• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_PTE_NON_PRESENT,
32 	SCAN_PAGE_RO,
33 	SCAN_LACK_REFERENCED_PAGE,
34 	SCAN_PAGE_NULL,
35 	SCAN_SCAN_ABORT,
36 	SCAN_PAGE_COUNT,
37 	SCAN_PAGE_LRU,
38 	SCAN_PAGE_LOCK,
39 	SCAN_PAGE_ANON,
40 	SCAN_PAGE_COMPOUND,
41 	SCAN_ANY_PROCESS,
42 	SCAN_VMA_NULL,
43 	SCAN_VMA_CHECK,
44 	SCAN_ADDRESS_RANGE,
45 	SCAN_SWAP_CACHE_PAGE,
46 	SCAN_DEL_PAGE_LRU,
47 	SCAN_ALLOC_HUGE_PAGE_FAIL,
48 	SCAN_CGROUP_CHARGE_FAIL,
49 	SCAN_EXCEED_SWAP_PTE,
50 	SCAN_TRUNCATED,
51 };
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/huge_memory.h>
55 
56 /* default scan 8*512 pte (or vmas) every 30 second */
57 static unsigned int khugepaged_pages_to_scan __read_mostly;
58 static unsigned int khugepaged_pages_collapsed;
59 static unsigned int khugepaged_full_scans;
60 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
61 /* during fragmentation poll the hugepage allocator once every minute */
62 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
63 static unsigned long khugepaged_sleep_expire;
64 static DEFINE_SPINLOCK(khugepaged_mm_lock);
65 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
66 /*
67  * default collapse hugepages if there is at least one pte mapped like
68  * it would have happened if the vma was large enough during page
69  * fault.
70  */
71 static unsigned int khugepaged_max_ptes_none __read_mostly;
72 static unsigned int khugepaged_max_ptes_swap __read_mostly;
73 
74 #define MM_SLOTS_HASH_BITS 10
75 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
76 
77 static struct kmem_cache *mm_slot_cache __read_mostly;
78 
79 /**
80  * struct mm_slot - hash lookup from mm to mm_slot
81  * @hash: hash collision list
82  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83  * @mm: the mm that this information is valid for
84  */
85 struct mm_slot {
86 	struct hlist_node hash;
87 	struct list_head mm_node;
88 	struct mm_struct *mm;
89 };
90 
91 /**
92  * struct khugepaged_scan - cursor for scanning
93  * @mm_head: the head of the mm list to scan
94  * @mm_slot: the current mm_slot we are scanning
95  * @address: the next address inside that to be scanned
96  *
97  * There is only the one khugepaged_scan instance of this cursor structure.
98  */
99 struct khugepaged_scan {
100 	struct list_head mm_head;
101 	struct mm_slot *mm_slot;
102 	unsigned long address;
103 };
104 
105 static struct khugepaged_scan khugepaged_scan = {
106 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107 };
108 
109 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)110 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
111 					 struct kobj_attribute *attr,
112 					 char *buf)
113 {
114 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
115 }
116 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)117 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
118 					  struct kobj_attribute *attr,
119 					  const char *buf, size_t count)
120 {
121 	unsigned long msecs;
122 	int err;
123 
124 	err = kstrtoul(buf, 10, &msecs);
125 	if (err || msecs > UINT_MAX)
126 		return -EINVAL;
127 
128 	khugepaged_scan_sleep_millisecs = msecs;
129 	khugepaged_sleep_expire = 0;
130 	wake_up_interruptible(&khugepaged_wait);
131 
132 	return count;
133 }
134 static struct kobj_attribute scan_sleep_millisecs_attr =
135 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
136 	       scan_sleep_millisecs_store);
137 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)138 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
139 					  struct kobj_attribute *attr,
140 					  char *buf)
141 {
142 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
143 }
144 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)145 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
146 					   struct kobj_attribute *attr,
147 					   const char *buf, size_t count)
148 {
149 	unsigned long msecs;
150 	int err;
151 
152 	err = kstrtoul(buf, 10, &msecs);
153 	if (err || msecs > UINT_MAX)
154 		return -EINVAL;
155 
156 	khugepaged_alloc_sleep_millisecs = msecs;
157 	khugepaged_sleep_expire = 0;
158 	wake_up_interruptible(&khugepaged_wait);
159 
160 	return count;
161 }
162 static struct kobj_attribute alloc_sleep_millisecs_attr =
163 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
164 	       alloc_sleep_millisecs_store);
165 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)166 static ssize_t pages_to_scan_show(struct kobject *kobj,
167 				  struct kobj_attribute *attr,
168 				  char *buf)
169 {
170 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
171 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)172 static ssize_t pages_to_scan_store(struct kobject *kobj,
173 				   struct kobj_attribute *attr,
174 				   const char *buf, size_t count)
175 {
176 	int err;
177 	unsigned long pages;
178 
179 	err = kstrtoul(buf, 10, &pages);
180 	if (err || !pages || pages > UINT_MAX)
181 		return -EINVAL;
182 
183 	khugepaged_pages_to_scan = pages;
184 
185 	return count;
186 }
187 static struct kobj_attribute pages_to_scan_attr =
188 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
189 	       pages_to_scan_store);
190 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)191 static ssize_t pages_collapsed_show(struct kobject *kobj,
192 				    struct kobj_attribute *attr,
193 				    char *buf)
194 {
195 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
196 }
197 static struct kobj_attribute pages_collapsed_attr =
198 	__ATTR_RO(pages_collapsed);
199 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)200 static ssize_t full_scans_show(struct kobject *kobj,
201 			       struct kobj_attribute *attr,
202 			       char *buf)
203 {
204 	return sprintf(buf, "%u\n", khugepaged_full_scans);
205 }
206 static struct kobj_attribute full_scans_attr =
207 	__ATTR_RO(full_scans);
208 
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)209 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
210 				      struct kobj_attribute *attr, char *buf)
211 {
212 	return single_hugepage_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
214 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)215 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
216 				       struct kobj_attribute *attr,
217 				       const char *buf, size_t count)
218 {
219 	return single_hugepage_flag_store(kobj, attr, buf, count,
220 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221 }
222 static struct kobj_attribute khugepaged_defrag_attr =
223 	__ATTR(defrag, 0644, khugepaged_defrag_show,
224 	       khugepaged_defrag_store);
225 
226 /*
227  * max_ptes_none controls if khugepaged should collapse hugepages over
228  * any unmapped ptes in turn potentially increasing the memory
229  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
230  * reduce the available free memory in the system as it
231  * runs. Increasing max_ptes_none will instead potentially reduce the
232  * free memory in the system during the khugepaged scan.
233  */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)234 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
235 					     struct kobj_attribute *attr,
236 					     char *buf)
237 {
238 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
239 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)240 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
241 					      struct kobj_attribute *attr,
242 					      const char *buf, size_t count)
243 {
244 	int err;
245 	unsigned long max_ptes_none;
246 
247 	err = kstrtoul(buf, 10, &max_ptes_none);
248 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
249 		return -EINVAL;
250 
251 	khugepaged_max_ptes_none = max_ptes_none;
252 
253 	return count;
254 }
255 static struct kobj_attribute khugepaged_max_ptes_none_attr =
256 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
257 	       khugepaged_max_ptes_none_store);
258 
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)259 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
260 					     struct kobj_attribute *attr,
261 					     char *buf)
262 {
263 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
264 }
265 
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)266 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
267 					      struct kobj_attribute *attr,
268 					      const char *buf, size_t count)
269 {
270 	int err;
271 	unsigned long max_ptes_swap;
272 
273 	err  = kstrtoul(buf, 10, &max_ptes_swap);
274 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
275 		return -EINVAL;
276 
277 	khugepaged_max_ptes_swap = max_ptes_swap;
278 
279 	return count;
280 }
281 
282 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
283 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
284 	       khugepaged_max_ptes_swap_store);
285 
286 static struct attribute *khugepaged_attr[] = {
287 	&khugepaged_defrag_attr.attr,
288 	&khugepaged_max_ptes_none_attr.attr,
289 	&pages_to_scan_attr.attr,
290 	&pages_collapsed_attr.attr,
291 	&full_scans_attr.attr,
292 	&scan_sleep_millisecs_attr.attr,
293 	&alloc_sleep_millisecs_attr.attr,
294 	&khugepaged_max_ptes_swap_attr.attr,
295 	NULL,
296 };
297 
298 struct attribute_group khugepaged_attr_group = {
299 	.attrs = khugepaged_attr,
300 	.name = "khugepaged",
301 };
302 #endif /* CONFIG_SYSFS */
303 
304 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
305 
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)306 int hugepage_madvise(struct vm_area_struct *vma,
307 		     unsigned long *vm_flags, int advice)
308 {
309 	switch (advice) {
310 	case MADV_HUGEPAGE:
311 #ifdef CONFIG_S390
312 		/*
313 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
314 		 * can't handle this properly after s390_enable_sie, so we simply
315 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
316 		 */
317 		if (mm_has_pgste(vma->vm_mm))
318 			return 0;
319 #endif
320 		*vm_flags &= ~VM_NOHUGEPAGE;
321 		*vm_flags |= VM_HUGEPAGE;
322 		/*
323 		 * If the vma become good for khugepaged to scan,
324 		 * register it here without waiting a page fault that
325 		 * may not happen any time soon.
326 		 */
327 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
328 				khugepaged_enter_vma_merge(vma, *vm_flags))
329 			return -ENOMEM;
330 		break;
331 	case MADV_NOHUGEPAGE:
332 		*vm_flags &= ~VM_HUGEPAGE;
333 		*vm_flags |= VM_NOHUGEPAGE;
334 		/*
335 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
336 		 * this vma even if we leave the mm registered in khugepaged if
337 		 * it got registered before VM_NOHUGEPAGE was set.
338 		 */
339 		break;
340 	}
341 
342 	return 0;
343 }
344 
khugepaged_init(void)345 int __init khugepaged_init(void)
346 {
347 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
348 					  sizeof(struct mm_slot),
349 					  __alignof__(struct mm_slot), 0, NULL);
350 	if (!mm_slot_cache)
351 		return -ENOMEM;
352 
353 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
354 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
355 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
356 
357 	return 0;
358 }
359 
khugepaged_destroy(void)360 void __init khugepaged_destroy(void)
361 {
362 	kmem_cache_destroy(mm_slot_cache);
363 }
364 
alloc_mm_slot(void)365 static inline struct mm_slot *alloc_mm_slot(void)
366 {
367 	if (!mm_slot_cache)	/* initialization failed */
368 		return NULL;
369 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
370 }
371 
free_mm_slot(struct mm_slot * mm_slot)372 static inline void free_mm_slot(struct mm_slot *mm_slot)
373 {
374 	kmem_cache_free(mm_slot_cache, mm_slot);
375 }
376 
get_mm_slot(struct mm_struct * mm)377 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
378 {
379 	struct mm_slot *mm_slot;
380 
381 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
382 		if (mm == mm_slot->mm)
383 			return mm_slot;
384 
385 	return NULL;
386 }
387 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)388 static void insert_to_mm_slots_hash(struct mm_struct *mm,
389 				    struct mm_slot *mm_slot)
390 {
391 	mm_slot->mm = mm;
392 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
393 }
394 
khugepaged_test_exit(struct mm_struct * mm)395 static inline int khugepaged_test_exit(struct mm_struct *mm)
396 {
397 	return atomic_read(&mm->mm_users) == 0;
398 }
399 
__khugepaged_enter(struct mm_struct * mm)400 int __khugepaged_enter(struct mm_struct *mm)
401 {
402 	struct mm_slot *mm_slot;
403 	int wakeup;
404 
405 	mm_slot = alloc_mm_slot();
406 	if (!mm_slot)
407 		return -ENOMEM;
408 
409 	/* __khugepaged_exit() must not run from under us */
410 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
411 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
412 		free_mm_slot(mm_slot);
413 		return 0;
414 	}
415 
416 	spin_lock(&khugepaged_mm_lock);
417 	insert_to_mm_slots_hash(mm, mm_slot);
418 	/*
419 	 * Insert just behind the scanning cursor, to let the area settle
420 	 * down a little.
421 	 */
422 	wakeup = list_empty(&khugepaged_scan.mm_head);
423 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
424 	spin_unlock(&khugepaged_mm_lock);
425 
426 	mmgrab(mm);
427 	if (wakeup)
428 		wake_up_interruptible(&khugepaged_wait);
429 
430 	return 0;
431 }
432 
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)433 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
434 			       unsigned long vm_flags)
435 {
436 	unsigned long hstart, hend;
437 	if (!vma->anon_vma)
438 		/*
439 		 * Not yet faulted in so we will register later in the
440 		 * page fault if needed.
441 		 */
442 		return 0;
443 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
444 		/* khugepaged not yet working on file or special mappings */
445 		return 0;
446 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
447 	hend = vma->vm_end & HPAGE_PMD_MASK;
448 	if (hstart < hend)
449 		return khugepaged_enter(vma, vm_flags);
450 	return 0;
451 }
452 
__khugepaged_exit(struct mm_struct * mm)453 void __khugepaged_exit(struct mm_struct *mm)
454 {
455 	struct mm_slot *mm_slot;
456 	int free = 0;
457 
458 	spin_lock(&khugepaged_mm_lock);
459 	mm_slot = get_mm_slot(mm);
460 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
461 		hash_del(&mm_slot->hash);
462 		list_del(&mm_slot->mm_node);
463 		free = 1;
464 	}
465 	spin_unlock(&khugepaged_mm_lock);
466 
467 	if (free) {
468 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
469 		free_mm_slot(mm_slot);
470 		mmdrop(mm);
471 	} else if (mm_slot) {
472 		/*
473 		 * This is required to serialize against
474 		 * khugepaged_test_exit() (which is guaranteed to run
475 		 * under mmap sem read mode). Stop here (after we
476 		 * return all pagetables will be destroyed) until
477 		 * khugepaged has finished working on the pagetables
478 		 * under the mmap_sem.
479 		 */
480 		down_write(&mm->mmap_sem);
481 		up_write(&mm->mmap_sem);
482 	}
483 }
484 
release_pte_page(struct page * page)485 static void release_pte_page(struct page *page)
486 {
487 	dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
488 	unlock_page(page);
489 	putback_lru_page(page);
490 }
491 
release_pte_pages(pte_t * pte,pte_t * _pte)492 static void release_pte_pages(pte_t *pte, pte_t *_pte)
493 {
494 	while (--_pte >= pte) {
495 		pte_t pteval = *_pte;
496 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
497 			release_pte_page(pte_page(pteval));
498 	}
499 }
500 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte)501 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
502 					unsigned long address,
503 					pte_t *pte)
504 {
505 	struct page *page = NULL;
506 	pte_t *_pte;
507 	int none_or_zero = 0, result = 0, referenced = 0;
508 	bool writable = false;
509 
510 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
511 	     _pte++, address += PAGE_SIZE) {
512 		pte_t pteval = *_pte;
513 		if (pte_none(pteval) || (pte_present(pteval) &&
514 				is_zero_pfn(pte_pfn(pteval)))) {
515 			if (!userfaultfd_armed(vma) &&
516 			    ++none_or_zero <= khugepaged_max_ptes_none) {
517 				continue;
518 			} else {
519 				result = SCAN_EXCEED_NONE_PTE;
520 				goto out;
521 			}
522 		}
523 		if (!pte_present(pteval)) {
524 			result = SCAN_PTE_NON_PRESENT;
525 			goto out;
526 		}
527 		page = vm_normal_page(vma, address, pteval);
528 		if (unlikely(!page)) {
529 			result = SCAN_PAGE_NULL;
530 			goto out;
531 		}
532 
533 		/* TODO: teach khugepaged to collapse THP mapped with pte */
534 		if (PageCompound(page)) {
535 			result = SCAN_PAGE_COMPOUND;
536 			goto out;
537 		}
538 
539 		VM_BUG_ON_PAGE(!PageAnon(page), page);
540 
541 		/*
542 		 * We can do it before isolate_lru_page because the
543 		 * page can't be freed from under us. NOTE: PG_lock
544 		 * is needed to serialize against split_huge_page
545 		 * when invoked from the VM.
546 		 */
547 		if (!trylock_page(page)) {
548 			result = SCAN_PAGE_LOCK;
549 			goto out;
550 		}
551 
552 		/*
553 		 * cannot use mapcount: can't collapse if there's a gup pin.
554 		 * The page must only be referenced by the scanned process
555 		 * and page swap cache.
556 		 */
557 		if (page_count(page) != 1 + PageSwapCache(page)) {
558 			unlock_page(page);
559 			result = SCAN_PAGE_COUNT;
560 			goto out;
561 		}
562 		if (pte_write(pteval)) {
563 			writable = true;
564 		} else {
565 			if (PageSwapCache(page) &&
566 			    !reuse_swap_page(page, NULL)) {
567 				unlock_page(page);
568 				result = SCAN_SWAP_CACHE_PAGE;
569 				goto out;
570 			}
571 			/*
572 			 * Page is not in the swap cache. It can be collapsed
573 			 * into a THP.
574 			 */
575 		}
576 
577 		/*
578 		 * Isolate the page to avoid collapsing an hugepage
579 		 * currently in use by the VM.
580 		 */
581 		if (isolate_lru_page(page)) {
582 			unlock_page(page);
583 			result = SCAN_DEL_PAGE_LRU;
584 			goto out;
585 		}
586 		inc_node_page_state(page,
587 				NR_ISOLATED_ANON + page_is_file_cache(page));
588 		VM_BUG_ON_PAGE(!PageLocked(page), page);
589 		VM_BUG_ON_PAGE(PageLRU(page), page);
590 
591 		/* There should be enough young pte to collapse the page */
592 		if (pte_young(pteval) ||
593 		    page_is_young(page) || PageReferenced(page) ||
594 		    mmu_notifier_test_young(vma->vm_mm, address))
595 			referenced++;
596 	}
597 	if (likely(writable)) {
598 		if (likely(referenced)) {
599 			result = SCAN_SUCCEED;
600 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
601 							    referenced, writable, result);
602 			return 1;
603 		}
604 	} else {
605 		result = SCAN_PAGE_RO;
606 	}
607 
608 out:
609 	release_pte_pages(pte, _pte);
610 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
611 					    referenced, writable, result);
612 	return 0;
613 }
614 
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl)615 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
616 				      struct vm_area_struct *vma,
617 				      unsigned long address,
618 				      spinlock_t *ptl)
619 {
620 	pte_t *_pte;
621 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
622 				_pte++, page++, address += PAGE_SIZE) {
623 		pte_t pteval = *_pte;
624 		struct page *src_page;
625 
626 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
627 			clear_user_highpage(page, address);
628 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
629 			if (is_zero_pfn(pte_pfn(pteval))) {
630 				/*
631 				 * ptl mostly unnecessary.
632 				 */
633 				spin_lock(ptl);
634 				/*
635 				 * paravirt calls inside pte_clear here are
636 				 * superfluous.
637 				 */
638 				pte_clear(vma->vm_mm, address, _pte);
639 				spin_unlock(ptl);
640 			}
641 		} else {
642 			src_page = pte_page(pteval);
643 			copy_user_highpage(page, src_page, address, vma);
644 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
645 			release_pte_page(src_page);
646 			/*
647 			 * ptl mostly unnecessary, but preempt has to
648 			 * be disabled to update the per-cpu stats
649 			 * inside page_remove_rmap().
650 			 */
651 			spin_lock(ptl);
652 			/*
653 			 * paravirt calls inside pte_clear here are
654 			 * superfluous.
655 			 */
656 			pte_clear(vma->vm_mm, address, _pte);
657 			page_remove_rmap(src_page, false);
658 			spin_unlock(ptl);
659 			free_page_and_swap_cache(src_page);
660 		}
661 	}
662 }
663 
khugepaged_alloc_sleep(void)664 static void khugepaged_alloc_sleep(void)
665 {
666 	DEFINE_WAIT(wait);
667 
668 	add_wait_queue(&khugepaged_wait, &wait);
669 	freezable_schedule_timeout_interruptible(
670 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
671 	remove_wait_queue(&khugepaged_wait, &wait);
672 }
673 
674 static int khugepaged_node_load[MAX_NUMNODES];
675 
khugepaged_scan_abort(int nid)676 static bool khugepaged_scan_abort(int nid)
677 {
678 	int i;
679 
680 	/*
681 	 * If node_reclaim_mode is disabled, then no extra effort is made to
682 	 * allocate memory locally.
683 	 */
684 	if (!node_reclaim_mode)
685 		return false;
686 
687 	/* If there is a count for this node already, it must be acceptable */
688 	if (khugepaged_node_load[nid])
689 		return false;
690 
691 	for (i = 0; i < MAX_NUMNODES; i++) {
692 		if (!khugepaged_node_load[i])
693 			continue;
694 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
695 			return true;
696 	}
697 	return false;
698 }
699 
700 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)701 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
702 {
703 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
704 }
705 
706 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)707 static int khugepaged_find_target_node(void)
708 {
709 	static int last_khugepaged_target_node = NUMA_NO_NODE;
710 	int nid, target_node = 0, max_value = 0;
711 
712 	/* find first node with max normal pages hit */
713 	for (nid = 0; nid < MAX_NUMNODES; nid++)
714 		if (khugepaged_node_load[nid] > max_value) {
715 			max_value = khugepaged_node_load[nid];
716 			target_node = nid;
717 		}
718 
719 	/* do some balance if several nodes have the same hit record */
720 	if (target_node <= last_khugepaged_target_node)
721 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
722 				nid++)
723 			if (max_value == khugepaged_node_load[nid]) {
724 				target_node = nid;
725 				break;
726 			}
727 
728 	last_khugepaged_target_node = target_node;
729 	return target_node;
730 }
731 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)732 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
733 {
734 	if (IS_ERR(*hpage)) {
735 		if (!*wait)
736 			return false;
737 
738 		*wait = false;
739 		*hpage = NULL;
740 		khugepaged_alloc_sleep();
741 	} else if (*hpage) {
742 		put_page(*hpage);
743 		*hpage = NULL;
744 	}
745 
746 	return true;
747 }
748 
749 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)750 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
751 {
752 	VM_BUG_ON_PAGE(*hpage, *hpage);
753 
754 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
755 	if (unlikely(!*hpage)) {
756 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
757 		*hpage = ERR_PTR(-ENOMEM);
758 		return NULL;
759 	}
760 
761 	prep_transhuge_page(*hpage);
762 	count_vm_event(THP_COLLAPSE_ALLOC);
763 	return *hpage;
764 }
765 #else
khugepaged_find_target_node(void)766 static int khugepaged_find_target_node(void)
767 {
768 	return 0;
769 }
770 
alloc_khugepaged_hugepage(void)771 static inline struct page *alloc_khugepaged_hugepage(void)
772 {
773 	struct page *page;
774 
775 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
776 			   HPAGE_PMD_ORDER);
777 	if (page)
778 		prep_transhuge_page(page);
779 	return page;
780 }
781 
khugepaged_alloc_hugepage(bool * wait)782 static struct page *khugepaged_alloc_hugepage(bool *wait)
783 {
784 	struct page *hpage;
785 
786 	do {
787 		hpage = alloc_khugepaged_hugepage();
788 		if (!hpage) {
789 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
790 			if (!*wait)
791 				return NULL;
792 
793 			*wait = false;
794 			khugepaged_alloc_sleep();
795 		} else
796 			count_vm_event(THP_COLLAPSE_ALLOC);
797 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
798 
799 	return hpage;
800 }
801 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)802 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
803 {
804 	if (!*hpage)
805 		*hpage = khugepaged_alloc_hugepage(wait);
806 
807 	if (unlikely(!*hpage))
808 		return false;
809 
810 	return true;
811 }
812 
813 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)814 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
815 {
816 	VM_BUG_ON(!*hpage);
817 
818 	return  *hpage;
819 }
820 #endif
821 
hugepage_vma_check(struct vm_area_struct * vma)822 static bool hugepage_vma_check(struct vm_area_struct *vma)
823 {
824 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
825 	    (vma->vm_flags & VM_NOHUGEPAGE) ||
826 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
827 		return false;
828 	if (shmem_file(vma->vm_file)) {
829 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830 			return false;
831 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832 				HPAGE_PMD_NR);
833 	}
834 	if (!vma->anon_vma || vma->vm_ops)
835 		return false;
836 	if (is_vma_temporary_stack(vma))
837 		return false;
838 	return !(vma->vm_flags & VM_NO_KHUGEPAGED);
839 }
840 
841 /*
842  * If mmap_sem temporarily dropped, revalidate vma
843  * before taking mmap_sem.
844  * Return 0 if succeeds, otherwise return none-zero
845  * value (scan code).
846  */
847 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)848 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849 		struct vm_area_struct **vmap)
850 {
851 	struct vm_area_struct *vma;
852 	unsigned long hstart, hend;
853 
854 	if (unlikely(khugepaged_test_exit(mm)))
855 		return SCAN_ANY_PROCESS;
856 
857 	*vmap = vma = find_vma(mm, address);
858 	if (!vma)
859 		return SCAN_VMA_NULL;
860 
861 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862 	hend = vma->vm_end & HPAGE_PMD_MASK;
863 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864 		return SCAN_ADDRESS_RANGE;
865 	if (!hugepage_vma_check(vma))
866 		return SCAN_VMA_CHECK;
867 	return 0;
868 }
869 
870 /*
871  * Bring missing pages in from swap, to complete THP collapse.
872  * Only done if khugepaged_scan_pmd believes it is worthwhile.
873  *
874  * Called and returns without pte mapped or spinlocks held,
875  * but with mmap_sem held to protect against vma changes.
876  */
877 
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,int referenced)878 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879 					struct vm_area_struct *vma,
880 					unsigned long address, pmd_t *pmd,
881 					int referenced)
882 {
883 	int swapped_in = 0, ret = 0;
884 	struct vm_fault vmf = {
885 		.vma = vma,
886 		.address = address,
887 		.flags = FAULT_FLAG_ALLOW_RETRY,
888 		.pmd = pmd,
889 		.pgoff = linear_page_index(vma, address),
890 	};
891 
892 	/* we only decide to swapin, if there is enough young ptes */
893 	if (referenced < HPAGE_PMD_NR/2) {
894 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895 		return false;
896 	}
897 	vmf.pte = pte_offset_map(pmd, address);
898 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899 			vmf.pte++, vmf.address += PAGE_SIZE) {
900 		vmf.orig_pte = *vmf.pte;
901 		if (!is_swap_pte(vmf.orig_pte))
902 			continue;
903 		swapped_in++;
904 		ret = do_swap_page(&vmf);
905 
906 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 		if (ret & VM_FAULT_RETRY) {
908 			down_read(&mm->mmap_sem);
909 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
910 				/* vma is no longer available, don't continue to swapin */
911 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 				return false;
913 			}
914 			/* check if the pmd is still valid */
915 			if (mm_find_pmd(mm, address) != pmd) {
916 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
917 				return false;
918 			}
919 		}
920 		if (ret & VM_FAULT_ERROR) {
921 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
922 			return false;
923 		}
924 		/* pte is unmapped now, we need to map it */
925 		vmf.pte = pte_offset_map(pmd, vmf.address);
926 	}
927 	vmf.pte--;
928 	pte_unmap(vmf.pte);
929 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
930 	return true;
931 }
932 
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced)933 static void collapse_huge_page(struct mm_struct *mm,
934 				   unsigned long address,
935 				   struct page **hpage,
936 				   int node, int referenced)
937 {
938 	pmd_t *pmd, _pmd;
939 	pte_t *pte;
940 	pgtable_t pgtable;
941 	struct page *new_page;
942 	spinlock_t *pmd_ptl, *pte_ptl;
943 	int isolated = 0, result = 0;
944 	struct mem_cgroup *memcg;
945 	struct vm_area_struct *vma;
946 	unsigned long mmun_start;	/* For mmu_notifiers */
947 	unsigned long mmun_end;		/* For mmu_notifiers */
948 	gfp_t gfp;
949 
950 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
951 
952 	/* Only allocate from the target node */
953 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
954 
955 	/*
956 	 * Before allocating the hugepage, release the mmap_sem read lock.
957 	 * The allocation can take potentially a long time if it involves
958 	 * sync compaction, and we do not need to hold the mmap_sem during
959 	 * that. We will recheck the vma after taking it again in write mode.
960 	 */
961 	up_read(&mm->mmap_sem);
962 	new_page = khugepaged_alloc_page(hpage, gfp, node);
963 	if (!new_page) {
964 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
965 		goto out_nolock;
966 	}
967 
968 	/* Do not oom kill for khugepaged charges */
969 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
970 					   &memcg, true))) {
971 		result = SCAN_CGROUP_CHARGE_FAIL;
972 		goto out_nolock;
973 	}
974 
975 	down_read(&mm->mmap_sem);
976 	result = hugepage_vma_revalidate(mm, address, &vma);
977 	if (result) {
978 		mem_cgroup_cancel_charge(new_page, memcg, true);
979 		up_read(&mm->mmap_sem);
980 		goto out_nolock;
981 	}
982 
983 	pmd = mm_find_pmd(mm, address);
984 	if (!pmd) {
985 		result = SCAN_PMD_NULL;
986 		mem_cgroup_cancel_charge(new_page, memcg, true);
987 		up_read(&mm->mmap_sem);
988 		goto out_nolock;
989 	}
990 
991 	/*
992 	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
993 	 * If it fails, we release mmap_sem and jump out_nolock.
994 	 * Continuing to collapse causes inconsistency.
995 	 */
996 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
997 		mem_cgroup_cancel_charge(new_page, memcg, true);
998 		up_read(&mm->mmap_sem);
999 		goto out_nolock;
1000 	}
1001 
1002 	up_read(&mm->mmap_sem);
1003 	/*
1004 	 * Prevent all access to pagetables with the exception of
1005 	 * gup_fast later handled by the ptep_clear_flush and the VM
1006 	 * handled by the anon_vma lock + PG_lock.
1007 	 */
1008 	down_write(&mm->mmap_sem);
1009 	result = SCAN_ANY_PROCESS;
1010 	if (!mmget_still_valid(mm))
1011 		goto out;
1012 	result = hugepage_vma_revalidate(mm, address, &vma);
1013 	if (result)
1014 		goto out;
1015 	/* check if the pmd is still valid */
1016 	if (mm_find_pmd(mm, address) != pmd)
1017 		goto out;
1018 
1019 	anon_vma_lock_write(vma->anon_vma);
1020 
1021 	pte = pte_offset_map(pmd, address);
1022 	pte_ptl = pte_lockptr(mm, pmd);
1023 
1024 	mmun_start = address;
1025 	mmun_end   = address + HPAGE_PMD_SIZE;
1026 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1028 	/*
1029 	 * After this gup_fast can't run anymore. This also removes
1030 	 * any huge TLB entry from the CPU so we won't allow
1031 	 * huge and small TLB entries for the same virtual address
1032 	 * to avoid the risk of CPU bugs in that area.
1033 	 */
1034 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1035 	spin_unlock(pmd_ptl);
1036 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 
1038 	spin_lock(pte_ptl);
1039 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1040 	spin_unlock(pte_ptl);
1041 
1042 	if (unlikely(!isolated)) {
1043 		pte_unmap(pte);
1044 		spin_lock(pmd_ptl);
1045 		BUG_ON(!pmd_none(*pmd));
1046 		/*
1047 		 * We can only use set_pmd_at when establishing
1048 		 * hugepmds and never for establishing regular pmds that
1049 		 * points to regular pagetables. Use pmd_populate for that
1050 		 */
1051 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1052 		spin_unlock(pmd_ptl);
1053 		anon_vma_unlock_write(vma->anon_vma);
1054 		result = SCAN_FAIL;
1055 		goto out;
1056 	}
1057 
1058 	/*
1059 	 * All pages are isolated and locked so anon_vma rmap
1060 	 * can't run anymore.
1061 	 */
1062 	anon_vma_unlock_write(vma->anon_vma);
1063 
1064 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1065 	pte_unmap(pte);
1066 	__SetPageUptodate(new_page);
1067 	pgtable = pmd_pgtable(_pmd);
1068 
1069 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1070 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1071 
1072 	/*
1073 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1074 	 * this is needed to avoid the copy_huge_page writes to become
1075 	 * visible after the set_pmd_at() write.
1076 	 */
1077 	smp_wmb();
1078 
1079 	spin_lock(pmd_ptl);
1080 	BUG_ON(!pmd_none(*pmd));
1081 	page_add_new_anon_rmap(new_page, vma, address, true);
1082 	mem_cgroup_commit_charge(new_page, memcg, false, true);
1083 	lru_cache_add_active_or_unevictable(new_page, vma);
1084 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1085 	set_pmd_at(mm, address, pmd, _pmd);
1086 	update_mmu_cache_pmd(vma, address, pmd);
1087 	spin_unlock(pmd_ptl);
1088 
1089 	*hpage = NULL;
1090 
1091 	khugepaged_pages_collapsed++;
1092 	result = SCAN_SUCCEED;
1093 out_up_write:
1094 	up_write(&mm->mmap_sem);
1095 out_nolock:
1096 	trace_mm_collapse_huge_page(mm, isolated, result);
1097 	return;
1098 out:
1099 	mem_cgroup_cancel_charge(new_page, memcg, true);
1100 	goto out_up_write;
1101 }
1102 
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1103 static int khugepaged_scan_pmd(struct mm_struct *mm,
1104 			       struct vm_area_struct *vma,
1105 			       unsigned long address,
1106 			       struct page **hpage)
1107 {
1108 	pmd_t *pmd;
1109 	pte_t *pte, *_pte;
1110 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1111 	struct page *page = NULL;
1112 	unsigned long _address;
1113 	spinlock_t *ptl;
1114 	int node = NUMA_NO_NODE, unmapped = 0;
1115 	bool writable = false;
1116 
1117 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1118 
1119 	pmd = mm_find_pmd(mm, address);
1120 	if (!pmd) {
1121 		result = SCAN_PMD_NULL;
1122 		goto out;
1123 	}
1124 
1125 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1126 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1127 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1128 	     _pte++, _address += PAGE_SIZE) {
1129 		pte_t pteval = *_pte;
1130 		if (is_swap_pte(pteval)) {
1131 			if (++unmapped <= khugepaged_max_ptes_swap) {
1132 				continue;
1133 			} else {
1134 				result = SCAN_EXCEED_SWAP_PTE;
1135 				goto out_unmap;
1136 			}
1137 		}
1138 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1139 			if (!userfaultfd_armed(vma) &&
1140 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1141 				continue;
1142 			} else {
1143 				result = SCAN_EXCEED_NONE_PTE;
1144 				goto out_unmap;
1145 			}
1146 		}
1147 		if (!pte_present(pteval)) {
1148 			result = SCAN_PTE_NON_PRESENT;
1149 			goto out_unmap;
1150 		}
1151 		if (pte_write(pteval))
1152 			writable = true;
1153 
1154 		page = vm_normal_page(vma, _address, pteval);
1155 		if (unlikely(!page)) {
1156 			result = SCAN_PAGE_NULL;
1157 			goto out_unmap;
1158 		}
1159 
1160 		/* TODO: teach khugepaged to collapse THP mapped with pte */
1161 		if (PageCompound(page)) {
1162 			result = SCAN_PAGE_COMPOUND;
1163 			goto out_unmap;
1164 		}
1165 
1166 		/*
1167 		 * Record which node the original page is from and save this
1168 		 * information to khugepaged_node_load[].
1169 		 * Khupaged will allocate hugepage from the node has the max
1170 		 * hit record.
1171 		 */
1172 		node = page_to_nid(page);
1173 		if (khugepaged_scan_abort(node)) {
1174 			result = SCAN_SCAN_ABORT;
1175 			goto out_unmap;
1176 		}
1177 		khugepaged_node_load[node]++;
1178 		if (!PageLRU(page)) {
1179 			result = SCAN_PAGE_LRU;
1180 			goto out_unmap;
1181 		}
1182 		if (PageLocked(page)) {
1183 			result = SCAN_PAGE_LOCK;
1184 			goto out_unmap;
1185 		}
1186 		if (!PageAnon(page)) {
1187 			result = SCAN_PAGE_ANON;
1188 			goto out_unmap;
1189 		}
1190 
1191 		/*
1192 		 * cannot use mapcount: can't collapse if there's a gup pin.
1193 		 * The page must only be referenced by the scanned process
1194 		 * and page swap cache.
1195 		 */
1196 		if (page_count(page) != 1 + PageSwapCache(page)) {
1197 			result = SCAN_PAGE_COUNT;
1198 			goto out_unmap;
1199 		}
1200 		if (pte_young(pteval) ||
1201 		    page_is_young(page) || PageReferenced(page) ||
1202 		    mmu_notifier_test_young(vma->vm_mm, address))
1203 			referenced++;
1204 	}
1205 	if (writable) {
1206 		if (referenced) {
1207 			result = SCAN_SUCCEED;
1208 			ret = 1;
1209 		} else {
1210 			result = SCAN_LACK_REFERENCED_PAGE;
1211 		}
1212 	} else {
1213 		result = SCAN_PAGE_RO;
1214 	}
1215 out_unmap:
1216 	pte_unmap_unlock(pte, ptl);
1217 	if (ret) {
1218 		node = khugepaged_find_target_node();
1219 		/* collapse_huge_page will return with the mmap_sem released */
1220 		collapse_huge_page(mm, address, hpage, node, referenced);
1221 	}
1222 out:
1223 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1224 				     none_or_zero, result, unmapped);
1225 	return ret;
1226 }
1227 
collect_mm_slot(struct mm_slot * mm_slot)1228 static void collect_mm_slot(struct mm_slot *mm_slot)
1229 {
1230 	struct mm_struct *mm = mm_slot->mm;
1231 
1232 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1233 
1234 	if (khugepaged_test_exit(mm)) {
1235 		/* free mm_slot */
1236 		hash_del(&mm_slot->hash);
1237 		list_del(&mm_slot->mm_node);
1238 
1239 		/*
1240 		 * Not strictly needed because the mm exited already.
1241 		 *
1242 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1243 		 */
1244 
1245 		/* khugepaged_mm_lock actually not necessary for the below */
1246 		free_mm_slot(mm_slot);
1247 		mmdrop(mm);
1248 	}
1249 }
1250 
1251 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1252 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1253 {
1254 	struct vm_area_struct *vma;
1255 	unsigned long addr;
1256 	pmd_t *pmd, _pmd;
1257 
1258 	i_mmap_lock_write(mapping);
1259 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1260 		/* probably overkill */
1261 		if (vma->anon_vma)
1262 			continue;
1263 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1264 		if (addr & ~HPAGE_PMD_MASK)
1265 			continue;
1266 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1267 			continue;
1268 		pmd = mm_find_pmd(vma->vm_mm, addr);
1269 		if (!pmd)
1270 			continue;
1271 		/*
1272 		 * We need exclusive mmap_sem to retract page table.
1273 		 * If trylock fails we would end up with pte-mapped THP after
1274 		 * re-fault. Not ideal, but it's more important to not disturb
1275 		 * the system too much.
1276 		 */
1277 		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1278 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1279 			/* assume page table is clear */
1280 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
1281 			spin_unlock(ptl);
1282 			up_write(&vma->vm_mm->mmap_sem);
1283 			atomic_long_dec(&vma->vm_mm->nr_ptes);
1284 			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1285 		}
1286 	}
1287 	i_mmap_unlock_write(mapping);
1288 }
1289 
1290 /**
1291  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1292  *
1293  * Basic scheme is simple, details are more complex:
1294  *  - allocate and lock a new huge page;
1295  *  - scan over radix tree replacing old pages the new one
1296  *    + swap in pages if necessary;
1297  *    + fill in gaps;
1298  *    + keep old pages around in case if rollback is required;
1299  *  - if replacing succeed:
1300  *    + copy data over;
1301  *    + free old pages;
1302  *    + unlock huge page;
1303  *  - if replacing failed;
1304  *    + put all pages back and unfreeze them;
1305  *    + restore gaps in the radix-tree;
1306  *    + unlock and free huge page;
1307  */
collapse_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage,int node)1308 static void collapse_shmem(struct mm_struct *mm,
1309 		struct address_space *mapping, pgoff_t start,
1310 		struct page **hpage, int node)
1311 {
1312 	gfp_t gfp;
1313 	struct page *page, *new_page, *tmp;
1314 	struct mem_cgroup *memcg;
1315 	pgoff_t index, end = start + HPAGE_PMD_NR;
1316 	LIST_HEAD(pagelist);
1317 	struct radix_tree_iter iter;
1318 	void **slot;
1319 	int nr_none = 0, result = SCAN_SUCCEED;
1320 
1321 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1322 
1323 	/* Only allocate from the target node */
1324 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1325 
1326 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1327 	if (!new_page) {
1328 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1329 		goto out;
1330 	}
1331 
1332 	/* Do not oom kill for khugepaged charges */
1333 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
1334 					   &memcg, true))) {
1335 		result = SCAN_CGROUP_CHARGE_FAIL;
1336 		goto out;
1337 	}
1338 
1339 	__SetPageLocked(new_page);
1340 	__SetPageSwapBacked(new_page);
1341 	new_page->index = start;
1342 	new_page->mapping = mapping;
1343 
1344 	/*
1345 	 * At this point the new_page is locked and not up-to-date.
1346 	 * It's safe to insert it into the page cache, because nobody would
1347 	 * be able to map it or use it in another way until we unlock it.
1348 	 */
1349 
1350 	index = start;
1351 	spin_lock_irq(&mapping->tree_lock);
1352 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1353 		int n = min(iter.index, end) - index;
1354 
1355 		/*
1356 		 * Stop if extent has been hole-punched, and is now completely
1357 		 * empty (the more obvious i_size_read() check would take an
1358 		 * irq-unsafe seqlock on 32-bit).
1359 		 */
1360 		if (n >= HPAGE_PMD_NR) {
1361 			result = SCAN_TRUNCATED;
1362 			goto tree_locked;
1363 		}
1364 
1365 		/*
1366 		 * Handle holes in the radix tree: charge it from shmem and
1367 		 * insert relevant subpage of new_page into the radix-tree.
1368 		 */
1369 		if (n && !shmem_charge(mapping->host, n)) {
1370 			result = SCAN_FAIL;
1371 			goto tree_locked;
1372 		}
1373 		for (; index < min(iter.index, end); index++) {
1374 			radix_tree_insert(&mapping->page_tree, index,
1375 					new_page + (index % HPAGE_PMD_NR));
1376 		}
1377 		nr_none += n;
1378 
1379 		/* We are done. */
1380 		if (index >= end)
1381 			break;
1382 
1383 		page = radix_tree_deref_slot_protected(slot,
1384 				&mapping->tree_lock);
1385 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1386 			spin_unlock_irq(&mapping->tree_lock);
1387 			/* swap in or instantiate fallocated page */
1388 			if (shmem_getpage(mapping->host, index, &page,
1389 						SGP_NOHUGE)) {
1390 				result = SCAN_FAIL;
1391 				goto tree_unlocked;
1392 			}
1393 		} else if (trylock_page(page)) {
1394 			get_page(page);
1395 			spin_unlock_irq(&mapping->tree_lock);
1396 		} else {
1397 			result = SCAN_PAGE_LOCK;
1398 			goto tree_locked;
1399 		}
1400 
1401 		/*
1402 		 * The page must be locked, so we can drop the tree_lock
1403 		 * without racing with truncate.
1404 		 */
1405 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1406 		VM_BUG_ON_PAGE(!PageUptodate(page), page);
1407 
1408 		/*
1409 		 * If file was truncated then extended, or hole-punched, before
1410 		 * we locked the first page, then a THP might be there already.
1411 		 */
1412 		if (PageTransCompound(page)) {
1413 			result = SCAN_PAGE_COMPOUND;
1414 			goto out_unlock;
1415 		}
1416 
1417 		if (page_mapping(page) != mapping) {
1418 			result = SCAN_TRUNCATED;
1419 			goto out_unlock;
1420 		}
1421 
1422 		if (isolate_lru_page(page)) {
1423 			result = SCAN_DEL_PAGE_LRU;
1424 			goto out_unlock;
1425 		}
1426 
1427 		if (page_mapped(page))
1428 			unmap_mapping_range(mapping, index << PAGE_SHIFT,
1429 					PAGE_SIZE, 0);
1430 
1431 		spin_lock_irq(&mapping->tree_lock);
1432 
1433 		slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1434 		VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1435 					&mapping->tree_lock), page);
1436 		VM_BUG_ON_PAGE(page_mapped(page), page);
1437 
1438 		/*
1439 		 * The page is expected to have page_count() == 3:
1440 		 *  - we hold a pin on it;
1441 		 *  - one reference from radix tree;
1442 		 *  - one from isolate_lru_page;
1443 		 */
1444 		if (!page_ref_freeze(page, 3)) {
1445 			result = SCAN_PAGE_COUNT;
1446 			spin_unlock_irq(&mapping->tree_lock);
1447 			putback_lru_page(page);
1448 			goto out_unlock;
1449 		}
1450 
1451 		/*
1452 		 * Add the page to the list to be able to undo the collapse if
1453 		 * something go wrong.
1454 		 */
1455 		list_add_tail(&page->lru, &pagelist);
1456 
1457 		/* Finally, replace with the new page. */
1458 		radix_tree_replace_slot(&mapping->page_tree, slot,
1459 				new_page + (index % HPAGE_PMD_NR));
1460 
1461 		slot = radix_tree_iter_resume(slot, &iter);
1462 		index++;
1463 		continue;
1464 out_unlock:
1465 		unlock_page(page);
1466 		put_page(page);
1467 		goto tree_unlocked;
1468 	}
1469 
1470 	/*
1471 	 * Handle hole in radix tree at the end of the range.
1472 	 * This code only triggers if there's nothing in radix tree
1473 	 * beyond 'end'.
1474 	 */
1475 	if (index < end) {
1476 		int n = end - index;
1477 
1478 		/* Stop if extent has been truncated, and is now empty */
1479 		if (n >= HPAGE_PMD_NR) {
1480 			result = SCAN_TRUNCATED;
1481 			goto tree_locked;
1482 		}
1483 		if (!shmem_charge(mapping->host, n)) {
1484 			result = SCAN_FAIL;
1485 			goto tree_locked;
1486 		}
1487 		for (; index < end; index++) {
1488 			radix_tree_insert(&mapping->page_tree, index,
1489 					new_page + (index % HPAGE_PMD_NR));
1490 		}
1491 		nr_none += n;
1492 	}
1493 
1494 	__inc_node_page_state(new_page, NR_SHMEM_THPS);
1495 	if (nr_none) {
1496 		struct zone *zone = page_zone(new_page);
1497 
1498 		__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1499 		__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1500 	}
1501 
1502 tree_locked:
1503 	spin_unlock_irq(&mapping->tree_lock);
1504 tree_unlocked:
1505 
1506 	if (result == SCAN_SUCCEED) {
1507 		/*
1508 		 * Replacing old pages with new one has succeed, now we need to
1509 		 * copy the content and free old pages.
1510 		 */
1511 		index = start;
1512 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1513 			while (index < page->index) {
1514 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1515 				index++;
1516 			}
1517 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1518 					page);
1519 			list_del(&page->lru);
1520 			page->mapping = NULL;
1521 			page_ref_unfreeze(page, 1);
1522 			ClearPageActive(page);
1523 			ClearPageUnevictable(page);
1524 			unlock_page(page);
1525 			put_page(page);
1526 			index++;
1527 		}
1528 		while (index < end) {
1529 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1530 			index++;
1531 		}
1532 
1533 		SetPageUptodate(new_page);
1534 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1535 		set_page_dirty(new_page);
1536 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1537 		lru_cache_add_anon(new_page);
1538 
1539 		/*
1540 		 * Remove pte page tables, so we can re-fault the page as huge.
1541 		 */
1542 		retract_page_tables(mapping, start);
1543 		*hpage = NULL;
1544 	} else {
1545 		/* Something went wrong: rollback changes to the radix-tree */
1546 		spin_lock_irq(&mapping->tree_lock);
1547 		mapping->nrpages -= nr_none;
1548 		shmem_uncharge(mapping->host, nr_none);
1549 
1550 		radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1551 				start) {
1552 			if (iter.index >= end)
1553 				break;
1554 			page = list_first_entry_or_null(&pagelist,
1555 					struct page, lru);
1556 			if (!page || iter.index < page->index) {
1557 				if (!nr_none)
1558 					break;
1559 				nr_none--;
1560 				/* Put holes back where they were */
1561 				radix_tree_delete(&mapping->page_tree,
1562 						  iter.index);
1563 				continue;
1564 			}
1565 
1566 			VM_BUG_ON_PAGE(page->index != iter.index, page);
1567 
1568 			/* Unfreeze the page. */
1569 			list_del(&page->lru);
1570 			page_ref_unfreeze(page, 2);
1571 			radix_tree_replace_slot(&mapping->page_tree,
1572 						slot, page);
1573 			slot = radix_tree_iter_resume(slot, &iter);
1574 			spin_unlock_irq(&mapping->tree_lock);
1575 			unlock_page(page);
1576 			putback_lru_page(page);
1577 			spin_lock_irq(&mapping->tree_lock);
1578 		}
1579 		VM_BUG_ON(nr_none);
1580 		spin_unlock_irq(&mapping->tree_lock);
1581 
1582 		mem_cgroup_cancel_charge(new_page, memcg, true);
1583 		new_page->mapping = NULL;
1584 	}
1585 
1586 	unlock_page(new_page);
1587 out:
1588 	VM_BUG_ON(!list_empty(&pagelist));
1589 	/* TODO: tracepoints */
1590 }
1591 
khugepaged_scan_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage)1592 static void khugepaged_scan_shmem(struct mm_struct *mm,
1593 		struct address_space *mapping,
1594 		pgoff_t start, struct page **hpage)
1595 {
1596 	struct page *page = NULL;
1597 	struct radix_tree_iter iter;
1598 	void **slot;
1599 	int present, swap;
1600 	int node = NUMA_NO_NODE;
1601 	int result = SCAN_SUCCEED;
1602 
1603 	present = 0;
1604 	swap = 0;
1605 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1606 	rcu_read_lock();
1607 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1608 		if (iter.index >= start + HPAGE_PMD_NR)
1609 			break;
1610 
1611 		page = radix_tree_deref_slot(slot);
1612 		if (radix_tree_deref_retry(page)) {
1613 			slot = radix_tree_iter_retry(&iter);
1614 			continue;
1615 		}
1616 
1617 		if (radix_tree_exception(page)) {
1618 			if (++swap > khugepaged_max_ptes_swap) {
1619 				result = SCAN_EXCEED_SWAP_PTE;
1620 				break;
1621 			}
1622 			continue;
1623 		}
1624 
1625 		if (PageTransCompound(page)) {
1626 			result = SCAN_PAGE_COMPOUND;
1627 			break;
1628 		}
1629 
1630 		node = page_to_nid(page);
1631 		if (khugepaged_scan_abort(node)) {
1632 			result = SCAN_SCAN_ABORT;
1633 			break;
1634 		}
1635 		khugepaged_node_load[node]++;
1636 
1637 		if (!PageLRU(page)) {
1638 			result = SCAN_PAGE_LRU;
1639 			break;
1640 		}
1641 
1642 		if (page_count(page) != 1 + page_mapcount(page)) {
1643 			result = SCAN_PAGE_COUNT;
1644 			break;
1645 		}
1646 
1647 		/*
1648 		 * We probably should check if the page is referenced here, but
1649 		 * nobody would transfer pte_young() to PageReferenced() for us.
1650 		 * And rmap walk here is just too costly...
1651 		 */
1652 
1653 		present++;
1654 
1655 		if (need_resched()) {
1656 			slot = radix_tree_iter_resume(slot, &iter);
1657 			cond_resched_rcu();
1658 		}
1659 	}
1660 	rcu_read_unlock();
1661 
1662 	if (result == SCAN_SUCCEED) {
1663 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1664 			result = SCAN_EXCEED_NONE_PTE;
1665 		} else {
1666 			node = khugepaged_find_target_node();
1667 			collapse_shmem(mm, mapping, start, hpage, node);
1668 		}
1669 	}
1670 
1671 	/* TODO: tracepoints */
1672 }
1673 #else
khugepaged_scan_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage)1674 static void khugepaged_scan_shmem(struct mm_struct *mm,
1675 		struct address_space *mapping,
1676 		pgoff_t start, struct page **hpage)
1677 {
1678 	BUILD_BUG();
1679 }
1680 #endif
1681 
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)1682 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1683 					    struct page **hpage)
1684 	__releases(&khugepaged_mm_lock)
1685 	__acquires(&khugepaged_mm_lock)
1686 {
1687 	struct mm_slot *mm_slot;
1688 	struct mm_struct *mm;
1689 	struct vm_area_struct *vma;
1690 	int progress = 0;
1691 
1692 	VM_BUG_ON(!pages);
1693 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1694 
1695 	if (khugepaged_scan.mm_slot)
1696 		mm_slot = khugepaged_scan.mm_slot;
1697 	else {
1698 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
1699 				     struct mm_slot, mm_node);
1700 		khugepaged_scan.address = 0;
1701 		khugepaged_scan.mm_slot = mm_slot;
1702 	}
1703 	spin_unlock(&khugepaged_mm_lock);
1704 
1705 	mm = mm_slot->mm;
1706 	/*
1707 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
1708 	 * the next mm on the list.
1709 	 */
1710 	vma = NULL;
1711 	if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1712 		goto breakouterloop_mmap_sem;
1713 	if (likely(!khugepaged_test_exit(mm)))
1714 		vma = find_vma(mm, khugepaged_scan.address);
1715 
1716 	progress++;
1717 	for (; vma; vma = vma->vm_next) {
1718 		unsigned long hstart, hend;
1719 
1720 		cond_resched();
1721 		if (unlikely(khugepaged_test_exit(mm))) {
1722 			progress++;
1723 			break;
1724 		}
1725 		if (!hugepage_vma_check(vma)) {
1726 skip:
1727 			progress++;
1728 			continue;
1729 		}
1730 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1731 		hend = vma->vm_end & HPAGE_PMD_MASK;
1732 		if (hstart >= hend)
1733 			goto skip;
1734 		if (khugepaged_scan.address > hend)
1735 			goto skip;
1736 		if (khugepaged_scan.address < hstart)
1737 			khugepaged_scan.address = hstart;
1738 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1739 
1740 		while (khugepaged_scan.address < hend) {
1741 			int ret;
1742 			cond_resched();
1743 			if (unlikely(khugepaged_test_exit(mm)))
1744 				goto breakouterloop;
1745 
1746 			VM_BUG_ON(khugepaged_scan.address < hstart ||
1747 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
1748 				  hend);
1749 			if (shmem_file(vma->vm_file)) {
1750 				struct file *file;
1751 				pgoff_t pgoff = linear_page_index(vma,
1752 						khugepaged_scan.address);
1753 				if (!shmem_huge_enabled(vma))
1754 					goto skip;
1755 				file = get_file(vma->vm_file);
1756 				up_read(&mm->mmap_sem);
1757 				ret = 1;
1758 				khugepaged_scan_shmem(mm, file->f_mapping,
1759 						pgoff, hpage);
1760 				fput(file);
1761 			} else {
1762 				ret = khugepaged_scan_pmd(mm, vma,
1763 						khugepaged_scan.address,
1764 						hpage);
1765 			}
1766 			/* move to next address */
1767 			khugepaged_scan.address += HPAGE_PMD_SIZE;
1768 			progress += HPAGE_PMD_NR;
1769 			if (ret)
1770 				/* we released mmap_sem so break loop */
1771 				goto breakouterloop_mmap_sem;
1772 			if (progress >= pages)
1773 				goto breakouterloop;
1774 		}
1775 	}
1776 breakouterloop:
1777 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1778 breakouterloop_mmap_sem:
1779 
1780 	spin_lock(&khugepaged_mm_lock);
1781 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1782 	/*
1783 	 * Release the current mm_slot if this mm is about to die, or
1784 	 * if we scanned all vmas of this mm.
1785 	 */
1786 	if (khugepaged_test_exit(mm) || !vma) {
1787 		/*
1788 		 * Make sure that if mm_users is reaching zero while
1789 		 * khugepaged runs here, khugepaged_exit will find
1790 		 * mm_slot not pointing to the exiting mm.
1791 		 */
1792 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1793 			khugepaged_scan.mm_slot = list_entry(
1794 				mm_slot->mm_node.next,
1795 				struct mm_slot, mm_node);
1796 			khugepaged_scan.address = 0;
1797 		} else {
1798 			khugepaged_scan.mm_slot = NULL;
1799 			khugepaged_full_scans++;
1800 		}
1801 
1802 		collect_mm_slot(mm_slot);
1803 	}
1804 
1805 	return progress;
1806 }
1807 
khugepaged_has_work(void)1808 static int khugepaged_has_work(void)
1809 {
1810 	return !list_empty(&khugepaged_scan.mm_head) &&
1811 		khugepaged_enabled();
1812 }
1813 
khugepaged_wait_event(void)1814 static int khugepaged_wait_event(void)
1815 {
1816 	return !list_empty(&khugepaged_scan.mm_head) ||
1817 		kthread_should_stop();
1818 }
1819 
khugepaged_do_scan(void)1820 static void khugepaged_do_scan(void)
1821 {
1822 	struct page *hpage = NULL;
1823 	unsigned int progress = 0, pass_through_head = 0;
1824 	unsigned int pages = khugepaged_pages_to_scan;
1825 	bool wait = true;
1826 
1827 	barrier(); /* write khugepaged_pages_to_scan to local stack */
1828 
1829 	while (progress < pages) {
1830 		if (!khugepaged_prealloc_page(&hpage, &wait))
1831 			break;
1832 
1833 		cond_resched();
1834 
1835 		if (unlikely(kthread_should_stop() || try_to_freeze()))
1836 			break;
1837 
1838 		spin_lock(&khugepaged_mm_lock);
1839 		if (!khugepaged_scan.mm_slot)
1840 			pass_through_head++;
1841 		if (khugepaged_has_work() &&
1842 		    pass_through_head < 2)
1843 			progress += khugepaged_scan_mm_slot(pages - progress,
1844 							    &hpage);
1845 		else
1846 			progress = pages;
1847 		spin_unlock(&khugepaged_mm_lock);
1848 	}
1849 
1850 	if (!IS_ERR_OR_NULL(hpage))
1851 		put_page(hpage);
1852 }
1853 
khugepaged_should_wakeup(void)1854 static bool khugepaged_should_wakeup(void)
1855 {
1856 	return kthread_should_stop() ||
1857 	       time_after_eq(jiffies, khugepaged_sleep_expire);
1858 }
1859 
khugepaged_wait_work(void)1860 static void khugepaged_wait_work(void)
1861 {
1862 	if (khugepaged_has_work()) {
1863 		const unsigned long scan_sleep_jiffies =
1864 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1865 
1866 		if (!scan_sleep_jiffies)
1867 			return;
1868 
1869 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1870 		wait_event_freezable_timeout(khugepaged_wait,
1871 					     khugepaged_should_wakeup(),
1872 					     scan_sleep_jiffies);
1873 		return;
1874 	}
1875 
1876 	if (khugepaged_enabled())
1877 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1878 }
1879 
khugepaged(void * none)1880 static int khugepaged(void *none)
1881 {
1882 	struct mm_slot *mm_slot;
1883 
1884 	set_freezable();
1885 	set_user_nice(current, MAX_NICE);
1886 
1887 	while (!kthread_should_stop()) {
1888 		khugepaged_do_scan();
1889 		khugepaged_wait_work();
1890 	}
1891 
1892 	spin_lock(&khugepaged_mm_lock);
1893 	mm_slot = khugepaged_scan.mm_slot;
1894 	khugepaged_scan.mm_slot = NULL;
1895 	if (mm_slot)
1896 		collect_mm_slot(mm_slot);
1897 	spin_unlock(&khugepaged_mm_lock);
1898 	return 0;
1899 }
1900 
set_recommended_min_free_kbytes(void)1901 static void set_recommended_min_free_kbytes(void)
1902 {
1903 	struct zone *zone;
1904 	int nr_zones = 0;
1905 	unsigned long recommended_min;
1906 
1907 	for_each_populated_zone(zone)
1908 		nr_zones++;
1909 
1910 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1911 	recommended_min = pageblock_nr_pages * nr_zones * 2;
1912 
1913 	/*
1914 	 * Make sure that on average at least two pageblocks are almost free
1915 	 * of another type, one for a migratetype to fall back to and a
1916 	 * second to avoid subsequent fallbacks of other types There are 3
1917 	 * MIGRATE_TYPES we care about.
1918 	 */
1919 	recommended_min += pageblock_nr_pages * nr_zones *
1920 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1921 
1922 	/* don't ever allow to reserve more than 5% of the lowmem */
1923 	recommended_min = min(recommended_min,
1924 			      (unsigned long) nr_free_buffer_pages() / 20);
1925 	recommended_min <<= (PAGE_SHIFT-10);
1926 
1927 	if (recommended_min > min_free_kbytes) {
1928 		if (user_min_free_kbytes >= 0)
1929 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1930 				min_free_kbytes, recommended_min);
1931 
1932 		min_free_kbytes = recommended_min;
1933 	}
1934 	setup_per_zone_wmarks();
1935 }
1936 
start_stop_khugepaged(void)1937 int start_stop_khugepaged(void)
1938 {
1939 	static struct task_struct *khugepaged_thread __read_mostly;
1940 	static DEFINE_MUTEX(khugepaged_mutex);
1941 	int err = 0;
1942 
1943 	mutex_lock(&khugepaged_mutex);
1944 	if (khugepaged_enabled()) {
1945 		if (!khugepaged_thread)
1946 			khugepaged_thread = kthread_run(khugepaged, NULL,
1947 							"khugepaged");
1948 		if (IS_ERR(khugepaged_thread)) {
1949 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1950 			err = PTR_ERR(khugepaged_thread);
1951 			khugepaged_thread = NULL;
1952 			goto fail;
1953 		}
1954 
1955 		if (!list_empty(&khugepaged_scan.mm_head))
1956 			wake_up_interruptible(&khugepaged_wait);
1957 
1958 		set_recommended_min_free_kbytes();
1959 	} else if (khugepaged_thread) {
1960 		kthread_stop(khugepaged_thread);
1961 		khugepaged_thread = NULL;
1962 	}
1963 fail:
1964 	mutex_unlock(&khugepaged_mutex);
1965 	return err;
1966 }
1967