&mcast->refcount) <= 1)
615 			wake_up(&mcast->wait);
616 	} else {
617 		/* Get the destination QP number. */
618 		qp_num = ib_bth_get_qpn(packet->ohdr);
619 		rcu_read_lock();
620 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
621 		if (!packet->qp)
622 			goto unlock_drop;
623 
624 		if (hfi1_do_pkey_check(packet))
625 			goto unlock_drop;
626 
627 		if (unlikely(hfi1_dbg_fault_opcode(packet->qp, packet->opcode,
628 						   true)))
629 			goto unlock_drop;
630 
631 		spin_lock_irqsave(&packet->qp->r_lock, flags);
632 		packet_handler = qp_ok(packet);
633 		if (likely(packet_handler))
634 			packet_handler(packet);
635 		else
636 			ibp->rvp.n_pkt_drops++;
637 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
638 		rcu_read_unlock();
639 	}
640 	return;
641 unlock_drop:
642 	rcu_read_unlock();
643 drop:
644 	ibp->rvp.n_pkt_drops++;
645 }
646 
647 /**
648  * hfi1_ib_rcv - process an incoming packet
649  * @packet: data packet information
650  *
651  * This is called to process an incoming packet at interrupt level.
652  */
hfi1_ib_rcv(struct hfi1_packet * packet)653 void hfi1_ib_rcv(struct hfi1_packet *packet)
654 {
655 	struct hfi1_ctxtdata *rcd = packet->rcd;
656 
657 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
658 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
659 }
660 
hfi1_16B_rcv(struct hfi1_packet * packet)661 void hfi1_16B_rcv(struct hfi1_packet *packet)
662 {
663 	struct hfi1_ctxtdata *rcd = packet->rcd;
664 
665 	trace_input_ibhdr(rcd->dd, packet, false);
666 	hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
667 }
668 
669 /*
670  * This is called from a timer to check for QPs
671  * which need kernel memory in order to send a packet.
672  */
mem_timer(unsigned long data)673 static void mem_timer(unsigned long data)
674 {
675 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
676 	struct list_head *list = &dev->memwait;
677 	struct rvt_qp *qp = NULL;
678 	struct iowait *wait;
679 	unsigned long flags;
680 	struct hfi1_qp_priv *priv;
681 
682 	write_seqlock_irqsave(&dev->iowait_lock, flags);
683 	if (!list_empty(list)) {
684 		wait = list_first_entry(list, struct iowait, list);
685 		qp = iowait_to_qp(wait);
686 		priv = qp->priv;
687 		list_del_init(&priv->s_iowait.list);
688 		priv->s_iowait.lock = NULL;
689 		/* refcount held until actual wake up */
690 		if (!list_empty(list))
691 			mod_timer(&dev->mem_timer, jiffies + 1);
692 	}
693 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
694 
695 	if (qp)
696 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
697 }
698 
699 /*
700  * This is called with progress side lock held.
701  */
702 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status)703 static void verbs_sdma_complete(
704 	struct sdma_txreq *cookie,
705 	int status)
706 {
707 	struct verbs_txreq *tx =
708 		container_of(cookie, struct verbs_txreq, txreq);
709 	struct rvt_qp *qp = tx->qp;
710 
711 	spin_lock(&qp->s_lock);
712 	if (tx->wqe) {
713 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
714 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
715 		struct hfi1_opa_header *hdr;
716 
717 		hdr = &tx->phdr.hdr;
718 		hfi1_rc_send_complete(qp, hdr);
719 	}
720 	spin_unlock(&qp->s_lock);
721 
722 	hfi1_put_txreq(tx);
723 }
724 
wait_kmem(struct hfi1_ibdev * dev,struct rvt_qp * qp,struct hfi1_pkt_state * ps)725 static int wait_kmem(struct hfi1_ibdev *dev,
726 		     struct rvt_qp *qp,
727 		     struct hfi1_pkt_state *ps)
728 {
729 	struct hfi1_qp_priv *priv = qp->priv;
730 	unsigned long flags;
731 	int ret = 0;
732 
733 	spin_lock_irqsave(&qp->s_lock, flags);
734 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
735 		write_seqlock(&dev->iowait_lock);
736 		list_add_tail(&ps->s_txreq->txreq.list,
737 			      &priv->s_iowait.tx_head);
738 		if (list_empty(&priv->s_iowait.list)) {
739 			if (list_empty(&dev->memwait))
740 				mod_timer(&dev->mem_timer, jiffies + 1);
741 			qp->s_flags |= RVT_S_WAIT_KMEM;
742 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
743 			priv->s_iowait.lock = &dev->iowait_lock;
744 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
745 			rvt_get_qp(qp);
746 		}
747 		write_sequnlock(&dev->iowait_lock);
748 		qp->s_flags &= ~RVT_S_BUSY;
749 		ret = -EBUSY;
750 	}
751 	spin_unlock_irqrestore(&qp->s_lock, flags);
752 
753 	return ret;
754 }
755 
756 /*
757  * This routine calls txadds for each sg entry.
758  *
759  * Add failures will revert the sge cursor
760  */
build_verbs_ulp_payload(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx)761 static noinline int build_verbs_ulp_payload(
762 	struct sdma_engine *sde,
763 	u32 length,
764 	struct verbs_txreq *tx)
765 {
766 	struct rvt_sge_state *ss = tx->ss;
767 	struct rvt_sge *sg_list = ss->sg_list;
768 	struct rvt_sge sge = ss->sge;
769 	u8 num_sge = ss->num_sge;
770 	u32 len;
771 	int ret = 0;
772 
773 	while (length) {
774 		len = ss->sge.length;
775 		if (len > length)
776 			len = length;
777 		if (len > ss->sge.sge_length)
778 			len = ss->sge.sge_length;
779 		WARN_ON_ONCE(len == 0);
780 		ret = sdma_txadd_kvaddr(
781 			sde->dd,
782 			&tx->txreq,
783 			ss->sge.vaddr,
784 			len);
785 		if (ret)
786 			goto bail_txadd;
787 		rvt_update_sge(ss, len, false);
788 		length -= len;
789 	}
790 	return ret;
791 bail_txadd:
792 	/* unwind cursor */
793 	ss->sge = sge;
794 	ss->num_sge = num_sge;
795 	ss->sg_list = sg_list;
796 	return ret;
797 }
798 
799 /*
800  * Build the number of DMA descriptors needed to send length bytes of data.
801  *
802  * NOTE: DMA mapping is held in the tx until completed in the ring or
803  *       the tx desc is freed without having been submitted to the ring
804  *
805  * This routine ensures all the helper routine calls succeed.
806  */
807 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx,struct hfi1_ahg_info * ahg_info,u64 pbc)808 static int build_verbs_tx_desc(
809 	struct sdma_engine *sde,
810 	u32 length,
811 	struct verbs_txreq *tx,
812 	struct hfi1_ahg_info *ahg_info,
813 	u64 pbc)
814 {
815 	int ret = 0;
816 	struct hfi1_sdma_header *phdr = &tx->phdr;
817 	u16 hdrbytes = tx->hdr_dwords << 2;
818 	u32 *hdr;
819 	u8 extra_bytes = 0;
820 	static char trail_buf[12]; /* CRC = 4, LT = 1, Pad = 0 to 7 bytes */
821 
822 	if (tx->phdr.hdr.hdr_type) {
823 		/*
824 		 * hdrbytes accounts for PBC. Need to subtract 8 bytes
825 		 * before calculating padding.
826 		 */
827 		extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
828 			      (SIZE_OF_CRC << 2) + SIZE_OF_LT;
829 		hdr = (u32 *)&phdr->hdr.opah;
830 	} else {
831 		hdr = (u32 *)&phdr->hdr.ibh;
832 	}
833 	if (!ahg_info->ahgcount) {
834 		ret = sdma_txinit_ahg(
835 			&tx->txreq,
836 			ahg_info->tx_flags,
837 			hdrbytes + length +
838 			extra_bytes,
839 			ahg_info->ahgidx,
840 			0,
841 			NULL,
842 			0,
843 			verbs_sdma_complete);
844 		if (ret)
845 			goto bail_txadd;
846 		phdr->pbc = cpu_to_le64(pbc);
847 		ret = sdma_txadd_kvaddr(
848 			sde->dd,
849 			&tx->txreq,
850 			phdr,
851 			hdrbytes);
852 		if (ret)
853 			goto bail_txadd;
854 	} else {
855 		ret = sdma_txinit_ahg(
856 			&tx->txreq,
857 			ahg_info->tx_flags,
858 			length,
859 			ahg_info->ahgidx,
860 			ahg_info->ahgcount,
861 			ahg_info->ahgdesc,
862 			hdrbytes,
863 			verbs_sdma_complete);
864 		if (ret)
865 			goto bail_txadd;
866 	}
867 	/* add the ulp payload - if any. tx->ss can be NULL for acks */
868 	if (tx->ss) {
869 		ret = build_verbs_ulp_payload(sde, length, tx);
870 		if (ret)
871 			goto bail_txadd;
872 	}
873 
874 	/* add icrc, lt byte, and padding to flit */
875 	if (extra_bytes != 0)
876 		ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
877 					trail_buf, extra_bytes);
878 
879 bail_txadd:
880 	return ret;
881 }
882 
hfi1_verbs_send_dma(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)883 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
884 			u64 pbc)
885 {
886 	struct hfi1_qp_priv *priv = qp->priv;
887 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
888 	u32 hdrwords = qp->s_hdrwords;
889 	u32 len = ps->s_txreq->s_cur_size;
890 	u32 plen;
891 	struct hfi1_ibdev *dev = ps->dev;
892 	struct hfi1_pportdata *ppd = ps->ppd;
893 	struct verbs_txreq *tx;
894 	u8 sc5 = priv->s_sc;
895 	int ret;
896 	u32 dwords;
897 	bool bypass = false;
898 
899 	if (ps->s_txreq->phdr.hdr.hdr_type) {
900 		u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
901 
902 		dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
903 			  SIZE_OF_LT) >> 2;
904 		bypass = true;
905 	} else {
906 		dwords = (len + 3) >> 2;
907 	}
908 	plen = hdrwords + dwords + 2;
909 
910 	tx = ps->s_txreq;
911 	if (!sdma_txreq_built(&tx->txreq)) {
912 		if (likely(pbc == 0)) {
913 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
914 
915 			/* No vl15 here */
916 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
917 			if (ps->s_txreq->phdr.hdr.hdr_type)
918 				pbc |= PBC_PACKET_BYPASS |
919 				       PBC_INSERT_BYPASS_ICRC;
920 			else
921 				pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
922 
923 			if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode,
924 							   false)))
925 				pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
926 			pbc = create_pbc(ppd,
927 					 pbc,
928 					 qp->srate_mbps,
929 					 vl,
930 					 plen);
931 		}
932 		tx->wqe = qp->s_wqe;
933 		ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
934 		if (unlikely(ret))
935 			goto bail_build;
936 	}
937 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq,
938 			       ps->pkts_sent);
939 	if (unlikely(ret < 0)) {
940 		if (ret == -ECOMM)
941 			goto bail_ecomm;
942 		return ret;
943 	}
944 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
945 				&ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
946 	return ret;
947 
948 bail_ecomm:
949 	/* The current one got "sent" */
950 	return 0;
951 bail_build:
952 	ret = wait_kmem(dev, qp, ps);
953 	if (!ret) {
954 		/* free txreq - bad state */
955 		hfi1_put_txreq(ps->s_txreq);
956 		ps->s_txreq = NULL;
957 	}
958 	return ret;
959 }
960 
961 /*
962  * If we are now in the error state, return zero to flush the
963  * send work request.
964  */
pio_wait(struct rvt_qp * qp,struct send_context * sc,struct hfi1_pkt_state * ps,u32 flag)965 static int pio_wait(struct rvt_qp *qp,
966 		    struct send_context *sc,
967 		    struct hfi1_pkt_state *ps,
968 		    u32 flag)
969 {
970 	struct hfi1_qp_priv *priv = qp->priv;
971 	struct hfi1_devdata *dd = sc->dd;
972 	struct hfi1_ibdev *dev = &dd->verbs_dev;
973 	unsigned long flags;
974 	int ret = 0;
975 
976 	/*
977 	 * Note that as soon as want_buffer() is called and
978 	 * possibly before it returns, sc_piobufavail()
979 	 * could be called. Therefore, put QP on the I/O wait list before
980 	 * enabling the PIO avail interrupt.
981 	 */
982 	spin_lock_irqsave(&qp->s_lock, flags);
983 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
984 		write_seqlock(&dev->iowait_lock);
985 		list_add_tail(&ps->s_txreq->txreq.list,
986 			      &priv->s_iowait.tx_head);
987 		if (list_empty(&priv->s_iowait.list)) {
988 			struct hfi1_ibdev *dev = &dd->verbs_dev;
989 			int was_empty;
990 
991 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
992 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
993 			qp->s_flags |= flag;
994 			was_empty = list_empty(&sc->piowait);
995 			iowait_queue(ps->pkts_sent, &priv->s_iowait,
996 				     &sc->piowait);
997 			priv->s_iowait.lock = &dev->iowait_lock;
998 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
999 			rvt_get_qp(qp);
1000 			/* counting: only call wantpiobuf_intr if first user */
1001 			if (was_empty)
1002 				hfi1_sc_wantpiobuf_intr(sc, 1);
1003 		}
1004 		write_sequnlock(&dev->iowait_lock);
1005 		qp->s_flags &= ~RVT_S_BUSY;
1006 		ret = -EBUSY;
1007 	}
1008 	spin_unlock_irqrestore(&qp->s_lock, flags);
1009 	return ret;
1010 }
1011 
verbs_pio_complete(void * arg,int code)1012 static void verbs_pio_complete(void *arg, int code)
1013 {
1014 	struct rvt_qp *qp = (struct rvt_qp *)arg;
1015 	struct hfi1_qp_priv *priv = qp->priv;
1016 
1017 	if (iowait_pio_dec(&priv->s_iowait))
1018 		iowait_drain_wakeup(&priv->s_iowait);
1019 }
1020 
hfi1_verbs_send_pio(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)1021 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1022 			u64 pbc)
1023 {
1024 	struct hfi1_qp_priv *priv = qp->priv;
1025 	u32 hdrwords = qp->s_hdrwords;
1026 	struct rvt_sge_state *ss = ps->s_txreq->ss;
1027 	u32 len = ps->s_txreq->s_cur_size;
1028 	u32 dwords;
1029 	u32 plen;
1030 	struct hfi1_pportdata *ppd = ps->ppd;
1031 	u32 *hdr;
1032 	u8 sc5;
1033 	unsigned long flags = 0;
1034 	struct send_context *sc;
1035 	struct pio_buf *pbuf;
1036 	int wc_status = IB_WC_SUCCESS;
1037 	int ret = 0;
1038 	pio_release_cb cb = NULL;
1039 	u32 lrh0_16b;
1040 	bool bypass = false;
1041 	u8 extra_bytes = 0;
1042 
1043 	if (ps->s_txreq->phdr.hdr.hdr_type) {
1044 		u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1045 
1046 		extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1047 		dwords = (len + extra_bytes) >> 2;
1048 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1049 		lrh0_16b = ps->s_txreq->phdr.hdr.opah.lrh[0];
1050 		bypass = true;
1051 	} else {
1052 		dwords = (len + 3) >> 2;
1053 		hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1054 	}
1055 	plen = hdrwords + dwords + 2;
1056 
1057 	/* only RC/UC use complete */
1058 	switch (qp->ibqp.qp_type) {
1059 	case IB_QPT_RC:
1060 	case IB_QPT_UC:
1061 		cb = verbs_pio_complete;
1062 		break;
1063 	default:
1064 		break;
1065 	}
1066 
1067 	/* vl15 special case taken care of in ud.c */
1068 	sc5 = priv->s_sc;
1069 	sc = ps->s_txreq->psc;
1070 
1071 	if (likely(pbc == 0)) {
1072 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1073 
1074 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1075 		if (ps->s_txreq->phdr.hdr.hdr_type)
1076 			pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1077 		else
1078 			pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1079 		if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, false)))
1080 			pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1081 		pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1082 	}
1083 	if (cb)
1084 		iowait_pio_inc(&priv->s_iowait);
1085 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1086 	if (unlikely(!pbuf)) {
1087 		if (cb)
1088 			verbs_pio_complete(qp, 0);
1089 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1090 			/*
1091 			 * If we have filled the PIO buffers to capacity and are
1092 			 * not in an active state this request is not going to
1093 			 * go out to so just complete it with an error or else a
1094 			 * ULP or the core may be stuck waiting.
1095 			 */
1096 			hfi1_cdbg(
1097 				PIO,
1098 				"alloc failed. state not active, completing");
1099 			wc_status = IB_WC_GENERAL_ERR;
1100 			goto pio_bail;
1101 		} else {
1102 			/*
1103 			 * This is a normal occurrence. The PIO buffs are full
1104 			 * up but we are still happily sending, well we could be
1105 			 * so lets continue to queue the request.
1106 			 */
1107 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1108 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1109 			if (!ret)
1110 				/* txreq not queued - free */
1111 				goto bail;
1112 			/* tx consumed in wait */
1113 			return ret;
1114 		}
1115 	}
1116 
1117 	if (dwords == 0) {
1118 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1119 	} else {
1120 		seg_pio_copy_start(pbuf, pbc,
1121 				   hdr, hdrwords * 4);
1122 		if (ss) {
1123 			while (len) {
1124 				void *addr = ss->sge.vaddr;
1125 				u32 slen = ss->sge.length;
1126 
1127 				if (slen > len)
1128 					slen = len;
1129 				if (slen > ss->sge.sge_length)
1130 					slen = ss->sge.sge_length;
1131 				rvt_update_sge(ss, slen, false);
1132 				seg_pio_copy_mid(pbuf, addr, slen);
1133 				len -= slen;
1134 			}
1135 		}
1136 		/*
1137 		 * Bypass packet will need to copy additional
1138 		 * bytes to accommodate for CRC and LT bytes
1139 		 */
1140 		if (extra_bytes) {
1141 			u8 *empty_buf;
1142 
1143 			empty_buf = kcalloc(extra_bytes, sizeof(u8),
1144 					    GFP_KERNEL);
1145 			seg_pio_copy_mid(pbuf, empty_buf, extra_bytes);
1146 			kfree(empty_buf);
1147 		}
1148 		seg_pio_copy_end(pbuf);
1149 	}
1150 
1151 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1152 			       &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1153 
1154 pio_bail:
1155 	if (qp->s_wqe) {
1156 		spin_lock_irqsave(&qp->s_lock, flags);
1157 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1158 		spin_unlock_irqrestore(&qp->s_lock, flags);
1159 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1160 		spin_lock_irqsave(&qp->s_lock, flags);
1161 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1162 		spin_unlock_irqrestore(&qp->s_lock, flags);
1163 	}
1164 
1165 	ret = 0;
1166 
1167 bail:
1168 	hfi1_put_txreq(ps->s_txreq);
1169 	return ret;
1170 }
1171 
1172 /*
1173  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1174  * being an entry from the partition key table), return 0
1175  * otherwise. Use the matching criteria for egress partition keys
1176  * specified in the OPAv1 spec., section 9.1l.7.
1177  */
egress_pkey_matches_entry(u16 pkey,u16 ent)1178 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1179 {
1180 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1181 	u16 mentry = ent & PKEY_LOW_15_MASK;
1182 
1183 	if (mkey == mentry) {
1184 		/*
1185 		 * If pkey[15] is set (full partition member),
1186 		 * is bit 15 in the corresponding table element
1187 		 * clear (limited member)?
1188 		 */
1189 		if (pkey & PKEY_MEMBER_MASK)
1190 			return !!(ent & PKEY_MEMBER_MASK);
1191 		return 1;
1192 	}
1193 	return 0;
1194 }
1195 
1196 /**
1197  * egress_pkey_check - check P_KEY of a packet
1198  * @ppd:  Physical IB port data
1199  * @slid: SLID for packet
1200  * @bkey: PKEY for header
1201  * @sc5:  SC for packet
1202  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1203  * only. If it is negative value, then it means user contexts is calling this
1204  * function.
1205  *
1206  * It checks if hdr's pkey is valid.
1207  *
1208  * Return: 0 on success, otherwise, 1
1209  */
egress_pkey_check(struct hfi1_pportdata * ppd,u32 slid,u16 pkey,u8 sc5,int8_t s_pkey_index)1210 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1211 		      u8 sc5, int8_t s_pkey_index)
1212 {
1213 	struct hfi1_devdata *dd;
1214 	int i;
1215 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1216 
1217 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1218 		return 0;
1219 
1220 	/* If SC15, pkey[0:14] must be 0x7fff */
1221 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1222 		goto bad;
1223 
1224 	/* Is the pkey = 0x0, or 0x8000? */
1225 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1226 		goto bad;
1227 
1228 	/*
1229 	 * For the kernel contexts only, if a qp is passed into the function,
1230 	 * the most likely matching pkey has index qp->s_pkey_index
1231 	 */
1232 	if (!is_user_ctxt_mechanism &&
1233 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1234 		return 0;
1235 	}
1236 
1237 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1238 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1239 			return 0;
1240 	}
1241 bad:
1242 	/*
1243 	 * For the user-context mechanism, the P_KEY check would only happen
1244 	 * once per SDMA request, not once per packet.  Therefore, there's no
1245 	 * need to increment the counter for the user-context mechanism.
1246 	 */
1247 	if (!is_user_ctxt_mechanism) {
1248 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1249 		dd = ppd->dd;
1250 		if (!(dd->err_info_xmit_constraint.status &
1251 		      OPA_EI_STATUS_SMASK)) {
1252 			dd->err_info_xmit_constraint.status |=
1253 				OPA_EI_STATUS_SMASK;
1254 			dd->err_info_xmit_constraint.slid = slid;
1255 			dd->err_info_xmit_constraint.pkey = pkey;
1256 		}
1257 	}
1258 	return 1;
1259 }
1260 
1261 /**
1262  * get_send_routine - choose an egress routine
1263  *
1264  * Choose an egress routine based on QP type
1265  * and size
1266  */
get_send_routine(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1267 static inline send_routine get_send_routine(struct rvt_qp *qp,
1268 					    struct hfi1_pkt_state *ps)
1269 {
1270 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1271 	struct hfi1_qp_priv *priv = qp->priv;
1272 	struct verbs_txreq *tx = ps->s_txreq;
1273 
1274 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1275 		return dd->process_pio_send;
1276 	switch (qp->ibqp.qp_type) {
1277 	case IB_QPT_SMI:
1278 		return dd->process_pio_send;
1279 	case IB_QPT_GSI:
1280 	case IB_QPT_UD:
1281 		break;
1282 	case IB_QPT_UC:
1283 	case IB_QPT_RC: {
1284 		if (piothreshold &&
1285 		    tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1286 		    (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1287 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1288 		    !sdma_txreq_built(&tx->txreq))
1289 			return dd->process_pio_send;
1290 		break;
1291 	}
1292 	default:
1293 		break;
1294 	}
1295 	return dd->process_dma_send;
1296 }
1297 
1298 /**
1299  * hfi1_verbs_send - send a packet
1300  * @qp: the QP to send on
1301  * @ps: the state of the packet to send
1302  *
1303  * Return zero if packet is sent or queued OK.
1304  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1305  */
hfi1_verbs_send(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1306 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1307 {
1308 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1309 	struct hfi1_qp_priv *priv = qp->priv;
1310 	struct ib_other_headers *ohdr;
1311 	send_routine sr;
1312 	int ret;
1313 	u16 pkey;
1314 	u32 slid;
1315 
1316 	/* locate the pkey within the headers */
1317 	if (ps->s_txreq->phdr.hdr.hdr_type) {
1318 		struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1319 		u8 l4 = hfi1_16B_get_l4(hdr);
1320 
1321 		if (l4 == OPA_16B_L4_IB_GLOBAL)
1322 			ohdr = &hdr->u.l.oth;
1323 		else
1324 			ohdr = &hdr->u.oth;
1325 		slid = hfi1_16B_get_slid(hdr);
1326 		pkey = hfi1_16B_get_pkey(hdr);
1327 	} else {
1328 		struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1329 		u8 lnh = ib_get_lnh(hdr);
1330 
1331 		if (lnh == HFI1_LRH_GRH)
1332 			ohdr = &hdr->u.l.oth;
1333 		else
1334 			ohdr = &hdr->u.oth;
1335 		slid = ib_get_slid(hdr);
1336 		pkey = ib_bth_get_pkey(ohdr);
1337 	}
1338 
1339 	ps->opcode = ib_bth_get_opcode(ohdr);
1340 	sr = get_send_routine(qp, ps);
1341 	ret = egress_pkey_check(dd->pport, slid, pkey,
1342 				priv->s_sc, qp->s_pkey_index);
1343 	if (unlikely(ret)) {
1344 		/*
1345 		 * The value we are returning here does not get propagated to
1346 		 * the verbs caller. Thus we need to complete the request with
1347 		 * error otherwise the caller could be sitting waiting on the
1348 		 * completion event. Only do this for PIO. SDMA has its own
1349 		 * mechanism for handling the errors. So for SDMA we can just
1350 		 * return.
1351 		 */
1352 		if (sr == dd->process_pio_send) {
1353 			unsigned long flags;
1354 
1355 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1356 				  __func__);
1357 			spin_lock_irqsave(&qp->s_lock, flags);
1358 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1359 			spin_unlock_irqrestore(&qp->s_lock, flags);
1360 		}
1361 		return -EINVAL;
1362 	}
1363 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1364 		return pio_wait(qp,
1365 				ps->s_txreq->psc,
1366 				ps,
1367 				RVT_S_WAIT_PIO_DRAIN);
1368 	return sr(qp, ps, 0);
1369 }
1370 
1371 /**
1372  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1373  * @dd: the device data structure
1374  */
hfi1_fill_device_attr(struct hfi1_devdata * dd)1375 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1376 {
1377 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1378 	u32 ver = dd->dc8051_ver;
1379 
1380 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1381 
1382 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1383 		((u64)(dc8051_ver_min(ver)) << 16) |
1384 		(u64)dc8051_ver_patch(ver);
1385 
1386 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1387 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1388 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1389 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1390 			IB_DEVICE_MEM_MGT_EXTENSIONS |
1391 			IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1392 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1393 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1394 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1395 	rdi->dparms.props.hw_ver = dd->minrev;
1396 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1397 	rdi->dparms.props.max_mr_size = U64_MAX;
1398 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1399 	rdi->dparms.props.max_qp = hfi1_max_qps;
1400 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1401 	rdi->dparms.props.max_sge = hfi1_max_sges;
1402 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1403 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1404 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1405 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1406 	rdi->dparms.props.max_map_per_fmr = 32767;
1407 	rdi->dparms.props.max_pd = hfi1_max_pds;
1408 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1409 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1410 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1411 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1412 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1413 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1414 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1415 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1416 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1417 	rdi->dparms.props.max_total_mcast_qp_attach =
1418 					rdi->dparms.props.max_mcast_qp_attach *
1419 					rdi->dparms.props.max_mcast_grp;
1420 }
1421 
opa_speed_to_ib(u16 in)1422 static inline u16 opa_speed_to_ib(u16 in)
1423 {
1424 	u16 out = 0;
1425 
1426 	if (in & OPA_LINK_SPEED_25G)
1427 		out |= IB_SPEED_EDR;
1428 	if (in & OPA_LINK_SPEED_12_5G)
1429 		out |= IB_SPEED_FDR;
1430 
1431 	return out;
1432 }
1433 
1434 /*
1435  * Convert a single OPA link width (no multiple flags) to an IB value.
1436  * A zero OPA link width means link down, which means the IB width value
1437  * is a don't care.
1438  */
opa_width_to_ib(u16 in)1439 static inline u16 opa_width_to_ib(u16 in)
1440 {
1441 	switch (in) {
1442 	case OPA_LINK_WIDTH_1X:
1443 	/* map 2x and 3x to 1x as they don't exist in IB */
1444 	case OPA_LINK_WIDTH_2X:
1445 	case OPA_LINK_WIDTH_3X:
1446 		return IB_WIDTH_1X;
1447 	default: /* link down or unknown, return our largest width */
1448 	case OPA_LINK_WIDTH_4X:
1449 		return IB_WIDTH_4X;
1450 	}
1451 }
1452 
query_port(struct rvt_dev_info * rdi,u8 port_num,struct ib_port_attr * props)1453 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1454 		      struct ib_port_attr *props)
1455 {
1456 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1457 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1458 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1459 	u32 lid = ppd->lid;
1460 
1461 	/* props being zeroed by the caller, avoid zeroing it here */
1462 	props->lid = lid ? lid : 0;
1463 	props->lmc = ppd->lmc;
1464 	/* OPA logical states match IB logical states */
1465 	props->state = driver_lstate(ppd);
1466 	props->phys_state = driver_pstate(ppd);
1467 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1468 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1469 	/* see rate_show() in ib core/sysfs.c */
1470 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1471 	props->max_vl_num = ppd->vls_supported;
1472 
1473 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1474 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1475 	 * advertise only 4K.
1476 	 *
1477 	 * Those applications which are either OPA aware or pass the MTU enum
1478 	 * from the Path Records to us will get the new 8k MTU.  Those that
1479 	 * attempt to process the MTU enum may fail in various ways.
1480 	 */
1481 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1482 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1483 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1484 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1485 
1486 	/*
1487 	 * sm_lid of 0xFFFF needs special handling so that it can
1488 	 * be differentiated from a permissve LID of 0xFFFF.
1489 	 * We set the grh_required flag here so the SA can program
1490 	 * the DGID in the address handle appropriately
1491 	 */
1492 	if (props->sm_lid == be16_to_cpu(IB_LID_PERMISSIVE))
1493 		props->grh_required = true;
1494 
1495 	return 0;
1496 }
1497 
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1498 static int modify_device(struct ib_device *device,
1499 			 int device_modify_mask,
1500 			 struct ib_device_modify *device_modify)
1501 {
1502 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1503 	unsigned i;
1504 	int ret;
1505 
1506 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1507 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1508 		ret = -EOPNOTSUPP;
1509 		goto bail;
1510 	}
1511 
1512 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1513 		memcpy(device->node_desc, device_modify->node_desc,
1514 		       IB_DEVICE_NODE_DESC_MAX);
1515 		for (i = 0; i < dd->num_pports; i++) {
1516 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1517 
1518 			hfi1_node_desc_chg(ibp);
1519 		}
1520 	}
1521 
1522 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1523 		ib_hfi1_sys_image_guid =
1524 			cpu_to_be64(device_modify->sys_image_guid);
1525 		for (i = 0; i < dd->num_pports; i++) {
1526 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1527 
1528 			hfi1_sys_guid_chg(ibp);
1529 		}
1530 	}
1531 
1532 	ret = 0;
1533 
1534 bail:
1535 	return ret;
1536 }
1537 
shut_down_port(struct rvt_dev_info * rdi,u8 port_num)1538 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1539 {
1540 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1541 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1542 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1543 	int ret;
1544 
1545 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1546 			     OPA_LINKDOWN_REASON_UNKNOWN);
1547 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1548 	return ret;
1549 }
1550 
hfi1_get_guid_be(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,int guid_index,__be64 * guid)1551 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1552 			    int guid_index, __be64 *guid)
1553 {
1554 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1555 
1556 	if (guid_index >= HFI1_GUIDS_PER_PORT)
1557 		return -EINVAL;
1558 
1559 	*guid = get_sguid(ibp, guid_index);
1560 	return 0;
1561 }
1562 
1563 /*
1564  * convert ah port,sl to sc
1565  */
ah_to_sc(struct ib_device * ibdev,struct rdma_ah_attr * ah)1566 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1567 {
1568 	struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1569 
1570 	return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1571 }
1572 
hfi1_check_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr)1573 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1574 {
1575 	struct hfi1_ibport *ibp;
1576 	struct hfi1_pportdata *ppd;
1577 	struct hfi1_devdata *dd;
1578 	u8 sc5;
1579 	u8 sl;
1580 
1581 	if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1582 	    !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1583 		return -EINVAL;
1584 
1585 	/* test the mapping for validity */
1586 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1587 	ppd = ppd_from_ibp(ibp);
1588 	dd = dd_from_ppd(ppd);
1589 
1590 	sl = rdma_ah_get_sl(ah_attr);
1591 	if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1592 		return -EINVAL;
1593 	sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1594 
1595 	sc5 = ibp->sl_to_sc[sl];
1596 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1597 		return -EINVAL;
1598 	return 0;
1599 }
1600 
hfi1_notify_new_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr,struct rvt_ah * ah)1601 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1602 			       struct rdma_ah_attr *ah_attr,
1603 			       struct rvt_ah *ah)
1604 {
1605 	struct hfi1_ibport *ibp;
1606 	struct hfi1_pportdata *ppd;
1607 	struct hfi1_devdata *dd;
1608 	u8 sc5;
1609 	struct rdma_ah_attr *attr = &ah->attr;
1610 
1611 	/*
1612 	 * Do not trust reading anything from rvt_ah at this point as it is not
1613 	 * done being setup. We can however modify things which we need to set.
1614 	 */
1615 
1616 	ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1617 	ppd = ppd_from_ibp(ibp);
1618 	sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1619 	hfi1_update_ah_attr(ibdev, attr);
1620 	hfi1_make_opa_lid(attr);
1621 	dd = dd_from_ppd(ppd);
1622 	ah->vl = sc_to_vlt(dd, sc5);
1623 	if (ah->vl < num_vls || ah->vl == 15)
1624 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1625 }
1626 
1627 /**
1628  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1629  * @dd: the hfi1_ib device
1630  */
hfi1_get_npkeys(struct hfi1_devdata * dd)1631 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1632 {
1633 	return ARRAY_SIZE(dd->pport[0].pkeys);
1634 }
1635 
init_ibport(struct hfi1_pportdata * ppd)1636 static void init_ibport(struct hfi1_pportdata *ppd)
1637 {
1638 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1639 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1640 	int i;
1641 
1642 	for (i = 0; i < sz; i++) {
1643 		ibp->sl_to_sc[i] = i;
1644 		ibp->sc_to_sl[i] = i;
1645 	}
1646 
1647 	for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1648 		INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1649 	setup_timer(&ibp->rvp.trap_timer, hfi1_handle_trap_timer,
1650 		    (unsigned long)ibp);
1651 
1652 	spin_lock_init(&ibp->rvp.lock);
1653 	/* Set the prefix to the default value (see ch. 4.1.1) */
1654 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1655 	ibp->rvp.sm_lid = 0;
1656 	/*
1657 	 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1658 	 * and PortInfo.CapabilityMask3
1659 	 */
1660 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1661 		IB_PORT_CAP_MASK_NOTICE_SUP;
1662 	ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1663 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1664 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1665 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1666 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1667 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1668 
1669 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1670 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1671 }
1672 
hfi1_get_dev_fw_str(struct ib_device * ibdev,char * str)1673 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1674 {
1675 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1676 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1677 	u32 ver = dd_from_dev(dev)->dc8051_ver;
1678 
1679 	snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1680 		 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1681 }
1682 
1683 static const char * const driver_cntr_names[] = {
1684 	/* must be element 0*/
1685 	"DRIVER_KernIntr",
1686 	"DRIVER_ErrorIntr",
1687 	"DRIVER_Tx_Errs",
1688 	"DRIVER_Rcv_Errs",
1689 	"DRIVER_HW_Errs",
1690 	"DRIVER_NoPIOBufs",
1691 	"DRIVER_CtxtsOpen",
1692 	"DRIVER_RcvLen_Errs",
1693 	"DRIVER_EgrBufFull",
1694 	"DRIVER_EgrHdrFull"
1695 };
1696 
1697 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1698 static const char **dev_cntr_names;
1699 static const char **port_cntr_names;
1700 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1701 static int num_dev_cntrs;
1702 static int num_port_cntrs;
1703 static int cntr_names_initialized;
1704 
1705 /*
1706  * Convert a list of names separated by '\n' into an array of NULL terminated
1707  * strings. Optionally some entries can be reserved in the array to hold extra
1708  * external strings.
1709  */
init_cntr_names(const char * names_in,const size_t names_len,int num_extra_names,int * num_cntrs,const char *** cntr_names)1710 static int init_cntr_names(const char *names_in,
1711 			   const size_t names_len,
1712 			   int num_extra_names,
1713 			   int *num_cntrs,
1714 			   const char ***cntr_names)
1715 {
1716 	char *names_out, *p, **q;
1717 	int i, n;
1718 
1719 	n = 0;
1720 	for (i = 0; i < names_len; i++)
1721 		if (names_in[i] == '\n')
1722 			n++;
1723 
1724 	names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1725 			    GFP_KERNEL);
1726 	if (!names_out) {
1727 		*num_cntrs = 0;
1728 		*cntr_names = NULL;
1729 		return -ENOMEM;
1730 	}
1731 
1732 	p = names_out + (n + num_extra_names) * sizeof(char *);
1733 	memcpy(p, names_in, names_len);
1734 
1735 	q = (char **)names_out;
1736 	for (i = 0; i < n; i++) {
1737 		q[i] = p;
1738 		p = strchr(p, '\n');
1739 		*p++ = '\0';
1740 	}
1741 
1742 	*num_cntrs = n;
1743 	*cntr_names = (const char **)names_out;
1744 	return 0;
1745 }
1746 
alloc_hw_stats(struct ib_device * ibdev,u8 port_num)1747 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1748 					    u8 port_num)
1749 {
1750 	int i, err;
1751 
1752 	mutex_lock(&cntr_names_lock);
1753 	if (!cntr_names_initialized) {
1754 		struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1755 
1756 		err = init_cntr_names(dd->cntrnames,
1757 				      dd->cntrnameslen,
1758 				      num_driver_cntrs,
1759 				      &num_dev_cntrs,
1760 				      &dev_cntr_names);
1761 		if (err) {
1762 			mutex_unlock(&cntr_names_lock);
1763 			return NULL;
1764 		}
1765 
1766 		for (i = 0; i < num_driver_cntrs; i++)
1767 			dev_cntr_names[num_dev_cntrs + i] =
1768 				driver_cntr_names[i];
1769 
1770 		err = init_cntr_names(dd->portcntrnames,
1771 				      dd->portcntrnameslen,
1772 				      0,
1773 				      &num_port_cntrs,
1774 				      &port_cntr_names);
1775 		if (err) {
1776 			kfree(dev_cntr_names);
1777 			dev_cntr_names = NULL;
1778 			mutex_unlock(&cntr_names_lock);
1779 			return NULL;
1780 		}
1781 		cntr_names_initialized = 1;
1782 	}
1783 	mutex_unlock(&cntr_names_lock);
1784 
1785 	if (!port_num)
1786 		return rdma_alloc_hw_stats_struct(
1787 				dev_cntr_names,
1788 				num_dev_cntrs + num_driver_cntrs,
1789 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1790 	else
1791 		return rdma_alloc_hw_stats_struct(
1792 				port_cntr_names,
1793 				num_port_cntrs,
1794 				RDMA_HW_STATS_DEFAULT_LIFESPAN);
1795 }
1796 
hfi1_sps_ints(void)1797 static u64 hfi1_sps_ints(void)
1798 {
1799 	unsigned long flags;
1800 	struct hfi1_devdata *dd;
1801 	u64 sps_ints = 0;
1802 
1803 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1804 	list_for_each_entry(dd, &hfi1_dev_list, list) {
1805 		sps_ints += get_all_cpu_total(dd->int_counter);
1806 	}
1807 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1808 	return sps_ints;
1809 }
1810 
get_hw_stats(struct ib_device * ibdev,struct rdma_hw_stats * stats,u8 port,int index)1811 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1812 			u8 port, int index)
1813 {
1814 	u64 *values;
1815 	int count;
1816 
1817 	if (!port) {
1818 		u64 *stats = (u64 *)&hfi1_stats;
1819 		int i;
1820 
1821 		hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1822 		values[num_dev_cntrs] = hfi1_sps_ints();
1823 		for (i = 1; i < num_driver_cntrs; i++)
1824 			values[num_dev_cntrs + i] = stats[i];
1825 		count = num_dev_cntrs + num_driver_cntrs;
1826 	} else {
1827 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1828 
1829 		hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1830 		count = num_port_cntrs;
1831 	}
1832 
1833 	memcpy(stats->value, values, count * sizeof(u64));
1834 	return count;
1835 }
1836 
1837 /**
1838  * hfi1_register_ib_device - register our device with the infiniband core
1839  * @dd: the device data structure
1840  * Return 0 if successful, errno if unsuccessful.
1841  */
hfi1_register_ib_device(struct hfi1_devdata * dd)1842 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1843 {
1844 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1845 	struct ib_device *ibdev = &dev->rdi.ibdev;
1846 	struct hfi1_pportdata *ppd = dd->pport;
1847 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1848 	unsigned i;
1849 	int ret;
1850 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1851 
1852 	for (i = 0; i < dd->num_pports; i++)
1853 		init_ibport(ppd + i);
1854 
1855 	/* Only need to initialize non-zero fields. */
1856 
1857 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1858 
1859 	seqlock_init(&dev->iowait_lock);
1860 	seqlock_init(&dev->txwait_lock);
1861 	INIT_LIST_HEAD(&dev->txwait);
1862 	INIT_LIST_HEAD(&dev->memwait);
1863 
1864 	ret = verbs_txreq_init(dev);
1865 	if (ret)
1866 		goto err_verbs_txreq;
1867 
1868 	/* Use first-port GUID as node guid */
1869 	ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1870 
1871 	/*
1872 	 * The system image GUID is supposed to be the same for all
1873 	 * HFIs in a single system but since there can be other
1874 	 * device types in the system, we can't be sure this is unique.
1875 	 */
1876 	if (!ib_hfi1_sys_image_guid)
1877 		ib_hfi1_sys_image_guid = ibdev->node_guid;
1878 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1879 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1880 	ibdev->owner = THIS_MODULE;
1881 	ibdev->phys_port_cnt = dd->num_pports;
1882 	ibdev->dev.parent = &dd->pcidev->dev;
1883 	ibdev->modify_device = modify_device;
1884 	ibdev->alloc_hw_stats = alloc_hw_stats;
1885 	ibdev->get_hw_stats = get_hw_stats;
1886 	ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn;
1887 
1888 	/* keep process mad in the driver */
1889 	ibdev->process_mad = hfi1_process_mad;
1890 	ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1891 
1892 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1893 		sizeof(ibdev->node_desc));
1894 
1895 	/*
1896 	 * Fill in rvt info object.
1897 	 */
1898 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1899 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1900 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1901 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1902 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1903 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1904 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1905 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1906 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1907 	/*
1908 	 * Fill in rvt info device attributes.
1909 	 */
1910 	hfi1_fill_device_attr(dd);
1911 
1912 	/* queue pair */
1913 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1914 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1915 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1916 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1917 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1918 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1919 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1920 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1921 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1922 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1923 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1924 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1925 						RDMA_CORE_CAP_OPA_AH;
1926 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1927 
1928 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1929 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1930 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1931 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1932 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1933 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1934 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1935 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1936 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1937 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1938 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1939 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1940 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1941 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1942 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1943 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1944 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1945 	dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1946 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1947 
1948 	/* completeion queue */
1949 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1950 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1951 		 "hfi1_cq%d", dd->unit);
1952 	dd->verbs_dev.rdi.dparms.node = dd->node;
1953 
1954 	/* misc settings */
1955 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1956 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1957 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1958 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1959 
1960 	/* post send table */
1961 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1962 
1963 	ppd = dd->pport;
1964 	for (i = 0; i < dd->num_pports; i++, ppd++)
1965 		rvt_init_port(&dd->verbs_dev.rdi,
1966 			      &ppd->ibport_data.rvp,
1967 			      i,
1968 			      ppd->pkeys);
1969 
1970 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1971 	if (ret)
1972 		goto err_verbs_txreq;
1973 
1974 	ret = hfi1_verbs_register_sysfs(dd);
1975 	if (ret)
1976 		goto err_class;
1977 
1978 	return ret;
1979 
1980 err_class:
1981 	rvt_unregister_device(&dd->verbs_dev.rdi);
1982 err_verbs_txreq:
1983 	verbs_txreq_exit(dev);
1984 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1985 	return ret;
1986 }
1987 
hfi1_unregister_ib_device(struct hfi1_devdata * dd)1988 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1989 {
1990 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1991 
1992 	hfi1_verbs_unregister_sysfs(dd);
1993 
1994 	rvt_unregister_device(&dd->verbs_dev.rdi);
1995 
1996 	if (!list_empty(&dev->txwait))
1997 		dd_dev_err(dd, "txwait list not empty!\n");
1998 	if (!list_empty(&dev->memwait))
1999 		dd_dev_err(dd, "memwait list not empty!\n");
2000 
2001 	del_timer_sync(&dev->mem_timer);
2002 	verbs_txreq_exit(dev);
2003 
2004 	mutex_lock(&cntr_names_lock);
2005 	kfree(dev_cntr_names);
2006 	kfree(port_cntr_names);
2007 	dev_cntr_names = NULL;
2008 	port_cntr_names = NULL;
2009 	cntr_names_initialized = 0;
2010 	mutex_unlock(&cntr_names_lock);
2011 }
2012 
hfi1_cnp_rcv(struct hfi1_packet * packet)2013 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2014 {
2015 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
2016 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2017 	struct ib_header *hdr = packet->hdr;
2018 	struct rvt_qp *qp = packet->qp;
2019 	u32 lqpn, rqpn = 0;
2020 	u16 rlid = 0;
2021 	u8 sl, sc5, svc_type;
2022 
2023 	switch (packet->qp->ibqp.qp_type) {
2024 	case IB_QPT_UC:
2025 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2026 		rqpn = qp->remote_qpn;
2027 		svc_type = IB_CC_SVCTYPE_UC;
2028 		break;
2029 	case IB_QPT_RC:
2030 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
2031 		rqpn = qp->remote_qpn;
2032 		svc_type = IB_CC_SVCTYPE_RC;
2033 		break;
2034 	case IB_QPT_SMI:
2035 	case IB_QPT_GSI:
2036 	case IB_QPT_UD:
2037 		svc_type = IB_CC_SVCTYPE_UD;
2038 		break;
2039 	default:
2040 		ibp->rvp.n_pkt_drops++;
2041 		return;
2042 	}
2043 
2044 	sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2045 	sl = ibp->sc_to_sl[sc5];
2046 	lqpn = qp->ibqp.qp_num;
2047 
2048 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2049 }
2050