• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 	if (obj->cache_dirty)
53 		return false;
54 
55 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 		return true;
57 
58 	return obj->pin_display;
59 }
60 
61 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65 	memset(node, 0, sizeof(*node));
66 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 					   size, 0, I915_COLOR_UNEVICTABLE,
68 					   0, ggtt->mappable_end,
69 					   DRM_MM_INSERT_LOW);
70 }
71 
72 static void
remove_mappable_node(struct drm_mm_node * node)73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 	drm_mm_remove_node(node);
76 }
77 
78 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,u64 size)79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 				  u64 size)
81 {
82 	spin_lock(&dev_priv->mm.object_stat_lock);
83 	dev_priv->mm.object_count++;
84 	dev_priv->mm.object_memory += size;
85 	spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,u64 size)88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 				     u64 size)
90 {
91 	spin_lock(&dev_priv->mm.object_stat_lock);
92 	dev_priv->mm.object_count--;
93 	dev_priv->mm.object_memory -= size;
94 	spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96 
97 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 	int ret;
101 
102 	might_sleep();
103 
104 	/*
105 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 	 * userspace. If it takes that long something really bad is going on and
107 	 * we should simply try to bail out and fail as gracefully as possible.
108 	 */
109 	ret = wait_event_interruptible_timeout(error->reset_queue,
110 					       !i915_reset_backoff(error),
111 					       I915_RESET_TIMEOUT);
112 	if (ret == 0) {
113 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 		return -EIO;
115 	} else if (ret < 0) {
116 		return ret;
117 	} else {
118 		return 0;
119 	}
120 }
121 
i915_mutex_lock_interruptible(struct drm_device * dev)122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 	struct drm_i915_private *dev_priv = to_i915(dev);
125 	int ret;
126 
127 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 	if (ret)
129 		return ret;
130 
131 	ret = mutex_lock_interruptible(&dev->struct_mutex);
132 	if (ret)
133 		return ret;
134 
135 	return 0;
136 }
137 
138 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 			    struct drm_file *file)
141 {
142 	struct drm_i915_private *dev_priv = to_i915(dev);
143 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 	struct drm_i915_gem_get_aperture *args = data;
145 	struct i915_vma *vma;
146 	u64 pinned;
147 
148 	pinned = ggtt->base.reserved;
149 	mutex_lock(&dev->struct_mutex);
150 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 		if (i915_vma_is_pinned(vma))
152 			pinned += vma->node.size;
153 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 		if (i915_vma_is_pinned(vma))
155 			pinned += vma->node.size;
156 	mutex_unlock(&dev->struct_mutex);
157 
158 	args->aper_size = ggtt->base.total;
159 	args->aper_available_size = args->aper_size - pinned;
160 
161 	return 0;
162 }
163 
164 static struct sg_table *
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 
174 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 		return ERR_PTR(-EINVAL);
176 
177 	/* Always aligning to the object size, allows a single allocation
178 	 * to handle all possible callers, and given typical object sizes,
179 	 * the alignment of the buddy allocation will naturally match.
180 	 */
181 	phys = drm_pci_alloc(obj->base.dev,
182 			     obj->base.size,
183 			     roundup_pow_of_two(obj->base.size));
184 	if (!phys)
185 		return ERR_PTR(-ENOMEM);
186 
187 	vaddr = phys->vaddr;
188 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 		struct page *page;
190 		char *src;
191 
192 		page = shmem_read_mapping_page(mapping, i);
193 		if (IS_ERR(page)) {
194 			st = ERR_CAST(page);
195 			goto err_phys;
196 		}
197 
198 		src = kmap_atomic(page);
199 		memcpy(vaddr, src, PAGE_SIZE);
200 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 		kunmap_atomic(src);
202 
203 		put_page(page);
204 		vaddr += PAGE_SIZE;
205 	}
206 
207 	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 
209 	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 	if (!st) {
211 		st = ERR_PTR(-ENOMEM);
212 		goto err_phys;
213 	}
214 
215 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 		kfree(st);
217 		st = ERR_PTR(-ENOMEM);
218 		goto err_phys;
219 	}
220 
221 	sg = st->sgl;
222 	sg->offset = 0;
223 	sg->length = obj->base.size;
224 
225 	sg_dma_address(sg) = phys->busaddr;
226 	sg_dma_len(sg) = obj->base.size;
227 
228 	obj->phys_handle = phys;
229 	return st;
230 
231 err_phys:
232 	drm_pci_free(obj->base.dev, phys);
233 	return st;
234 }
235 
__start_cpu_write(struct drm_i915_gem_object * obj)236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 	if (cpu_write_needs_clflush(obj))
241 		obj->cache_dirty = true;
242 }
243 
244 static void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 				struct sg_table *pages,
247 				bool needs_clflush)
248 {
249 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250 
251 	if (obj->mm.madv == I915_MADV_DONTNEED)
252 		obj->mm.dirty = false;
253 
254 	if (needs_clflush &&
255 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 		drm_clflush_sg(pages);
258 
259 	__start_cpu_write(obj);
260 }
261 
262 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj,struct sg_table * pages)263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 			       struct sg_table *pages)
265 {
266 	__i915_gem_object_release_shmem(obj, pages, false);
267 
268 	if (obj->mm.dirty) {
269 		struct address_space *mapping = obj->base.filp->f_mapping;
270 		char *vaddr = obj->phys_handle->vaddr;
271 		int i;
272 
273 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 			struct page *page;
275 			char *dst;
276 
277 			page = shmem_read_mapping_page(mapping, i);
278 			if (IS_ERR(page))
279 				continue;
280 
281 			dst = kmap_atomic(page);
282 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 			memcpy(dst, vaddr, PAGE_SIZE);
284 			kunmap_atomic(dst);
285 
286 			set_page_dirty(page);
287 			if (obj->mm.madv == I915_MADV_WILLNEED)
288 				mark_page_accessed(page);
289 			put_page(page);
290 			vaddr += PAGE_SIZE;
291 		}
292 		obj->mm.dirty = false;
293 	}
294 
295 	sg_free_table(pages);
296 	kfree(pages);
297 
298 	drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300 
301 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 	i915_gem_object_unpin_pages(obj);
305 }
306 
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 	.get_pages = i915_gem_object_get_pages_phys,
309 	.put_pages = i915_gem_object_put_pages_phys,
310 	.release = i915_gem_object_release_phys,
311 };
312 
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314 
i915_gem_object_unbind(struct drm_i915_gem_object * obj)315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
329 	if (ret)
330 		return ret;
331 
332 	while ((vma = list_first_entry_or_null(&obj->vma_list,
333 					       struct i915_vma,
334 					       obj_link))) {
335 		list_move_tail(&vma->obj_link, &still_in_list);
336 		ret = i915_vma_unbind(vma);
337 		if (ret)
338 			break;
339 	}
340 	list_splice(&still_in_list, &obj->vma_list);
341 
342 	return ret;
343 }
344 
345 static long
i915_gem_object_wait_fence(struct dma_fence * fence,unsigned int flags,long timeout,struct intel_rps_client * rps)346 i915_gem_object_wait_fence(struct dma_fence *fence,
347 			   unsigned int flags,
348 			   long timeout,
349 			   struct intel_rps_client *rps)
350 {
351 	struct drm_i915_gem_request *rq;
352 
353 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
354 
355 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
356 		return timeout;
357 
358 	if (!dma_fence_is_i915(fence))
359 		return dma_fence_wait_timeout(fence,
360 					      flags & I915_WAIT_INTERRUPTIBLE,
361 					      timeout);
362 
363 	rq = to_request(fence);
364 	if (i915_gem_request_completed(rq))
365 		goto out;
366 
367 	/* This client is about to stall waiting for the GPU. In many cases
368 	 * this is undesirable and limits the throughput of the system, as
369 	 * many clients cannot continue processing user input/output whilst
370 	 * blocked. RPS autotuning may take tens of milliseconds to respond
371 	 * to the GPU load and thus incurs additional latency for the client.
372 	 * We can circumvent that by promoting the GPU frequency to maximum
373 	 * before we wait. This makes the GPU throttle up much more quickly
374 	 * (good for benchmarks and user experience, e.g. window animations),
375 	 * but at a cost of spending more power processing the workload
376 	 * (bad for battery). Not all clients even want their results
377 	 * immediately and for them we should just let the GPU select its own
378 	 * frequency to maximise efficiency. To prevent a single client from
379 	 * forcing the clocks too high for the whole system, we only allow
380 	 * each client to waitboost once in a busy period.
381 	 */
382 	if (rps) {
383 		if (INTEL_GEN(rq->i915) >= 6)
384 			gen6_rps_boost(rq, rps);
385 		else
386 			rps = NULL;
387 	}
388 
389 	timeout = i915_wait_request(rq, flags, timeout);
390 
391 out:
392 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
393 		i915_gem_request_retire_upto(rq);
394 
395 	return timeout;
396 }
397 
398 static long
i915_gem_object_wait_reservation(struct reservation_object * resv,unsigned int flags,long timeout,struct intel_rps_client * rps)399 i915_gem_object_wait_reservation(struct reservation_object *resv,
400 				 unsigned int flags,
401 				 long timeout,
402 				 struct intel_rps_client *rps)
403 {
404 	unsigned int seq = __read_seqcount_begin(&resv->seq);
405 	struct dma_fence *excl;
406 	bool prune_fences = false;
407 
408 	if (flags & I915_WAIT_ALL) {
409 		struct dma_fence **shared;
410 		unsigned int count, i;
411 		int ret;
412 
413 		ret = reservation_object_get_fences_rcu(resv,
414 							&excl, &count, &shared);
415 		if (ret)
416 			return ret;
417 
418 		for (i = 0; i < count; i++) {
419 			timeout = i915_gem_object_wait_fence(shared[i],
420 							     flags, timeout,
421 							     rps);
422 			if (timeout < 0)
423 				break;
424 
425 			dma_fence_put(shared[i]);
426 		}
427 
428 		for (; i < count; i++)
429 			dma_fence_put(shared[i]);
430 		kfree(shared);
431 
432 		prune_fences = count && timeout >= 0;
433 	} else {
434 		excl = reservation_object_get_excl_rcu(resv);
435 	}
436 
437 	if (excl && timeout >= 0) {
438 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
439 		prune_fences = timeout >= 0;
440 	}
441 
442 	dma_fence_put(excl);
443 
444 	/* Oportunistically prune the fences iff we know they have *all* been
445 	 * signaled and that the reservation object has not been changed (i.e.
446 	 * no new fences have been added).
447 	 */
448 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
449 		if (reservation_object_trylock(resv)) {
450 			if (!__read_seqcount_retry(&resv->seq, seq))
451 				reservation_object_add_excl_fence(resv, NULL);
452 			reservation_object_unlock(resv);
453 		}
454 	}
455 
456 	return timeout;
457 }
458 
__fence_set_priority(struct dma_fence * fence,int prio)459 static void __fence_set_priority(struct dma_fence *fence, int prio)
460 {
461 	struct drm_i915_gem_request *rq;
462 	struct intel_engine_cs *engine;
463 
464 	if (!dma_fence_is_i915(fence))
465 		return;
466 
467 	rq = to_request(fence);
468 	engine = rq->engine;
469 	if (!engine->schedule)
470 		return;
471 
472 	engine->schedule(rq, prio);
473 }
474 
fence_set_priority(struct dma_fence * fence,int prio)475 static void fence_set_priority(struct dma_fence *fence, int prio)
476 {
477 	/* Recurse once into a fence-array */
478 	if (dma_fence_is_array(fence)) {
479 		struct dma_fence_array *array = to_dma_fence_array(fence);
480 		int i;
481 
482 		for (i = 0; i < array->num_fences; i++)
483 			__fence_set_priority(array->fences[i], prio);
484 	} else {
485 		__fence_set_priority(fence, prio);
486 	}
487 }
488 
489 int
i915_gem_object_wait_priority(struct drm_i915_gem_object * obj,unsigned int flags,int prio)490 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
491 			      unsigned int flags,
492 			      int prio)
493 {
494 	struct dma_fence *excl;
495 
496 	if (flags & I915_WAIT_ALL) {
497 		struct dma_fence **shared;
498 		unsigned int count, i;
499 		int ret;
500 
501 		ret = reservation_object_get_fences_rcu(obj->resv,
502 							&excl, &count, &shared);
503 		if (ret)
504 			return ret;
505 
506 		for (i = 0; i < count; i++) {
507 			fence_set_priority(shared[i], prio);
508 			dma_fence_put(shared[i]);
509 		}
510 
511 		kfree(shared);
512 	} else {
513 		excl = reservation_object_get_excl_rcu(obj->resv);
514 	}
515 
516 	if (excl) {
517 		fence_set_priority(excl, prio);
518 		dma_fence_put(excl);
519 	}
520 	return 0;
521 }
522 
523 /**
524  * Waits for rendering to the object to be completed
525  * @obj: i915 gem object
526  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
527  * @timeout: how long to wait
528  * @rps: client (user process) to charge for any waitboosting
529  */
530 int
i915_gem_object_wait(struct drm_i915_gem_object * obj,unsigned int flags,long timeout,struct intel_rps_client * rps)531 i915_gem_object_wait(struct drm_i915_gem_object *obj,
532 		     unsigned int flags,
533 		     long timeout,
534 		     struct intel_rps_client *rps)
535 {
536 	might_sleep();
537 #if IS_ENABLED(CONFIG_LOCKDEP)
538 	GEM_BUG_ON(debug_locks &&
539 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
540 		   !!(flags & I915_WAIT_LOCKED));
541 #endif
542 	GEM_BUG_ON(timeout < 0);
543 
544 	timeout = i915_gem_object_wait_reservation(obj->resv,
545 						   flags, timeout,
546 						   rps);
547 	return timeout < 0 ? timeout : 0;
548 }
549 
to_rps_client(struct drm_file * file)550 static struct intel_rps_client *to_rps_client(struct drm_file *file)
551 {
552 	struct drm_i915_file_private *fpriv = file->driver_priv;
553 
554 	return &fpriv->rps;
555 }
556 
557 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)558 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
559 		     struct drm_i915_gem_pwrite *args,
560 		     struct drm_file *file)
561 {
562 	void *vaddr = obj->phys_handle->vaddr + args->offset;
563 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
564 
565 	/* We manually control the domain here and pretend that it
566 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
567 	 */
568 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
569 	if (copy_from_user(vaddr, user_data, args->size))
570 		return -EFAULT;
571 
572 	drm_clflush_virt_range(vaddr, args->size);
573 	i915_gem_chipset_flush(to_i915(obj->base.dev));
574 
575 	intel_fb_obj_flush(obj, ORIGIN_CPU);
576 	return 0;
577 }
578 
i915_gem_object_alloc(struct drm_i915_private * dev_priv)579 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
580 {
581 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
582 }
583 
i915_gem_object_free(struct drm_i915_gem_object * obj)584 void i915_gem_object_free(struct drm_i915_gem_object *obj)
585 {
586 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
587 	kmem_cache_free(dev_priv->objects, obj);
588 }
589 
590 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,uint64_t size,uint32_t * handle_p)591 i915_gem_create(struct drm_file *file,
592 		struct drm_i915_private *dev_priv,
593 		uint64_t size,
594 		uint32_t *handle_p)
595 {
596 	struct drm_i915_gem_object *obj;
597 	int ret;
598 	u32 handle;
599 
600 	size = roundup(size, PAGE_SIZE);
601 	if (size == 0)
602 		return -EINVAL;
603 
604 	/* Allocate the new object */
605 	obj = i915_gem_object_create(dev_priv, size);
606 	if (IS_ERR(obj))
607 		return PTR_ERR(obj);
608 
609 	ret = drm_gem_handle_create(file, &obj->base, &handle);
610 	/* drop reference from allocate - handle holds it now */
611 	i915_gem_object_put(obj);
612 	if (ret)
613 		return ret;
614 
615 	*handle_p = handle;
616 	return 0;
617 }
618 
619 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)620 i915_gem_dumb_create(struct drm_file *file,
621 		     struct drm_device *dev,
622 		     struct drm_mode_create_dumb *args)
623 {
624 	/* have to work out size/pitch and return them */
625 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
626 	args->size = args->pitch * args->height;
627 	return i915_gem_create(file, to_i915(dev),
628 			       args->size, &args->handle);
629 }
630 
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)631 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
632 {
633 	return !(obj->cache_level == I915_CACHE_NONE ||
634 		 obj->cache_level == I915_CACHE_WT);
635 }
636 
637 /**
638  * Creates a new mm object and returns a handle to it.
639  * @dev: drm device pointer
640  * @data: ioctl data blob
641  * @file: drm file pointer
642  */
643 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)644 i915_gem_create_ioctl(struct drm_device *dev, void *data,
645 		      struct drm_file *file)
646 {
647 	struct drm_i915_private *dev_priv = to_i915(dev);
648 	struct drm_i915_gem_create *args = data;
649 
650 	i915_gem_flush_free_objects(dev_priv);
651 
652 	return i915_gem_create(file, dev_priv,
653 			       args->size, &args->handle);
654 }
655 
656 static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object * obj,unsigned int domain)657 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
658 {
659 	return (domain == I915_GEM_DOMAIN_GTT ?
660 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
661 }
662 
663 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)664 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
665 {
666 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
667 
668 	if (!(obj->base.write_domain & flush_domains))
669 		return;
670 
671 	/* No actual flushing is required for the GTT write domain.  Writes
672 	 * to it "immediately" go to main memory as far as we know, so there's
673 	 * no chipset flush.  It also doesn't land in render cache.
674 	 *
675 	 * However, we do have to enforce the order so that all writes through
676 	 * the GTT land before any writes to the device, such as updates to
677 	 * the GATT itself.
678 	 *
679 	 * We also have to wait a bit for the writes to land from the GTT.
680 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
681 	 * timing. This issue has only been observed when switching quickly
682 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
683 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
684 	 * system agents we cannot reproduce this behaviour).
685 	 */
686 	wmb();
687 
688 	switch (obj->base.write_domain) {
689 	case I915_GEM_DOMAIN_GTT:
690 		if (!HAS_LLC(dev_priv)) {
691 			intel_runtime_pm_get(dev_priv);
692 			spin_lock_irq(&dev_priv->uncore.lock);
693 			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
694 			spin_unlock_irq(&dev_priv->uncore.lock);
695 			intel_runtime_pm_put(dev_priv);
696 		}
697 
698 		intel_fb_obj_flush(obj,
699 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
700 		break;
701 
702 	case I915_GEM_DOMAIN_CPU:
703 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
704 		break;
705 
706 	case I915_GEM_DOMAIN_RENDER:
707 		if (gpu_write_needs_clflush(obj))
708 			obj->cache_dirty = true;
709 		break;
710 	}
711 
712 	obj->base.write_domain = 0;
713 }
714 
715 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)716 __copy_to_user_swizzled(char __user *cpu_vaddr,
717 			const char *gpu_vaddr, int gpu_offset,
718 			int length)
719 {
720 	int ret, cpu_offset = 0;
721 
722 	while (length > 0) {
723 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
724 		int this_length = min(cacheline_end - gpu_offset, length);
725 		int swizzled_gpu_offset = gpu_offset ^ 64;
726 
727 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
728 				     gpu_vaddr + swizzled_gpu_offset,
729 				     this_length);
730 		if (ret)
731 			return ret + length;
732 
733 		cpu_offset += this_length;
734 		gpu_offset += this_length;
735 		length -= this_length;
736 	}
737 
738 	return 0;
739 }
740 
741 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)742 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
743 			  const char __user *cpu_vaddr,
744 			  int length)
745 {
746 	int ret, cpu_offset = 0;
747 
748 	while (length > 0) {
749 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
750 		int this_length = min(cacheline_end - gpu_offset, length);
751 		int swizzled_gpu_offset = gpu_offset ^ 64;
752 
753 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
754 				       cpu_vaddr + cpu_offset,
755 				       this_length);
756 		if (ret)
757 			return ret + length;
758 
759 		cpu_offset += this_length;
760 		gpu_offset += this_length;
761 		length -= this_length;
762 	}
763 
764 	return 0;
765 }
766 
767 /*
768  * Pins the specified object's pages and synchronizes the object with
769  * GPU accesses. Sets needs_clflush to non-zero if the caller should
770  * flush the object from the CPU cache.
771  */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)772 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
773 				    unsigned int *needs_clflush)
774 {
775 	int ret;
776 
777 	lockdep_assert_held(&obj->base.dev->struct_mutex);
778 
779 	*needs_clflush = 0;
780 	if (!i915_gem_object_has_struct_page(obj))
781 		return -ENODEV;
782 
783 	ret = i915_gem_object_wait(obj,
784 				   I915_WAIT_INTERRUPTIBLE |
785 				   I915_WAIT_LOCKED,
786 				   MAX_SCHEDULE_TIMEOUT,
787 				   NULL);
788 	if (ret)
789 		return ret;
790 
791 	ret = i915_gem_object_pin_pages(obj);
792 	if (ret)
793 		return ret;
794 
795 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
796 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
797 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
798 		if (ret)
799 			goto err_unpin;
800 		else
801 			goto out;
802 	}
803 
804 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
805 
806 	/* If we're not in the cpu read domain, set ourself into the gtt
807 	 * read domain and manually flush cachelines (if required). This
808 	 * optimizes for the case when the gpu will dirty the data
809 	 * anyway again before the next pread happens.
810 	 */
811 	if (!obj->cache_dirty &&
812 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
813 		*needs_clflush = CLFLUSH_BEFORE;
814 
815 out:
816 	/* return with the pages pinned */
817 	return 0;
818 
819 err_unpin:
820 	i915_gem_object_unpin_pages(obj);
821 	return ret;
822 }
823 
i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)824 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
825 				     unsigned int *needs_clflush)
826 {
827 	int ret;
828 
829 	lockdep_assert_held(&obj->base.dev->struct_mutex);
830 
831 	*needs_clflush = 0;
832 	if (!i915_gem_object_has_struct_page(obj))
833 		return -ENODEV;
834 
835 	ret = i915_gem_object_wait(obj,
836 				   I915_WAIT_INTERRUPTIBLE |
837 				   I915_WAIT_LOCKED |
838 				   I915_WAIT_ALL,
839 				   MAX_SCHEDULE_TIMEOUT,
840 				   NULL);
841 	if (ret)
842 		return ret;
843 
844 	ret = i915_gem_object_pin_pages(obj);
845 	if (ret)
846 		return ret;
847 
848 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
849 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
850 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
851 		if (ret)
852 			goto err_unpin;
853 		else
854 			goto out;
855 	}
856 
857 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
858 
859 	/* If we're not in the cpu write domain, set ourself into the
860 	 * gtt write domain and manually flush cachelines (as required).
861 	 * This optimizes for the case when the gpu will use the data
862 	 * right away and we therefore have to clflush anyway.
863 	 */
864 	if (!obj->cache_dirty) {
865 		*needs_clflush |= CLFLUSH_AFTER;
866 
867 		/*
868 		 * Same trick applies to invalidate partially written
869 		 * cachelines read before writing.
870 		 */
871 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
872 			*needs_clflush |= CLFLUSH_BEFORE;
873 	}
874 
875 out:
876 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
877 	obj->mm.dirty = true;
878 	/* return with the pages pinned */
879 	return 0;
880 
881 err_unpin:
882 	i915_gem_object_unpin_pages(obj);
883 	return ret;
884 }
885 
886 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)887 shmem_clflush_swizzled_range(char *addr, unsigned long length,
888 			     bool swizzled)
889 {
890 	if (unlikely(swizzled)) {
891 		unsigned long start = (unsigned long) addr;
892 		unsigned long end = (unsigned long) addr + length;
893 
894 		/* For swizzling simply ensure that we always flush both
895 		 * channels. Lame, but simple and it works. Swizzled
896 		 * pwrite/pread is far from a hotpath - current userspace
897 		 * doesn't use it at all. */
898 		start = round_down(start, 128);
899 		end = round_up(end, 128);
900 
901 		drm_clflush_virt_range((void *)start, end - start);
902 	} else {
903 		drm_clflush_virt_range(addr, length);
904 	}
905 
906 }
907 
908 /* Only difference to the fast-path function is that this can handle bit17
909  * and uses non-atomic copy and kmap functions. */
910 static int
shmem_pread_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)911 shmem_pread_slow(struct page *page, int offset, int length,
912 		 char __user *user_data,
913 		 bool page_do_bit17_swizzling, bool needs_clflush)
914 {
915 	char *vaddr;
916 	int ret;
917 
918 	vaddr = kmap(page);
919 	if (needs_clflush)
920 		shmem_clflush_swizzled_range(vaddr + offset, length,
921 					     page_do_bit17_swizzling);
922 
923 	if (page_do_bit17_swizzling)
924 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
925 	else
926 		ret = __copy_to_user(user_data, vaddr + offset, length);
927 	kunmap(page);
928 
929 	return ret ? - EFAULT : 0;
930 }
931 
932 static int
shmem_pread(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)933 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
934 	    bool page_do_bit17_swizzling, bool needs_clflush)
935 {
936 	int ret;
937 
938 	ret = -ENODEV;
939 	if (!page_do_bit17_swizzling) {
940 		char *vaddr = kmap_atomic(page);
941 
942 		if (needs_clflush)
943 			drm_clflush_virt_range(vaddr + offset, length);
944 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
945 		kunmap_atomic(vaddr);
946 	}
947 	if (ret == 0)
948 		return 0;
949 
950 	return shmem_pread_slow(page, offset, length, user_data,
951 				page_do_bit17_swizzling, needs_clflush);
952 }
953 
954 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)955 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
956 		     struct drm_i915_gem_pread *args)
957 {
958 	char __user *user_data;
959 	u64 remain;
960 	unsigned int obj_do_bit17_swizzling;
961 	unsigned int needs_clflush;
962 	unsigned int idx, offset;
963 	int ret;
964 
965 	obj_do_bit17_swizzling = 0;
966 	if (i915_gem_object_needs_bit17_swizzle(obj))
967 		obj_do_bit17_swizzling = BIT(17);
968 
969 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
970 	if (ret)
971 		return ret;
972 
973 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
974 	mutex_unlock(&obj->base.dev->struct_mutex);
975 	if (ret)
976 		return ret;
977 
978 	remain = args->size;
979 	user_data = u64_to_user_ptr(args->data_ptr);
980 	offset = offset_in_page(args->offset);
981 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
982 		struct page *page = i915_gem_object_get_page(obj, idx);
983 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
984 
985 		ret = shmem_pread(page, offset, length, user_data,
986 				  page_to_phys(page) & obj_do_bit17_swizzling,
987 				  needs_clflush);
988 		if (ret)
989 			break;
990 
991 		remain -= length;
992 		user_data += length;
993 		offset = 0;
994 	}
995 
996 	i915_gem_obj_finish_shmem_access(obj);
997 	return ret;
998 }
999 
1000 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1001 gtt_user_read(struct io_mapping *mapping,
1002 	      loff_t base, int offset,
1003 	      char __user *user_data, int length)
1004 {
1005 	void *vaddr;
1006 	unsigned long unwritten;
1007 
1008 	/* We can use the cpu mem copy function because this is X86. */
1009 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1010 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1011 	io_mapping_unmap_atomic(vaddr);
1012 	if (unwritten) {
1013 		vaddr = (void __force *)
1014 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1015 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1016 		io_mapping_unmap(vaddr);
1017 	}
1018 	return unwritten;
1019 }
1020 
1021 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)1022 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1023 		   const struct drm_i915_gem_pread *args)
1024 {
1025 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1026 	struct i915_ggtt *ggtt = &i915->ggtt;
1027 	struct drm_mm_node node;
1028 	struct i915_vma *vma;
1029 	void __user *user_data;
1030 	u64 remain, offset;
1031 	int ret;
1032 
1033 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1034 	if (ret)
1035 		return ret;
1036 
1037 	intel_runtime_pm_get(i915);
1038 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1039 				       PIN_MAPPABLE | PIN_NONBLOCK);
1040 	if (!IS_ERR(vma)) {
1041 		node.start = i915_ggtt_offset(vma);
1042 		node.allocated = false;
1043 		ret = i915_vma_put_fence(vma);
1044 		if (ret) {
1045 			i915_vma_unpin(vma);
1046 			vma = ERR_PTR(ret);
1047 		}
1048 	}
1049 	if (IS_ERR(vma)) {
1050 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1051 		if (ret)
1052 			goto out_unlock;
1053 		GEM_BUG_ON(!node.allocated);
1054 	}
1055 
1056 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1057 	if (ret)
1058 		goto out_unpin;
1059 
1060 	mutex_unlock(&i915->drm.struct_mutex);
1061 
1062 	user_data = u64_to_user_ptr(args->data_ptr);
1063 	remain = args->size;
1064 	offset = args->offset;
1065 
1066 	while (remain > 0) {
1067 		/* Operation in this page
1068 		 *
1069 		 * page_base = page offset within aperture
1070 		 * page_offset = offset within page
1071 		 * page_length = bytes to copy for this page
1072 		 */
1073 		u32 page_base = node.start;
1074 		unsigned page_offset = offset_in_page(offset);
1075 		unsigned page_length = PAGE_SIZE - page_offset;
1076 		page_length = remain < page_length ? remain : page_length;
1077 		if (node.allocated) {
1078 			wmb();
1079 			ggtt->base.insert_page(&ggtt->base,
1080 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1081 					       node.start, I915_CACHE_NONE, 0);
1082 			wmb();
1083 		} else {
1084 			page_base += offset & PAGE_MASK;
1085 		}
1086 
1087 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1088 				  user_data, page_length)) {
1089 			ret = -EFAULT;
1090 			break;
1091 		}
1092 
1093 		remain -= page_length;
1094 		user_data += page_length;
1095 		offset += page_length;
1096 	}
1097 
1098 	mutex_lock(&i915->drm.struct_mutex);
1099 out_unpin:
1100 	if (node.allocated) {
1101 		wmb();
1102 		ggtt->base.clear_range(&ggtt->base,
1103 				       node.start, node.size);
1104 		remove_mappable_node(&node);
1105 	} else {
1106 		i915_vma_unpin(vma);
1107 	}
1108 out_unlock:
1109 	intel_runtime_pm_put(i915);
1110 	mutex_unlock(&i915->drm.struct_mutex);
1111 
1112 	return ret;
1113 }
1114 
1115 /**
1116  * Reads data from the object referenced by handle.
1117  * @dev: drm device pointer
1118  * @data: ioctl data blob
1119  * @file: drm file pointer
1120  *
1121  * On error, the contents of *data are undefined.
1122  */
1123 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1124 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1125 		     struct drm_file *file)
1126 {
1127 	struct drm_i915_gem_pread *args = data;
1128 	struct drm_i915_gem_object *obj;
1129 	int ret;
1130 
1131 	if (args->size == 0)
1132 		return 0;
1133 
1134 	if (!access_ok(VERIFY_WRITE,
1135 		       u64_to_user_ptr(args->data_ptr),
1136 		       args->size))
1137 		return -EFAULT;
1138 
1139 	obj = i915_gem_object_lookup(file, args->handle);
1140 	if (!obj)
1141 		return -ENOENT;
1142 
1143 	/* Bounds check source.  */
1144 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1150 
1151 	ret = i915_gem_object_wait(obj,
1152 				   I915_WAIT_INTERRUPTIBLE,
1153 				   MAX_SCHEDULE_TIMEOUT,
1154 				   to_rps_client(file));
1155 	if (ret)
1156 		goto out;
1157 
1158 	ret = i915_gem_object_pin_pages(obj);
1159 	if (ret)
1160 		goto out;
1161 
1162 	ret = i915_gem_shmem_pread(obj, args);
1163 	if (ret == -EFAULT || ret == -ENODEV)
1164 		ret = i915_gem_gtt_pread(obj, args);
1165 
1166 	i915_gem_object_unpin_pages(obj);
1167 out:
1168 	i915_gem_object_put(obj);
1169 	return ret;
1170 }
1171 
1172 /* This is the fast write path which cannot handle
1173  * page faults in the source data
1174  */
1175 
1176 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1177 ggtt_write(struct io_mapping *mapping,
1178 	   loff_t base, int offset,
1179 	   char __user *user_data, int length)
1180 {
1181 	void *vaddr;
1182 	unsigned long unwritten;
1183 
1184 	/* We can use the cpu mem copy function because this is X86. */
1185 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1186 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1187 						      user_data, length);
1188 	io_mapping_unmap_atomic(vaddr);
1189 	if (unwritten) {
1190 		vaddr = (void __force *)
1191 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1192 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1193 		io_mapping_unmap(vaddr);
1194 	}
1195 
1196 	return unwritten;
1197 }
1198 
1199 /**
1200  * This is the fast pwrite path, where we copy the data directly from the
1201  * user into the GTT, uncached.
1202  * @obj: i915 GEM object
1203  * @args: pwrite arguments structure
1204  */
1205 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1206 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1207 			 const struct drm_i915_gem_pwrite *args)
1208 {
1209 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1210 	struct i915_ggtt *ggtt = &i915->ggtt;
1211 	struct drm_mm_node node;
1212 	struct i915_vma *vma;
1213 	u64 remain, offset;
1214 	void __user *user_data;
1215 	int ret;
1216 
1217 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1218 	if (ret)
1219 		return ret;
1220 
1221 	intel_runtime_pm_get(i915);
1222 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1223 				       PIN_MAPPABLE | PIN_NONBLOCK);
1224 	if (!IS_ERR(vma)) {
1225 		node.start = i915_ggtt_offset(vma);
1226 		node.allocated = false;
1227 		ret = i915_vma_put_fence(vma);
1228 		if (ret) {
1229 			i915_vma_unpin(vma);
1230 			vma = ERR_PTR(ret);
1231 		}
1232 	}
1233 	if (IS_ERR(vma)) {
1234 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1235 		if (ret)
1236 			goto out_unlock;
1237 		GEM_BUG_ON(!node.allocated);
1238 	}
1239 
1240 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1241 	if (ret)
1242 		goto out_unpin;
1243 
1244 	mutex_unlock(&i915->drm.struct_mutex);
1245 
1246 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1247 
1248 	user_data = u64_to_user_ptr(args->data_ptr);
1249 	offset = args->offset;
1250 	remain = args->size;
1251 	while (remain) {
1252 		/* Operation in this page
1253 		 *
1254 		 * page_base = page offset within aperture
1255 		 * page_offset = offset within page
1256 		 * page_length = bytes to copy for this page
1257 		 */
1258 		u32 page_base = node.start;
1259 		unsigned int page_offset = offset_in_page(offset);
1260 		unsigned int page_length = PAGE_SIZE - page_offset;
1261 		page_length = remain < page_length ? remain : page_length;
1262 		if (node.allocated) {
1263 			wmb(); /* flush the write before we modify the GGTT */
1264 			ggtt->base.insert_page(&ggtt->base,
1265 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1266 					       node.start, I915_CACHE_NONE, 0);
1267 			wmb(); /* flush modifications to the GGTT (insert_page) */
1268 		} else {
1269 			page_base += offset & PAGE_MASK;
1270 		}
1271 		/* If we get a fault while copying data, then (presumably) our
1272 		 * source page isn't available.  Return the error and we'll
1273 		 * retry in the slow path.
1274 		 * If the object is non-shmem backed, we retry again with the
1275 		 * path that handles page fault.
1276 		 */
1277 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1278 			       user_data, page_length)) {
1279 			ret = -EFAULT;
1280 			break;
1281 		}
1282 
1283 		remain -= page_length;
1284 		user_data += page_length;
1285 		offset += page_length;
1286 	}
1287 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1288 
1289 	mutex_lock(&i915->drm.struct_mutex);
1290 out_unpin:
1291 	if (node.allocated) {
1292 		wmb();
1293 		ggtt->base.clear_range(&ggtt->base,
1294 				       node.start, node.size);
1295 		remove_mappable_node(&node);
1296 	} else {
1297 		i915_vma_unpin(vma);
1298 	}
1299 out_unlock:
1300 	intel_runtime_pm_put(i915);
1301 	mutex_unlock(&i915->drm.struct_mutex);
1302 	return ret;
1303 }
1304 
1305 static int
shmem_pwrite_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1306 shmem_pwrite_slow(struct page *page, int offset, int length,
1307 		  char __user *user_data,
1308 		  bool page_do_bit17_swizzling,
1309 		  bool needs_clflush_before,
1310 		  bool needs_clflush_after)
1311 {
1312 	char *vaddr;
1313 	int ret;
1314 
1315 	vaddr = kmap(page);
1316 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1317 		shmem_clflush_swizzled_range(vaddr + offset, length,
1318 					     page_do_bit17_swizzling);
1319 	if (page_do_bit17_swizzling)
1320 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1321 						length);
1322 	else
1323 		ret = __copy_from_user(vaddr + offset, user_data, length);
1324 	if (needs_clflush_after)
1325 		shmem_clflush_swizzled_range(vaddr + offset, length,
1326 					     page_do_bit17_swizzling);
1327 	kunmap(page);
1328 
1329 	return ret ? -EFAULT : 0;
1330 }
1331 
1332 /* Per-page copy function for the shmem pwrite fastpath.
1333  * Flushes invalid cachelines before writing to the target if
1334  * needs_clflush_before is set and flushes out any written cachelines after
1335  * writing if needs_clflush is set.
1336  */
1337 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1338 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1339 	     bool page_do_bit17_swizzling,
1340 	     bool needs_clflush_before,
1341 	     bool needs_clflush_after)
1342 {
1343 	int ret;
1344 
1345 	ret = -ENODEV;
1346 	if (!page_do_bit17_swizzling) {
1347 		char *vaddr = kmap_atomic(page);
1348 
1349 		if (needs_clflush_before)
1350 			drm_clflush_virt_range(vaddr + offset, len);
1351 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1352 		if (needs_clflush_after)
1353 			drm_clflush_virt_range(vaddr + offset, len);
1354 
1355 		kunmap_atomic(vaddr);
1356 	}
1357 	if (ret == 0)
1358 		return ret;
1359 
1360 	return shmem_pwrite_slow(page, offset, len, user_data,
1361 				 page_do_bit17_swizzling,
1362 				 needs_clflush_before,
1363 				 needs_clflush_after);
1364 }
1365 
1366 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1367 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1368 		      const struct drm_i915_gem_pwrite *args)
1369 {
1370 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1371 	void __user *user_data;
1372 	u64 remain;
1373 	unsigned int obj_do_bit17_swizzling;
1374 	unsigned int partial_cacheline_write;
1375 	unsigned int needs_clflush;
1376 	unsigned int offset, idx;
1377 	int ret;
1378 
1379 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1380 	if (ret)
1381 		return ret;
1382 
1383 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1384 	mutex_unlock(&i915->drm.struct_mutex);
1385 	if (ret)
1386 		return ret;
1387 
1388 	obj_do_bit17_swizzling = 0;
1389 	if (i915_gem_object_needs_bit17_swizzle(obj))
1390 		obj_do_bit17_swizzling = BIT(17);
1391 
1392 	/* If we don't overwrite a cacheline completely we need to be
1393 	 * careful to have up-to-date data by first clflushing. Don't
1394 	 * overcomplicate things and flush the entire patch.
1395 	 */
1396 	partial_cacheline_write = 0;
1397 	if (needs_clflush & CLFLUSH_BEFORE)
1398 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1399 
1400 	user_data = u64_to_user_ptr(args->data_ptr);
1401 	remain = args->size;
1402 	offset = offset_in_page(args->offset);
1403 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1404 		struct page *page = i915_gem_object_get_page(obj, idx);
1405 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1406 
1407 		ret = shmem_pwrite(page, offset, length, user_data,
1408 				   page_to_phys(page) & obj_do_bit17_swizzling,
1409 				   (offset | length) & partial_cacheline_write,
1410 				   needs_clflush & CLFLUSH_AFTER);
1411 		if (ret)
1412 			break;
1413 
1414 		remain -= length;
1415 		user_data += length;
1416 		offset = 0;
1417 	}
1418 
1419 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1420 	i915_gem_obj_finish_shmem_access(obj);
1421 	return ret;
1422 }
1423 
1424 /**
1425  * Writes data to the object referenced by handle.
1426  * @dev: drm device
1427  * @data: ioctl data blob
1428  * @file: drm file
1429  *
1430  * On error, the contents of the buffer that were to be modified are undefined.
1431  */
1432 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1433 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1434 		      struct drm_file *file)
1435 {
1436 	struct drm_i915_gem_pwrite *args = data;
1437 	struct drm_i915_gem_object *obj;
1438 	int ret;
1439 
1440 	if (args->size == 0)
1441 		return 0;
1442 
1443 	if (!access_ok(VERIFY_READ,
1444 		       u64_to_user_ptr(args->data_ptr),
1445 		       args->size))
1446 		return -EFAULT;
1447 
1448 	obj = i915_gem_object_lookup(file, args->handle);
1449 	if (!obj)
1450 		return -ENOENT;
1451 
1452 	/* Bounds check destination. */
1453 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1454 		ret = -EINVAL;
1455 		goto err;
1456 	}
1457 
1458 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1459 
1460 	ret = -ENODEV;
1461 	if (obj->ops->pwrite)
1462 		ret = obj->ops->pwrite(obj, args);
1463 	if (ret != -ENODEV)
1464 		goto err;
1465 
1466 	ret = i915_gem_object_wait(obj,
1467 				   I915_WAIT_INTERRUPTIBLE |
1468 				   I915_WAIT_ALL,
1469 				   MAX_SCHEDULE_TIMEOUT,
1470 				   to_rps_client(file));
1471 	if (ret)
1472 		goto err;
1473 
1474 	ret = i915_gem_object_pin_pages(obj);
1475 	if (ret)
1476 		goto err;
1477 
1478 	ret = -EFAULT;
1479 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1480 	 * it would end up going through the fenced access, and we'll get
1481 	 * different detiling behavior between reading and writing.
1482 	 * pread/pwrite currently are reading and writing from the CPU
1483 	 * perspective, requiring manual detiling by the client.
1484 	 */
1485 	if (!i915_gem_object_has_struct_page(obj) ||
1486 	    cpu_write_needs_clflush(obj))
1487 		/* Note that the gtt paths might fail with non-page-backed user
1488 		 * pointers (e.g. gtt mappings when moving data between
1489 		 * textures). Fallback to the shmem path in that case.
1490 		 */
1491 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1492 
1493 	if (ret == -EFAULT || ret == -ENOSPC) {
1494 		if (obj->phys_handle)
1495 			ret = i915_gem_phys_pwrite(obj, args, file);
1496 		else
1497 			ret = i915_gem_shmem_pwrite(obj, args);
1498 	}
1499 
1500 	i915_gem_object_unpin_pages(obj);
1501 err:
1502 	i915_gem_object_put(obj);
1503 	return ret;
1504 }
1505 
i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object * obj)1506 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1507 {
1508 	struct drm_i915_private *i915;
1509 	struct list_head *list;
1510 	struct i915_vma *vma;
1511 
1512 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1513 		if (!i915_vma_is_ggtt(vma))
1514 			break;
1515 
1516 		if (i915_vma_is_active(vma))
1517 			continue;
1518 
1519 		if (!drm_mm_node_allocated(&vma->node))
1520 			continue;
1521 
1522 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1523 	}
1524 
1525 	i915 = to_i915(obj->base.dev);
1526 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1527 	list_move_tail(&obj->global_link, list);
1528 }
1529 
1530 /**
1531  * Called when user space prepares to use an object with the CPU, either
1532  * through the mmap ioctl's mapping or a GTT mapping.
1533  * @dev: drm device
1534  * @data: ioctl data blob
1535  * @file: drm file
1536  */
1537 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1538 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1539 			  struct drm_file *file)
1540 {
1541 	struct drm_i915_gem_set_domain *args = data;
1542 	struct drm_i915_gem_object *obj;
1543 	uint32_t read_domains = args->read_domains;
1544 	uint32_t write_domain = args->write_domain;
1545 	int err;
1546 
1547 	/* Only handle setting domains to types used by the CPU. */
1548 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1549 		return -EINVAL;
1550 
1551 	/* Having something in the write domain implies it's in the read
1552 	 * domain, and only that read domain.  Enforce that in the request.
1553 	 */
1554 	if (write_domain != 0 && read_domains != write_domain)
1555 		return -EINVAL;
1556 
1557 	obj = i915_gem_object_lookup(file, args->handle);
1558 	if (!obj)
1559 		return -ENOENT;
1560 
1561 	/* Try to flush the object off the GPU without holding the lock.
1562 	 * We will repeat the flush holding the lock in the normal manner
1563 	 * to catch cases where we are gazumped.
1564 	 */
1565 	err = i915_gem_object_wait(obj,
1566 				   I915_WAIT_INTERRUPTIBLE |
1567 				   (write_domain ? I915_WAIT_ALL : 0),
1568 				   MAX_SCHEDULE_TIMEOUT,
1569 				   to_rps_client(file));
1570 	if (err)
1571 		goto out;
1572 
1573 	/* Flush and acquire obj->pages so that we are coherent through
1574 	 * direct access in memory with previous cached writes through
1575 	 * shmemfs and that our cache domain tracking remains valid.
1576 	 * For example, if the obj->filp was moved to swap without us
1577 	 * being notified and releasing the pages, we would mistakenly
1578 	 * continue to assume that the obj remained out of the CPU cached
1579 	 * domain.
1580 	 */
1581 	err = i915_gem_object_pin_pages(obj);
1582 	if (err)
1583 		goto out;
1584 
1585 	err = i915_mutex_lock_interruptible(dev);
1586 	if (err)
1587 		goto out_unpin;
1588 
1589 	if (read_domains & I915_GEM_DOMAIN_WC)
1590 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1591 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1592 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1593 	else
1594 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1595 
1596 	/* And bump the LRU for this access */
1597 	i915_gem_object_bump_inactive_ggtt(obj);
1598 
1599 	mutex_unlock(&dev->struct_mutex);
1600 
1601 	if (write_domain != 0)
1602 		intel_fb_obj_invalidate(obj,
1603 					fb_write_origin(obj, write_domain));
1604 
1605 out_unpin:
1606 	i915_gem_object_unpin_pages(obj);
1607 out:
1608 	i915_gem_object_put(obj);
1609 	return err;
1610 }
1611 
1612 /**
1613  * Called when user space has done writes to this buffer
1614  * @dev: drm device
1615  * @data: ioctl data blob
1616  * @file: drm file
1617  */
1618 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 			 struct drm_file *file)
1621 {
1622 	struct drm_i915_gem_sw_finish *args = data;
1623 	struct drm_i915_gem_object *obj;
1624 
1625 	obj = i915_gem_object_lookup(file, args->handle);
1626 	if (!obj)
1627 		return -ENOENT;
1628 
1629 	/* Pinned buffers may be scanout, so flush the cache */
1630 	i915_gem_object_flush_if_display(obj);
1631 	i915_gem_object_put(obj);
1632 
1633 	return 0;
1634 }
1635 
1636 static inline bool
__vma_matches(struct vm_area_struct * vma,struct file * filp,unsigned long addr,unsigned long size)1637 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1638 	      unsigned long addr, unsigned long size)
1639 {
1640 	if (vma->vm_file != filp)
1641 		return false;
1642 
1643 	return vma->vm_start == addr &&
1644 	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1645 }
1646 
1647 /**
1648  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1649  *			 it is mapped to.
1650  * @dev: drm device
1651  * @data: ioctl data blob
1652  * @file: drm file
1653  *
1654  * While the mapping holds a reference on the contents of the object, it doesn't
1655  * imply a ref on the object itself.
1656  *
1657  * IMPORTANT:
1658  *
1659  * DRM driver writers who look a this function as an example for how to do GEM
1660  * mmap support, please don't implement mmap support like here. The modern way
1661  * to implement DRM mmap support is with an mmap offset ioctl (like
1662  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1663  * That way debug tooling like valgrind will understand what's going on, hiding
1664  * the mmap call in a driver private ioctl will break that. The i915 driver only
1665  * does cpu mmaps this way because we didn't know better.
1666  */
1667 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1668 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1669 		    struct drm_file *file)
1670 {
1671 	struct drm_i915_gem_mmap *args = data;
1672 	struct drm_i915_gem_object *obj;
1673 	unsigned long addr;
1674 
1675 	if (args->flags & ~(I915_MMAP_WC))
1676 		return -EINVAL;
1677 
1678 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1679 		return -ENODEV;
1680 
1681 	obj = i915_gem_object_lookup(file, args->handle);
1682 	if (!obj)
1683 		return -ENOENT;
1684 
1685 	/* prime objects have no backing filp to GEM mmap
1686 	 * pages from.
1687 	 */
1688 	if (!obj->base.filp) {
1689 		i915_gem_object_put(obj);
1690 		return -EINVAL;
1691 	}
1692 
1693 	addr = vm_mmap(obj->base.filp, 0, args->size,
1694 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1695 		       args->offset);
1696 	if (args->flags & I915_MMAP_WC) {
1697 		struct mm_struct *mm = current->mm;
1698 		struct vm_area_struct *vma;
1699 
1700 		if (down_write_killable(&mm->mmap_sem)) {
1701 			i915_gem_object_put(obj);
1702 			return -EINTR;
1703 		}
1704 		vma = find_vma(mm, addr);
1705 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1706 			vma->vm_page_prot =
1707 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1708 		else
1709 			addr = -ENOMEM;
1710 		up_write(&mm->mmap_sem);
1711 
1712 		/* This may race, but that's ok, it only gets set */
1713 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1714 	}
1715 	i915_gem_object_put(obj);
1716 	if (IS_ERR((void *)addr))
1717 		return addr;
1718 
1719 	args->addr_ptr = (uint64_t) addr;
1720 
1721 	return 0;
1722 }
1723 
tile_row_pages(struct drm_i915_gem_object * obj)1724 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1725 {
1726 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1727 }
1728 
1729 /**
1730  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1731  *
1732  * A history of the GTT mmap interface:
1733  *
1734  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1735  *     aligned and suitable for fencing, and still fit into the available
1736  *     mappable space left by the pinned display objects. A classic problem
1737  *     we called the page-fault-of-doom where we would ping-pong between
1738  *     two objects that could not fit inside the GTT and so the memcpy
1739  *     would page one object in at the expense of the other between every
1740  *     single byte.
1741  *
1742  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1743  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1744  *     object is too large for the available space (or simply too large
1745  *     for the mappable aperture!), a view is created instead and faulted
1746  *     into userspace. (This view is aligned and sized appropriately for
1747  *     fenced access.)
1748  *
1749  * 2 - Recognise WC as a separate cache domain so that we can flush the
1750  *     delayed writes via GTT before performing direct access via WC.
1751  *
1752  * Restrictions:
1753  *
1754  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1755  *    hangs on some architectures, corruption on others. An attempt to service
1756  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1757  *
1758  *  * the object must be able to fit into RAM (physical memory, though no
1759  *    limited to the mappable aperture).
1760  *
1761  *
1762  * Caveats:
1763  *
1764  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1765  *    all data to system memory. Subsequent access will not be synchronized.
1766  *
1767  *  * all mappings are revoked on runtime device suspend.
1768  *
1769  *  * there are only 8, 16 or 32 fence registers to share between all users
1770  *    (older machines require fence register for display and blitter access
1771  *    as well). Contention of the fence registers will cause the previous users
1772  *    to be unmapped and any new access will generate new page faults.
1773  *
1774  *  * running out of memory while servicing a fault may generate a SIGBUS,
1775  *    rather than the expected SIGSEGV.
1776  */
i915_gem_mmap_gtt_version(void)1777 int i915_gem_mmap_gtt_version(void)
1778 {
1779 	return 2;
1780 }
1781 
1782 static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object * obj,pgoff_t page_offset,unsigned int chunk)1783 compute_partial_view(struct drm_i915_gem_object *obj,
1784 		     pgoff_t page_offset,
1785 		     unsigned int chunk)
1786 {
1787 	struct i915_ggtt_view view;
1788 
1789 	if (i915_gem_object_is_tiled(obj))
1790 		chunk = roundup(chunk, tile_row_pages(obj));
1791 
1792 	view.type = I915_GGTT_VIEW_PARTIAL;
1793 	view.partial.offset = rounddown(page_offset, chunk);
1794 	view.partial.size =
1795 		min_t(unsigned int, chunk,
1796 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1797 
1798 	/* If the partial covers the entire object, just create a normal VMA. */
1799 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1800 		view.type = I915_GGTT_VIEW_NORMAL;
1801 
1802 	return view;
1803 }
1804 
1805 /**
1806  * i915_gem_fault - fault a page into the GTT
1807  * @vmf: fault info
1808  *
1809  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1810  * from userspace.  The fault handler takes care of binding the object to
1811  * the GTT (if needed), allocating and programming a fence register (again,
1812  * only if needed based on whether the old reg is still valid or the object
1813  * is tiled) and inserting a new PTE into the faulting process.
1814  *
1815  * Note that the faulting process may involve evicting existing objects
1816  * from the GTT and/or fence registers to make room.  So performance may
1817  * suffer if the GTT working set is large or there are few fence registers
1818  * left.
1819  *
1820  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1821  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1822  */
i915_gem_fault(struct vm_fault * vmf)1823 int i915_gem_fault(struct vm_fault *vmf)
1824 {
1825 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1826 	struct vm_area_struct *area = vmf->vma;
1827 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1828 	struct drm_device *dev = obj->base.dev;
1829 	struct drm_i915_private *dev_priv = to_i915(dev);
1830 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1831 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1832 	struct i915_vma *vma;
1833 	pgoff_t page_offset;
1834 	unsigned int flags;
1835 	int ret;
1836 
1837 	/* Sanity check that we allow writing into this object */
1838 	if (i915_gem_object_is_readonly(obj) && write)
1839 		return VM_FAULT_SIGBUS;
1840 
1841 	/* We don't use vmf->pgoff since that has the fake offset */
1842 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843 
1844 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1845 
1846 	/* Try to flush the object off the GPU first without holding the lock.
1847 	 * Upon acquiring the lock, we will perform our sanity checks and then
1848 	 * repeat the flush holding the lock in the normal manner to catch cases
1849 	 * where we are gazumped.
1850 	 */
1851 	ret = i915_gem_object_wait(obj,
1852 				   I915_WAIT_INTERRUPTIBLE,
1853 				   MAX_SCHEDULE_TIMEOUT,
1854 				   NULL);
1855 	if (ret)
1856 		goto err;
1857 
1858 	ret = i915_gem_object_pin_pages(obj);
1859 	if (ret)
1860 		goto err;
1861 
1862 	intel_runtime_pm_get(dev_priv);
1863 
1864 	ret = i915_mutex_lock_interruptible(dev);
1865 	if (ret)
1866 		goto err_rpm;
1867 
1868 	/* Access to snoopable pages through the GTT is incoherent. */
1869 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870 		ret = -EFAULT;
1871 		goto err_unlock;
1872 	}
1873 
1874 	/* If the object is smaller than a couple of partial vma, it is
1875 	 * not worth only creating a single partial vma - we may as well
1876 	 * clear enough space for the full object.
1877 	 */
1878 	flags = PIN_MAPPABLE;
1879 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881 
1882 	/* Now pin it into the GTT as needed */
1883 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 	if (IS_ERR(vma)) {
1885 		/* Use a partial view if it is bigger than available space */
1886 		struct i915_ggtt_view view =
1887 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888 
1889 		/* Userspace is now writing through an untracked VMA, abandon
1890 		 * all hope that the hardware is able to track future writes.
1891 		 */
1892 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893 
1894 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 	}
1896 	if (IS_ERR(vma)) {
1897 		ret = PTR_ERR(vma);
1898 		goto err_unlock;
1899 	}
1900 
1901 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 	if (ret)
1903 		goto err_unpin;
1904 
1905 	ret = i915_vma_get_fence(vma);
1906 	if (ret)
1907 		goto err_unpin;
1908 
1909 	/* Mark as being mmapped into userspace for later revocation */
1910 	assert_rpm_wakelock_held(dev_priv);
1911 	if (list_empty(&obj->userfault_link))
1912 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913 
1914 	/* Finally, remap it using the new GTT offset */
1915 	ret = remap_io_mapping(area,
1916 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 			       &ggtt->mappable);
1920 
1921 err_unpin:
1922 	__i915_vma_unpin(vma);
1923 err_unlock:
1924 	mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926 	intel_runtime_pm_put(dev_priv);
1927 	i915_gem_object_unpin_pages(obj);
1928 err:
1929 	switch (ret) {
1930 	case -EIO:
1931 		/*
1932 		 * We eat errors when the gpu is terminally wedged to avoid
1933 		 * userspace unduly crashing (gl has no provisions for mmaps to
1934 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 		 * and so needs to be reported.
1936 		 */
1937 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 			ret = VM_FAULT_SIGBUS;
1939 			break;
1940 		}
1941 	case -EAGAIN:
1942 		/*
1943 		 * EAGAIN means the gpu is hung and we'll wait for the error
1944 		 * handler to reset everything when re-faulting in
1945 		 * i915_mutex_lock_interruptible.
1946 		 */
1947 	case 0:
1948 	case -ERESTARTSYS:
1949 	case -EINTR:
1950 	case -EBUSY:
1951 		/*
1952 		 * EBUSY is ok: this just means that another thread
1953 		 * already did the job.
1954 		 */
1955 		ret = VM_FAULT_NOPAGE;
1956 		break;
1957 	case -ENOMEM:
1958 		ret = VM_FAULT_OOM;
1959 		break;
1960 	case -ENOSPC:
1961 	case -EFAULT:
1962 		ret = VM_FAULT_SIGBUS;
1963 		break;
1964 	default:
1965 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 		ret = VM_FAULT_SIGBUS;
1967 		break;
1968 	}
1969 	return ret;
1970 }
1971 
1972 /**
1973  * i915_gem_release_mmap - remove physical page mappings
1974  * @obj: obj in question
1975  *
1976  * Preserve the reservation of the mmapping with the DRM core code, but
1977  * relinquish ownership of the pages back to the system.
1978  *
1979  * It is vital that we remove the page mapping if we have mapped a tiled
1980  * object through the GTT and then lose the fence register due to
1981  * resource pressure. Similarly if the object has been moved out of the
1982  * aperture, than pages mapped into userspace must be revoked. Removing the
1983  * mapping will then trigger a page fault on the next user access, allowing
1984  * fixup by i915_gem_fault().
1985  */
1986 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990 
1991 	/* Serialisation between user GTT access and our code depends upon
1992 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 	 * pagefault then has to wait until we release the mutex.
1994 	 *
1995 	 * Note that RPM complicates somewhat by adding an additional
1996 	 * requirement that operations to the GGTT be made holding the RPM
1997 	 * wakeref.
1998 	 */
1999 	lockdep_assert_held(&i915->drm.struct_mutex);
2000 	intel_runtime_pm_get(i915);
2001 
2002 	if (list_empty(&obj->userfault_link))
2003 		goto out;
2004 
2005 	list_del_init(&obj->userfault_link);
2006 	drm_vma_node_unmap(&obj->base.vma_node,
2007 			   obj->base.dev->anon_inode->i_mapping);
2008 
2009 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 	 * memory transactions from userspace before we return. The TLB
2011 	 * flushing implied above by changing the PTE above *should* be
2012 	 * sufficient, an extra barrier here just provides us with a bit
2013 	 * of paranoid documentation about our requirement to serialise
2014 	 * memory writes before touching registers / GSM.
2015 	 */
2016 	wmb();
2017 
2018 out:
2019 	intel_runtime_pm_put(i915);
2020 }
2021 
i915_gem_runtime_suspend(struct drm_i915_private * dev_priv)2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024 	struct drm_i915_gem_object *obj, *on;
2025 	int i;
2026 
2027 	/*
2028 	 * Only called during RPM suspend. All users of the userfault_list
2029 	 * must be holding an RPM wakeref to ensure that this can not
2030 	 * run concurrently with themselves (and use the struct_mutex for
2031 	 * protection between themselves).
2032 	 */
2033 
2034 	list_for_each_entry_safe(obj, on,
2035 				 &dev_priv->mm.userfault_list, userfault_link) {
2036 		list_del_init(&obj->userfault_link);
2037 		drm_vma_node_unmap(&obj->base.vma_node,
2038 				   obj->base.dev->anon_inode->i_mapping);
2039 	}
2040 
2041 	/* The fence will be lost when the device powers down. If any were
2042 	 * in use by hardware (i.e. they are pinned), we should not be powering
2043 	 * down! All other fences will be reacquired by the user upon waking.
2044 	 */
2045 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047 
2048 		/* Ideally we want to assert that the fence register is not
2049 		 * live at this point (i.e. that no piece of code will be
2050 		 * trying to write through fence + GTT, as that both violates
2051 		 * our tracking of activity and associated locking/barriers,
2052 		 * but also is illegal given that the hw is powered down).
2053 		 *
2054 		 * Previously we used reg->pin_count as a "liveness" indicator.
2055 		 * That is not sufficient, and we need a more fine-grained
2056 		 * tool if we want to have a sanity check here.
2057 		 */
2058 
2059 		if (!reg->vma)
2060 			continue;
2061 
2062 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063 		reg->dirty = true;
2064 	}
2065 }
2066 
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070 	int err;
2071 
2072 	err = drm_gem_create_mmap_offset(&obj->base);
2073 	if (likely(!err))
2074 		return 0;
2075 
2076 	/* Attempt to reap some mmap space from dead objects */
2077 	do {
2078 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 		if (err)
2080 			break;
2081 
2082 		i915_gem_drain_freed_objects(dev_priv);
2083 		err = drm_gem_create_mmap_offset(&obj->base);
2084 		if (!err)
2085 			break;
2086 
2087 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2088 
2089 	return err;
2090 }
2091 
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094 	drm_gem_free_mmap_offset(&obj->base);
2095 }
2096 
2097 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2098 i915_gem_mmap_gtt(struct drm_file *file,
2099 		  struct drm_device *dev,
2100 		  uint32_t handle,
2101 		  uint64_t *offset)
2102 {
2103 	struct drm_i915_gem_object *obj;
2104 	int ret;
2105 
2106 	obj = i915_gem_object_lookup(file, handle);
2107 	if (!obj)
2108 		return -ENOENT;
2109 
2110 	ret = i915_gem_object_create_mmap_offset(obj);
2111 	if (ret == 0)
2112 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113 
2114 	i915_gem_object_put(obj);
2115 	return ret;
2116 }
2117 
2118 /**
2119  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120  * @dev: DRM device
2121  * @data: GTT mapping ioctl data
2122  * @file: GEM object info
2123  *
2124  * Simply returns the fake offset to userspace so it can mmap it.
2125  * The mmap call will end up in drm_gem_mmap(), which will set things
2126  * up so we can get faults in the handler above.
2127  *
2128  * The fault handler will take care of binding the object into the GTT
2129  * (since it may have been evicted to make room for something), allocating
2130  * a fence register, and mapping the appropriate aperture address into
2131  * userspace.
2132  */
2133 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 			struct drm_file *file)
2136 {
2137 	struct drm_i915_gem_mmap_gtt *args = data;
2138 
2139 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141 
2142 /* Immediately discard the backing storage */
2143 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146 	i915_gem_object_free_mmap_offset(obj);
2147 
2148 	if (obj->base.filp == NULL)
2149 		return;
2150 
2151 	/* Our goal here is to return as much of the memory as
2152 	 * is possible back to the system as we are called from OOM.
2153 	 * To do this we must instruct the shmfs to drop all of its
2154 	 * backing pages, *now*.
2155 	 */
2156 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 	obj->mm.madv = __I915_MADV_PURGED;
2158 	obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160 
2161 /* Try to discard unwanted pages */
__i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164 	struct address_space *mapping;
2165 
2166 	lockdep_assert_held(&obj->mm.lock);
2167 	GEM_BUG_ON(obj->mm.pages);
2168 
2169 	switch (obj->mm.madv) {
2170 	case I915_MADV_DONTNEED:
2171 		i915_gem_object_truncate(obj);
2172 	case __I915_MADV_PURGED:
2173 		return;
2174 	}
2175 
2176 	if (obj->base.filp == NULL)
2177 		return;
2178 
2179 	mapping = obj->base.filp->f_mapping,
2180 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182 
2183 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj,struct sg_table * pages)2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 			      struct sg_table *pages)
2186 {
2187 	struct sgt_iter sgt_iter;
2188 	struct page *page;
2189 
2190 	__i915_gem_object_release_shmem(obj, pages, true);
2191 
2192 	i915_gem_gtt_finish_pages(obj, pages);
2193 
2194 	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2196 
2197 	for_each_sgt_page(page, sgt_iter, pages) {
2198 		if (obj->mm.dirty)
2199 			set_page_dirty(page);
2200 
2201 		if (obj->mm.madv == I915_MADV_WILLNEED)
2202 			mark_page_accessed(page);
2203 
2204 		put_page(page);
2205 	}
2206 	obj->mm.dirty = false;
2207 
2208 	sg_free_table(pages);
2209 	kfree(pages);
2210 }
2211 
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214 	struct radix_tree_iter iter;
2215 	void __rcu **slot;
2216 
2217 	rcu_read_lock();
2218 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 	rcu_read_unlock();
2221 }
2222 
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj,enum i915_mm_subclass subclass)2223 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2224 				 enum i915_mm_subclass subclass)
2225 {
2226 	struct sg_table *pages;
2227 
2228 	if (i915_gem_object_has_pinned_pages(obj))
2229 		return;
2230 
2231 	GEM_BUG_ON(obj->bind_count);
2232 	if (!READ_ONCE(obj->mm.pages))
2233 		return;
2234 
2235 	/* May be called by shrinker from within get_pages() (on another bo) */
2236 	mutex_lock_nested(&obj->mm.lock, subclass);
2237 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2238 		goto unlock;
2239 
2240 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2241 	 * array, hence protect them from being reaped by removing them from gtt
2242 	 * lists early. */
2243 	pages = fetch_and_zero(&obj->mm.pages);
2244 	GEM_BUG_ON(!pages);
2245 
2246 	if (obj->mm.mapping) {
2247 		void *ptr;
2248 
2249 		ptr = page_mask_bits(obj->mm.mapping);
2250 		if (is_vmalloc_addr(ptr))
2251 			vunmap(ptr);
2252 		else
2253 			kunmap(kmap_to_page(ptr));
2254 
2255 		obj->mm.mapping = NULL;
2256 	}
2257 
2258 	__i915_gem_object_reset_page_iter(obj);
2259 
2260 	if (!IS_ERR(pages))
2261 		obj->ops->put_pages(obj, pages);
2262 
2263 unlock:
2264 	mutex_unlock(&obj->mm.lock);
2265 }
2266 
i915_sg_trim(struct sg_table * orig_st)2267 static bool i915_sg_trim(struct sg_table *orig_st)
2268 {
2269 	struct sg_table new_st;
2270 	struct scatterlist *sg, *new_sg;
2271 	unsigned int i;
2272 
2273 	if (orig_st->nents == orig_st->orig_nents)
2274 		return false;
2275 
2276 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2277 		return false;
2278 
2279 	new_sg = new_st.sgl;
2280 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2281 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2282 		/* called before being DMA mapped, no need to copy sg->dma_* */
2283 		new_sg = sg_next(new_sg);
2284 	}
2285 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2286 
2287 	sg_free_table(orig_st);
2288 
2289 	*orig_st = new_st;
2290 	return true;
2291 }
2292 
2293 static struct sg_table *
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2294 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2295 {
2296 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2297 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2298 	unsigned long i;
2299 	struct address_space *mapping;
2300 	struct sg_table *st;
2301 	struct scatterlist *sg;
2302 	struct sgt_iter sgt_iter;
2303 	struct page *page;
2304 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2305 	unsigned int max_segment;
2306 	gfp_t noreclaim;
2307 	int ret;
2308 
2309 	/* Assert that the object is not currently in any GPU domain. As it
2310 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2311 	 * a GPU cache
2312 	 */
2313 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2314 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2315 
2316 	max_segment = swiotlb_max_segment();
2317 	if (!max_segment)
2318 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2319 
2320 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2321 	if (st == NULL)
2322 		return ERR_PTR(-ENOMEM);
2323 
2324 rebuild_st:
2325 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2326 		kfree(st);
2327 		return ERR_PTR(-ENOMEM);
2328 	}
2329 
2330 	/* Get the list of pages out of our struct file.  They'll be pinned
2331 	 * at this point until we release them.
2332 	 *
2333 	 * Fail silently without starting the shrinker
2334 	 */
2335 	mapping = obj->base.filp->f_mapping;
2336 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2337 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2338 
2339 	sg = st->sgl;
2340 	st->nents = 0;
2341 	for (i = 0; i < page_count; i++) {
2342 		const unsigned int shrink[] = {
2343 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2344 			0,
2345 		}, *s = shrink;
2346 		gfp_t gfp = noreclaim;
2347 
2348 		do {
2349 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2350 			if (likely(!IS_ERR(page)))
2351 				break;
2352 
2353 			if (!*s) {
2354 				ret = PTR_ERR(page);
2355 				goto err_sg;
2356 			}
2357 
2358 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2359 			cond_resched();
2360 
2361 			/* We've tried hard to allocate the memory by reaping
2362 			 * our own buffer, now let the real VM do its job and
2363 			 * go down in flames if truly OOM.
2364 			 *
2365 			 * However, since graphics tend to be disposable,
2366 			 * defer the oom here by reporting the ENOMEM back
2367 			 * to userspace.
2368 			 */
2369 			if (!*s) {
2370 				/* reclaim and warn, but no oom */
2371 				gfp = mapping_gfp_mask(mapping);
2372 
2373 				/* Our bo are always dirty and so we require
2374 				 * kswapd to reclaim our pages (direct reclaim
2375 				 * does not effectively begin pageout of our
2376 				 * buffers on its own). However, direct reclaim
2377 				 * only waits for kswapd when under allocation
2378 				 * congestion. So as a result __GFP_RECLAIM is
2379 				 * unreliable and fails to actually reclaim our
2380 				 * dirty pages -- unless you try over and over
2381 				 * again with !__GFP_NORETRY. However, we still
2382 				 * want to fail this allocation rather than
2383 				 * trigger the out-of-memory killer and for
2384 				 * this we want __GFP_RETRY_MAYFAIL.
2385 				 */
2386 				gfp |= __GFP_RETRY_MAYFAIL;
2387 			}
2388 		} while (1);
2389 
2390 		if (!i ||
2391 		    sg->length >= max_segment ||
2392 		    page_to_pfn(page) != last_pfn + 1) {
2393 			if (i)
2394 				sg = sg_next(sg);
2395 			st->nents++;
2396 			sg_set_page(sg, page, PAGE_SIZE, 0);
2397 		} else {
2398 			sg->length += PAGE_SIZE;
2399 		}
2400 		last_pfn = page_to_pfn(page);
2401 
2402 		/* Check that the i965g/gm workaround works. */
2403 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2404 	}
2405 	if (sg) /* loop terminated early; short sg table */
2406 		sg_mark_end(sg);
2407 
2408 	/* Trim unused sg entries to avoid wasting memory. */
2409 	i915_sg_trim(st);
2410 
2411 	ret = i915_gem_gtt_prepare_pages(obj, st);
2412 	if (ret) {
2413 		/* DMA remapping failed? One possible cause is that
2414 		 * it could not reserve enough large entries, asking
2415 		 * for PAGE_SIZE chunks instead may be helpful.
2416 		 */
2417 		if (max_segment > PAGE_SIZE) {
2418 			for_each_sgt_page(page, sgt_iter, st)
2419 				put_page(page);
2420 			sg_free_table(st);
2421 
2422 			max_segment = PAGE_SIZE;
2423 			goto rebuild_st;
2424 		} else {
2425 			dev_warn(&dev_priv->drm.pdev->dev,
2426 				 "Failed to DMA remap %lu pages\n",
2427 				 page_count);
2428 			goto err_pages;
2429 		}
2430 	}
2431 
2432 	if (i915_gem_object_needs_bit17_swizzle(obj))
2433 		i915_gem_object_do_bit_17_swizzle(obj, st);
2434 
2435 	return st;
2436 
2437 err_sg:
2438 	sg_mark_end(sg);
2439 err_pages:
2440 	for_each_sgt_page(page, sgt_iter, st)
2441 		put_page(page);
2442 	sg_free_table(st);
2443 	kfree(st);
2444 
2445 	/* shmemfs first checks if there is enough memory to allocate the page
2446 	 * and reports ENOSPC should there be insufficient, along with the usual
2447 	 * ENOMEM for a genuine allocation failure.
2448 	 *
2449 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2450 	 * space and so want to translate the error from shmemfs back to our
2451 	 * usual understanding of ENOMEM.
2452 	 */
2453 	if (ret == -ENOSPC)
2454 		ret = -ENOMEM;
2455 
2456 	return ERR_PTR(ret);
2457 }
2458 
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2459 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2460 				 struct sg_table *pages)
2461 {
2462 	lockdep_assert_held(&obj->mm.lock);
2463 
2464 	obj->mm.get_page.sg_pos = pages->sgl;
2465 	obj->mm.get_page.sg_idx = 0;
2466 
2467 	obj->mm.pages = pages;
2468 
2469 	if (i915_gem_object_is_tiled(obj) &&
2470 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2471 		GEM_BUG_ON(obj->mm.quirked);
2472 		__i915_gem_object_pin_pages(obj);
2473 		obj->mm.quirked = true;
2474 	}
2475 }
2476 
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2477 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2478 {
2479 	struct sg_table *pages;
2480 
2481 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2482 
2483 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2484 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2485 		return -EFAULT;
2486 	}
2487 
2488 	pages = obj->ops->get_pages(obj);
2489 	if (unlikely(IS_ERR(pages)))
2490 		return PTR_ERR(pages);
2491 
2492 	__i915_gem_object_set_pages(obj, pages);
2493 	return 0;
2494 }
2495 
2496 /* Ensure that the associated pages are gathered from the backing storage
2497  * and pinned into our object. i915_gem_object_pin_pages() may be called
2498  * multiple times before they are released by a single call to
2499  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2500  * either as a result of memory pressure (reaping pages under the shrinker)
2501  * or as the object is itself released.
2502  */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2503 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2504 {
2505 	int err;
2506 
2507 	err = mutex_lock_interruptible(&obj->mm.lock);
2508 	if (err)
2509 		return err;
2510 
2511 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2512 		err = ____i915_gem_object_get_pages(obj);
2513 		if (err)
2514 			goto unlock;
2515 
2516 		smp_mb__before_atomic();
2517 	}
2518 	atomic_inc(&obj->mm.pages_pin_count);
2519 
2520 unlock:
2521 	mutex_unlock(&obj->mm.lock);
2522 	return err;
2523 }
2524 
2525 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map(const struct drm_i915_gem_object * obj,enum i915_map_type type)2526 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2527 				 enum i915_map_type type)
2528 {
2529 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2530 	struct sg_table *sgt = obj->mm.pages;
2531 	struct sgt_iter sgt_iter;
2532 	struct page *page;
2533 	struct page *stack_pages[32];
2534 	struct page **pages = stack_pages;
2535 	unsigned long i = 0;
2536 	pgprot_t pgprot;
2537 	void *addr;
2538 
2539 	/* A single page can always be kmapped */
2540 	if (n_pages == 1 && type == I915_MAP_WB)
2541 		return kmap(sg_page(sgt->sgl));
2542 
2543 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2544 		/* Too big for stack -- allocate temporary array instead */
2545 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2546 		if (!pages)
2547 			return NULL;
2548 	}
2549 
2550 	for_each_sgt_page(page, sgt_iter, sgt)
2551 		pages[i++] = page;
2552 
2553 	/* Check that we have the expected number of pages */
2554 	GEM_BUG_ON(i != n_pages);
2555 
2556 	switch (type) {
2557 	default:
2558 		MISSING_CASE(type);
2559 		/* fallthrough to use PAGE_KERNEL anyway */
2560 	case I915_MAP_WB:
2561 		pgprot = PAGE_KERNEL;
2562 		break;
2563 	case I915_MAP_WC:
2564 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2565 		break;
2566 	}
2567 	addr = vmap(pages, n_pages, 0, pgprot);
2568 
2569 	if (pages != stack_pages)
2570 		kvfree(pages);
2571 
2572 	return addr;
2573 }
2574 
2575 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)2576 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2577 			      enum i915_map_type type)
2578 {
2579 	enum i915_map_type has_type;
2580 	bool pinned;
2581 	void *ptr;
2582 	int ret;
2583 
2584 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2585 
2586 	ret = mutex_lock_interruptible(&obj->mm.lock);
2587 	if (ret)
2588 		return ERR_PTR(ret);
2589 
2590 	pinned = !(type & I915_MAP_OVERRIDE);
2591 	type &= ~I915_MAP_OVERRIDE;
2592 
2593 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2594 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2595 			ret = ____i915_gem_object_get_pages(obj);
2596 			if (ret)
2597 				goto err_unlock;
2598 
2599 			smp_mb__before_atomic();
2600 		}
2601 		atomic_inc(&obj->mm.pages_pin_count);
2602 		pinned = false;
2603 	}
2604 	GEM_BUG_ON(!obj->mm.pages);
2605 
2606 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2607 	if (ptr && has_type != type) {
2608 		if (pinned) {
2609 			ret = -EBUSY;
2610 			goto err_unpin;
2611 		}
2612 
2613 		if (is_vmalloc_addr(ptr))
2614 			vunmap(ptr);
2615 		else
2616 			kunmap(kmap_to_page(ptr));
2617 
2618 		ptr = obj->mm.mapping = NULL;
2619 	}
2620 
2621 	if (!ptr) {
2622 		ptr = i915_gem_object_map(obj, type);
2623 		if (!ptr) {
2624 			ret = -ENOMEM;
2625 			goto err_unpin;
2626 		}
2627 
2628 		obj->mm.mapping = page_pack_bits(ptr, type);
2629 	}
2630 
2631 out_unlock:
2632 	mutex_unlock(&obj->mm.lock);
2633 	return ptr;
2634 
2635 err_unpin:
2636 	atomic_dec(&obj->mm.pages_pin_count);
2637 err_unlock:
2638 	ptr = ERR_PTR(ret);
2639 	goto out_unlock;
2640 }
2641 
2642 static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)2643 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2644 			   const struct drm_i915_gem_pwrite *arg)
2645 {
2646 	struct address_space *mapping = obj->base.filp->f_mapping;
2647 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2648 	u64 remain, offset;
2649 	unsigned int pg;
2650 
2651 	/* Before we instantiate/pin the backing store for our use, we
2652 	 * can prepopulate the shmemfs filp efficiently using a write into
2653 	 * the pagecache. We avoid the penalty of instantiating all the
2654 	 * pages, important if the user is just writing to a few and never
2655 	 * uses the object on the GPU, and using a direct write into shmemfs
2656 	 * allows it to avoid the cost of retrieving a page (either swapin
2657 	 * or clearing-before-use) before it is overwritten.
2658 	 */
2659 	if (READ_ONCE(obj->mm.pages))
2660 		return -ENODEV;
2661 
2662 	if (obj->mm.madv != I915_MADV_WILLNEED)
2663 		return -EFAULT;
2664 
2665 	/* Before the pages are instantiated the object is treated as being
2666 	 * in the CPU domain. The pages will be clflushed as required before
2667 	 * use, and we can freely write into the pages directly. If userspace
2668 	 * races pwrite with any other operation; corruption will ensue -
2669 	 * that is userspace's prerogative!
2670 	 */
2671 
2672 	remain = arg->size;
2673 	offset = arg->offset;
2674 	pg = offset_in_page(offset);
2675 
2676 	do {
2677 		unsigned int len, unwritten;
2678 		struct page *page;
2679 		void *data, *vaddr;
2680 		int err;
2681 
2682 		len = PAGE_SIZE - pg;
2683 		if (len > remain)
2684 			len = remain;
2685 
2686 		err = pagecache_write_begin(obj->base.filp, mapping,
2687 					    offset, len, 0,
2688 					    &page, &data);
2689 		if (err < 0)
2690 			return err;
2691 
2692 		vaddr = kmap(page);
2693 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2694 		kunmap(page);
2695 
2696 		err = pagecache_write_end(obj->base.filp, mapping,
2697 					  offset, len, len - unwritten,
2698 					  page, data);
2699 		if (err < 0)
2700 			return err;
2701 
2702 		if (unwritten)
2703 			return -EFAULT;
2704 
2705 		remain -= len;
2706 		user_data += len;
2707 		offset += len;
2708 		pg = 0;
2709 	} while (remain);
2710 
2711 	return 0;
2712 }
2713 
ban_context(const struct i915_gem_context * ctx,unsigned int score)2714 static bool ban_context(const struct i915_gem_context *ctx,
2715 			unsigned int score)
2716 {
2717 	return (i915_gem_context_is_bannable(ctx) &&
2718 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 }
2720 
i915_gem_context_mark_guilty(struct i915_gem_context * ctx)2721 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722 {
2723 	unsigned int score;
2724 	bool banned;
2725 
2726 	atomic_inc(&ctx->guilty_count);
2727 
2728 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2729 	banned = ban_context(ctx, score);
2730 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2731 			 ctx->name, score, yesno(banned));
2732 	if (!banned)
2733 		return;
2734 
2735 	i915_gem_context_set_banned(ctx);
2736 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2737 		atomic_inc(&ctx->file_priv->context_bans);
2738 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2739 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2740 	}
2741 }
2742 
i915_gem_context_mark_innocent(struct i915_gem_context * ctx)2743 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2744 {
2745 	atomic_inc(&ctx->active_count);
2746 }
2747 
2748 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * engine)2749 i915_gem_find_active_request(struct intel_engine_cs *engine)
2750 {
2751 	struct drm_i915_gem_request *request, *active = NULL;
2752 	unsigned long flags;
2753 
2754 	/* We are called by the error capture and reset at a random
2755 	 * point in time. In particular, note that neither is crucially
2756 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2757 	 * assume that no more writes can happen (we waited long enough for
2758 	 * all writes that were in transaction to be flushed) - adding an
2759 	 * extra delay for a recent interrupt is pointless. Hence, we do
2760 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2761 	 */
2762 	spin_lock_irqsave(&engine->timeline->lock, flags);
2763 	list_for_each_entry(request, &engine->timeline->requests, link) {
2764 		if (__i915_gem_request_completed(request,
2765 						 request->global_seqno))
2766 			continue;
2767 
2768 		GEM_BUG_ON(request->engine != engine);
2769 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2770 				    &request->fence.flags));
2771 
2772 		active = request;
2773 		break;
2774 	}
2775 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776 
2777 	return active;
2778 }
2779 
engine_stalled(struct intel_engine_cs * engine)2780 static bool engine_stalled(struct intel_engine_cs *engine)
2781 {
2782 	if (!engine->hangcheck.stalled)
2783 		return false;
2784 
2785 	/* Check for possible seqno movement after hang declaration */
2786 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2787 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2788 		return false;
2789 	}
2790 
2791 	return true;
2792 }
2793 
2794 /*
2795  * Ensure irq handler finishes, and not run again.
2796  * Also return the active request so that we only search for it once.
2797  */
2798 struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs * engine)2799 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2800 {
2801 	struct drm_i915_gem_request *request = NULL;
2802 
2803 	/* Prevent the signaler thread from updating the request
2804 	 * state (by calling dma_fence_signal) as we are processing
2805 	 * the reset. The write from the GPU of the seqno is
2806 	 * asynchronous and the signaler thread may see a different
2807 	 * value to us and declare the request complete, even though
2808 	 * the reset routine have picked that request as the active
2809 	 * (incomplete) request. This conflict is not handled
2810 	 * gracefully!
2811 	 */
2812 	kthread_park(engine->breadcrumbs.signaler);
2813 
2814 	/* Prevent request submission to the hardware until we have
2815 	 * completed the reset in i915_gem_reset_finish(). If a request
2816 	 * is completed by one engine, it may then queue a request
2817 	 * to a second via its engine->irq_tasklet *just* as we are
2818 	 * calling engine->init_hw() and also writing the ELSP.
2819 	 * Turning off the engine->irq_tasklet until the reset is over
2820 	 * prevents the race.
2821 	 */
2822 	tasklet_kill(&engine->irq_tasklet);
2823 	tasklet_disable(&engine->irq_tasklet);
2824 
2825 	if (engine->irq_seqno_barrier)
2826 		engine->irq_seqno_barrier(engine);
2827 
2828 	request = i915_gem_find_active_request(engine);
2829 	if (request && request->fence.error == -EIO)
2830 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2831 
2832 	return request;
2833 }
2834 
i915_gem_reset_prepare(struct drm_i915_private * dev_priv)2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837 	struct intel_engine_cs *engine;
2838 	struct drm_i915_gem_request *request;
2839 	enum intel_engine_id id;
2840 	int err = 0;
2841 
2842 	for_each_engine(engine, dev_priv, id) {
2843 		request = i915_gem_reset_prepare_engine(engine);
2844 		if (IS_ERR(request)) {
2845 			err = PTR_ERR(request);
2846 			continue;
2847 		}
2848 
2849 		engine->hangcheck.active_request = request;
2850 	}
2851 
2852 	i915_gem_revoke_fences(dev_priv);
2853 
2854 	return err;
2855 }
2856 
skip_request(struct drm_i915_gem_request * request)2857 static void skip_request(struct drm_i915_gem_request *request)
2858 {
2859 	void *vaddr = request->ring->vaddr;
2860 	u32 head;
2861 
2862 	/* As this request likely depends on state from the lost
2863 	 * context, clear out all the user operations leaving the
2864 	 * breadcrumb at the end (so we get the fence notifications).
2865 	 */
2866 	head = request->head;
2867 	if (request->postfix < head) {
2868 		memset(vaddr + head, 0, request->ring->size - head);
2869 		head = 0;
2870 	}
2871 	memset(vaddr + head, 0, request->postfix - head);
2872 
2873 	dma_fence_set_error(&request->fence, -EIO);
2874 }
2875 
engine_skip_context(struct drm_i915_gem_request * request)2876 static void engine_skip_context(struct drm_i915_gem_request *request)
2877 {
2878 	struct intel_engine_cs *engine = request->engine;
2879 	struct i915_gem_context *hung_ctx = request->ctx;
2880 	struct intel_timeline *timeline;
2881 	unsigned long flags;
2882 
2883 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2884 
2885 	spin_lock_irqsave(&engine->timeline->lock, flags);
2886 	spin_lock(&timeline->lock);
2887 
2888 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2889 		if (request->ctx == hung_ctx)
2890 			skip_request(request);
2891 
2892 	list_for_each_entry(request, &timeline->requests, link)
2893 		skip_request(request);
2894 
2895 	spin_unlock(&timeline->lock);
2896 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2897 }
2898 
2899 /* Returns the request if it was guilty of the hang */
2900 static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)2901 i915_gem_reset_request(struct intel_engine_cs *engine,
2902 		       struct drm_i915_gem_request *request)
2903 {
2904 	/* The guilty request will get skipped on a hung engine.
2905 	 *
2906 	 * Users of client default contexts do not rely on logical
2907 	 * state preserved between batches so it is safe to execute
2908 	 * queued requests following the hang. Non default contexts
2909 	 * rely on preserved state, so skipping a batch loses the
2910 	 * evolution of the state and it needs to be considered corrupted.
2911 	 * Executing more queued batches on top of corrupted state is
2912 	 * risky. But we take the risk by trying to advance through
2913 	 * the queued requests in order to make the client behaviour
2914 	 * more predictable around resets, by not throwing away random
2915 	 * amount of batches it has prepared for execution. Sophisticated
2916 	 * clients can use gem_reset_stats_ioctl and dma fence status
2917 	 * (exported via sync_file info ioctl on explicit fences) to observe
2918 	 * when it loses the context state and should rebuild accordingly.
2919 	 *
2920 	 * The context ban, and ultimately the client ban, mechanism are safety
2921 	 * valves if client submission ends up resulting in nothing more than
2922 	 * subsequent hangs.
2923 	 */
2924 
2925 	if (engine_stalled(engine)) {
2926 		i915_gem_context_mark_guilty(request->ctx);
2927 		skip_request(request);
2928 
2929 		/* If this context is now banned, skip all pending requests. */
2930 		if (i915_gem_context_is_banned(request->ctx))
2931 			engine_skip_context(request);
2932 	} else {
2933 		/*
2934 		 * Since this is not the hung engine, it may have advanced
2935 		 * since the hang declaration. Double check by refinding
2936 		 * the active request at the time of the reset.
2937 		 */
2938 		request = i915_gem_find_active_request(engine);
2939 		if (request) {
2940 			i915_gem_context_mark_innocent(request->ctx);
2941 			dma_fence_set_error(&request->fence, -EAGAIN);
2942 
2943 			/* Rewind the engine to replay the incomplete rq */
2944 			spin_lock_irq(&engine->timeline->lock);
2945 			request = list_prev_entry(request, link);
2946 			if (&request->link == &engine->timeline->requests)
2947 				request = NULL;
2948 			spin_unlock_irq(&engine->timeline->lock);
2949 		}
2950 	}
2951 
2952 	return request;
2953 }
2954 
i915_gem_reset_engine(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)2955 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2956 			   struct drm_i915_gem_request *request)
2957 {
2958 	engine->irq_posted = 0;
2959 
2960 	if (request)
2961 		request = i915_gem_reset_request(engine, request);
2962 
2963 	if (request) {
2964 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2965 				 engine->name, request->global_seqno);
2966 	}
2967 
2968 	/* Setup the CS to resume from the breadcrumb of the hung request */
2969 	engine->reset_hw(engine, request);
2970 }
2971 
i915_gem_reset(struct drm_i915_private * dev_priv)2972 void i915_gem_reset(struct drm_i915_private *dev_priv)
2973 {
2974 	struct intel_engine_cs *engine;
2975 	enum intel_engine_id id;
2976 
2977 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2978 
2979 	i915_gem_retire_requests(dev_priv);
2980 
2981 	for_each_engine(engine, dev_priv, id) {
2982 		struct i915_gem_context *ctx;
2983 
2984 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2985 		ctx = fetch_and_zero(&engine->last_retired_context);
2986 		if (ctx)
2987 			engine->context_unpin(engine, ctx);
2988 	}
2989 
2990 	i915_gem_restore_fences(dev_priv);
2991 
2992 	if (dev_priv->gt.awake) {
2993 		intel_sanitize_gt_powersave(dev_priv);
2994 		intel_enable_gt_powersave(dev_priv);
2995 		if (INTEL_GEN(dev_priv) >= 6)
2996 			gen6_rps_busy(dev_priv);
2997 	}
2998 }
2999 
i915_gem_reset_finish_engine(struct intel_engine_cs * engine)3000 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3001 {
3002 	tasklet_enable(&engine->irq_tasklet);
3003 	kthread_unpark(engine->breadcrumbs.signaler);
3004 }
3005 
i915_gem_reset_finish(struct drm_i915_private * dev_priv)3006 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3007 {
3008 	struct intel_engine_cs *engine;
3009 	enum intel_engine_id id;
3010 
3011 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3012 
3013 	for_each_engine(engine, dev_priv, id) {
3014 		engine->hangcheck.active_request = NULL;
3015 		i915_gem_reset_finish_engine(engine);
3016 	}
3017 }
3018 
nop_submit_request(struct drm_i915_gem_request * request)3019 static void nop_submit_request(struct drm_i915_gem_request *request)
3020 {
3021 	unsigned long flags;
3022 
3023 	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3024 	dma_fence_set_error(&request->fence, -EIO);
3025 
3026 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3027 	__i915_gem_request_submit(request);
3028 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3029 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3030 }
3031 
engine_set_wedged(struct intel_engine_cs * engine)3032 static void engine_set_wedged(struct intel_engine_cs *engine)
3033 {
3034 	struct drm_i915_gem_request *request;
3035 	unsigned long flags;
3036 
3037 	/* We need to be sure that no thread is running the old callback as
3038 	 * we install the nop handler (otherwise we would submit a request
3039 	 * to hardware that will never complete). In order to prevent this
3040 	 * race, we wait until the machine is idle before making the swap
3041 	 * (using stop_machine()).
3042 	 */
3043 	engine->submit_request = nop_submit_request;
3044 
3045 	/* Mark all executing requests as skipped */
3046 	spin_lock_irqsave(&engine->timeline->lock, flags);
3047 	list_for_each_entry(request, &engine->timeline->requests, link)
3048 		if (!i915_gem_request_completed(request))
3049 			dma_fence_set_error(&request->fence, -EIO);
3050 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3051 
3052 	/*
3053 	 * Clear the execlists queue up before freeing the requests, as those
3054 	 * are the ones that keep the context and ringbuffer backing objects
3055 	 * pinned in place.
3056 	 */
3057 
3058 	if (i915.enable_execlists) {
3059 		struct execlist_port *port = engine->execlist_port;
3060 		unsigned long flags;
3061 		unsigned int n;
3062 
3063 		spin_lock_irqsave(&engine->timeline->lock, flags);
3064 
3065 		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3066 			i915_gem_request_put(port_request(&port[n]));
3067 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3068 		engine->execlist_queue = RB_ROOT;
3069 		engine->execlist_first = NULL;
3070 
3071 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3072 
3073 		/* The port is checked prior to scheduling a tasklet, but
3074 		 * just in case we have suspended the tasklet to do the
3075 		 * wedging make sure that when it wakes, it decides there
3076 		 * is no work to do by clearing the irq_posted bit.
3077 		 */
3078 		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3079 	}
3080 
3081 	/* Mark all pending requests as complete so that any concurrent
3082 	 * (lockless) lookup doesn't try and wait upon the request as we
3083 	 * reset it.
3084 	 */
3085 	intel_engine_init_global_seqno(engine,
3086 				       intel_engine_last_submit(engine));
3087 }
3088 
__i915_gem_set_wedged_BKL(void * data)3089 static int __i915_gem_set_wedged_BKL(void *data)
3090 {
3091 	struct drm_i915_private *i915 = data;
3092 	struct intel_engine_cs *engine;
3093 	enum intel_engine_id id;
3094 
3095 	for_each_engine(engine, i915, id)
3096 		engine_set_wedged(engine);
3097 
3098 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3099 	wake_up_all(&i915->gpu_error.reset_queue);
3100 
3101 	return 0;
3102 }
3103 
i915_gem_set_wedged(struct drm_i915_private * dev_priv)3104 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3105 {
3106 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3107 }
3108 
i915_gem_unset_wedged(struct drm_i915_private * i915)3109 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3110 {
3111 	struct i915_gem_timeline *tl;
3112 	int i;
3113 
3114 	lockdep_assert_held(&i915->drm.struct_mutex);
3115 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3116 		return true;
3117 
3118 	/* Before unwedging, make sure that all pending operations
3119 	 * are flushed and errored out - we may have requests waiting upon
3120 	 * third party fences. We marked all inflight requests as EIO, and
3121 	 * every execbuf since returned EIO, for consistency we want all
3122 	 * the currently pending requests to also be marked as EIO, which
3123 	 * is done inside our nop_submit_request - and so we must wait.
3124 	 *
3125 	 * No more can be submitted until we reset the wedged bit.
3126 	 */
3127 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3128 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3129 			struct drm_i915_gem_request *rq;
3130 
3131 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3132 						  &i915->drm.struct_mutex);
3133 			if (!rq)
3134 				continue;
3135 
3136 			/* We can't use our normal waiter as we want to
3137 			 * avoid recursively trying to handle the current
3138 			 * reset. The basic dma_fence_default_wait() installs
3139 			 * a callback for dma_fence_signal(), which is
3140 			 * triggered by our nop handler (indirectly, the
3141 			 * callback enables the signaler thread which is
3142 			 * woken by the nop_submit_request() advancing the seqno
3143 			 * and when the seqno passes the fence, the signaler
3144 			 * then signals the fence waking us up).
3145 			 */
3146 			if (dma_fence_default_wait(&rq->fence, true,
3147 						   MAX_SCHEDULE_TIMEOUT) < 0)
3148 				return false;
3149 		}
3150 	}
3151 
3152 	/* Undo nop_submit_request. We prevent all new i915 requests from
3153 	 * being queued (by disallowing execbuf whilst wedged) so having
3154 	 * waited for all active requests above, we know the system is idle
3155 	 * and do not have to worry about a thread being inside
3156 	 * engine->submit_request() as we swap over. So unlike installing
3157 	 * the nop_submit_request on reset, we can do this from normal
3158 	 * context and do not require stop_machine().
3159 	 */
3160 	intel_engines_reset_default_submission(i915);
3161 	i915_gem_contexts_lost(i915);
3162 
3163 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3164 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3165 
3166 	return true;
3167 }
3168 
3169 static void
i915_gem_retire_work_handler(struct work_struct * work)3170 i915_gem_retire_work_handler(struct work_struct *work)
3171 {
3172 	struct drm_i915_private *dev_priv =
3173 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3174 	struct drm_device *dev = &dev_priv->drm;
3175 
3176 	/* Come back later if the device is busy... */
3177 	if (mutex_trylock(&dev->struct_mutex)) {
3178 		i915_gem_retire_requests(dev_priv);
3179 		mutex_unlock(&dev->struct_mutex);
3180 	}
3181 
3182 	/* Keep the retire handler running until we are finally idle.
3183 	 * We do not need to do this test under locking as in the worst-case
3184 	 * we queue the retire worker once too often.
3185 	 */
3186 	if (READ_ONCE(dev_priv->gt.awake)) {
3187 		i915_queue_hangcheck(dev_priv);
3188 		queue_delayed_work(dev_priv->wq,
3189 				   &dev_priv->gt.retire_work,
3190 				   round_jiffies_up_relative(HZ));
3191 	}
3192 }
3193 
3194 static void
i915_gem_idle_work_handler(struct work_struct * work)3195 i915_gem_idle_work_handler(struct work_struct *work)
3196 {
3197 	struct drm_i915_private *dev_priv =
3198 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3199 	struct drm_device *dev = &dev_priv->drm;
3200 	bool rearm_hangcheck;
3201 
3202 	if (!READ_ONCE(dev_priv->gt.awake))
3203 		return;
3204 
3205 	/*
3206 	 * Wait for last execlists context complete, but bail out in case a
3207 	 * new request is submitted.
3208 	 */
3209 	wait_for(intel_engines_are_idle(dev_priv), 10);
3210 	if (READ_ONCE(dev_priv->gt.active_requests))
3211 		return;
3212 
3213 	rearm_hangcheck =
3214 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3215 
3216 	if (!mutex_trylock(&dev->struct_mutex)) {
3217 		/* Currently busy, come back later */
3218 		mod_delayed_work(dev_priv->wq,
3219 				 &dev_priv->gt.idle_work,
3220 				 msecs_to_jiffies(50));
3221 		goto out_rearm;
3222 	}
3223 
3224 	/*
3225 	 * New request retired after this work handler started, extend active
3226 	 * period until next instance of the work.
3227 	 */
3228 	if (work_pending(work))
3229 		goto out_unlock;
3230 
3231 	if (dev_priv->gt.active_requests)
3232 		goto out_unlock;
3233 
3234 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3235 		DRM_ERROR("Timeout waiting for engines to idle\n");
3236 
3237 	intel_engines_mark_idle(dev_priv);
3238 	i915_gem_timelines_mark_idle(dev_priv);
3239 
3240 	GEM_BUG_ON(!dev_priv->gt.awake);
3241 	dev_priv->gt.awake = false;
3242 	rearm_hangcheck = false;
3243 
3244 	if (INTEL_GEN(dev_priv) >= 6)
3245 		gen6_rps_idle(dev_priv);
3246 
3247 	if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)) {
3248 		i915_rc6_ctx_wa_check(dev_priv);
3249 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3250 	}
3251 
3252 	intel_runtime_pm_put(dev_priv);
3253 out_unlock:
3254 	mutex_unlock(&dev->struct_mutex);
3255 
3256 out_rearm:
3257 	if (rearm_hangcheck) {
3258 		GEM_BUG_ON(!dev_priv->gt.awake);
3259 		i915_queue_hangcheck(dev_priv);
3260 	}
3261 }
3262 
i915_gem_close_object(struct drm_gem_object * gem,struct drm_file * file)3263 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3264 {
3265 	struct drm_i915_private *i915 = to_i915(gem->dev);
3266 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3267 	struct drm_i915_file_private *fpriv = file->driver_priv;
3268 	struct i915_lut_handle *lut, *ln;
3269 
3270 	mutex_lock(&i915->drm.struct_mutex);
3271 
3272 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3273 		struct i915_gem_context *ctx = lut->ctx;
3274 		struct i915_vma *vma;
3275 
3276 		if (ctx->file_priv != fpriv)
3277 			continue;
3278 
3279 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3280 
3281 		GEM_BUG_ON(vma->obj != obj);
3282 
3283 		/* We allow the process to have multiple handles to the same
3284 		 * vma, in the same fd namespace, by virtue of flink/open.
3285 		 */
3286 		GEM_BUG_ON(!vma->open_count);
3287 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3288 			i915_vma_close(vma);
3289 
3290 		list_del(&lut->obj_link);
3291 		list_del(&lut->ctx_link);
3292 
3293 		kmem_cache_free(i915->luts, lut);
3294 		__i915_gem_object_release_unless_active(obj);
3295 	}
3296 
3297 	mutex_unlock(&i915->drm.struct_mutex);
3298 }
3299 
to_wait_timeout(s64 timeout_ns)3300 static unsigned long to_wait_timeout(s64 timeout_ns)
3301 {
3302 	if (timeout_ns < 0)
3303 		return MAX_SCHEDULE_TIMEOUT;
3304 
3305 	if (timeout_ns == 0)
3306 		return 0;
3307 
3308 	return nsecs_to_jiffies_timeout(timeout_ns);
3309 }
3310 
3311 /**
3312  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3313  * @dev: drm device pointer
3314  * @data: ioctl data blob
3315  * @file: drm file pointer
3316  *
3317  * Returns 0 if successful, else an error is returned with the remaining time in
3318  * the timeout parameter.
3319  *  -ETIME: object is still busy after timeout
3320  *  -ERESTARTSYS: signal interrupted the wait
3321  *  -ENONENT: object doesn't exist
3322  * Also possible, but rare:
3323  *  -EAGAIN: incomplete, restart syscall
3324  *  -ENOMEM: damn
3325  *  -ENODEV: Internal IRQ fail
3326  *  -E?: The add request failed
3327  *
3328  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3329  * non-zero timeout parameter the wait ioctl will wait for the given number of
3330  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3331  * without holding struct_mutex the object may become re-busied before this
3332  * function completes. A similar but shorter * race condition exists in the busy
3333  * ioctl
3334  */
3335 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3336 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3337 {
3338 	struct drm_i915_gem_wait *args = data;
3339 	struct drm_i915_gem_object *obj;
3340 	ktime_t start;
3341 	long ret;
3342 
3343 	if (args->flags != 0)
3344 		return -EINVAL;
3345 
3346 	obj = i915_gem_object_lookup(file, args->bo_handle);
3347 	if (!obj)
3348 		return -ENOENT;
3349 
3350 	start = ktime_get();
3351 
3352 	ret = i915_gem_object_wait(obj,
3353 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3354 				   to_wait_timeout(args->timeout_ns),
3355 				   to_rps_client(file));
3356 
3357 	if (args->timeout_ns > 0) {
3358 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3359 		if (args->timeout_ns < 0)
3360 			args->timeout_ns = 0;
3361 
3362 		/*
3363 		 * Apparently ktime isn't accurate enough and occasionally has a
3364 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3365 		 * things up to make the test happy. We allow up to 1 jiffy.
3366 		 *
3367 		 * This is a regression from the timespec->ktime conversion.
3368 		 */
3369 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3370 			args->timeout_ns = 0;
3371 
3372 		/* Asked to wait beyond the jiffie/scheduler precision? */
3373 		if (ret == -ETIME && args->timeout_ns)
3374 			ret = -EAGAIN;
3375 	}
3376 
3377 	i915_gem_object_put(obj);
3378 	return ret;
3379 }
3380 
wait_for_timeline(struct i915_gem_timeline * tl,unsigned int flags)3381 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3382 {
3383 	int ret, i;
3384 
3385 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3386 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3387 		if (ret)
3388 			return ret;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
wait_for_engines(struct drm_i915_private * i915)3394 static int wait_for_engines(struct drm_i915_private *i915)
3395 {
3396 	if (wait_for(intel_engines_are_idle(i915), 50)) {
3397 		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3398 		i915_gem_set_wedged(i915);
3399 		return -EIO;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags)3405 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3406 {
3407 	int ret;
3408 
3409 	/* If the device is asleep, we have no requests outstanding */
3410 	if (!READ_ONCE(i915->gt.awake))
3411 		return 0;
3412 
3413 	if (flags & I915_WAIT_LOCKED) {
3414 		struct i915_gem_timeline *tl;
3415 
3416 		lockdep_assert_held(&i915->drm.struct_mutex);
3417 
3418 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3419 			ret = wait_for_timeline(tl, flags);
3420 			if (ret)
3421 				return ret;
3422 		}
3423 
3424 		i915_gem_retire_requests(i915);
3425 		GEM_BUG_ON(i915->gt.active_requests);
3426 
3427 		ret = wait_for_engines(i915);
3428 	} else {
3429 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3430 	}
3431 
3432 	return ret;
3433 }
3434 
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)3435 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3436 {
3437 	/*
3438 	 * We manually flush the CPU domain so that we can override and
3439 	 * force the flush for the display, and perform it asyncrhonously.
3440 	 */
3441 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3442 	if (obj->cache_dirty)
3443 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3444 	obj->base.write_domain = 0;
3445 }
3446 
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)3447 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3448 {
3449 	if (!READ_ONCE(obj->pin_display))
3450 		return;
3451 
3452 	mutex_lock(&obj->base.dev->struct_mutex);
3453 	__i915_gem_object_flush_for_display(obj);
3454 	mutex_unlock(&obj->base.dev->struct_mutex);
3455 }
3456 
3457 /**
3458  * Moves a single object to the WC read, and possibly write domain.
3459  * @obj: object to act on
3460  * @write: ask for write access or read only
3461  *
3462  * This function returns when the move is complete, including waiting on
3463  * flushes to occur.
3464  */
3465 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)3466 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3467 {
3468 	int ret;
3469 
3470 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3471 
3472 	ret = i915_gem_object_wait(obj,
3473 				   I915_WAIT_INTERRUPTIBLE |
3474 				   I915_WAIT_LOCKED |
3475 				   (write ? I915_WAIT_ALL : 0),
3476 				   MAX_SCHEDULE_TIMEOUT,
3477 				   NULL);
3478 	if (ret)
3479 		return ret;
3480 
3481 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3482 		return 0;
3483 
3484 	/* Flush and acquire obj->pages so that we are coherent through
3485 	 * direct access in memory with previous cached writes through
3486 	 * shmemfs and that our cache domain tracking remains valid.
3487 	 * For example, if the obj->filp was moved to swap without us
3488 	 * being notified and releasing the pages, we would mistakenly
3489 	 * continue to assume that the obj remained out of the CPU cached
3490 	 * domain.
3491 	 */
3492 	ret = i915_gem_object_pin_pages(obj);
3493 	if (ret)
3494 		return ret;
3495 
3496 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3497 
3498 	/* Serialise direct access to this object with the barriers for
3499 	 * coherent writes from the GPU, by effectively invalidating the
3500 	 * WC domain upon first access.
3501 	 */
3502 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3503 		mb();
3504 
3505 	/* It should now be out of any other write domains, and we can update
3506 	 * the domain values for our changes.
3507 	 */
3508 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3509 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3510 	if (write) {
3511 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3512 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3513 		obj->mm.dirty = true;
3514 	}
3515 
3516 	i915_gem_object_unpin_pages(obj);
3517 	return 0;
3518 }
3519 
3520 /**
3521  * Moves a single object to the GTT read, and possibly write domain.
3522  * @obj: object to act on
3523  * @write: ask for write access or read only
3524  *
3525  * This function returns when the move is complete, including waiting on
3526  * flushes to occur.
3527  */
3528 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3529 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3530 {
3531 	int ret;
3532 
3533 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3534 
3535 	ret = i915_gem_object_wait(obj,
3536 				   I915_WAIT_INTERRUPTIBLE |
3537 				   I915_WAIT_LOCKED |
3538 				   (write ? I915_WAIT_ALL : 0),
3539 				   MAX_SCHEDULE_TIMEOUT,
3540 				   NULL);
3541 	if (ret)
3542 		return ret;
3543 
3544 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545 		return 0;
3546 
3547 	/* Flush and acquire obj->pages so that we are coherent through
3548 	 * direct access in memory with previous cached writes through
3549 	 * shmemfs and that our cache domain tracking remains valid.
3550 	 * For example, if the obj->filp was moved to swap without us
3551 	 * being notified and releasing the pages, we would mistakenly
3552 	 * continue to assume that the obj remained out of the CPU cached
3553 	 * domain.
3554 	 */
3555 	ret = i915_gem_object_pin_pages(obj);
3556 	if (ret)
3557 		return ret;
3558 
3559 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3560 
3561 	/* Serialise direct access to this object with the barriers for
3562 	 * coherent writes from the GPU, by effectively invalidating the
3563 	 * GTT domain upon first access.
3564 	 */
3565 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3566 		mb();
3567 
3568 	/* It should now be out of any other write domains, and we can update
3569 	 * the domain values for our changes.
3570 	 */
3571 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3572 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3573 	if (write) {
3574 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3575 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3576 		obj->mm.dirty = true;
3577 	}
3578 
3579 	i915_gem_object_unpin_pages(obj);
3580 	return 0;
3581 }
3582 
3583 /**
3584  * Changes the cache-level of an object across all VMA.
3585  * @obj: object to act on
3586  * @cache_level: new cache level to set for the object
3587  *
3588  * After this function returns, the object will be in the new cache-level
3589  * across all GTT and the contents of the backing storage will be coherent,
3590  * with respect to the new cache-level. In order to keep the backing storage
3591  * coherent for all users, we only allow a single cache level to be set
3592  * globally on the object and prevent it from being changed whilst the
3593  * hardware is reading from the object. That is if the object is currently
3594  * on the scanout it will be set to uncached (or equivalent display
3595  * cache coherency) and all non-MOCS GPU access will also be uncached so
3596  * that all direct access to the scanout remains coherent.
3597  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3598 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3599 				    enum i915_cache_level cache_level)
3600 {
3601 	struct i915_vma *vma;
3602 	int ret;
3603 
3604 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3605 
3606 	if (obj->cache_level == cache_level)
3607 		return 0;
3608 
3609 	/* Inspect the list of currently bound VMA and unbind any that would
3610 	 * be invalid given the new cache-level. This is principally to
3611 	 * catch the issue of the CS prefetch crossing page boundaries and
3612 	 * reading an invalid PTE on older architectures.
3613 	 */
3614 restart:
3615 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3616 		if (!drm_mm_node_allocated(&vma->node))
3617 			continue;
3618 
3619 		if (i915_vma_is_pinned(vma)) {
3620 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3621 			return -EBUSY;
3622 		}
3623 
3624 		if (!i915_vma_is_closed(vma) &&
3625 		    i915_gem_valid_gtt_space(vma, cache_level))
3626 			continue;
3627 
3628 		ret = i915_vma_unbind(vma);
3629 		if (ret)
3630 			return ret;
3631 
3632 		/* As unbinding may affect other elements in the
3633 		 * obj->vma_list (due to side-effects from retiring
3634 		 * an active vma), play safe and restart the iterator.
3635 		 */
3636 		goto restart;
3637 	}
3638 
3639 	/* We can reuse the existing drm_mm nodes but need to change the
3640 	 * cache-level on the PTE. We could simply unbind them all and
3641 	 * rebind with the correct cache-level on next use. However since
3642 	 * we already have a valid slot, dma mapping, pages etc, we may as
3643 	 * rewrite the PTE in the belief that doing so tramples upon less
3644 	 * state and so involves less work.
3645 	 */
3646 	if (obj->bind_count) {
3647 		/* Before we change the PTE, the GPU must not be accessing it.
3648 		 * If we wait upon the object, we know that all the bound
3649 		 * VMA are no longer active.
3650 		 */
3651 		ret = i915_gem_object_wait(obj,
3652 					   I915_WAIT_INTERRUPTIBLE |
3653 					   I915_WAIT_LOCKED |
3654 					   I915_WAIT_ALL,
3655 					   MAX_SCHEDULE_TIMEOUT,
3656 					   NULL);
3657 		if (ret)
3658 			return ret;
3659 
3660 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3661 		    cache_level != I915_CACHE_NONE) {
3662 			/* Access to snoopable pages through the GTT is
3663 			 * incoherent and on some machines causes a hard
3664 			 * lockup. Relinquish the CPU mmaping to force
3665 			 * userspace to refault in the pages and we can
3666 			 * then double check if the GTT mapping is still
3667 			 * valid for that pointer access.
3668 			 */
3669 			i915_gem_release_mmap(obj);
3670 
3671 			/* As we no longer need a fence for GTT access,
3672 			 * we can relinquish it now (and so prevent having
3673 			 * to steal a fence from someone else on the next
3674 			 * fence request). Note GPU activity would have
3675 			 * dropped the fence as all snoopable access is
3676 			 * supposed to be linear.
3677 			 */
3678 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3679 				ret = i915_vma_put_fence(vma);
3680 				if (ret)
3681 					return ret;
3682 			}
3683 		} else {
3684 			/* We either have incoherent backing store and
3685 			 * so no GTT access or the architecture is fully
3686 			 * coherent. In such cases, existing GTT mmaps
3687 			 * ignore the cache bit in the PTE and we can
3688 			 * rewrite it without confusing the GPU or having
3689 			 * to force userspace to fault back in its mmaps.
3690 			 */
3691 		}
3692 
3693 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3694 			if (!drm_mm_node_allocated(&vma->node))
3695 				continue;
3696 
3697 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3698 			if (ret)
3699 				return ret;
3700 		}
3701 	}
3702 
3703 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3704 		vma->node.color = cache_level;
3705 	i915_gem_object_set_cache_coherency(obj, cache_level);
3706 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3707 
3708 	return 0;
3709 }
3710 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3711 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3712 			       struct drm_file *file)
3713 {
3714 	struct drm_i915_gem_caching *args = data;
3715 	struct drm_i915_gem_object *obj;
3716 	int err = 0;
3717 
3718 	rcu_read_lock();
3719 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3720 	if (!obj) {
3721 		err = -ENOENT;
3722 		goto out;
3723 	}
3724 
3725 	switch (obj->cache_level) {
3726 	case I915_CACHE_LLC:
3727 	case I915_CACHE_L3_LLC:
3728 		args->caching = I915_CACHING_CACHED;
3729 		break;
3730 
3731 	case I915_CACHE_WT:
3732 		args->caching = I915_CACHING_DISPLAY;
3733 		break;
3734 
3735 	default:
3736 		args->caching = I915_CACHING_NONE;
3737 		break;
3738 	}
3739 out:
3740 	rcu_read_unlock();
3741 	return err;
3742 }
3743 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3744 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3745 			       struct drm_file *file)
3746 {
3747 	struct drm_i915_private *i915 = to_i915(dev);
3748 	struct drm_i915_gem_caching *args = data;
3749 	struct drm_i915_gem_object *obj;
3750 	enum i915_cache_level level;
3751 	int ret = 0;
3752 
3753 	switch (args->caching) {
3754 	case I915_CACHING_NONE:
3755 		level = I915_CACHE_NONE;
3756 		break;
3757 	case I915_CACHING_CACHED:
3758 		/*
3759 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3760 		 * snooped mapping may leave stale data in a corresponding CPU
3761 		 * cacheline, whereas normally such cachelines would get
3762 		 * invalidated.
3763 		 */
3764 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3765 			return -ENODEV;
3766 
3767 		level = I915_CACHE_LLC;
3768 		break;
3769 	case I915_CACHING_DISPLAY:
3770 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3771 		break;
3772 	default:
3773 		return -EINVAL;
3774 	}
3775 
3776 	obj = i915_gem_object_lookup(file, args->handle);
3777 	if (!obj)
3778 		return -ENOENT;
3779 
3780 	if (obj->cache_level == level)
3781 		goto out;
3782 
3783 	ret = i915_gem_object_wait(obj,
3784 				   I915_WAIT_INTERRUPTIBLE,
3785 				   MAX_SCHEDULE_TIMEOUT,
3786 				   to_rps_client(file));
3787 	if (ret)
3788 		goto out;
3789 
3790 	ret = i915_mutex_lock_interruptible(dev);
3791 	if (ret)
3792 		goto out;
3793 
3794 	ret = i915_gem_object_set_cache_level(obj, level);
3795 	mutex_unlock(&dev->struct_mutex);
3796 
3797 out:
3798 	i915_gem_object_put(obj);
3799 	return ret;
3800 }
3801 
3802 /*
3803  * Prepare buffer for display plane (scanout, cursors, etc).
3804  * Can be called from an uninterruptible phase (modesetting) and allows
3805  * any flushes to be pipelined (for pageflips).
3806  */
3807 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,const struct i915_ggtt_view * view)3808 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3809 				     u32 alignment,
3810 				     const struct i915_ggtt_view *view)
3811 {
3812 	struct i915_vma *vma;
3813 	int ret;
3814 
3815 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3816 
3817 	/* Mark the pin_display early so that we account for the
3818 	 * display coherency whilst setting up the cache domains.
3819 	 */
3820 	obj->pin_display++;
3821 
3822 	/* The display engine is not coherent with the LLC cache on gen6.  As
3823 	 * a result, we make sure that the pinning that is about to occur is
3824 	 * done with uncached PTEs. This is lowest common denominator for all
3825 	 * chipsets.
3826 	 *
3827 	 * However for gen6+, we could do better by using the GFDT bit instead
3828 	 * of uncaching, which would allow us to flush all the LLC-cached data
3829 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3830 	 */
3831 	ret = i915_gem_object_set_cache_level(obj,
3832 					      HAS_WT(to_i915(obj->base.dev)) ?
3833 					      I915_CACHE_WT : I915_CACHE_NONE);
3834 	if (ret) {
3835 		vma = ERR_PTR(ret);
3836 		goto err_unpin_display;
3837 	}
3838 
3839 	/* As the user may map the buffer once pinned in the display plane
3840 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3841 	 * always use map_and_fenceable for all scanout buffers. However,
3842 	 * it may simply be too big to fit into mappable, in which case
3843 	 * put it anyway and hope that userspace can cope (but always first
3844 	 * try to preserve the existing ABI).
3845 	 */
3846 	vma = ERR_PTR(-ENOSPC);
3847 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3848 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3849 					       PIN_MAPPABLE | PIN_NONBLOCK);
3850 	if (IS_ERR(vma)) {
3851 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3852 		unsigned int flags;
3853 
3854 		/* Valleyview is definitely limited to scanning out the first
3855 		 * 512MiB. Lets presume this behaviour was inherited from the
3856 		 * g4x display engine and that all earlier gen are similarly
3857 		 * limited. Testing suggests that it is a little more
3858 		 * complicated than this. For example, Cherryview appears quite
3859 		 * happy to scanout from anywhere within its global aperture.
3860 		 */
3861 		flags = 0;
3862 		if (HAS_GMCH_DISPLAY(i915))
3863 			flags = PIN_MAPPABLE;
3864 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3865 	}
3866 	if (IS_ERR(vma))
3867 		goto err_unpin_display;
3868 
3869 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3870 
3871 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3872 	__i915_gem_object_flush_for_display(obj);
3873 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3874 
3875 	/* It should now be out of any other write domains, and we can update
3876 	 * the domain values for our changes.
3877 	 */
3878 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3879 
3880 	return vma;
3881 
3882 err_unpin_display:
3883 	obj->pin_display--;
3884 	return vma;
3885 }
3886 
3887 void
i915_gem_object_unpin_from_display_plane(struct i915_vma * vma)3888 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3889 {
3890 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3891 
3892 	if (WARN_ON(vma->obj->pin_display == 0))
3893 		return;
3894 
3895 	if (--vma->obj->pin_display == 0)
3896 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3897 
3898 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3899 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3900 
3901 	i915_vma_unpin(vma);
3902 }
3903 
3904 /**
3905  * Moves a single object to the CPU read, and possibly write domain.
3906  * @obj: object to act on
3907  * @write: requesting write or read-only access
3908  *
3909  * This function returns when the move is complete, including waiting on
3910  * flushes to occur.
3911  */
3912 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3913 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3914 {
3915 	int ret;
3916 
3917 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3918 
3919 	ret = i915_gem_object_wait(obj,
3920 				   I915_WAIT_INTERRUPTIBLE |
3921 				   I915_WAIT_LOCKED |
3922 				   (write ? I915_WAIT_ALL : 0),
3923 				   MAX_SCHEDULE_TIMEOUT,
3924 				   NULL);
3925 	if (ret)
3926 		return ret;
3927 
3928 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3929 
3930 	/* Flush the CPU cache if it's still invalid. */
3931 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3932 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3933 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3934 	}
3935 
3936 	/* It should now be out of any other write domains, and we can update
3937 	 * the domain values for our changes.
3938 	 */
3939 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3940 
3941 	/* If we're writing through the CPU, then the GPU read domains will
3942 	 * need to be invalidated at next use.
3943 	 */
3944 	if (write)
3945 		__start_cpu_write(obj);
3946 
3947 	return 0;
3948 }
3949 
3950 /* Throttle our rendering by waiting until the ring has completed our requests
3951  * emitted over 20 msec ago.
3952  *
3953  * Note that if we were to use the current jiffies each time around the loop,
3954  * we wouldn't escape the function with any frames outstanding if the time to
3955  * render a frame was over 20ms.
3956  *
3957  * This should get us reasonable parallelism between CPU and GPU but also
3958  * relatively low latency when blocking on a particular request to finish.
3959  */
3960 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)3961 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3962 {
3963 	struct drm_i915_private *dev_priv = to_i915(dev);
3964 	struct drm_i915_file_private *file_priv = file->driver_priv;
3965 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3966 	struct drm_i915_gem_request *request, *target = NULL;
3967 	long ret;
3968 
3969 	/* ABI: return -EIO if already wedged */
3970 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3971 		return -EIO;
3972 
3973 	spin_lock(&file_priv->mm.lock);
3974 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3975 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3976 			break;
3977 
3978 		if (target) {
3979 			list_del(&target->client_link);
3980 			target->file_priv = NULL;
3981 		}
3982 
3983 		target = request;
3984 	}
3985 	if (target)
3986 		i915_gem_request_get(target);
3987 	spin_unlock(&file_priv->mm.lock);
3988 
3989 	if (target == NULL)
3990 		return 0;
3991 
3992 	ret = i915_wait_request(target,
3993 				I915_WAIT_INTERRUPTIBLE,
3994 				MAX_SCHEDULE_TIMEOUT);
3995 	i915_gem_request_put(target);
3996 
3997 	return ret < 0 ? ret : 0;
3998 }
3999 
4000 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4001 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4002 			 const struct i915_ggtt_view *view,
4003 			 u64 size,
4004 			 u64 alignment,
4005 			 u64 flags)
4006 {
4007 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4008 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4009 
4010 	return i915_gem_object_pin(obj, vm, view, size, alignment,
4011 				   flags | PIN_GLOBAL);
4012 }
4013 
4014 struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4015 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4016 		    struct i915_address_space *vm,
4017 		    const struct i915_ggtt_view *view,
4018 		    u64 size,
4019 		    u64 alignment,
4020 		    u64 flags)
4021 {
4022 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4023 	struct i915_vma *vma;
4024 	int ret;
4025 
4026 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4027 
4028 	vma = i915_vma_instance(obj, vm, view);
4029 	if (unlikely(IS_ERR(vma)))
4030 		return vma;
4031 
4032 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4033 		if (flags & PIN_NONBLOCK &&
4034 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4035 			return ERR_PTR(-ENOSPC);
4036 
4037 		if (flags & PIN_MAPPABLE) {
4038 			/* If the required space is larger than the available
4039 			 * aperture, we will not able to find a slot for the
4040 			 * object and unbinding the object now will be in
4041 			 * vain. Worse, doing so may cause us to ping-pong
4042 			 * the object in and out of the Global GTT and
4043 			 * waste a lot of cycles under the mutex.
4044 			 */
4045 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4046 				return ERR_PTR(-E2BIG);
4047 
4048 			/* If NONBLOCK is set the caller is optimistically
4049 			 * trying to cache the full object within the mappable
4050 			 * aperture, and *must* have a fallback in place for
4051 			 * situations where we cannot bind the object. We
4052 			 * can be a little more lax here and use the fallback
4053 			 * more often to avoid costly migrations of ourselves
4054 			 * and other objects within the aperture.
4055 			 *
4056 			 * Half-the-aperture is used as a simple heuristic.
4057 			 * More interesting would to do search for a free
4058 			 * block prior to making the commitment to unbind.
4059 			 * That caters for the self-harm case, and with a
4060 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
4061 			 * we could try to minimise harm to others.
4062 			 */
4063 			if (flags & PIN_NONBLOCK &&
4064 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4065 				return ERR_PTR(-ENOSPC);
4066 		}
4067 
4068 		WARN(i915_vma_is_pinned(vma),
4069 		     "bo is already pinned in ggtt with incorrect alignment:"
4070 		     " offset=%08x, req.alignment=%llx,"
4071 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4072 		     i915_ggtt_offset(vma), alignment,
4073 		     !!(flags & PIN_MAPPABLE),
4074 		     i915_vma_is_map_and_fenceable(vma));
4075 		ret = i915_vma_unbind(vma);
4076 		if (ret)
4077 			return ERR_PTR(ret);
4078 	}
4079 
4080 	ret = i915_vma_pin(vma, size, alignment, flags);
4081 	if (ret)
4082 		return ERR_PTR(ret);
4083 
4084 	return vma;
4085 }
4086 
__busy_read_flag(unsigned int id)4087 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4088 {
4089 	/* Note that we could alias engines in the execbuf API, but
4090 	 * that would be very unwise as it prevents userspace from
4091 	 * fine control over engine selection. Ahem.
4092 	 *
4093 	 * This should be something like EXEC_MAX_ENGINE instead of
4094 	 * I915_NUM_ENGINES.
4095 	 */
4096 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4097 	return 0x10000 << id;
4098 }
4099 
__busy_write_id(unsigned int id)4100 static __always_inline unsigned int __busy_write_id(unsigned int id)
4101 {
4102 	/* The uABI guarantees an active writer is also amongst the read
4103 	 * engines. This would be true if we accessed the activity tracking
4104 	 * under the lock, but as we perform the lookup of the object and
4105 	 * its activity locklessly we can not guarantee that the last_write
4106 	 * being active implies that we have set the same engine flag from
4107 	 * last_read - hence we always set both read and write busy for
4108 	 * last_write.
4109 	 */
4110 	return id | __busy_read_flag(id);
4111 }
4112 
4113 static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence * fence,unsigned int (* flag)(unsigned int id))4114 __busy_set_if_active(const struct dma_fence *fence,
4115 		     unsigned int (*flag)(unsigned int id))
4116 {
4117 	struct drm_i915_gem_request *rq;
4118 
4119 	/* We have to check the current hw status of the fence as the uABI
4120 	 * guarantees forward progress. We could rely on the idle worker
4121 	 * to eventually flush us, but to minimise latency just ask the
4122 	 * hardware.
4123 	 *
4124 	 * Note we only report on the status of native fences.
4125 	 */
4126 	if (!dma_fence_is_i915(fence))
4127 		return 0;
4128 
4129 	/* opencode to_request() in order to avoid const warnings */
4130 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4131 	if (i915_gem_request_completed(rq))
4132 		return 0;
4133 
4134 	return flag(rq->engine->uabi_id);
4135 }
4136 
4137 static __always_inline unsigned int
busy_check_reader(const struct dma_fence * fence)4138 busy_check_reader(const struct dma_fence *fence)
4139 {
4140 	return __busy_set_if_active(fence, __busy_read_flag);
4141 }
4142 
4143 static __always_inline unsigned int
busy_check_writer(const struct dma_fence * fence)4144 busy_check_writer(const struct dma_fence *fence)
4145 {
4146 	if (!fence)
4147 		return 0;
4148 
4149 	return __busy_set_if_active(fence, __busy_write_id);
4150 }
4151 
4152 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4153 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4154 		    struct drm_file *file)
4155 {
4156 	struct drm_i915_gem_busy *args = data;
4157 	struct drm_i915_gem_object *obj;
4158 	struct reservation_object_list *list;
4159 	unsigned int seq;
4160 	int err;
4161 
4162 	err = -ENOENT;
4163 	rcu_read_lock();
4164 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4165 	if (!obj)
4166 		goto out;
4167 
4168 	/* A discrepancy here is that we do not report the status of
4169 	 * non-i915 fences, i.e. even though we may report the object as idle,
4170 	 * a call to set-domain may still stall waiting for foreign rendering.
4171 	 * This also means that wait-ioctl may report an object as busy,
4172 	 * where busy-ioctl considers it idle.
4173 	 *
4174 	 * We trade the ability to warn of foreign fences to report on which
4175 	 * i915 engines are active for the object.
4176 	 *
4177 	 * Alternatively, we can trade that extra information on read/write
4178 	 * activity with
4179 	 *	args->busy =
4180 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4181 	 * to report the overall busyness. This is what the wait-ioctl does.
4182 	 *
4183 	 */
4184 retry:
4185 	seq = raw_read_seqcount(&obj->resv->seq);
4186 
4187 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4188 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4189 
4190 	/* Translate shared fences to READ set of engines */
4191 	list = rcu_dereference(obj->resv->fence);
4192 	if (list) {
4193 		unsigned int shared_count = list->shared_count, i;
4194 
4195 		for (i = 0; i < shared_count; ++i) {
4196 			struct dma_fence *fence =
4197 				rcu_dereference(list->shared[i]);
4198 
4199 			args->busy |= busy_check_reader(fence);
4200 		}
4201 	}
4202 
4203 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4204 		goto retry;
4205 
4206 	err = 0;
4207 out:
4208 	rcu_read_unlock();
4209 	return err;
4210 }
4211 
4212 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4213 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4214 			struct drm_file *file_priv)
4215 {
4216 	return i915_gem_ring_throttle(dev, file_priv);
4217 }
4218 
4219 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4220 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4221 		       struct drm_file *file_priv)
4222 {
4223 	struct drm_i915_private *dev_priv = to_i915(dev);
4224 	struct drm_i915_gem_madvise *args = data;
4225 	struct drm_i915_gem_object *obj;
4226 	int err;
4227 
4228 	switch (args->madv) {
4229 	case I915_MADV_DONTNEED:
4230 	case I915_MADV_WILLNEED:
4231 	    break;
4232 	default:
4233 	    return -EINVAL;
4234 	}
4235 
4236 	obj = i915_gem_object_lookup(file_priv, args->handle);
4237 	if (!obj)
4238 		return -ENOENT;
4239 
4240 	err = mutex_lock_interruptible(&obj->mm.lock);
4241 	if (err)
4242 		goto out;
4243 
4244 	if (obj->mm.pages &&
4245 	    i915_gem_object_is_tiled(obj) &&
4246 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4247 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4248 			GEM_BUG_ON(!obj->mm.quirked);
4249 			__i915_gem_object_unpin_pages(obj);
4250 			obj->mm.quirked = false;
4251 		}
4252 		if (args->madv == I915_MADV_WILLNEED) {
4253 			GEM_BUG_ON(obj->mm.quirked);
4254 			__i915_gem_object_pin_pages(obj);
4255 			obj->mm.quirked = true;
4256 		}
4257 	}
4258 
4259 	if (obj->mm.madv != __I915_MADV_PURGED)
4260 		obj->mm.madv = args->madv;
4261 
4262 	/* if the object is no longer attached, discard its backing storage */
4263 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4264 		i915_gem_object_truncate(obj);
4265 
4266 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4267 	mutex_unlock(&obj->mm.lock);
4268 
4269 out:
4270 	i915_gem_object_put(obj);
4271 	return err;
4272 }
4273 
4274 static void
frontbuffer_retire(struct i915_gem_active * active,struct drm_i915_gem_request * request)4275 frontbuffer_retire(struct i915_gem_active *active,
4276 		   struct drm_i915_gem_request *request)
4277 {
4278 	struct drm_i915_gem_object *obj =
4279 		container_of(active, typeof(*obj), frontbuffer_write);
4280 
4281 	intel_fb_obj_flush(obj, ORIGIN_CS);
4282 }
4283 
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4284 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4285 			  const struct drm_i915_gem_object_ops *ops)
4286 {
4287 	mutex_init(&obj->mm.lock);
4288 
4289 	INIT_LIST_HEAD(&obj->global_link);
4290 	INIT_LIST_HEAD(&obj->userfault_link);
4291 	INIT_LIST_HEAD(&obj->vma_list);
4292 	INIT_LIST_HEAD(&obj->lut_list);
4293 	INIT_LIST_HEAD(&obj->batch_pool_link);
4294 
4295 	obj->ops = ops;
4296 
4297 	reservation_object_init(&obj->__builtin_resv);
4298 	obj->resv = &obj->__builtin_resv;
4299 
4300 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4301 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4302 
4303 	obj->mm.madv = I915_MADV_WILLNEED;
4304 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4305 	mutex_init(&obj->mm.get_page.lock);
4306 
4307 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4308 }
4309 
4310 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4311 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4312 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4313 
4314 	.get_pages = i915_gem_object_get_pages_gtt,
4315 	.put_pages = i915_gem_object_put_pages_gtt,
4316 
4317 	.pwrite = i915_gem_object_pwrite_gtt,
4318 };
4319 
4320 struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private * dev_priv,u64 size)4321 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4322 {
4323 	struct drm_i915_gem_object *obj;
4324 	struct address_space *mapping;
4325 	unsigned int cache_level;
4326 	gfp_t mask;
4327 	int ret;
4328 
4329 	/* There is a prevalence of the assumption that we fit the object's
4330 	 * page count inside a 32bit _signed_ variable. Let's document this and
4331 	 * catch if we ever need to fix it. In the meantime, if you do spot
4332 	 * such a local variable, please consider fixing!
4333 	 */
4334 	if (size >> PAGE_SHIFT > INT_MAX)
4335 		return ERR_PTR(-E2BIG);
4336 
4337 	if (overflows_type(size, obj->base.size))
4338 		return ERR_PTR(-E2BIG);
4339 
4340 	obj = i915_gem_object_alloc(dev_priv);
4341 	if (obj == NULL)
4342 		return ERR_PTR(-ENOMEM);
4343 
4344 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4345 	if (ret)
4346 		goto fail;
4347 
4348 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4349 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4350 		/* 965gm cannot relocate objects above 4GiB. */
4351 		mask &= ~__GFP_HIGHMEM;
4352 		mask |= __GFP_DMA32;
4353 	}
4354 
4355 	mapping = obj->base.filp->f_mapping;
4356 	mapping_set_gfp_mask(mapping, mask);
4357 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4358 
4359 	i915_gem_object_init(obj, &i915_gem_object_ops);
4360 
4361 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4362 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4363 
4364 	if (HAS_LLC(dev_priv))
4365 		/* On some devices, we can have the GPU use the LLC (the CPU
4366 		 * cache) for about a 10% performance improvement
4367 		 * compared to uncached.  Graphics requests other than
4368 		 * display scanout are coherent with the CPU in
4369 		 * accessing this cache.  This means in this mode we
4370 		 * don't need to clflush on the CPU side, and on the
4371 		 * GPU side we only need to flush internal caches to
4372 		 * get data visible to the CPU.
4373 		 *
4374 		 * However, we maintain the display planes as UC, and so
4375 		 * need to rebind when first used as such.
4376 		 */
4377 		cache_level = I915_CACHE_LLC;
4378 	else
4379 		cache_level = I915_CACHE_NONE;
4380 
4381 	i915_gem_object_set_cache_coherency(obj, cache_level);
4382 
4383 	trace_i915_gem_object_create(obj);
4384 
4385 	return obj;
4386 
4387 fail:
4388 	i915_gem_object_free(obj);
4389 	return ERR_PTR(ret);
4390 }
4391 
discard_backing_storage(struct drm_i915_gem_object * obj)4392 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4393 {
4394 	/* If we are the last user of the backing storage (be it shmemfs
4395 	 * pages or stolen etc), we know that the pages are going to be
4396 	 * immediately released. In this case, we can then skip copying
4397 	 * back the contents from the GPU.
4398 	 */
4399 
4400 	if (obj->mm.madv != I915_MADV_WILLNEED)
4401 		return false;
4402 
4403 	if (obj->base.filp == NULL)
4404 		return true;
4405 
4406 	/* At first glance, this looks racy, but then again so would be
4407 	 * userspace racing mmap against close. However, the first external
4408 	 * reference to the filp can only be obtained through the
4409 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4410 	 * acquiring such a reference whilst we are in the middle of
4411 	 * freeing the object.
4412 	 */
4413 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4414 }
4415 
__i915_gem_free_objects(struct drm_i915_private * i915,struct llist_node * freed)4416 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4417 				    struct llist_node *freed)
4418 {
4419 	struct drm_i915_gem_object *obj, *on;
4420 
4421 	mutex_lock(&i915->drm.struct_mutex);
4422 	intel_runtime_pm_get(i915);
4423 	llist_for_each_entry(obj, freed, freed) {
4424 		struct i915_vma *vma, *vn;
4425 
4426 		trace_i915_gem_object_destroy(obj);
4427 
4428 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4429 		list_for_each_entry_safe(vma, vn,
4430 					 &obj->vma_list, obj_link) {
4431 			GEM_BUG_ON(i915_vma_is_active(vma));
4432 			vma->flags &= ~I915_VMA_PIN_MASK;
4433 			i915_vma_close(vma);
4434 		}
4435 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4436 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4437 
4438 		list_del(&obj->global_link);
4439 	}
4440 	intel_runtime_pm_put(i915);
4441 	mutex_unlock(&i915->drm.struct_mutex);
4442 
4443 	cond_resched();
4444 
4445 	llist_for_each_entry_safe(obj, on, freed, freed) {
4446 		GEM_BUG_ON(obj->bind_count);
4447 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4448 
4449 		if (obj->ops->release)
4450 			obj->ops->release(obj);
4451 
4452 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4453 			atomic_set(&obj->mm.pages_pin_count, 0);
4454 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4455 		GEM_BUG_ON(obj->mm.pages);
4456 
4457 		if (obj->base.import_attach)
4458 			drm_prime_gem_destroy(&obj->base, NULL);
4459 
4460 		reservation_object_fini(&obj->__builtin_resv);
4461 		drm_gem_object_release(&obj->base);
4462 		i915_gem_info_remove_obj(i915, obj->base.size);
4463 
4464 		kfree(obj->bit_17);
4465 		i915_gem_object_free(obj);
4466 	}
4467 }
4468 
i915_gem_flush_free_objects(struct drm_i915_private * i915)4469 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4470 {
4471 	struct llist_node *freed;
4472 
4473 	freed = llist_del_all(&i915->mm.free_list);
4474 	if (unlikely(freed))
4475 		__i915_gem_free_objects(i915, freed);
4476 }
4477 
__i915_gem_free_work(struct work_struct * work)4478 static void __i915_gem_free_work(struct work_struct *work)
4479 {
4480 	struct drm_i915_private *i915 =
4481 		container_of(work, struct drm_i915_private, mm.free_work);
4482 	struct llist_node *freed;
4483 
4484 	/* All file-owned VMA should have been released by this point through
4485 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4486 	 * However, the object may also be bound into the global GTT (e.g.
4487 	 * older GPUs without per-process support, or for direct access through
4488 	 * the GTT either for the user or for scanout). Those VMA still need to
4489 	 * unbound now.
4490 	 */
4491 
4492 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4493 		__i915_gem_free_objects(i915, freed);
4494 		if (need_resched())
4495 			break;
4496 	}
4497 }
4498 
__i915_gem_free_object_rcu(struct rcu_head * head)4499 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4500 {
4501 	struct drm_i915_gem_object *obj =
4502 		container_of(head, typeof(*obj), rcu);
4503 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4504 
4505 	/* We can't simply use call_rcu() from i915_gem_free_object()
4506 	 * as we need to block whilst unbinding, and the call_rcu
4507 	 * task may be called from softirq context. So we take a
4508 	 * detour through a worker.
4509 	 */
4510 	if (llist_add(&obj->freed, &i915->mm.free_list))
4511 		schedule_work(&i915->mm.free_work);
4512 }
4513 
i915_gem_free_object(struct drm_gem_object * gem_obj)4514 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4515 {
4516 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4517 
4518 	if (obj->mm.quirked)
4519 		__i915_gem_object_unpin_pages(obj);
4520 
4521 	if (discard_backing_storage(obj))
4522 		obj->mm.madv = I915_MADV_DONTNEED;
4523 
4524 	/* Before we free the object, make sure any pure RCU-only
4525 	 * read-side critical sections are complete, e.g.
4526 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4527 	 * lookup see i915_gem_object_lookup_rcu().
4528 	 */
4529 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4530 }
4531 
__i915_gem_object_release_unless_active(struct drm_i915_gem_object * obj)4532 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4533 {
4534 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4535 
4536 	if (!i915_gem_object_has_active_reference(obj) &&
4537 	    i915_gem_object_is_active(obj))
4538 		i915_gem_object_set_active_reference(obj);
4539 	else
4540 		i915_gem_object_put(obj);
4541 }
4542 
assert_kernel_context_is_current(struct drm_i915_private * dev_priv)4543 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4544 {
4545 	struct intel_engine_cs *engine;
4546 	enum intel_engine_id id;
4547 
4548 	for_each_engine(engine, dev_priv, id)
4549 		GEM_BUG_ON(engine->last_retired_context &&
4550 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4551 }
4552 
i915_gem_sanitize(struct drm_i915_private * i915)4553 void i915_gem_sanitize(struct drm_i915_private *i915)
4554 {
4555 	/*
4556 	 * If we inherit context state from the BIOS or earlier occupants
4557 	 * of the GPU, the GPU may be in an inconsistent state when we
4558 	 * try to take over. The only way to remove the earlier state
4559 	 * is by resetting. However, resetting on earlier gen is tricky as
4560 	 * it may impact the display and we are uncertain about the stability
4561 	 * of the reset, so this could be applied to even earlier gen.
4562 	 */
4563 	if (INTEL_GEN(i915) >= 5) {
4564 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4565 		WARN_ON(reset && reset != -ENODEV);
4566 	}
4567 }
4568 
i915_gem_suspend(struct drm_i915_private * dev_priv)4569 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4570 {
4571 	struct drm_device *dev = &dev_priv->drm;
4572 	int ret;
4573 
4574 	intel_runtime_pm_get(dev_priv);
4575 	intel_suspend_gt_powersave(dev_priv);
4576 
4577 	mutex_lock(&dev->struct_mutex);
4578 
4579 	/* We have to flush all the executing contexts to main memory so
4580 	 * that they can saved in the hibernation image. To ensure the last
4581 	 * context image is coherent, we have to switch away from it. That
4582 	 * leaves the dev_priv->kernel_context still active when
4583 	 * we actually suspend, and its image in memory may not match the GPU
4584 	 * state. Fortunately, the kernel_context is disposable and we do
4585 	 * not rely on its state.
4586 	 */
4587 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4588 	if (ret)
4589 		goto err_unlock;
4590 
4591 	ret = i915_gem_wait_for_idle(dev_priv,
4592 				     I915_WAIT_INTERRUPTIBLE |
4593 				     I915_WAIT_LOCKED);
4594 	if (ret && ret != -EIO)
4595 		goto err_unlock;
4596 
4597 	assert_kernel_context_is_current(dev_priv);
4598 	i915_gem_contexts_lost(dev_priv);
4599 	mutex_unlock(&dev->struct_mutex);
4600 
4601 	intel_guc_suspend(dev_priv);
4602 
4603 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4604 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4605 
4606 	/* As the idle_work is rearming if it detects a race, play safe and
4607 	 * repeat the flush until it is definitely idle.
4608 	 */
4609 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4610 		;
4611 
4612 	/* Assert that we sucessfully flushed all the work and
4613 	 * reset the GPU back to its idle, low power state.
4614 	 */
4615 	WARN_ON(dev_priv->gt.awake);
4616 	WARN_ON(!intel_engines_are_idle(dev_priv));
4617 
4618 	/*
4619 	 * Neither the BIOS, ourselves or any other kernel
4620 	 * expects the system to be in execlists mode on startup,
4621 	 * so we need to reset the GPU back to legacy mode. And the only
4622 	 * known way to disable logical contexts is through a GPU reset.
4623 	 *
4624 	 * So in order to leave the system in a known default configuration,
4625 	 * always reset the GPU upon unload and suspend. Afterwards we then
4626 	 * clean up the GEM state tracking, flushing off the requests and
4627 	 * leaving the system in a known idle state.
4628 	 *
4629 	 * Note that is of the upmost importance that the GPU is idle and
4630 	 * all stray writes are flushed *before* we dismantle the backing
4631 	 * storage for the pinned objects.
4632 	 *
4633 	 * However, since we are uncertain that resetting the GPU on older
4634 	 * machines is a good idea, we don't - just in case it leaves the
4635 	 * machine in an unusable condition.
4636 	 */
4637 	i915_gem_sanitize(dev_priv);
4638 
4639 	intel_runtime_pm_put(dev_priv);
4640 	return 0;
4641 
4642 err_unlock:
4643 	mutex_unlock(&dev->struct_mutex);
4644 	intel_runtime_pm_put(dev_priv);
4645 	return ret;
4646 }
4647 
i915_gem_resume(struct drm_i915_private * dev_priv)4648 void i915_gem_resume(struct drm_i915_private *dev_priv)
4649 {
4650 	struct drm_device *dev = &dev_priv->drm;
4651 
4652 	WARN_ON(dev_priv->gt.awake);
4653 
4654 	mutex_lock(&dev->struct_mutex);
4655 	i915_gem_restore_gtt_mappings(dev_priv);
4656 
4657 	/* As we didn't flush the kernel context before suspend, we cannot
4658 	 * guarantee that the context image is complete. So let's just reset
4659 	 * it and start again.
4660 	 */
4661 	dev_priv->gt.resume(dev_priv);
4662 
4663 	mutex_unlock(&dev->struct_mutex);
4664 }
4665 
i915_gem_init_swizzling(struct drm_i915_private * dev_priv)4666 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4667 {
4668 	if (INTEL_GEN(dev_priv) < 5 ||
4669 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4670 		return;
4671 
4672 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4673 				 DISP_TILE_SURFACE_SWIZZLING);
4674 
4675 	if (IS_GEN5(dev_priv))
4676 		return;
4677 
4678 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4679 	if (IS_GEN6(dev_priv))
4680 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4681 	else if (IS_GEN7(dev_priv))
4682 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4683 	else if (IS_GEN8(dev_priv))
4684 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4685 	else
4686 		BUG();
4687 }
4688 
init_unused_ring(struct drm_i915_private * dev_priv,u32 base)4689 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4690 {
4691 	I915_WRITE(RING_CTL(base), 0);
4692 	I915_WRITE(RING_HEAD(base), 0);
4693 	I915_WRITE(RING_TAIL(base), 0);
4694 	I915_WRITE(RING_START(base), 0);
4695 }
4696 
init_unused_rings(struct drm_i915_private * dev_priv)4697 static void init_unused_rings(struct drm_i915_private *dev_priv)
4698 {
4699 	if (IS_I830(dev_priv)) {
4700 		init_unused_ring(dev_priv, PRB1_BASE);
4701 		init_unused_ring(dev_priv, SRB0_BASE);
4702 		init_unused_ring(dev_priv, SRB1_BASE);
4703 		init_unused_ring(dev_priv, SRB2_BASE);
4704 		init_unused_ring(dev_priv, SRB3_BASE);
4705 	} else if (IS_GEN2(dev_priv)) {
4706 		init_unused_ring(dev_priv, SRB0_BASE);
4707 		init_unused_ring(dev_priv, SRB1_BASE);
4708 	} else if (IS_GEN3(dev_priv)) {
4709 		init_unused_ring(dev_priv, PRB1_BASE);
4710 		init_unused_ring(dev_priv, PRB2_BASE);
4711 	}
4712 }
4713 
__i915_gem_restart_engines(void * data)4714 static int __i915_gem_restart_engines(void *data)
4715 {
4716 	struct drm_i915_private *i915 = data;
4717 	struct intel_engine_cs *engine;
4718 	enum intel_engine_id id;
4719 	int err;
4720 
4721 	for_each_engine(engine, i915, id) {
4722 		err = engine->init_hw(engine);
4723 		if (err)
4724 			return err;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
i915_gem_init_hw(struct drm_i915_private * dev_priv)4730 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4731 {
4732 	int ret;
4733 
4734 	dev_priv->gt.last_init_time = ktime_get();
4735 
4736 	/* Double layer security blanket, see i915_gem_init() */
4737 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4738 
4739 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4740 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4741 
4742 	if (IS_HASWELL(dev_priv))
4743 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4744 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4745 
4746 	if (HAS_PCH_NOP(dev_priv)) {
4747 		if (IS_IVYBRIDGE(dev_priv)) {
4748 			u32 temp = I915_READ(GEN7_MSG_CTL);
4749 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4750 			I915_WRITE(GEN7_MSG_CTL, temp);
4751 		} else if (INTEL_GEN(dev_priv) >= 7) {
4752 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4753 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4754 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4755 		}
4756 	}
4757 
4758 	i915_gem_init_swizzling(dev_priv);
4759 
4760 	/*
4761 	 * At least 830 can leave some of the unused rings
4762 	 * "active" (ie. head != tail) after resume which
4763 	 * will prevent c3 entry. Makes sure all unused rings
4764 	 * are totally idle.
4765 	 */
4766 	init_unused_rings(dev_priv);
4767 
4768 	BUG_ON(!dev_priv->kernel_context);
4769 
4770 	ret = i915_ppgtt_init_hw(dev_priv);
4771 	if (ret) {
4772 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4773 		goto out;
4774 	}
4775 
4776 	/* Need to do basic initialisation of all rings first: */
4777 	ret = __i915_gem_restart_engines(dev_priv);
4778 	if (ret)
4779 		goto out;
4780 
4781 	intel_mocs_init_l3cc_table(dev_priv);
4782 
4783 	/* We can't enable contexts until all firmware is loaded */
4784 	ret = intel_uc_init_hw(dev_priv);
4785 	if (ret)
4786 		goto out;
4787 
4788 out:
4789 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4790 	return ret;
4791 }
4792 
intel_sanitize_semaphores(struct drm_i915_private * dev_priv,int value)4793 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4794 {
4795 	if (INTEL_INFO(dev_priv)->gen < 6)
4796 		return false;
4797 
4798 	/* TODO: make semaphores and Execlists play nicely together */
4799 	if (i915.enable_execlists)
4800 		return false;
4801 
4802 	if (value >= 0)
4803 		return value;
4804 
4805 	/* Enable semaphores on SNB when IO remapping is off */
4806 	if (IS_GEN6(dev_priv) && intel_vtd_active())
4807 		return false;
4808 
4809 	return true;
4810 }
4811 
i915_gem_init(struct drm_i915_private * dev_priv)4812 int i915_gem_init(struct drm_i915_private *dev_priv)
4813 {
4814 	int ret;
4815 
4816 	mutex_lock(&dev_priv->drm.struct_mutex);
4817 
4818 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4819 
4820 	if (!i915.enable_execlists) {
4821 		dev_priv->gt.resume = intel_legacy_submission_resume;
4822 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4823 	} else {
4824 		dev_priv->gt.resume = intel_lr_context_resume;
4825 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4826 	}
4827 
4828 	/* This is just a security blanket to placate dragons.
4829 	 * On some systems, we very sporadically observe that the first TLBs
4830 	 * used by the CS may be stale, despite us poking the TLB reset. If
4831 	 * we hold the forcewake during initialisation these problems
4832 	 * just magically go away.
4833 	 */
4834 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4835 
4836 	ret = i915_gem_init_userptr(dev_priv);
4837 	if (ret)
4838 		goto out_unlock;
4839 
4840 	ret = i915_gem_init_ggtt(dev_priv);
4841 	if (ret)
4842 		goto out_unlock;
4843 
4844 	ret = i915_gem_contexts_init(dev_priv);
4845 	if (ret)
4846 		goto out_unlock;
4847 
4848 	ret = intel_engines_init(dev_priv);
4849 	if (ret)
4850 		goto out_unlock;
4851 
4852 	ret = i915_gem_init_hw(dev_priv);
4853 	if (ret == -EIO) {
4854 		/* Allow engine initialisation to fail by marking the GPU as
4855 		 * wedged. But we only want to do this where the GPU is angry,
4856 		 * for all other failure, such as an allocation failure, bail.
4857 		 */
4858 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4859 		i915_gem_set_wedged(dev_priv);
4860 		ret = 0;
4861 	}
4862 
4863 out_unlock:
4864 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4865 	mutex_unlock(&dev_priv->drm.struct_mutex);
4866 
4867 	return ret;
4868 }
4869 
i915_gem_init_mmio(struct drm_i915_private * i915)4870 void i915_gem_init_mmio(struct drm_i915_private *i915)
4871 {
4872 	i915_gem_sanitize(i915);
4873 }
4874 
4875 void
i915_gem_cleanup_engines(struct drm_i915_private * dev_priv)4876 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4877 {
4878 	struct intel_engine_cs *engine;
4879 	enum intel_engine_id id;
4880 
4881 	for_each_engine(engine, dev_priv, id)
4882 		dev_priv->gt.cleanup_engine(engine);
4883 }
4884 
4885 void
i915_gem_load_init_fences(struct drm_i915_private * dev_priv)4886 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4887 {
4888 	int i;
4889 
4890 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4891 	    !IS_CHERRYVIEW(dev_priv))
4892 		dev_priv->num_fence_regs = 32;
4893 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4894 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4895 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4896 		dev_priv->num_fence_regs = 16;
4897 	else
4898 		dev_priv->num_fence_regs = 8;
4899 
4900 	if (intel_vgpu_active(dev_priv))
4901 		dev_priv->num_fence_regs =
4902 				I915_READ(vgtif_reg(avail_rs.fence_num));
4903 
4904 	/* Initialize fence registers to zero */
4905 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4906 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4907 
4908 		fence->i915 = dev_priv;
4909 		fence->id = i;
4910 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4911 	}
4912 	i915_gem_restore_fences(dev_priv);
4913 
4914 	i915_gem_detect_bit_6_swizzle(dev_priv);
4915 }
4916 
4917 int
i915_gem_load_init(struct drm_i915_private * dev_priv)4918 i915_gem_load_init(struct drm_i915_private *dev_priv)
4919 {
4920 	int err = -ENOMEM;
4921 
4922 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4923 	if (!dev_priv->objects)
4924 		goto err_out;
4925 
4926 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4927 	if (!dev_priv->vmas)
4928 		goto err_objects;
4929 
4930 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4931 	if (!dev_priv->luts)
4932 		goto err_vmas;
4933 
4934 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4935 					SLAB_HWCACHE_ALIGN |
4936 					SLAB_RECLAIM_ACCOUNT |
4937 					SLAB_TYPESAFE_BY_RCU);
4938 	if (!dev_priv->requests)
4939 		goto err_luts;
4940 
4941 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4942 					    SLAB_HWCACHE_ALIGN |
4943 					    SLAB_RECLAIM_ACCOUNT);
4944 	if (!dev_priv->dependencies)
4945 		goto err_requests;
4946 
4947 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4948 	if (!dev_priv->priorities)
4949 		goto err_dependencies;
4950 
4951 	mutex_lock(&dev_priv->drm.struct_mutex);
4952 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4953 	err = i915_gem_timeline_init__global(dev_priv);
4954 	mutex_unlock(&dev_priv->drm.struct_mutex);
4955 	if (err)
4956 		goto err_priorities;
4957 
4958 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4959 	init_llist_head(&dev_priv->mm.free_list);
4960 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4961 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4962 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4963 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4964 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4965 			  i915_gem_retire_work_handler);
4966 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4967 			  i915_gem_idle_work_handler);
4968 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4969 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970 
4971 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4972 
4973 	spin_lock_init(&dev_priv->fb_tracking.lock);
4974 
4975 	return 0;
4976 
4977 err_priorities:
4978 	kmem_cache_destroy(dev_priv->priorities);
4979 err_dependencies:
4980 	kmem_cache_destroy(dev_priv->dependencies);
4981 err_requests:
4982 	kmem_cache_destroy(dev_priv->requests);
4983 err_luts:
4984 	kmem_cache_destroy(dev_priv->luts);
4985 err_vmas:
4986 	kmem_cache_destroy(dev_priv->vmas);
4987 err_objects:
4988 	kmem_cache_destroy(dev_priv->objects);
4989 err_out:
4990 	return err;
4991 }
4992 
i915_gem_load_cleanup(struct drm_i915_private * dev_priv)4993 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4994 {
4995 	i915_gem_drain_freed_objects(dev_priv);
4996 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4997 	WARN_ON(dev_priv->mm.object_count);
4998 
4999 	mutex_lock(&dev_priv->drm.struct_mutex);
5000 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5001 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5002 	mutex_unlock(&dev_priv->drm.struct_mutex);
5003 
5004 	kmem_cache_destroy(dev_priv->priorities);
5005 	kmem_cache_destroy(dev_priv->dependencies);
5006 	kmem_cache_destroy(dev_priv->requests);
5007 	kmem_cache_destroy(dev_priv->luts);
5008 	kmem_cache_destroy(dev_priv->vmas);
5009 	kmem_cache_destroy(dev_priv->objects);
5010 
5011 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5012 	rcu_barrier();
5013 }
5014 
i915_gem_freeze(struct drm_i915_private * dev_priv)5015 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5016 {
5017 	/* Discard all purgeable objects, let userspace recover those as
5018 	 * required after resuming.
5019 	 */
5020 	i915_gem_shrink_all(dev_priv);
5021 
5022 	return 0;
5023 }
5024 
i915_gem_freeze_late(struct drm_i915_private * dev_priv)5025 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5026 {
5027 	struct drm_i915_gem_object *obj;
5028 	struct list_head *phases[] = {
5029 		&dev_priv->mm.unbound_list,
5030 		&dev_priv->mm.bound_list,
5031 		NULL
5032 	}, **p;
5033 
5034 	/* Called just before we write the hibernation image.
5035 	 *
5036 	 * We need to update the domain tracking to reflect that the CPU
5037 	 * will be accessing all the pages to create and restore from the
5038 	 * hibernation, and so upon restoration those pages will be in the
5039 	 * CPU domain.
5040 	 *
5041 	 * To make sure the hibernation image contains the latest state,
5042 	 * we update that state just before writing out the image.
5043 	 *
5044 	 * To try and reduce the hibernation image, we manually shrink
5045 	 * the objects as well, see i915_gem_freeze()
5046 	 */
5047 
5048 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5049 	i915_gem_drain_freed_objects(dev_priv);
5050 
5051 	mutex_lock(&dev_priv->drm.struct_mutex);
5052 	for (p = phases; *p; p++) {
5053 		list_for_each_entry(obj, *p, global_link)
5054 			__start_cpu_write(obj);
5055 	}
5056 	mutex_unlock(&dev_priv->drm.struct_mutex);
5057 
5058 	return 0;
5059 }
5060 
i915_gem_release(struct drm_device * dev,struct drm_file * file)5061 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5062 {
5063 	struct drm_i915_file_private *file_priv = file->driver_priv;
5064 	struct drm_i915_gem_request *request;
5065 
5066 	/* Clean up our request list when the client is going away, so that
5067 	 * later retire_requests won't dereference our soon-to-be-gone
5068 	 * file_priv.
5069 	 */
5070 	spin_lock(&file_priv->mm.lock);
5071 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5072 		request->file_priv = NULL;
5073 	spin_unlock(&file_priv->mm.lock);
5074 }
5075 
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)5076 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5077 {
5078 	struct drm_i915_file_private *file_priv;
5079 	int ret;
5080 
5081 	DRM_DEBUG("\n");
5082 
5083 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5084 	if (!file_priv)
5085 		return -ENOMEM;
5086 
5087 	file->driver_priv = file_priv;
5088 	file_priv->dev_priv = i915;
5089 	file_priv->file = file;
5090 
5091 	spin_lock_init(&file_priv->mm.lock);
5092 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5093 
5094 	file_priv->bsd_engine = -1;
5095 
5096 	ret = i915_gem_context_open(i915, file);
5097 	if (ret)
5098 		kfree(file_priv);
5099 
5100 	return ret;
5101 }
5102 
5103 /**
5104  * i915_gem_track_fb - update frontbuffer tracking
5105  * @old: current GEM buffer for the frontbuffer slots
5106  * @new: new GEM buffer for the frontbuffer slots
5107  * @frontbuffer_bits: bitmask of frontbuffer slots
5108  *
5109  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5110  * from @old and setting them in @new. Both @old and @new can be NULL.
5111  */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5112 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5113 		       struct drm_i915_gem_object *new,
5114 		       unsigned frontbuffer_bits)
5115 {
5116 	/* Control of individual bits within the mask are guarded by
5117 	 * the owning plane->mutex, i.e. we can never see concurrent
5118 	 * manipulation of individual bits. But since the bitfield as a whole
5119 	 * is updated using RMW, we need to use atomics in order to update
5120 	 * the bits.
5121 	 */
5122 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5123 		     sizeof(atomic_t) * BITS_PER_BYTE);
5124 
5125 	if (old) {
5126 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5127 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5128 	}
5129 
5130 	if (new) {
5131 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5132 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5133 	}
5134 }
5135 
5136 /* Allocate a new GEM object and fill it with the supplied data */
5137 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)5138 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5139 			         const void *data, size_t size)
5140 {
5141 	struct drm_i915_gem_object *obj;
5142 	struct file *file;
5143 	size_t offset;
5144 	int err;
5145 
5146 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5147 	if (IS_ERR(obj))
5148 		return obj;
5149 
5150 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5151 
5152 	file = obj->base.filp;
5153 	offset = 0;
5154 	do {
5155 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5156 		struct page *page;
5157 		void *pgdata, *vaddr;
5158 
5159 		err = pagecache_write_begin(file, file->f_mapping,
5160 					    offset, len, 0,
5161 					    &page, &pgdata);
5162 		if (err < 0)
5163 			goto fail;
5164 
5165 		vaddr = kmap(page);
5166 		memcpy(vaddr, data, len);
5167 		kunmap(page);
5168 
5169 		err = pagecache_write_end(file, file->f_mapping,
5170 					  offset, len, len,
5171 					  page, pgdata);
5172 		if (err < 0)
5173 			goto fail;
5174 
5175 		size -= len;
5176 		data += len;
5177 		offset += len;
5178 	} while (size);
5179 
5180 	return obj;
5181 
5182 fail:
5183 	i915_gem_object_put(obj);
5184 	return ERR_PTR(err);
5185 }
5186 
5187 struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object * obj,unsigned int n,unsigned int * offset)5188 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5189 		       unsigned int n,
5190 		       unsigned int *offset)
5191 {
5192 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5193 	struct scatterlist *sg;
5194 	unsigned int idx, count;
5195 
5196 	might_sleep();
5197 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5198 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5199 
5200 	/* As we iterate forward through the sg, we record each entry in a
5201 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5202 	 * this index previously, we will have an entry for it.
5203 	 *
5204 	 * Initial lookup is O(N), but this is amortized to O(1) for
5205 	 * sequential page access (where each new request is consecutive
5206 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5207 	 * i.e. O(1) with a large constant!
5208 	 */
5209 	if (n < READ_ONCE(iter->sg_idx))
5210 		goto lookup;
5211 
5212 	mutex_lock(&iter->lock);
5213 
5214 	/* We prefer to reuse the last sg so that repeated lookup of this
5215 	 * (or the subsequent) sg are fast - comparing against the last
5216 	 * sg is faster than going through the radixtree.
5217 	 */
5218 
5219 	sg = iter->sg_pos;
5220 	idx = iter->sg_idx;
5221 	count = __sg_page_count(sg);
5222 
5223 	while (idx + count <= n) {
5224 		unsigned long exception, i;
5225 		int ret;
5226 
5227 		/* If we cannot allocate and insert this entry, or the
5228 		 * individual pages from this range, cancel updating the
5229 		 * sg_idx so that on this lookup we are forced to linearly
5230 		 * scan onwards, but on future lookups we will try the
5231 		 * insertion again (in which case we need to be careful of
5232 		 * the error return reporting that we have already inserted
5233 		 * this index).
5234 		 */
5235 		ret = radix_tree_insert(&iter->radix, idx, sg);
5236 		if (ret && ret != -EEXIST)
5237 			goto scan;
5238 
5239 		exception =
5240 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5241 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5242 		for (i = 1; i < count; i++) {
5243 			ret = radix_tree_insert(&iter->radix, idx + i,
5244 						(void *)exception);
5245 			if (ret && ret != -EEXIST)
5246 				goto scan;
5247 		}
5248 
5249 		idx += count;
5250 		sg = ____sg_next(sg);
5251 		count = __sg_page_count(sg);
5252 	}
5253 
5254 scan:
5255 	iter->sg_pos = sg;
5256 	iter->sg_idx = idx;
5257 
5258 	mutex_unlock(&iter->lock);
5259 
5260 	if (unlikely(n < idx)) /* insertion completed by another thread */
5261 		goto lookup;
5262 
5263 	/* In case we failed to insert the entry into the radixtree, we need
5264 	 * to look beyond the current sg.
5265 	 */
5266 	while (idx + count <= n) {
5267 		idx += count;
5268 		sg = ____sg_next(sg);
5269 		count = __sg_page_count(sg);
5270 	}
5271 
5272 	*offset = n - idx;
5273 	return sg;
5274 
5275 lookup:
5276 	rcu_read_lock();
5277 
5278 	sg = radix_tree_lookup(&iter->radix, n);
5279 	GEM_BUG_ON(!sg);
5280 
5281 	/* If this index is in the middle of multi-page sg entry,
5282 	 * the radixtree will contain an exceptional entry that points
5283 	 * to the start of that range. We will return the pointer to
5284 	 * the base page and the offset of this page within the
5285 	 * sg entry's range.
5286 	 */
5287 	*offset = 0;
5288 	if (unlikely(radix_tree_exception(sg))) {
5289 		unsigned long base =
5290 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5291 
5292 		sg = radix_tree_lookup(&iter->radix, base);
5293 		GEM_BUG_ON(!sg);
5294 
5295 		*offset = n - base;
5296 	}
5297 
5298 	rcu_read_unlock();
5299 
5300 	return sg;
5301 }
5302 
5303 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)5304 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5305 {
5306 	struct scatterlist *sg;
5307 	unsigned int offset;
5308 
5309 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5310 
5311 	sg = i915_gem_object_get_sg(obj, n, &offset);
5312 	return nth_page(sg_page(sg), offset);
5313 }
5314 
5315 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5316 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)5317 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5318 			       unsigned int n)
5319 {
5320 	struct page *page;
5321 
5322 	page = i915_gem_object_get_page(obj, n);
5323 	if (!obj->mm.dirty)
5324 		set_page_dirty(page);
5325 
5326 	return page;
5327 }
5328 
5329 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)5330 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5331 				unsigned long n)
5332 {
5333 	struct scatterlist *sg;
5334 	unsigned int offset;
5335 
5336 	sg = i915_gem_object_get_sg(obj, n, &offset);
5337 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5338 }
5339 
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)5340 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5341 {
5342 	struct sg_table *pages;
5343 	int err;
5344 
5345 	if (align > obj->base.size)
5346 		return -EINVAL;
5347 
5348 	if (obj->ops == &i915_gem_phys_ops)
5349 		return 0;
5350 
5351 	if (obj->ops != &i915_gem_object_ops)
5352 		return -EINVAL;
5353 
5354 	err = i915_gem_object_unbind(obj);
5355 	if (err)
5356 		return err;
5357 
5358 	mutex_lock(&obj->mm.lock);
5359 
5360 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5361 		err = -EFAULT;
5362 		goto err_unlock;
5363 	}
5364 
5365 	if (obj->mm.quirked) {
5366 		err = -EFAULT;
5367 		goto err_unlock;
5368 	}
5369 
5370 	if (obj->mm.mapping) {
5371 		err = -EBUSY;
5372 		goto err_unlock;
5373 	}
5374 
5375 	pages = obj->mm.pages;
5376 	obj->ops = &i915_gem_phys_ops;
5377 
5378 	err = ____i915_gem_object_get_pages(obj);
5379 	if (err)
5380 		goto err_xfer;
5381 
5382 	/* Perma-pin (until release) the physical set of pages */
5383 	__i915_gem_object_pin_pages(obj);
5384 
5385 	if (!IS_ERR_OR_NULL(pages))
5386 		i915_gem_object_ops.put_pages(obj, pages);
5387 	mutex_unlock(&obj->mm.lock);
5388 	return 0;
5389 
5390 err_xfer:
5391 	obj->ops = &i915_gem_object_ops;
5392 	obj->mm.pages = pages;
5393 err_unlock:
5394 	mutex_unlock(&obj->mm.lock);
5395 	return err;
5396 }
5397 
5398 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5399 #include "selftests/scatterlist.c"
5400 #include "selftests/mock_gem_device.c"
5401 #include "selftests/huge_gem_object.c"
5402 #include "selftests/i915_gem_object.c"
5403 #include "selftests/i915_gem_coherency.c"
5404 #endif
5405