1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 if (obj->cache_dirty)
53 return false;
54
55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 return true;
57
58 return obj->pin_display;
59 }
60
61 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)62 insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
64 {
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
70 }
71
72 static void
remove_mappable_node(struct drm_mm_node * node)73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,u64 size)79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 u64 size)
81 {
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,u64 size)88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 u64 size)
90 {
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 int ret;
101
102 might_sleep();
103
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
111 I915_RESET_TIMEOUT);
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
116 return ret;
117 } else {
118 return 0;
119 }
120 }
121
i915_mutex_lock_interruptible(struct drm_device * dev)122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = to_i915(dev);
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 return 0;
136 }
137
138 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
146 u64 pinned;
147
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
157
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
160
161 return 0;
162 }
163
164 static struct sg_table *
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
176
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 put_page(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
224
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
227
228 obj->phys_handle = phys;
229 return st;
230
231 err_phys:
232 drm_pci_free(obj->base.dev, phys);
233 return st;
234 }
235
__start_cpu_write(struct drm_i915_gem_object * obj)236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242 }
243
244 static void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
247 bool needs_clflush)
248 {
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
253
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 drm_clflush_sg(pages);
258
259 __start_cpu_write(obj);
260 }
261
262 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj,struct sg_table * pages)263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265 {
266 __i915_gem_object_release_shmem(obj, pages, false);
267
268 if (obj->mm.dirty) {
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
289 put_page(page);
290 vaddr += PAGE_SIZE;
291 }
292 obj->mm.dirty = false;
293 }
294
295 sg_free_table(pages);
296 kfree(pages);
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
i915_gem_object_unbind(struct drm_i915_gem_object * obj)315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_set_to_cpu_domain(obj, false);
329 if (ret)
330 return ret;
331
332 while ((vma = list_first_entry_or_null(&obj->vma_list,
333 struct i915_vma,
334 obj_link))) {
335 list_move_tail(&vma->obj_link, &still_in_list);
336 ret = i915_vma_unbind(vma);
337 if (ret)
338 break;
339 }
340 list_splice(&still_in_list, &obj->vma_list);
341
342 return ret;
343 }
344
345 static long
i915_gem_object_wait_fence(struct dma_fence * fence,unsigned int flags,long timeout,struct intel_rps_client * rps)346 i915_gem_object_wait_fence(struct dma_fence *fence,
347 unsigned int flags,
348 long timeout,
349 struct intel_rps_client *rps)
350 {
351 struct drm_i915_gem_request *rq;
352
353 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
354
355 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
356 return timeout;
357
358 if (!dma_fence_is_i915(fence))
359 return dma_fence_wait_timeout(fence,
360 flags & I915_WAIT_INTERRUPTIBLE,
361 timeout);
362
363 rq = to_request(fence);
364 if (i915_gem_request_completed(rq))
365 goto out;
366
367 /* This client is about to stall waiting for the GPU. In many cases
368 * this is undesirable and limits the throughput of the system, as
369 * many clients cannot continue processing user input/output whilst
370 * blocked. RPS autotuning may take tens of milliseconds to respond
371 * to the GPU load and thus incurs additional latency for the client.
372 * We can circumvent that by promoting the GPU frequency to maximum
373 * before we wait. This makes the GPU throttle up much more quickly
374 * (good for benchmarks and user experience, e.g. window animations),
375 * but at a cost of spending more power processing the workload
376 * (bad for battery). Not all clients even want their results
377 * immediately and for them we should just let the GPU select its own
378 * frequency to maximise efficiency. To prevent a single client from
379 * forcing the clocks too high for the whole system, we only allow
380 * each client to waitboost once in a busy period.
381 */
382 if (rps) {
383 if (INTEL_GEN(rq->i915) >= 6)
384 gen6_rps_boost(rq, rps);
385 else
386 rps = NULL;
387 }
388
389 timeout = i915_wait_request(rq, flags, timeout);
390
391 out:
392 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
393 i915_gem_request_retire_upto(rq);
394
395 return timeout;
396 }
397
398 static long
i915_gem_object_wait_reservation(struct reservation_object * resv,unsigned int flags,long timeout,struct intel_rps_client * rps)399 i915_gem_object_wait_reservation(struct reservation_object *resv,
400 unsigned int flags,
401 long timeout,
402 struct intel_rps_client *rps)
403 {
404 unsigned int seq = __read_seqcount_begin(&resv->seq);
405 struct dma_fence *excl;
406 bool prune_fences = false;
407
408 if (flags & I915_WAIT_ALL) {
409 struct dma_fence **shared;
410 unsigned int count, i;
411 int ret;
412
413 ret = reservation_object_get_fences_rcu(resv,
414 &excl, &count, &shared);
415 if (ret)
416 return ret;
417
418 for (i = 0; i < count; i++) {
419 timeout = i915_gem_object_wait_fence(shared[i],
420 flags, timeout,
421 rps);
422 if (timeout < 0)
423 break;
424
425 dma_fence_put(shared[i]);
426 }
427
428 for (; i < count; i++)
429 dma_fence_put(shared[i]);
430 kfree(shared);
431
432 prune_fences = count && timeout >= 0;
433 } else {
434 excl = reservation_object_get_excl_rcu(resv);
435 }
436
437 if (excl && timeout >= 0) {
438 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
439 prune_fences = timeout >= 0;
440 }
441
442 dma_fence_put(excl);
443
444 /* Oportunistically prune the fences iff we know they have *all* been
445 * signaled and that the reservation object has not been changed (i.e.
446 * no new fences have been added).
447 */
448 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
449 if (reservation_object_trylock(resv)) {
450 if (!__read_seqcount_retry(&resv->seq, seq))
451 reservation_object_add_excl_fence(resv, NULL);
452 reservation_object_unlock(resv);
453 }
454 }
455
456 return timeout;
457 }
458
__fence_set_priority(struct dma_fence * fence,int prio)459 static void __fence_set_priority(struct dma_fence *fence, int prio)
460 {
461 struct drm_i915_gem_request *rq;
462 struct intel_engine_cs *engine;
463
464 if (!dma_fence_is_i915(fence))
465 return;
466
467 rq = to_request(fence);
468 engine = rq->engine;
469 if (!engine->schedule)
470 return;
471
472 engine->schedule(rq, prio);
473 }
474
fence_set_priority(struct dma_fence * fence,int prio)475 static void fence_set_priority(struct dma_fence *fence, int prio)
476 {
477 /* Recurse once into a fence-array */
478 if (dma_fence_is_array(fence)) {
479 struct dma_fence_array *array = to_dma_fence_array(fence);
480 int i;
481
482 for (i = 0; i < array->num_fences; i++)
483 __fence_set_priority(array->fences[i], prio);
484 } else {
485 __fence_set_priority(fence, prio);
486 }
487 }
488
489 int
i915_gem_object_wait_priority(struct drm_i915_gem_object * obj,unsigned int flags,int prio)490 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
491 unsigned int flags,
492 int prio)
493 {
494 struct dma_fence *excl;
495
496 if (flags & I915_WAIT_ALL) {
497 struct dma_fence **shared;
498 unsigned int count, i;
499 int ret;
500
501 ret = reservation_object_get_fences_rcu(obj->resv,
502 &excl, &count, &shared);
503 if (ret)
504 return ret;
505
506 for (i = 0; i < count; i++) {
507 fence_set_priority(shared[i], prio);
508 dma_fence_put(shared[i]);
509 }
510
511 kfree(shared);
512 } else {
513 excl = reservation_object_get_excl_rcu(obj->resv);
514 }
515
516 if (excl) {
517 fence_set_priority(excl, prio);
518 dma_fence_put(excl);
519 }
520 return 0;
521 }
522
523 /**
524 * Waits for rendering to the object to be completed
525 * @obj: i915 gem object
526 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
527 * @timeout: how long to wait
528 * @rps: client (user process) to charge for any waitboosting
529 */
530 int
i915_gem_object_wait(struct drm_i915_gem_object * obj,unsigned int flags,long timeout,struct intel_rps_client * rps)531 i915_gem_object_wait(struct drm_i915_gem_object *obj,
532 unsigned int flags,
533 long timeout,
534 struct intel_rps_client *rps)
535 {
536 might_sleep();
537 #if IS_ENABLED(CONFIG_LOCKDEP)
538 GEM_BUG_ON(debug_locks &&
539 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
540 !!(flags & I915_WAIT_LOCKED));
541 #endif
542 GEM_BUG_ON(timeout < 0);
543
544 timeout = i915_gem_object_wait_reservation(obj->resv,
545 flags, timeout,
546 rps);
547 return timeout < 0 ? timeout : 0;
548 }
549
to_rps_client(struct drm_file * file)550 static struct intel_rps_client *to_rps_client(struct drm_file *file)
551 {
552 struct drm_i915_file_private *fpriv = file->driver_priv;
553
554 return &fpriv->rps;
555 }
556
557 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)558 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
559 struct drm_i915_gem_pwrite *args,
560 struct drm_file *file)
561 {
562 void *vaddr = obj->phys_handle->vaddr + args->offset;
563 char __user *user_data = u64_to_user_ptr(args->data_ptr);
564
565 /* We manually control the domain here and pretend that it
566 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
567 */
568 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
569 if (copy_from_user(vaddr, user_data, args->size))
570 return -EFAULT;
571
572 drm_clflush_virt_range(vaddr, args->size);
573 i915_gem_chipset_flush(to_i915(obj->base.dev));
574
575 intel_fb_obj_flush(obj, ORIGIN_CPU);
576 return 0;
577 }
578
i915_gem_object_alloc(struct drm_i915_private * dev_priv)579 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
580 {
581 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
582 }
583
i915_gem_object_free(struct drm_i915_gem_object * obj)584 void i915_gem_object_free(struct drm_i915_gem_object *obj)
585 {
586 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
587 kmem_cache_free(dev_priv->objects, obj);
588 }
589
590 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,uint64_t size,uint32_t * handle_p)591 i915_gem_create(struct drm_file *file,
592 struct drm_i915_private *dev_priv,
593 uint64_t size,
594 uint32_t *handle_p)
595 {
596 struct drm_i915_gem_object *obj;
597 int ret;
598 u32 handle;
599
600 size = roundup(size, PAGE_SIZE);
601 if (size == 0)
602 return -EINVAL;
603
604 /* Allocate the new object */
605 obj = i915_gem_object_create(dev_priv, size);
606 if (IS_ERR(obj))
607 return PTR_ERR(obj);
608
609 ret = drm_gem_handle_create(file, &obj->base, &handle);
610 /* drop reference from allocate - handle holds it now */
611 i915_gem_object_put(obj);
612 if (ret)
613 return ret;
614
615 *handle_p = handle;
616 return 0;
617 }
618
619 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)620 i915_gem_dumb_create(struct drm_file *file,
621 struct drm_device *dev,
622 struct drm_mode_create_dumb *args)
623 {
624 /* have to work out size/pitch and return them */
625 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
626 args->size = args->pitch * args->height;
627 return i915_gem_create(file, to_i915(dev),
628 args->size, &args->handle);
629 }
630
gpu_write_needs_clflush(struct drm_i915_gem_object * obj)631 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
632 {
633 return !(obj->cache_level == I915_CACHE_NONE ||
634 obj->cache_level == I915_CACHE_WT);
635 }
636
637 /**
638 * Creates a new mm object and returns a handle to it.
639 * @dev: drm device pointer
640 * @data: ioctl data blob
641 * @file: drm file pointer
642 */
643 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)644 i915_gem_create_ioctl(struct drm_device *dev, void *data,
645 struct drm_file *file)
646 {
647 struct drm_i915_private *dev_priv = to_i915(dev);
648 struct drm_i915_gem_create *args = data;
649
650 i915_gem_flush_free_objects(dev_priv);
651
652 return i915_gem_create(file, dev_priv,
653 args->size, &args->handle);
654 }
655
656 static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object * obj,unsigned int domain)657 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
658 {
659 return (domain == I915_GEM_DOMAIN_GTT ?
660 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
661 }
662
663 static void
flush_write_domain(struct drm_i915_gem_object * obj,unsigned int flush_domains)664 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
665 {
666 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
667
668 if (!(obj->base.write_domain & flush_domains))
669 return;
670
671 /* No actual flushing is required for the GTT write domain. Writes
672 * to it "immediately" go to main memory as far as we know, so there's
673 * no chipset flush. It also doesn't land in render cache.
674 *
675 * However, we do have to enforce the order so that all writes through
676 * the GTT land before any writes to the device, such as updates to
677 * the GATT itself.
678 *
679 * We also have to wait a bit for the writes to land from the GTT.
680 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
681 * timing. This issue has only been observed when switching quickly
682 * between GTT writes and CPU reads from inside the kernel on recent hw,
683 * and it appears to only affect discrete GTT blocks (i.e. on LLC
684 * system agents we cannot reproduce this behaviour).
685 */
686 wmb();
687
688 switch (obj->base.write_domain) {
689 case I915_GEM_DOMAIN_GTT:
690 if (!HAS_LLC(dev_priv)) {
691 intel_runtime_pm_get(dev_priv);
692 spin_lock_irq(&dev_priv->uncore.lock);
693 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
694 spin_unlock_irq(&dev_priv->uncore.lock);
695 intel_runtime_pm_put(dev_priv);
696 }
697
698 intel_fb_obj_flush(obj,
699 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
700 break;
701
702 case I915_GEM_DOMAIN_CPU:
703 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
704 break;
705
706 case I915_GEM_DOMAIN_RENDER:
707 if (gpu_write_needs_clflush(obj))
708 obj->cache_dirty = true;
709 break;
710 }
711
712 obj->base.write_domain = 0;
713 }
714
715 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)716 __copy_to_user_swizzled(char __user *cpu_vaddr,
717 const char *gpu_vaddr, int gpu_offset,
718 int length)
719 {
720 int ret, cpu_offset = 0;
721
722 while (length > 0) {
723 int cacheline_end = ALIGN(gpu_offset + 1, 64);
724 int this_length = min(cacheline_end - gpu_offset, length);
725 int swizzled_gpu_offset = gpu_offset ^ 64;
726
727 ret = __copy_to_user(cpu_vaddr + cpu_offset,
728 gpu_vaddr + swizzled_gpu_offset,
729 this_length);
730 if (ret)
731 return ret + length;
732
733 cpu_offset += this_length;
734 gpu_offset += this_length;
735 length -= this_length;
736 }
737
738 return 0;
739 }
740
741 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)742 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
743 const char __user *cpu_vaddr,
744 int length)
745 {
746 int ret, cpu_offset = 0;
747
748 while (length > 0) {
749 int cacheline_end = ALIGN(gpu_offset + 1, 64);
750 int this_length = min(cacheline_end - gpu_offset, length);
751 int swizzled_gpu_offset = gpu_offset ^ 64;
752
753 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
754 cpu_vaddr + cpu_offset,
755 this_length);
756 if (ret)
757 return ret + length;
758
759 cpu_offset += this_length;
760 gpu_offset += this_length;
761 length -= this_length;
762 }
763
764 return 0;
765 }
766
767 /*
768 * Pins the specified object's pages and synchronizes the object with
769 * GPU accesses. Sets needs_clflush to non-zero if the caller should
770 * flush the object from the CPU cache.
771 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)772 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
773 unsigned int *needs_clflush)
774 {
775 int ret;
776
777 lockdep_assert_held(&obj->base.dev->struct_mutex);
778
779 *needs_clflush = 0;
780 if (!i915_gem_object_has_struct_page(obj))
781 return -ENODEV;
782
783 ret = i915_gem_object_wait(obj,
784 I915_WAIT_INTERRUPTIBLE |
785 I915_WAIT_LOCKED,
786 MAX_SCHEDULE_TIMEOUT,
787 NULL);
788 if (ret)
789 return ret;
790
791 ret = i915_gem_object_pin_pages(obj);
792 if (ret)
793 return ret;
794
795 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
796 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
797 ret = i915_gem_object_set_to_cpu_domain(obj, false);
798 if (ret)
799 goto err_unpin;
800 else
801 goto out;
802 }
803
804 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
805
806 /* If we're not in the cpu read domain, set ourself into the gtt
807 * read domain and manually flush cachelines (if required). This
808 * optimizes for the case when the gpu will dirty the data
809 * anyway again before the next pread happens.
810 */
811 if (!obj->cache_dirty &&
812 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
813 *needs_clflush = CLFLUSH_BEFORE;
814
815 out:
816 /* return with the pages pinned */
817 return 0;
818
819 err_unpin:
820 i915_gem_object_unpin_pages(obj);
821 return ret;
822 }
823
i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object * obj,unsigned int * needs_clflush)824 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
825 unsigned int *needs_clflush)
826 {
827 int ret;
828
829 lockdep_assert_held(&obj->base.dev->struct_mutex);
830
831 *needs_clflush = 0;
832 if (!i915_gem_object_has_struct_page(obj))
833 return -ENODEV;
834
835 ret = i915_gem_object_wait(obj,
836 I915_WAIT_INTERRUPTIBLE |
837 I915_WAIT_LOCKED |
838 I915_WAIT_ALL,
839 MAX_SCHEDULE_TIMEOUT,
840 NULL);
841 if (ret)
842 return ret;
843
844 ret = i915_gem_object_pin_pages(obj);
845 if (ret)
846 return ret;
847
848 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
849 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
850 ret = i915_gem_object_set_to_cpu_domain(obj, true);
851 if (ret)
852 goto err_unpin;
853 else
854 goto out;
855 }
856
857 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
858
859 /* If we're not in the cpu write domain, set ourself into the
860 * gtt write domain and manually flush cachelines (as required).
861 * This optimizes for the case when the gpu will use the data
862 * right away and we therefore have to clflush anyway.
863 */
864 if (!obj->cache_dirty) {
865 *needs_clflush |= CLFLUSH_AFTER;
866
867 /*
868 * Same trick applies to invalidate partially written
869 * cachelines read before writing.
870 */
871 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
872 *needs_clflush |= CLFLUSH_BEFORE;
873 }
874
875 out:
876 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
877 obj->mm.dirty = true;
878 /* return with the pages pinned */
879 return 0;
880
881 err_unpin:
882 i915_gem_object_unpin_pages(obj);
883 return ret;
884 }
885
886 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)887 shmem_clflush_swizzled_range(char *addr, unsigned long length,
888 bool swizzled)
889 {
890 if (unlikely(swizzled)) {
891 unsigned long start = (unsigned long) addr;
892 unsigned long end = (unsigned long) addr + length;
893
894 /* For swizzling simply ensure that we always flush both
895 * channels. Lame, but simple and it works. Swizzled
896 * pwrite/pread is far from a hotpath - current userspace
897 * doesn't use it at all. */
898 start = round_down(start, 128);
899 end = round_up(end, 128);
900
901 drm_clflush_virt_range((void *)start, end - start);
902 } else {
903 drm_clflush_virt_range(addr, length);
904 }
905
906 }
907
908 /* Only difference to the fast-path function is that this can handle bit17
909 * and uses non-atomic copy and kmap functions. */
910 static int
shmem_pread_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)911 shmem_pread_slow(struct page *page, int offset, int length,
912 char __user *user_data,
913 bool page_do_bit17_swizzling, bool needs_clflush)
914 {
915 char *vaddr;
916 int ret;
917
918 vaddr = kmap(page);
919 if (needs_clflush)
920 shmem_clflush_swizzled_range(vaddr + offset, length,
921 page_do_bit17_swizzling);
922
923 if (page_do_bit17_swizzling)
924 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
925 else
926 ret = __copy_to_user(user_data, vaddr + offset, length);
927 kunmap(page);
928
929 return ret ? - EFAULT : 0;
930 }
931
932 static int
shmem_pread(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)933 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
934 bool page_do_bit17_swizzling, bool needs_clflush)
935 {
936 int ret;
937
938 ret = -ENODEV;
939 if (!page_do_bit17_swizzling) {
940 char *vaddr = kmap_atomic(page);
941
942 if (needs_clflush)
943 drm_clflush_virt_range(vaddr + offset, length);
944 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
945 kunmap_atomic(vaddr);
946 }
947 if (ret == 0)
948 return 0;
949
950 return shmem_pread_slow(page, offset, length, user_data,
951 page_do_bit17_swizzling, needs_clflush);
952 }
953
954 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)955 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
956 struct drm_i915_gem_pread *args)
957 {
958 char __user *user_data;
959 u64 remain;
960 unsigned int obj_do_bit17_swizzling;
961 unsigned int needs_clflush;
962 unsigned int idx, offset;
963 int ret;
964
965 obj_do_bit17_swizzling = 0;
966 if (i915_gem_object_needs_bit17_swizzle(obj))
967 obj_do_bit17_swizzling = BIT(17);
968
969 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
970 if (ret)
971 return ret;
972
973 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
974 mutex_unlock(&obj->base.dev->struct_mutex);
975 if (ret)
976 return ret;
977
978 remain = args->size;
979 user_data = u64_to_user_ptr(args->data_ptr);
980 offset = offset_in_page(args->offset);
981 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
982 struct page *page = i915_gem_object_get_page(obj, idx);
983 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
984
985 ret = shmem_pread(page, offset, length, user_data,
986 page_to_phys(page) & obj_do_bit17_swizzling,
987 needs_clflush);
988 if (ret)
989 break;
990
991 remain -= length;
992 user_data += length;
993 offset = 0;
994 }
995
996 i915_gem_obj_finish_shmem_access(obj);
997 return ret;
998 }
999
1000 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1001 gtt_user_read(struct io_mapping *mapping,
1002 loff_t base, int offset,
1003 char __user *user_data, int length)
1004 {
1005 void *vaddr;
1006 unsigned long unwritten;
1007
1008 /* We can use the cpu mem copy function because this is X86. */
1009 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1010 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1011 io_mapping_unmap_atomic(vaddr);
1012 if (unwritten) {
1013 vaddr = (void __force *)
1014 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1015 unwritten = copy_to_user(user_data, vaddr + offset, length);
1016 io_mapping_unmap(vaddr);
1017 }
1018 return unwritten;
1019 }
1020
1021 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)1022 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1023 const struct drm_i915_gem_pread *args)
1024 {
1025 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1026 struct i915_ggtt *ggtt = &i915->ggtt;
1027 struct drm_mm_node node;
1028 struct i915_vma *vma;
1029 void __user *user_data;
1030 u64 remain, offset;
1031 int ret;
1032
1033 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1034 if (ret)
1035 return ret;
1036
1037 intel_runtime_pm_get(i915);
1038 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1039 PIN_MAPPABLE | PIN_NONBLOCK);
1040 if (!IS_ERR(vma)) {
1041 node.start = i915_ggtt_offset(vma);
1042 node.allocated = false;
1043 ret = i915_vma_put_fence(vma);
1044 if (ret) {
1045 i915_vma_unpin(vma);
1046 vma = ERR_PTR(ret);
1047 }
1048 }
1049 if (IS_ERR(vma)) {
1050 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1051 if (ret)
1052 goto out_unlock;
1053 GEM_BUG_ON(!node.allocated);
1054 }
1055
1056 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1057 if (ret)
1058 goto out_unpin;
1059
1060 mutex_unlock(&i915->drm.struct_mutex);
1061
1062 user_data = u64_to_user_ptr(args->data_ptr);
1063 remain = args->size;
1064 offset = args->offset;
1065
1066 while (remain > 0) {
1067 /* Operation in this page
1068 *
1069 * page_base = page offset within aperture
1070 * page_offset = offset within page
1071 * page_length = bytes to copy for this page
1072 */
1073 u32 page_base = node.start;
1074 unsigned page_offset = offset_in_page(offset);
1075 unsigned page_length = PAGE_SIZE - page_offset;
1076 page_length = remain < page_length ? remain : page_length;
1077 if (node.allocated) {
1078 wmb();
1079 ggtt->base.insert_page(&ggtt->base,
1080 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1081 node.start, I915_CACHE_NONE, 0);
1082 wmb();
1083 } else {
1084 page_base += offset & PAGE_MASK;
1085 }
1086
1087 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1088 user_data, page_length)) {
1089 ret = -EFAULT;
1090 break;
1091 }
1092
1093 remain -= page_length;
1094 user_data += page_length;
1095 offset += page_length;
1096 }
1097
1098 mutex_lock(&i915->drm.struct_mutex);
1099 out_unpin:
1100 if (node.allocated) {
1101 wmb();
1102 ggtt->base.clear_range(&ggtt->base,
1103 node.start, node.size);
1104 remove_mappable_node(&node);
1105 } else {
1106 i915_vma_unpin(vma);
1107 }
1108 out_unlock:
1109 intel_runtime_pm_put(i915);
1110 mutex_unlock(&i915->drm.struct_mutex);
1111
1112 return ret;
1113 }
1114
1115 /**
1116 * Reads data from the object referenced by handle.
1117 * @dev: drm device pointer
1118 * @data: ioctl data blob
1119 * @file: drm file pointer
1120 *
1121 * On error, the contents of *data are undefined.
1122 */
1123 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1124 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1125 struct drm_file *file)
1126 {
1127 struct drm_i915_gem_pread *args = data;
1128 struct drm_i915_gem_object *obj;
1129 int ret;
1130
1131 if (args->size == 0)
1132 return 0;
1133
1134 if (!access_ok(VERIFY_WRITE,
1135 u64_to_user_ptr(args->data_ptr),
1136 args->size))
1137 return -EFAULT;
1138
1139 obj = i915_gem_object_lookup(file, args->handle);
1140 if (!obj)
1141 return -ENOENT;
1142
1143 /* Bounds check source. */
1144 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 trace_i915_gem_object_pread(obj, args->offset, args->size);
1150
1151 ret = i915_gem_object_wait(obj,
1152 I915_WAIT_INTERRUPTIBLE,
1153 MAX_SCHEDULE_TIMEOUT,
1154 to_rps_client(file));
1155 if (ret)
1156 goto out;
1157
1158 ret = i915_gem_object_pin_pages(obj);
1159 if (ret)
1160 goto out;
1161
1162 ret = i915_gem_shmem_pread(obj, args);
1163 if (ret == -EFAULT || ret == -ENODEV)
1164 ret = i915_gem_gtt_pread(obj, args);
1165
1166 i915_gem_object_unpin_pages(obj);
1167 out:
1168 i915_gem_object_put(obj);
1169 return ret;
1170 }
1171
1172 /* This is the fast write path which cannot handle
1173 * page faults in the source data
1174 */
1175
1176 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)1177 ggtt_write(struct io_mapping *mapping,
1178 loff_t base, int offset,
1179 char __user *user_data, int length)
1180 {
1181 void *vaddr;
1182 unsigned long unwritten;
1183
1184 /* We can use the cpu mem copy function because this is X86. */
1185 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1186 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1187 user_data, length);
1188 io_mapping_unmap_atomic(vaddr);
1189 if (unwritten) {
1190 vaddr = (void __force *)
1191 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1192 unwritten = copy_from_user(vaddr + offset, user_data, length);
1193 io_mapping_unmap(vaddr);
1194 }
1195
1196 return unwritten;
1197 }
1198
1199 /**
1200 * This is the fast pwrite path, where we copy the data directly from the
1201 * user into the GTT, uncached.
1202 * @obj: i915 GEM object
1203 * @args: pwrite arguments structure
1204 */
1205 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1206 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1207 const struct drm_i915_gem_pwrite *args)
1208 {
1209 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1210 struct i915_ggtt *ggtt = &i915->ggtt;
1211 struct drm_mm_node node;
1212 struct i915_vma *vma;
1213 u64 remain, offset;
1214 void __user *user_data;
1215 int ret;
1216
1217 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1218 if (ret)
1219 return ret;
1220
1221 intel_runtime_pm_get(i915);
1222 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1223 PIN_MAPPABLE | PIN_NONBLOCK);
1224 if (!IS_ERR(vma)) {
1225 node.start = i915_ggtt_offset(vma);
1226 node.allocated = false;
1227 ret = i915_vma_put_fence(vma);
1228 if (ret) {
1229 i915_vma_unpin(vma);
1230 vma = ERR_PTR(ret);
1231 }
1232 }
1233 if (IS_ERR(vma)) {
1234 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1235 if (ret)
1236 goto out_unlock;
1237 GEM_BUG_ON(!node.allocated);
1238 }
1239
1240 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1241 if (ret)
1242 goto out_unpin;
1243
1244 mutex_unlock(&i915->drm.struct_mutex);
1245
1246 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1247
1248 user_data = u64_to_user_ptr(args->data_ptr);
1249 offset = args->offset;
1250 remain = args->size;
1251 while (remain) {
1252 /* Operation in this page
1253 *
1254 * page_base = page offset within aperture
1255 * page_offset = offset within page
1256 * page_length = bytes to copy for this page
1257 */
1258 u32 page_base = node.start;
1259 unsigned int page_offset = offset_in_page(offset);
1260 unsigned int page_length = PAGE_SIZE - page_offset;
1261 page_length = remain < page_length ? remain : page_length;
1262 if (node.allocated) {
1263 wmb(); /* flush the write before we modify the GGTT */
1264 ggtt->base.insert_page(&ggtt->base,
1265 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1266 node.start, I915_CACHE_NONE, 0);
1267 wmb(); /* flush modifications to the GGTT (insert_page) */
1268 } else {
1269 page_base += offset & PAGE_MASK;
1270 }
1271 /* If we get a fault while copying data, then (presumably) our
1272 * source page isn't available. Return the error and we'll
1273 * retry in the slow path.
1274 * If the object is non-shmem backed, we retry again with the
1275 * path that handles page fault.
1276 */
1277 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1278 user_data, page_length)) {
1279 ret = -EFAULT;
1280 break;
1281 }
1282
1283 remain -= page_length;
1284 user_data += page_length;
1285 offset += page_length;
1286 }
1287 intel_fb_obj_flush(obj, ORIGIN_CPU);
1288
1289 mutex_lock(&i915->drm.struct_mutex);
1290 out_unpin:
1291 if (node.allocated) {
1292 wmb();
1293 ggtt->base.clear_range(&ggtt->base,
1294 node.start, node.size);
1295 remove_mappable_node(&node);
1296 } else {
1297 i915_vma_unpin(vma);
1298 }
1299 out_unlock:
1300 intel_runtime_pm_put(i915);
1301 mutex_unlock(&i915->drm.struct_mutex);
1302 return ret;
1303 }
1304
1305 static int
shmem_pwrite_slow(struct page * page,int offset,int length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1306 shmem_pwrite_slow(struct page *page, int offset, int length,
1307 char __user *user_data,
1308 bool page_do_bit17_swizzling,
1309 bool needs_clflush_before,
1310 bool needs_clflush_after)
1311 {
1312 char *vaddr;
1313 int ret;
1314
1315 vaddr = kmap(page);
1316 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1317 shmem_clflush_swizzled_range(vaddr + offset, length,
1318 page_do_bit17_swizzling);
1319 if (page_do_bit17_swizzling)
1320 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1321 length);
1322 else
1323 ret = __copy_from_user(vaddr + offset, user_data, length);
1324 if (needs_clflush_after)
1325 shmem_clflush_swizzled_range(vaddr + offset, length,
1326 page_do_bit17_swizzling);
1327 kunmap(page);
1328
1329 return ret ? -EFAULT : 0;
1330 }
1331
1332 /* Per-page copy function for the shmem pwrite fastpath.
1333 * Flushes invalid cachelines before writing to the target if
1334 * needs_clflush_before is set and flushes out any written cachelines after
1335 * writing if needs_clflush is set.
1336 */
1337 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)1338 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1339 bool page_do_bit17_swizzling,
1340 bool needs_clflush_before,
1341 bool needs_clflush_after)
1342 {
1343 int ret;
1344
1345 ret = -ENODEV;
1346 if (!page_do_bit17_swizzling) {
1347 char *vaddr = kmap_atomic(page);
1348
1349 if (needs_clflush_before)
1350 drm_clflush_virt_range(vaddr + offset, len);
1351 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1352 if (needs_clflush_after)
1353 drm_clflush_virt_range(vaddr + offset, len);
1354
1355 kunmap_atomic(vaddr);
1356 }
1357 if (ret == 0)
1358 return ret;
1359
1360 return shmem_pwrite_slow(page, offset, len, user_data,
1361 page_do_bit17_swizzling,
1362 needs_clflush_before,
1363 needs_clflush_after);
1364 }
1365
1366 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)1367 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1368 const struct drm_i915_gem_pwrite *args)
1369 {
1370 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1371 void __user *user_data;
1372 u64 remain;
1373 unsigned int obj_do_bit17_swizzling;
1374 unsigned int partial_cacheline_write;
1375 unsigned int needs_clflush;
1376 unsigned int offset, idx;
1377 int ret;
1378
1379 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1380 if (ret)
1381 return ret;
1382
1383 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1384 mutex_unlock(&i915->drm.struct_mutex);
1385 if (ret)
1386 return ret;
1387
1388 obj_do_bit17_swizzling = 0;
1389 if (i915_gem_object_needs_bit17_swizzle(obj))
1390 obj_do_bit17_swizzling = BIT(17);
1391
1392 /* If we don't overwrite a cacheline completely we need to be
1393 * careful to have up-to-date data by first clflushing. Don't
1394 * overcomplicate things and flush the entire patch.
1395 */
1396 partial_cacheline_write = 0;
1397 if (needs_clflush & CLFLUSH_BEFORE)
1398 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1399
1400 user_data = u64_to_user_ptr(args->data_ptr);
1401 remain = args->size;
1402 offset = offset_in_page(args->offset);
1403 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1404 struct page *page = i915_gem_object_get_page(obj, idx);
1405 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1406
1407 ret = shmem_pwrite(page, offset, length, user_data,
1408 page_to_phys(page) & obj_do_bit17_swizzling,
1409 (offset | length) & partial_cacheline_write,
1410 needs_clflush & CLFLUSH_AFTER);
1411 if (ret)
1412 break;
1413
1414 remain -= length;
1415 user_data += length;
1416 offset = 0;
1417 }
1418
1419 intel_fb_obj_flush(obj, ORIGIN_CPU);
1420 i915_gem_obj_finish_shmem_access(obj);
1421 return ret;
1422 }
1423
1424 /**
1425 * Writes data to the object referenced by handle.
1426 * @dev: drm device
1427 * @data: ioctl data blob
1428 * @file: drm file
1429 *
1430 * On error, the contents of the buffer that were to be modified are undefined.
1431 */
1432 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1433 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1434 struct drm_file *file)
1435 {
1436 struct drm_i915_gem_pwrite *args = data;
1437 struct drm_i915_gem_object *obj;
1438 int ret;
1439
1440 if (args->size == 0)
1441 return 0;
1442
1443 if (!access_ok(VERIFY_READ,
1444 u64_to_user_ptr(args->data_ptr),
1445 args->size))
1446 return -EFAULT;
1447
1448 obj = i915_gem_object_lookup(file, args->handle);
1449 if (!obj)
1450 return -ENOENT;
1451
1452 /* Bounds check destination. */
1453 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1454 ret = -EINVAL;
1455 goto err;
1456 }
1457
1458 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1459
1460 ret = -ENODEV;
1461 if (obj->ops->pwrite)
1462 ret = obj->ops->pwrite(obj, args);
1463 if (ret != -ENODEV)
1464 goto err;
1465
1466 ret = i915_gem_object_wait(obj,
1467 I915_WAIT_INTERRUPTIBLE |
1468 I915_WAIT_ALL,
1469 MAX_SCHEDULE_TIMEOUT,
1470 to_rps_client(file));
1471 if (ret)
1472 goto err;
1473
1474 ret = i915_gem_object_pin_pages(obj);
1475 if (ret)
1476 goto err;
1477
1478 ret = -EFAULT;
1479 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1480 * it would end up going through the fenced access, and we'll get
1481 * different detiling behavior between reading and writing.
1482 * pread/pwrite currently are reading and writing from the CPU
1483 * perspective, requiring manual detiling by the client.
1484 */
1485 if (!i915_gem_object_has_struct_page(obj) ||
1486 cpu_write_needs_clflush(obj))
1487 /* Note that the gtt paths might fail with non-page-backed user
1488 * pointers (e.g. gtt mappings when moving data between
1489 * textures). Fallback to the shmem path in that case.
1490 */
1491 ret = i915_gem_gtt_pwrite_fast(obj, args);
1492
1493 if (ret == -EFAULT || ret == -ENOSPC) {
1494 if (obj->phys_handle)
1495 ret = i915_gem_phys_pwrite(obj, args, file);
1496 else
1497 ret = i915_gem_shmem_pwrite(obj, args);
1498 }
1499
1500 i915_gem_object_unpin_pages(obj);
1501 err:
1502 i915_gem_object_put(obj);
1503 return ret;
1504 }
1505
i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object * obj)1506 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1507 {
1508 struct drm_i915_private *i915;
1509 struct list_head *list;
1510 struct i915_vma *vma;
1511
1512 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1513 if (!i915_vma_is_ggtt(vma))
1514 break;
1515
1516 if (i915_vma_is_active(vma))
1517 continue;
1518
1519 if (!drm_mm_node_allocated(&vma->node))
1520 continue;
1521
1522 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1523 }
1524
1525 i915 = to_i915(obj->base.dev);
1526 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1527 list_move_tail(&obj->global_link, list);
1528 }
1529
1530 /**
1531 * Called when user space prepares to use an object with the CPU, either
1532 * through the mmap ioctl's mapping or a GTT mapping.
1533 * @dev: drm device
1534 * @data: ioctl data blob
1535 * @file: drm file
1536 */
1537 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1538 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1539 struct drm_file *file)
1540 {
1541 struct drm_i915_gem_set_domain *args = data;
1542 struct drm_i915_gem_object *obj;
1543 uint32_t read_domains = args->read_domains;
1544 uint32_t write_domain = args->write_domain;
1545 int err;
1546
1547 /* Only handle setting domains to types used by the CPU. */
1548 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1549 return -EINVAL;
1550
1551 /* Having something in the write domain implies it's in the read
1552 * domain, and only that read domain. Enforce that in the request.
1553 */
1554 if (write_domain != 0 && read_domains != write_domain)
1555 return -EINVAL;
1556
1557 obj = i915_gem_object_lookup(file, args->handle);
1558 if (!obj)
1559 return -ENOENT;
1560
1561 /* Try to flush the object off the GPU without holding the lock.
1562 * We will repeat the flush holding the lock in the normal manner
1563 * to catch cases where we are gazumped.
1564 */
1565 err = i915_gem_object_wait(obj,
1566 I915_WAIT_INTERRUPTIBLE |
1567 (write_domain ? I915_WAIT_ALL : 0),
1568 MAX_SCHEDULE_TIMEOUT,
1569 to_rps_client(file));
1570 if (err)
1571 goto out;
1572
1573 /* Flush and acquire obj->pages so that we are coherent through
1574 * direct access in memory with previous cached writes through
1575 * shmemfs and that our cache domain tracking remains valid.
1576 * For example, if the obj->filp was moved to swap without us
1577 * being notified and releasing the pages, we would mistakenly
1578 * continue to assume that the obj remained out of the CPU cached
1579 * domain.
1580 */
1581 err = i915_gem_object_pin_pages(obj);
1582 if (err)
1583 goto out;
1584
1585 err = i915_mutex_lock_interruptible(dev);
1586 if (err)
1587 goto out_unpin;
1588
1589 if (read_domains & I915_GEM_DOMAIN_WC)
1590 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1591 else if (read_domains & I915_GEM_DOMAIN_GTT)
1592 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1593 else
1594 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1595
1596 /* And bump the LRU for this access */
1597 i915_gem_object_bump_inactive_ggtt(obj);
1598
1599 mutex_unlock(&dev->struct_mutex);
1600
1601 if (write_domain != 0)
1602 intel_fb_obj_invalidate(obj,
1603 fb_write_origin(obj, write_domain));
1604
1605 out_unpin:
1606 i915_gem_object_unpin_pages(obj);
1607 out:
1608 i915_gem_object_put(obj);
1609 return err;
1610 }
1611
1612 /**
1613 * Called when user space has done writes to this buffer
1614 * @dev: drm device
1615 * @data: ioctl data blob
1616 * @file: drm file
1617 */
1618 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621 {
1622 struct drm_i915_gem_sw_finish *args = data;
1623 struct drm_i915_gem_object *obj;
1624
1625 obj = i915_gem_object_lookup(file, args->handle);
1626 if (!obj)
1627 return -ENOENT;
1628
1629 /* Pinned buffers may be scanout, so flush the cache */
1630 i915_gem_object_flush_if_display(obj);
1631 i915_gem_object_put(obj);
1632
1633 return 0;
1634 }
1635
1636 static inline bool
__vma_matches(struct vm_area_struct * vma,struct file * filp,unsigned long addr,unsigned long size)1637 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1638 unsigned long addr, unsigned long size)
1639 {
1640 if (vma->vm_file != filp)
1641 return false;
1642
1643 return vma->vm_start == addr &&
1644 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1645 }
1646
1647 /**
1648 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1649 * it is mapped to.
1650 * @dev: drm device
1651 * @data: ioctl data blob
1652 * @file: drm file
1653 *
1654 * While the mapping holds a reference on the contents of the object, it doesn't
1655 * imply a ref on the object itself.
1656 *
1657 * IMPORTANT:
1658 *
1659 * DRM driver writers who look a this function as an example for how to do GEM
1660 * mmap support, please don't implement mmap support like here. The modern way
1661 * to implement DRM mmap support is with an mmap offset ioctl (like
1662 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1663 * That way debug tooling like valgrind will understand what's going on, hiding
1664 * the mmap call in a driver private ioctl will break that. The i915 driver only
1665 * does cpu mmaps this way because we didn't know better.
1666 */
1667 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1668 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1669 struct drm_file *file)
1670 {
1671 struct drm_i915_gem_mmap *args = data;
1672 struct drm_i915_gem_object *obj;
1673 unsigned long addr;
1674
1675 if (args->flags & ~(I915_MMAP_WC))
1676 return -EINVAL;
1677
1678 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1679 return -ENODEV;
1680
1681 obj = i915_gem_object_lookup(file, args->handle);
1682 if (!obj)
1683 return -ENOENT;
1684
1685 /* prime objects have no backing filp to GEM mmap
1686 * pages from.
1687 */
1688 if (!obj->base.filp) {
1689 i915_gem_object_put(obj);
1690 return -EINVAL;
1691 }
1692
1693 addr = vm_mmap(obj->base.filp, 0, args->size,
1694 PROT_READ | PROT_WRITE, MAP_SHARED,
1695 args->offset);
1696 if (args->flags & I915_MMAP_WC) {
1697 struct mm_struct *mm = current->mm;
1698 struct vm_area_struct *vma;
1699
1700 if (down_write_killable(&mm->mmap_sem)) {
1701 i915_gem_object_put(obj);
1702 return -EINTR;
1703 }
1704 vma = find_vma(mm, addr);
1705 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1706 vma->vm_page_prot =
1707 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1708 else
1709 addr = -ENOMEM;
1710 up_write(&mm->mmap_sem);
1711
1712 /* This may race, but that's ok, it only gets set */
1713 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1714 }
1715 i915_gem_object_put(obj);
1716 if (IS_ERR((void *)addr))
1717 return addr;
1718
1719 args->addr_ptr = (uint64_t) addr;
1720
1721 return 0;
1722 }
1723
tile_row_pages(struct drm_i915_gem_object * obj)1724 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1725 {
1726 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1727 }
1728
1729 /**
1730 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1731 *
1732 * A history of the GTT mmap interface:
1733 *
1734 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1735 * aligned and suitable for fencing, and still fit into the available
1736 * mappable space left by the pinned display objects. A classic problem
1737 * we called the page-fault-of-doom where we would ping-pong between
1738 * two objects that could not fit inside the GTT and so the memcpy
1739 * would page one object in at the expense of the other between every
1740 * single byte.
1741 *
1742 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1743 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1744 * object is too large for the available space (or simply too large
1745 * for the mappable aperture!), a view is created instead and faulted
1746 * into userspace. (This view is aligned and sized appropriately for
1747 * fenced access.)
1748 *
1749 * 2 - Recognise WC as a separate cache domain so that we can flush the
1750 * delayed writes via GTT before performing direct access via WC.
1751 *
1752 * Restrictions:
1753 *
1754 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1755 * hangs on some architectures, corruption on others. An attempt to service
1756 * a GTT page fault from a snoopable object will generate a SIGBUS.
1757 *
1758 * * the object must be able to fit into RAM (physical memory, though no
1759 * limited to the mappable aperture).
1760 *
1761 *
1762 * Caveats:
1763 *
1764 * * a new GTT page fault will synchronize rendering from the GPU and flush
1765 * all data to system memory. Subsequent access will not be synchronized.
1766 *
1767 * * all mappings are revoked on runtime device suspend.
1768 *
1769 * * there are only 8, 16 or 32 fence registers to share between all users
1770 * (older machines require fence register for display and blitter access
1771 * as well). Contention of the fence registers will cause the previous users
1772 * to be unmapped and any new access will generate new page faults.
1773 *
1774 * * running out of memory while servicing a fault may generate a SIGBUS,
1775 * rather than the expected SIGSEGV.
1776 */
i915_gem_mmap_gtt_version(void)1777 int i915_gem_mmap_gtt_version(void)
1778 {
1779 return 2;
1780 }
1781
1782 static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object * obj,pgoff_t page_offset,unsigned int chunk)1783 compute_partial_view(struct drm_i915_gem_object *obj,
1784 pgoff_t page_offset,
1785 unsigned int chunk)
1786 {
1787 struct i915_ggtt_view view;
1788
1789 if (i915_gem_object_is_tiled(obj))
1790 chunk = roundup(chunk, tile_row_pages(obj));
1791
1792 view.type = I915_GGTT_VIEW_PARTIAL;
1793 view.partial.offset = rounddown(page_offset, chunk);
1794 view.partial.size =
1795 min_t(unsigned int, chunk,
1796 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1797
1798 /* If the partial covers the entire object, just create a normal VMA. */
1799 if (chunk >= obj->base.size >> PAGE_SHIFT)
1800 view.type = I915_GGTT_VIEW_NORMAL;
1801
1802 return view;
1803 }
1804
1805 /**
1806 * i915_gem_fault - fault a page into the GTT
1807 * @vmf: fault info
1808 *
1809 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1810 * from userspace. The fault handler takes care of binding the object to
1811 * the GTT (if needed), allocating and programming a fence register (again,
1812 * only if needed based on whether the old reg is still valid or the object
1813 * is tiled) and inserting a new PTE into the faulting process.
1814 *
1815 * Note that the faulting process may involve evicting existing objects
1816 * from the GTT and/or fence registers to make room. So performance may
1817 * suffer if the GTT working set is large or there are few fence registers
1818 * left.
1819 *
1820 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1821 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1822 */
i915_gem_fault(struct vm_fault * vmf)1823 int i915_gem_fault(struct vm_fault *vmf)
1824 {
1825 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1826 struct vm_area_struct *area = vmf->vma;
1827 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1828 struct drm_device *dev = obj->base.dev;
1829 struct drm_i915_private *dev_priv = to_i915(dev);
1830 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1831 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1832 struct i915_vma *vma;
1833 pgoff_t page_offset;
1834 unsigned int flags;
1835 int ret;
1836
1837 /* Sanity check that we allow writing into this object */
1838 if (i915_gem_object_is_readonly(obj) && write)
1839 return VM_FAULT_SIGBUS;
1840
1841 /* We don't use vmf->pgoff since that has the fake offset */
1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843
1844 trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
1846 /* Try to flush the object off the GPU first without holding the lock.
1847 * Upon acquiring the lock, we will perform our sanity checks and then
1848 * repeat the flush holding the lock in the normal manner to catch cases
1849 * where we are gazumped.
1850 */
1851 ret = i915_gem_object_wait(obj,
1852 I915_WAIT_INTERRUPTIBLE,
1853 MAX_SCHEDULE_TIMEOUT,
1854 NULL);
1855 if (ret)
1856 goto err;
1857
1858 ret = i915_gem_object_pin_pages(obj);
1859 if (ret)
1860 goto err;
1861
1862 intel_runtime_pm_get(dev_priv);
1863
1864 ret = i915_mutex_lock_interruptible(dev);
1865 if (ret)
1866 goto err_rpm;
1867
1868 /* Access to snoopable pages through the GTT is incoherent. */
1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870 ret = -EFAULT;
1871 goto err_unlock;
1872 }
1873
1874 /* If the object is smaller than a couple of partial vma, it is
1875 * not worth only creating a single partial vma - we may as well
1876 * clear enough space for the full object.
1877 */
1878 flags = PIN_MAPPABLE;
1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
1882 /* Now pin it into the GTT as needed */
1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 if (IS_ERR(vma)) {
1885 /* Use a partial view if it is bigger than available space */
1886 struct i915_ggtt_view view =
1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888
1889 /* Userspace is now writing through an untracked VMA, abandon
1890 * all hope that the hardware is able to track future writes.
1891 */
1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 }
1896 if (IS_ERR(vma)) {
1897 ret = PTR_ERR(vma);
1898 goto err_unlock;
1899 }
1900
1901 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 if (ret)
1903 goto err_unpin;
1904
1905 ret = i915_vma_get_fence(vma);
1906 if (ret)
1907 goto err_unpin;
1908
1909 /* Mark as being mmapped into userspace for later revocation */
1910 assert_rpm_wakelock_held(dev_priv);
1911 if (list_empty(&obj->userfault_link))
1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913
1914 /* Finally, remap it using the new GTT offset */
1915 ret = remap_io_mapping(area,
1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 &ggtt->mappable);
1920
1921 err_unpin:
1922 __i915_vma_unpin(vma);
1923 err_unlock:
1924 mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926 intel_runtime_pm_put(dev_priv);
1927 i915_gem_object_unpin_pages(obj);
1928 err:
1929 switch (ret) {
1930 case -EIO:
1931 /*
1932 * We eat errors when the gpu is terminally wedged to avoid
1933 * userspace unduly crashing (gl has no provisions for mmaps to
1934 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 * and so needs to be reported.
1936 */
1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 }
1941 case -EAGAIN:
1942 /*
1943 * EAGAIN means the gpu is hung and we'll wait for the error
1944 * handler to reset everything when re-faulting in
1945 * i915_mutex_lock_interruptible.
1946 */
1947 case 0:
1948 case -ERESTARTSYS:
1949 case -EINTR:
1950 case -EBUSY:
1951 /*
1952 * EBUSY is ok: this just means that another thread
1953 * already did the job.
1954 */
1955 ret = VM_FAULT_NOPAGE;
1956 break;
1957 case -ENOMEM:
1958 ret = VM_FAULT_OOM;
1959 break;
1960 case -ENOSPC:
1961 case -EFAULT:
1962 ret = VM_FAULT_SIGBUS;
1963 break;
1964 default:
1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 ret = VM_FAULT_SIGBUS;
1967 break;
1968 }
1969 return ret;
1970 }
1971
1972 /**
1973 * i915_gem_release_mmap - remove physical page mappings
1974 * @obj: obj in question
1975 *
1976 * Preserve the reservation of the mmapping with the DRM core code, but
1977 * relinquish ownership of the pages back to the system.
1978 *
1979 * It is vital that we remove the page mapping if we have mapped a tiled
1980 * object through the GTT and then lose the fence register due to
1981 * resource pressure. Similarly if the object has been moved out of the
1982 * aperture, than pages mapped into userspace must be revoked. Removing the
1983 * mapping will then trigger a page fault on the next user access, allowing
1984 * fixup by i915_gem_fault().
1985 */
1986 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990
1991 /* Serialisation between user GTT access and our code depends upon
1992 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 * pagefault then has to wait until we release the mutex.
1994 *
1995 * Note that RPM complicates somewhat by adding an additional
1996 * requirement that operations to the GGTT be made holding the RPM
1997 * wakeref.
1998 */
1999 lockdep_assert_held(&i915->drm.struct_mutex);
2000 intel_runtime_pm_get(i915);
2001
2002 if (list_empty(&obj->userfault_link))
2003 goto out;
2004
2005 list_del_init(&obj->userfault_link);
2006 drm_vma_node_unmap(&obj->base.vma_node,
2007 obj->base.dev->anon_inode->i_mapping);
2008
2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 * memory transactions from userspace before we return. The TLB
2011 * flushing implied above by changing the PTE above *should* be
2012 * sufficient, an extra barrier here just provides us with a bit
2013 * of paranoid documentation about our requirement to serialise
2014 * memory writes before touching registers / GSM.
2015 */
2016 wmb();
2017
2018 out:
2019 intel_runtime_pm_put(i915);
2020 }
2021
i915_gem_runtime_suspend(struct drm_i915_private * dev_priv)2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024 struct drm_i915_gem_object *obj, *on;
2025 int i;
2026
2027 /*
2028 * Only called during RPM suspend. All users of the userfault_list
2029 * must be holding an RPM wakeref to ensure that this can not
2030 * run concurrently with themselves (and use the struct_mutex for
2031 * protection between themselves).
2032 */
2033
2034 list_for_each_entry_safe(obj, on,
2035 &dev_priv->mm.userfault_list, userfault_link) {
2036 list_del_init(&obj->userfault_link);
2037 drm_vma_node_unmap(&obj->base.vma_node,
2038 obj->base.dev->anon_inode->i_mapping);
2039 }
2040
2041 /* The fence will be lost when the device powers down. If any were
2042 * in use by hardware (i.e. they are pinned), we should not be powering
2043 * down! All other fences will be reacquired by the user upon waking.
2044 */
2045 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
2048 /* Ideally we want to assert that the fence register is not
2049 * live at this point (i.e. that no piece of code will be
2050 * trying to write through fence + GTT, as that both violates
2051 * our tracking of activity and associated locking/barriers,
2052 * but also is illegal given that the hw is powered down).
2053 *
2054 * Previously we used reg->pin_count as a "liveness" indicator.
2055 * That is not sufficient, and we need a more fine-grained
2056 * tool if we want to have a sanity check here.
2057 */
2058
2059 if (!reg->vma)
2060 continue;
2061
2062 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link));
2063 reg->dirty = true;
2064 }
2065 }
2066
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070 int err;
2071
2072 err = drm_gem_create_mmap_offset(&obj->base);
2073 if (likely(!err))
2074 return 0;
2075
2076 /* Attempt to reap some mmap space from dead objects */
2077 do {
2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 if (err)
2080 break;
2081
2082 i915_gem_drain_freed_objects(dev_priv);
2083 err = drm_gem_create_mmap_offset(&obj->base);
2084 if (!err)
2085 break;
2086
2087 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2088
2089 return err;
2090 }
2091
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094 drm_gem_free_mmap_offset(&obj->base);
2095 }
2096
2097 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2098 i915_gem_mmap_gtt(struct drm_file *file,
2099 struct drm_device *dev,
2100 uint32_t handle,
2101 uint64_t *offset)
2102 {
2103 struct drm_i915_gem_object *obj;
2104 int ret;
2105
2106 obj = i915_gem_object_lookup(file, handle);
2107 if (!obj)
2108 return -ENOENT;
2109
2110 ret = i915_gem_object_create_mmap_offset(obj);
2111 if (ret == 0)
2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113
2114 i915_gem_object_put(obj);
2115 return ret;
2116 }
2117
2118 /**
2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120 * @dev: DRM device
2121 * @data: GTT mapping ioctl data
2122 * @file: GEM object info
2123 *
2124 * Simply returns the fake offset to userspace so it can mmap it.
2125 * The mmap call will end up in drm_gem_mmap(), which will set things
2126 * up so we can get faults in the handler above.
2127 *
2128 * The fault handler will take care of binding the object into the GTT
2129 * (since it may have been evicted to make room for something), allocating
2130 * a fence register, and mapping the appropriate aperture address into
2131 * userspace.
2132 */
2133 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 struct drm_file *file)
2136 {
2137 struct drm_i915_gem_mmap_gtt *args = data;
2138
2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141
2142 /* Immediately discard the backing storage */
2143 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146 i915_gem_object_free_mmap_offset(obj);
2147
2148 if (obj->base.filp == NULL)
2149 return;
2150
2151 /* Our goal here is to return as much of the memory as
2152 * is possible back to the system as we are called from OOM.
2153 * To do this we must instruct the shmfs to drop all of its
2154 * backing pages, *now*.
2155 */
2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 obj->mm.madv = __I915_MADV_PURGED;
2158 obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160
2161 /* Try to discard unwanted pages */
__i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164 struct address_space *mapping;
2165
2166 lockdep_assert_held(&obj->mm.lock);
2167 GEM_BUG_ON(obj->mm.pages);
2168
2169 switch (obj->mm.madv) {
2170 case I915_MADV_DONTNEED:
2171 i915_gem_object_truncate(obj);
2172 case __I915_MADV_PURGED:
2173 return;
2174 }
2175
2176 if (obj->base.filp == NULL)
2177 return;
2178
2179 mapping = obj->base.filp->f_mapping,
2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182
2183 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj,struct sg_table * pages)2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 struct sg_table *pages)
2186 {
2187 struct sgt_iter sgt_iter;
2188 struct page *page;
2189
2190 __i915_gem_object_release_shmem(obj, pages, true);
2191
2192 i915_gem_gtt_finish_pages(obj, pages);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj, pages);
2196
2197 for_each_sgt_page(page, sgt_iter, pages) {
2198 if (obj->mm.dirty)
2199 set_page_dirty(page);
2200
2201 if (obj->mm.madv == I915_MADV_WILLNEED)
2202 mark_page_accessed(page);
2203
2204 put_page(page);
2205 }
2206 obj->mm.dirty = false;
2207
2208 sg_free_table(pages);
2209 kfree(pages);
2210 }
2211
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214 struct radix_tree_iter iter;
2215 void __rcu **slot;
2216
2217 rcu_read_lock();
2218 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 rcu_read_unlock();
2221 }
2222
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj,enum i915_mm_subclass subclass)2223 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2224 enum i915_mm_subclass subclass)
2225 {
2226 struct sg_table *pages;
2227
2228 if (i915_gem_object_has_pinned_pages(obj))
2229 return;
2230
2231 GEM_BUG_ON(obj->bind_count);
2232 if (!READ_ONCE(obj->mm.pages))
2233 return;
2234
2235 /* May be called by shrinker from within get_pages() (on another bo) */
2236 mutex_lock_nested(&obj->mm.lock, subclass);
2237 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2238 goto unlock;
2239
2240 /* ->put_pages might need to allocate memory for the bit17 swizzle
2241 * array, hence protect them from being reaped by removing them from gtt
2242 * lists early. */
2243 pages = fetch_and_zero(&obj->mm.pages);
2244 GEM_BUG_ON(!pages);
2245
2246 if (obj->mm.mapping) {
2247 void *ptr;
2248
2249 ptr = page_mask_bits(obj->mm.mapping);
2250 if (is_vmalloc_addr(ptr))
2251 vunmap(ptr);
2252 else
2253 kunmap(kmap_to_page(ptr));
2254
2255 obj->mm.mapping = NULL;
2256 }
2257
2258 __i915_gem_object_reset_page_iter(obj);
2259
2260 if (!IS_ERR(pages))
2261 obj->ops->put_pages(obj, pages);
2262
2263 unlock:
2264 mutex_unlock(&obj->mm.lock);
2265 }
2266
i915_sg_trim(struct sg_table * orig_st)2267 static bool i915_sg_trim(struct sg_table *orig_st)
2268 {
2269 struct sg_table new_st;
2270 struct scatterlist *sg, *new_sg;
2271 unsigned int i;
2272
2273 if (orig_st->nents == orig_st->orig_nents)
2274 return false;
2275
2276 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2277 return false;
2278
2279 new_sg = new_st.sgl;
2280 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2281 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2282 /* called before being DMA mapped, no need to copy sg->dma_* */
2283 new_sg = sg_next(new_sg);
2284 }
2285 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2286
2287 sg_free_table(orig_st);
2288
2289 *orig_st = new_st;
2290 return true;
2291 }
2292
2293 static struct sg_table *
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2294 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2295 {
2296 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2297 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2298 unsigned long i;
2299 struct address_space *mapping;
2300 struct sg_table *st;
2301 struct scatterlist *sg;
2302 struct sgt_iter sgt_iter;
2303 struct page *page;
2304 unsigned long last_pfn = 0; /* suppress gcc warning */
2305 unsigned int max_segment;
2306 gfp_t noreclaim;
2307 int ret;
2308
2309 /* Assert that the object is not currently in any GPU domain. As it
2310 * wasn't in the GTT, there shouldn't be any way it could have been in
2311 * a GPU cache
2312 */
2313 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2314 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2315
2316 max_segment = swiotlb_max_segment();
2317 if (!max_segment)
2318 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2319
2320 st = kmalloc(sizeof(*st), GFP_KERNEL);
2321 if (st == NULL)
2322 return ERR_PTR(-ENOMEM);
2323
2324 rebuild_st:
2325 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2326 kfree(st);
2327 return ERR_PTR(-ENOMEM);
2328 }
2329
2330 /* Get the list of pages out of our struct file. They'll be pinned
2331 * at this point until we release them.
2332 *
2333 * Fail silently without starting the shrinker
2334 */
2335 mapping = obj->base.filp->f_mapping;
2336 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2337 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2338
2339 sg = st->sgl;
2340 st->nents = 0;
2341 for (i = 0; i < page_count; i++) {
2342 const unsigned int shrink[] = {
2343 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2344 0,
2345 }, *s = shrink;
2346 gfp_t gfp = noreclaim;
2347
2348 do {
2349 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2350 if (likely(!IS_ERR(page)))
2351 break;
2352
2353 if (!*s) {
2354 ret = PTR_ERR(page);
2355 goto err_sg;
2356 }
2357
2358 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2359 cond_resched();
2360
2361 /* We've tried hard to allocate the memory by reaping
2362 * our own buffer, now let the real VM do its job and
2363 * go down in flames if truly OOM.
2364 *
2365 * However, since graphics tend to be disposable,
2366 * defer the oom here by reporting the ENOMEM back
2367 * to userspace.
2368 */
2369 if (!*s) {
2370 /* reclaim and warn, but no oom */
2371 gfp = mapping_gfp_mask(mapping);
2372
2373 /* Our bo are always dirty and so we require
2374 * kswapd to reclaim our pages (direct reclaim
2375 * does not effectively begin pageout of our
2376 * buffers on its own). However, direct reclaim
2377 * only waits for kswapd when under allocation
2378 * congestion. So as a result __GFP_RECLAIM is
2379 * unreliable and fails to actually reclaim our
2380 * dirty pages -- unless you try over and over
2381 * again with !__GFP_NORETRY. However, we still
2382 * want to fail this allocation rather than
2383 * trigger the out-of-memory killer and for
2384 * this we want __GFP_RETRY_MAYFAIL.
2385 */
2386 gfp |= __GFP_RETRY_MAYFAIL;
2387 }
2388 } while (1);
2389
2390 if (!i ||
2391 sg->length >= max_segment ||
2392 page_to_pfn(page) != last_pfn + 1) {
2393 if (i)
2394 sg = sg_next(sg);
2395 st->nents++;
2396 sg_set_page(sg, page, PAGE_SIZE, 0);
2397 } else {
2398 sg->length += PAGE_SIZE;
2399 }
2400 last_pfn = page_to_pfn(page);
2401
2402 /* Check that the i965g/gm workaround works. */
2403 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2404 }
2405 if (sg) /* loop terminated early; short sg table */
2406 sg_mark_end(sg);
2407
2408 /* Trim unused sg entries to avoid wasting memory. */
2409 i915_sg_trim(st);
2410
2411 ret = i915_gem_gtt_prepare_pages(obj, st);
2412 if (ret) {
2413 /* DMA remapping failed? One possible cause is that
2414 * it could not reserve enough large entries, asking
2415 * for PAGE_SIZE chunks instead may be helpful.
2416 */
2417 if (max_segment > PAGE_SIZE) {
2418 for_each_sgt_page(page, sgt_iter, st)
2419 put_page(page);
2420 sg_free_table(st);
2421
2422 max_segment = PAGE_SIZE;
2423 goto rebuild_st;
2424 } else {
2425 dev_warn(&dev_priv->drm.pdev->dev,
2426 "Failed to DMA remap %lu pages\n",
2427 page_count);
2428 goto err_pages;
2429 }
2430 }
2431
2432 if (i915_gem_object_needs_bit17_swizzle(obj))
2433 i915_gem_object_do_bit_17_swizzle(obj, st);
2434
2435 return st;
2436
2437 err_sg:
2438 sg_mark_end(sg);
2439 err_pages:
2440 for_each_sgt_page(page, sgt_iter, st)
2441 put_page(page);
2442 sg_free_table(st);
2443 kfree(st);
2444
2445 /* shmemfs first checks if there is enough memory to allocate the page
2446 * and reports ENOSPC should there be insufficient, along with the usual
2447 * ENOMEM for a genuine allocation failure.
2448 *
2449 * We use ENOSPC in our driver to mean that we have run out of aperture
2450 * space and so want to translate the error from shmemfs back to our
2451 * usual understanding of ENOMEM.
2452 */
2453 if (ret == -ENOSPC)
2454 ret = -ENOMEM;
2455
2456 return ERR_PTR(ret);
2457 }
2458
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2459 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2460 struct sg_table *pages)
2461 {
2462 lockdep_assert_held(&obj->mm.lock);
2463
2464 obj->mm.get_page.sg_pos = pages->sgl;
2465 obj->mm.get_page.sg_idx = 0;
2466
2467 obj->mm.pages = pages;
2468
2469 if (i915_gem_object_is_tiled(obj) &&
2470 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2471 GEM_BUG_ON(obj->mm.quirked);
2472 __i915_gem_object_pin_pages(obj);
2473 obj->mm.quirked = true;
2474 }
2475 }
2476
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2477 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2478 {
2479 struct sg_table *pages;
2480
2481 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2482
2483 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2484 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2485 return -EFAULT;
2486 }
2487
2488 pages = obj->ops->get_pages(obj);
2489 if (unlikely(IS_ERR(pages)))
2490 return PTR_ERR(pages);
2491
2492 __i915_gem_object_set_pages(obj, pages);
2493 return 0;
2494 }
2495
2496 /* Ensure that the associated pages are gathered from the backing storage
2497 * and pinned into our object. i915_gem_object_pin_pages() may be called
2498 * multiple times before they are released by a single call to
2499 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2500 * either as a result of memory pressure (reaping pages under the shrinker)
2501 * or as the object is itself released.
2502 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2503 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2504 {
2505 int err;
2506
2507 err = mutex_lock_interruptible(&obj->mm.lock);
2508 if (err)
2509 return err;
2510
2511 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2512 err = ____i915_gem_object_get_pages(obj);
2513 if (err)
2514 goto unlock;
2515
2516 smp_mb__before_atomic();
2517 }
2518 atomic_inc(&obj->mm.pages_pin_count);
2519
2520 unlock:
2521 mutex_unlock(&obj->mm.lock);
2522 return err;
2523 }
2524
2525 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map(const struct drm_i915_gem_object * obj,enum i915_map_type type)2526 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2527 enum i915_map_type type)
2528 {
2529 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2530 struct sg_table *sgt = obj->mm.pages;
2531 struct sgt_iter sgt_iter;
2532 struct page *page;
2533 struct page *stack_pages[32];
2534 struct page **pages = stack_pages;
2535 unsigned long i = 0;
2536 pgprot_t pgprot;
2537 void *addr;
2538
2539 /* A single page can always be kmapped */
2540 if (n_pages == 1 && type == I915_MAP_WB)
2541 return kmap(sg_page(sgt->sgl));
2542
2543 if (n_pages > ARRAY_SIZE(stack_pages)) {
2544 /* Too big for stack -- allocate temporary array instead */
2545 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2546 if (!pages)
2547 return NULL;
2548 }
2549
2550 for_each_sgt_page(page, sgt_iter, sgt)
2551 pages[i++] = page;
2552
2553 /* Check that we have the expected number of pages */
2554 GEM_BUG_ON(i != n_pages);
2555
2556 switch (type) {
2557 default:
2558 MISSING_CASE(type);
2559 /* fallthrough to use PAGE_KERNEL anyway */
2560 case I915_MAP_WB:
2561 pgprot = PAGE_KERNEL;
2562 break;
2563 case I915_MAP_WC:
2564 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2565 break;
2566 }
2567 addr = vmap(pages, n_pages, 0, pgprot);
2568
2569 if (pages != stack_pages)
2570 kvfree(pages);
2571
2572 return addr;
2573 }
2574
2575 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)2576 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2577 enum i915_map_type type)
2578 {
2579 enum i915_map_type has_type;
2580 bool pinned;
2581 void *ptr;
2582 int ret;
2583
2584 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2585
2586 ret = mutex_lock_interruptible(&obj->mm.lock);
2587 if (ret)
2588 return ERR_PTR(ret);
2589
2590 pinned = !(type & I915_MAP_OVERRIDE);
2591 type &= ~I915_MAP_OVERRIDE;
2592
2593 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2594 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2595 ret = ____i915_gem_object_get_pages(obj);
2596 if (ret)
2597 goto err_unlock;
2598
2599 smp_mb__before_atomic();
2600 }
2601 atomic_inc(&obj->mm.pages_pin_count);
2602 pinned = false;
2603 }
2604 GEM_BUG_ON(!obj->mm.pages);
2605
2606 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2607 if (ptr && has_type != type) {
2608 if (pinned) {
2609 ret = -EBUSY;
2610 goto err_unpin;
2611 }
2612
2613 if (is_vmalloc_addr(ptr))
2614 vunmap(ptr);
2615 else
2616 kunmap(kmap_to_page(ptr));
2617
2618 ptr = obj->mm.mapping = NULL;
2619 }
2620
2621 if (!ptr) {
2622 ptr = i915_gem_object_map(obj, type);
2623 if (!ptr) {
2624 ret = -ENOMEM;
2625 goto err_unpin;
2626 }
2627
2628 obj->mm.mapping = page_pack_bits(ptr, type);
2629 }
2630
2631 out_unlock:
2632 mutex_unlock(&obj->mm.lock);
2633 return ptr;
2634
2635 err_unpin:
2636 atomic_dec(&obj->mm.pages_pin_count);
2637 err_unlock:
2638 ptr = ERR_PTR(ret);
2639 goto out_unlock;
2640 }
2641
2642 static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)2643 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2644 const struct drm_i915_gem_pwrite *arg)
2645 {
2646 struct address_space *mapping = obj->base.filp->f_mapping;
2647 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2648 u64 remain, offset;
2649 unsigned int pg;
2650
2651 /* Before we instantiate/pin the backing store for our use, we
2652 * can prepopulate the shmemfs filp efficiently using a write into
2653 * the pagecache. We avoid the penalty of instantiating all the
2654 * pages, important if the user is just writing to a few and never
2655 * uses the object on the GPU, and using a direct write into shmemfs
2656 * allows it to avoid the cost of retrieving a page (either swapin
2657 * or clearing-before-use) before it is overwritten.
2658 */
2659 if (READ_ONCE(obj->mm.pages))
2660 return -ENODEV;
2661
2662 if (obj->mm.madv != I915_MADV_WILLNEED)
2663 return -EFAULT;
2664
2665 /* Before the pages are instantiated the object is treated as being
2666 * in the CPU domain. The pages will be clflushed as required before
2667 * use, and we can freely write into the pages directly. If userspace
2668 * races pwrite with any other operation; corruption will ensue -
2669 * that is userspace's prerogative!
2670 */
2671
2672 remain = arg->size;
2673 offset = arg->offset;
2674 pg = offset_in_page(offset);
2675
2676 do {
2677 unsigned int len, unwritten;
2678 struct page *page;
2679 void *data, *vaddr;
2680 int err;
2681
2682 len = PAGE_SIZE - pg;
2683 if (len > remain)
2684 len = remain;
2685
2686 err = pagecache_write_begin(obj->base.filp, mapping,
2687 offset, len, 0,
2688 &page, &data);
2689 if (err < 0)
2690 return err;
2691
2692 vaddr = kmap(page);
2693 unwritten = copy_from_user(vaddr + pg, user_data, len);
2694 kunmap(page);
2695
2696 err = pagecache_write_end(obj->base.filp, mapping,
2697 offset, len, len - unwritten,
2698 page, data);
2699 if (err < 0)
2700 return err;
2701
2702 if (unwritten)
2703 return -EFAULT;
2704
2705 remain -= len;
2706 user_data += len;
2707 offset += len;
2708 pg = 0;
2709 } while (remain);
2710
2711 return 0;
2712 }
2713
ban_context(const struct i915_gem_context * ctx,unsigned int score)2714 static bool ban_context(const struct i915_gem_context *ctx,
2715 unsigned int score)
2716 {
2717 return (i915_gem_context_is_bannable(ctx) &&
2718 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 }
2720
i915_gem_context_mark_guilty(struct i915_gem_context * ctx)2721 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722 {
2723 unsigned int score;
2724 bool banned;
2725
2726 atomic_inc(&ctx->guilty_count);
2727
2728 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2729 banned = ban_context(ctx, score);
2730 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2731 ctx->name, score, yesno(banned));
2732 if (!banned)
2733 return;
2734
2735 i915_gem_context_set_banned(ctx);
2736 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2737 atomic_inc(&ctx->file_priv->context_bans);
2738 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2739 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2740 }
2741 }
2742
i915_gem_context_mark_innocent(struct i915_gem_context * ctx)2743 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2744 {
2745 atomic_inc(&ctx->active_count);
2746 }
2747
2748 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * engine)2749 i915_gem_find_active_request(struct intel_engine_cs *engine)
2750 {
2751 struct drm_i915_gem_request *request, *active = NULL;
2752 unsigned long flags;
2753
2754 /* We are called by the error capture and reset at a random
2755 * point in time. In particular, note that neither is crucially
2756 * ordered with an interrupt. After a hang, the GPU is dead and we
2757 * assume that no more writes can happen (we waited long enough for
2758 * all writes that were in transaction to be flushed) - adding an
2759 * extra delay for a recent interrupt is pointless. Hence, we do
2760 * not need an engine->irq_seqno_barrier() before the seqno reads.
2761 */
2762 spin_lock_irqsave(&engine->timeline->lock, flags);
2763 list_for_each_entry(request, &engine->timeline->requests, link) {
2764 if (__i915_gem_request_completed(request,
2765 request->global_seqno))
2766 continue;
2767
2768 GEM_BUG_ON(request->engine != engine);
2769 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2770 &request->fence.flags));
2771
2772 active = request;
2773 break;
2774 }
2775 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776
2777 return active;
2778 }
2779
engine_stalled(struct intel_engine_cs * engine)2780 static bool engine_stalled(struct intel_engine_cs *engine)
2781 {
2782 if (!engine->hangcheck.stalled)
2783 return false;
2784
2785 /* Check for possible seqno movement after hang declaration */
2786 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2787 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2788 return false;
2789 }
2790
2791 return true;
2792 }
2793
2794 /*
2795 * Ensure irq handler finishes, and not run again.
2796 * Also return the active request so that we only search for it once.
2797 */
2798 struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs * engine)2799 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2800 {
2801 struct drm_i915_gem_request *request = NULL;
2802
2803 /* Prevent the signaler thread from updating the request
2804 * state (by calling dma_fence_signal) as we are processing
2805 * the reset. The write from the GPU of the seqno is
2806 * asynchronous and the signaler thread may see a different
2807 * value to us and declare the request complete, even though
2808 * the reset routine have picked that request as the active
2809 * (incomplete) request. This conflict is not handled
2810 * gracefully!
2811 */
2812 kthread_park(engine->breadcrumbs.signaler);
2813
2814 /* Prevent request submission to the hardware until we have
2815 * completed the reset in i915_gem_reset_finish(). If a request
2816 * is completed by one engine, it may then queue a request
2817 * to a second via its engine->irq_tasklet *just* as we are
2818 * calling engine->init_hw() and also writing the ELSP.
2819 * Turning off the engine->irq_tasklet until the reset is over
2820 * prevents the race.
2821 */
2822 tasklet_kill(&engine->irq_tasklet);
2823 tasklet_disable(&engine->irq_tasklet);
2824
2825 if (engine->irq_seqno_barrier)
2826 engine->irq_seqno_barrier(engine);
2827
2828 request = i915_gem_find_active_request(engine);
2829 if (request && request->fence.error == -EIO)
2830 request = ERR_PTR(-EIO); /* Previous reset failed! */
2831
2832 return request;
2833 }
2834
i915_gem_reset_prepare(struct drm_i915_private * dev_priv)2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837 struct intel_engine_cs *engine;
2838 struct drm_i915_gem_request *request;
2839 enum intel_engine_id id;
2840 int err = 0;
2841
2842 for_each_engine(engine, dev_priv, id) {
2843 request = i915_gem_reset_prepare_engine(engine);
2844 if (IS_ERR(request)) {
2845 err = PTR_ERR(request);
2846 continue;
2847 }
2848
2849 engine->hangcheck.active_request = request;
2850 }
2851
2852 i915_gem_revoke_fences(dev_priv);
2853
2854 return err;
2855 }
2856
skip_request(struct drm_i915_gem_request * request)2857 static void skip_request(struct drm_i915_gem_request *request)
2858 {
2859 void *vaddr = request->ring->vaddr;
2860 u32 head;
2861
2862 /* As this request likely depends on state from the lost
2863 * context, clear out all the user operations leaving the
2864 * breadcrumb at the end (so we get the fence notifications).
2865 */
2866 head = request->head;
2867 if (request->postfix < head) {
2868 memset(vaddr + head, 0, request->ring->size - head);
2869 head = 0;
2870 }
2871 memset(vaddr + head, 0, request->postfix - head);
2872
2873 dma_fence_set_error(&request->fence, -EIO);
2874 }
2875
engine_skip_context(struct drm_i915_gem_request * request)2876 static void engine_skip_context(struct drm_i915_gem_request *request)
2877 {
2878 struct intel_engine_cs *engine = request->engine;
2879 struct i915_gem_context *hung_ctx = request->ctx;
2880 struct intel_timeline *timeline;
2881 unsigned long flags;
2882
2883 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2884
2885 spin_lock_irqsave(&engine->timeline->lock, flags);
2886 spin_lock(&timeline->lock);
2887
2888 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2889 if (request->ctx == hung_ctx)
2890 skip_request(request);
2891
2892 list_for_each_entry(request, &timeline->requests, link)
2893 skip_request(request);
2894
2895 spin_unlock(&timeline->lock);
2896 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2897 }
2898
2899 /* Returns the request if it was guilty of the hang */
2900 static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)2901 i915_gem_reset_request(struct intel_engine_cs *engine,
2902 struct drm_i915_gem_request *request)
2903 {
2904 /* The guilty request will get skipped on a hung engine.
2905 *
2906 * Users of client default contexts do not rely on logical
2907 * state preserved between batches so it is safe to execute
2908 * queued requests following the hang. Non default contexts
2909 * rely on preserved state, so skipping a batch loses the
2910 * evolution of the state and it needs to be considered corrupted.
2911 * Executing more queued batches on top of corrupted state is
2912 * risky. But we take the risk by trying to advance through
2913 * the queued requests in order to make the client behaviour
2914 * more predictable around resets, by not throwing away random
2915 * amount of batches it has prepared for execution. Sophisticated
2916 * clients can use gem_reset_stats_ioctl and dma fence status
2917 * (exported via sync_file info ioctl on explicit fences) to observe
2918 * when it loses the context state and should rebuild accordingly.
2919 *
2920 * The context ban, and ultimately the client ban, mechanism are safety
2921 * valves if client submission ends up resulting in nothing more than
2922 * subsequent hangs.
2923 */
2924
2925 if (engine_stalled(engine)) {
2926 i915_gem_context_mark_guilty(request->ctx);
2927 skip_request(request);
2928
2929 /* If this context is now banned, skip all pending requests. */
2930 if (i915_gem_context_is_banned(request->ctx))
2931 engine_skip_context(request);
2932 } else {
2933 /*
2934 * Since this is not the hung engine, it may have advanced
2935 * since the hang declaration. Double check by refinding
2936 * the active request at the time of the reset.
2937 */
2938 request = i915_gem_find_active_request(engine);
2939 if (request) {
2940 i915_gem_context_mark_innocent(request->ctx);
2941 dma_fence_set_error(&request->fence, -EAGAIN);
2942
2943 /* Rewind the engine to replay the incomplete rq */
2944 spin_lock_irq(&engine->timeline->lock);
2945 request = list_prev_entry(request, link);
2946 if (&request->link == &engine->timeline->requests)
2947 request = NULL;
2948 spin_unlock_irq(&engine->timeline->lock);
2949 }
2950 }
2951
2952 return request;
2953 }
2954
i915_gem_reset_engine(struct intel_engine_cs * engine,struct drm_i915_gem_request * request)2955 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2956 struct drm_i915_gem_request *request)
2957 {
2958 engine->irq_posted = 0;
2959
2960 if (request)
2961 request = i915_gem_reset_request(engine, request);
2962
2963 if (request) {
2964 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2965 engine->name, request->global_seqno);
2966 }
2967
2968 /* Setup the CS to resume from the breadcrumb of the hung request */
2969 engine->reset_hw(engine, request);
2970 }
2971
i915_gem_reset(struct drm_i915_private * dev_priv)2972 void i915_gem_reset(struct drm_i915_private *dev_priv)
2973 {
2974 struct intel_engine_cs *engine;
2975 enum intel_engine_id id;
2976
2977 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2978
2979 i915_gem_retire_requests(dev_priv);
2980
2981 for_each_engine(engine, dev_priv, id) {
2982 struct i915_gem_context *ctx;
2983
2984 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2985 ctx = fetch_and_zero(&engine->last_retired_context);
2986 if (ctx)
2987 engine->context_unpin(engine, ctx);
2988 }
2989
2990 i915_gem_restore_fences(dev_priv);
2991
2992 if (dev_priv->gt.awake) {
2993 intel_sanitize_gt_powersave(dev_priv);
2994 intel_enable_gt_powersave(dev_priv);
2995 if (INTEL_GEN(dev_priv) >= 6)
2996 gen6_rps_busy(dev_priv);
2997 }
2998 }
2999
i915_gem_reset_finish_engine(struct intel_engine_cs * engine)3000 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3001 {
3002 tasklet_enable(&engine->irq_tasklet);
3003 kthread_unpark(engine->breadcrumbs.signaler);
3004 }
3005
i915_gem_reset_finish(struct drm_i915_private * dev_priv)3006 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3007 {
3008 struct intel_engine_cs *engine;
3009 enum intel_engine_id id;
3010
3011 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3012
3013 for_each_engine(engine, dev_priv, id) {
3014 engine->hangcheck.active_request = NULL;
3015 i915_gem_reset_finish_engine(engine);
3016 }
3017 }
3018
nop_submit_request(struct drm_i915_gem_request * request)3019 static void nop_submit_request(struct drm_i915_gem_request *request)
3020 {
3021 unsigned long flags;
3022
3023 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3024 dma_fence_set_error(&request->fence, -EIO);
3025
3026 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3027 __i915_gem_request_submit(request);
3028 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3029 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3030 }
3031
engine_set_wedged(struct intel_engine_cs * engine)3032 static void engine_set_wedged(struct intel_engine_cs *engine)
3033 {
3034 struct drm_i915_gem_request *request;
3035 unsigned long flags;
3036
3037 /* We need to be sure that no thread is running the old callback as
3038 * we install the nop handler (otherwise we would submit a request
3039 * to hardware that will never complete). In order to prevent this
3040 * race, we wait until the machine is idle before making the swap
3041 * (using stop_machine()).
3042 */
3043 engine->submit_request = nop_submit_request;
3044
3045 /* Mark all executing requests as skipped */
3046 spin_lock_irqsave(&engine->timeline->lock, flags);
3047 list_for_each_entry(request, &engine->timeline->requests, link)
3048 if (!i915_gem_request_completed(request))
3049 dma_fence_set_error(&request->fence, -EIO);
3050 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3051
3052 /*
3053 * Clear the execlists queue up before freeing the requests, as those
3054 * are the ones that keep the context and ringbuffer backing objects
3055 * pinned in place.
3056 */
3057
3058 if (i915.enable_execlists) {
3059 struct execlist_port *port = engine->execlist_port;
3060 unsigned long flags;
3061 unsigned int n;
3062
3063 spin_lock_irqsave(&engine->timeline->lock, flags);
3064
3065 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3066 i915_gem_request_put(port_request(&port[n]));
3067 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3068 engine->execlist_queue = RB_ROOT;
3069 engine->execlist_first = NULL;
3070
3071 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3072
3073 /* The port is checked prior to scheduling a tasklet, but
3074 * just in case we have suspended the tasklet to do the
3075 * wedging make sure that when it wakes, it decides there
3076 * is no work to do by clearing the irq_posted bit.
3077 */
3078 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3079 }
3080
3081 /* Mark all pending requests as complete so that any concurrent
3082 * (lockless) lookup doesn't try and wait upon the request as we
3083 * reset it.
3084 */
3085 intel_engine_init_global_seqno(engine,
3086 intel_engine_last_submit(engine));
3087 }
3088
__i915_gem_set_wedged_BKL(void * data)3089 static int __i915_gem_set_wedged_BKL(void *data)
3090 {
3091 struct drm_i915_private *i915 = data;
3092 struct intel_engine_cs *engine;
3093 enum intel_engine_id id;
3094
3095 for_each_engine(engine, i915, id)
3096 engine_set_wedged(engine);
3097
3098 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3099 wake_up_all(&i915->gpu_error.reset_queue);
3100
3101 return 0;
3102 }
3103
i915_gem_set_wedged(struct drm_i915_private * dev_priv)3104 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3105 {
3106 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3107 }
3108
i915_gem_unset_wedged(struct drm_i915_private * i915)3109 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3110 {
3111 struct i915_gem_timeline *tl;
3112 int i;
3113
3114 lockdep_assert_held(&i915->drm.struct_mutex);
3115 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3116 return true;
3117
3118 /* Before unwedging, make sure that all pending operations
3119 * are flushed and errored out - we may have requests waiting upon
3120 * third party fences. We marked all inflight requests as EIO, and
3121 * every execbuf since returned EIO, for consistency we want all
3122 * the currently pending requests to also be marked as EIO, which
3123 * is done inside our nop_submit_request - and so we must wait.
3124 *
3125 * No more can be submitted until we reset the wedged bit.
3126 */
3127 list_for_each_entry(tl, &i915->gt.timelines, link) {
3128 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3129 struct drm_i915_gem_request *rq;
3130
3131 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3132 &i915->drm.struct_mutex);
3133 if (!rq)
3134 continue;
3135
3136 /* We can't use our normal waiter as we want to
3137 * avoid recursively trying to handle the current
3138 * reset. The basic dma_fence_default_wait() installs
3139 * a callback for dma_fence_signal(), which is
3140 * triggered by our nop handler (indirectly, the
3141 * callback enables the signaler thread which is
3142 * woken by the nop_submit_request() advancing the seqno
3143 * and when the seqno passes the fence, the signaler
3144 * then signals the fence waking us up).
3145 */
3146 if (dma_fence_default_wait(&rq->fence, true,
3147 MAX_SCHEDULE_TIMEOUT) < 0)
3148 return false;
3149 }
3150 }
3151
3152 /* Undo nop_submit_request. We prevent all new i915 requests from
3153 * being queued (by disallowing execbuf whilst wedged) so having
3154 * waited for all active requests above, we know the system is idle
3155 * and do not have to worry about a thread being inside
3156 * engine->submit_request() as we swap over. So unlike installing
3157 * the nop_submit_request on reset, we can do this from normal
3158 * context and do not require stop_machine().
3159 */
3160 intel_engines_reset_default_submission(i915);
3161 i915_gem_contexts_lost(i915);
3162
3163 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3164 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3165
3166 return true;
3167 }
3168
3169 static void
i915_gem_retire_work_handler(struct work_struct * work)3170 i915_gem_retire_work_handler(struct work_struct *work)
3171 {
3172 struct drm_i915_private *dev_priv =
3173 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3174 struct drm_device *dev = &dev_priv->drm;
3175
3176 /* Come back later if the device is busy... */
3177 if (mutex_trylock(&dev->struct_mutex)) {
3178 i915_gem_retire_requests(dev_priv);
3179 mutex_unlock(&dev->struct_mutex);
3180 }
3181
3182 /* Keep the retire handler running until we are finally idle.
3183 * We do not need to do this test under locking as in the worst-case
3184 * we queue the retire worker once too often.
3185 */
3186 if (READ_ONCE(dev_priv->gt.awake)) {
3187 i915_queue_hangcheck(dev_priv);
3188 queue_delayed_work(dev_priv->wq,
3189 &dev_priv->gt.retire_work,
3190 round_jiffies_up_relative(HZ));
3191 }
3192 }
3193
3194 static void
i915_gem_idle_work_handler(struct work_struct * work)3195 i915_gem_idle_work_handler(struct work_struct *work)
3196 {
3197 struct drm_i915_private *dev_priv =
3198 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3199 struct drm_device *dev = &dev_priv->drm;
3200 bool rearm_hangcheck;
3201
3202 if (!READ_ONCE(dev_priv->gt.awake))
3203 return;
3204
3205 /*
3206 * Wait for last execlists context complete, but bail out in case a
3207 * new request is submitted.
3208 */
3209 wait_for(intel_engines_are_idle(dev_priv), 10);
3210 if (READ_ONCE(dev_priv->gt.active_requests))
3211 return;
3212
3213 rearm_hangcheck =
3214 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3215
3216 if (!mutex_trylock(&dev->struct_mutex)) {
3217 /* Currently busy, come back later */
3218 mod_delayed_work(dev_priv->wq,
3219 &dev_priv->gt.idle_work,
3220 msecs_to_jiffies(50));
3221 goto out_rearm;
3222 }
3223
3224 /*
3225 * New request retired after this work handler started, extend active
3226 * period until next instance of the work.
3227 */
3228 if (work_pending(work))
3229 goto out_unlock;
3230
3231 if (dev_priv->gt.active_requests)
3232 goto out_unlock;
3233
3234 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3235 DRM_ERROR("Timeout waiting for engines to idle\n");
3236
3237 intel_engines_mark_idle(dev_priv);
3238 i915_gem_timelines_mark_idle(dev_priv);
3239
3240 GEM_BUG_ON(!dev_priv->gt.awake);
3241 dev_priv->gt.awake = false;
3242 rearm_hangcheck = false;
3243
3244 if (INTEL_GEN(dev_priv) >= 6)
3245 gen6_rps_idle(dev_priv);
3246
3247 if (NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)) {
3248 i915_rc6_ctx_wa_check(dev_priv);
3249 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3250 }
3251
3252 intel_runtime_pm_put(dev_priv);
3253 out_unlock:
3254 mutex_unlock(&dev->struct_mutex);
3255
3256 out_rearm:
3257 if (rearm_hangcheck) {
3258 GEM_BUG_ON(!dev_priv->gt.awake);
3259 i915_queue_hangcheck(dev_priv);
3260 }
3261 }
3262
i915_gem_close_object(struct drm_gem_object * gem,struct drm_file * file)3263 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3264 {
3265 struct drm_i915_private *i915 = to_i915(gem->dev);
3266 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3267 struct drm_i915_file_private *fpriv = file->driver_priv;
3268 struct i915_lut_handle *lut, *ln;
3269
3270 mutex_lock(&i915->drm.struct_mutex);
3271
3272 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3273 struct i915_gem_context *ctx = lut->ctx;
3274 struct i915_vma *vma;
3275
3276 if (ctx->file_priv != fpriv)
3277 continue;
3278
3279 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3280
3281 GEM_BUG_ON(vma->obj != obj);
3282
3283 /* We allow the process to have multiple handles to the same
3284 * vma, in the same fd namespace, by virtue of flink/open.
3285 */
3286 GEM_BUG_ON(!vma->open_count);
3287 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3288 i915_vma_close(vma);
3289
3290 list_del(&lut->obj_link);
3291 list_del(&lut->ctx_link);
3292
3293 kmem_cache_free(i915->luts, lut);
3294 __i915_gem_object_release_unless_active(obj);
3295 }
3296
3297 mutex_unlock(&i915->drm.struct_mutex);
3298 }
3299
to_wait_timeout(s64 timeout_ns)3300 static unsigned long to_wait_timeout(s64 timeout_ns)
3301 {
3302 if (timeout_ns < 0)
3303 return MAX_SCHEDULE_TIMEOUT;
3304
3305 if (timeout_ns == 0)
3306 return 0;
3307
3308 return nsecs_to_jiffies_timeout(timeout_ns);
3309 }
3310
3311 /**
3312 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3313 * @dev: drm device pointer
3314 * @data: ioctl data blob
3315 * @file: drm file pointer
3316 *
3317 * Returns 0 if successful, else an error is returned with the remaining time in
3318 * the timeout parameter.
3319 * -ETIME: object is still busy after timeout
3320 * -ERESTARTSYS: signal interrupted the wait
3321 * -ENONENT: object doesn't exist
3322 * Also possible, but rare:
3323 * -EAGAIN: incomplete, restart syscall
3324 * -ENOMEM: damn
3325 * -ENODEV: Internal IRQ fail
3326 * -E?: The add request failed
3327 *
3328 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3329 * non-zero timeout parameter the wait ioctl will wait for the given number of
3330 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3331 * without holding struct_mutex the object may become re-busied before this
3332 * function completes. A similar but shorter * race condition exists in the busy
3333 * ioctl
3334 */
3335 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3336 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3337 {
3338 struct drm_i915_gem_wait *args = data;
3339 struct drm_i915_gem_object *obj;
3340 ktime_t start;
3341 long ret;
3342
3343 if (args->flags != 0)
3344 return -EINVAL;
3345
3346 obj = i915_gem_object_lookup(file, args->bo_handle);
3347 if (!obj)
3348 return -ENOENT;
3349
3350 start = ktime_get();
3351
3352 ret = i915_gem_object_wait(obj,
3353 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3354 to_wait_timeout(args->timeout_ns),
3355 to_rps_client(file));
3356
3357 if (args->timeout_ns > 0) {
3358 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3359 if (args->timeout_ns < 0)
3360 args->timeout_ns = 0;
3361
3362 /*
3363 * Apparently ktime isn't accurate enough and occasionally has a
3364 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3365 * things up to make the test happy. We allow up to 1 jiffy.
3366 *
3367 * This is a regression from the timespec->ktime conversion.
3368 */
3369 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3370 args->timeout_ns = 0;
3371
3372 /* Asked to wait beyond the jiffie/scheduler precision? */
3373 if (ret == -ETIME && args->timeout_ns)
3374 ret = -EAGAIN;
3375 }
3376
3377 i915_gem_object_put(obj);
3378 return ret;
3379 }
3380
wait_for_timeline(struct i915_gem_timeline * tl,unsigned int flags)3381 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3382 {
3383 int ret, i;
3384
3385 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3386 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3387 if (ret)
3388 return ret;
3389 }
3390
3391 return 0;
3392 }
3393
wait_for_engines(struct drm_i915_private * i915)3394 static int wait_for_engines(struct drm_i915_private *i915)
3395 {
3396 if (wait_for(intel_engines_are_idle(i915), 50)) {
3397 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3398 i915_gem_set_wedged(i915);
3399 return -EIO;
3400 }
3401
3402 return 0;
3403 }
3404
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags)3405 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3406 {
3407 int ret;
3408
3409 /* If the device is asleep, we have no requests outstanding */
3410 if (!READ_ONCE(i915->gt.awake))
3411 return 0;
3412
3413 if (flags & I915_WAIT_LOCKED) {
3414 struct i915_gem_timeline *tl;
3415
3416 lockdep_assert_held(&i915->drm.struct_mutex);
3417
3418 list_for_each_entry(tl, &i915->gt.timelines, link) {
3419 ret = wait_for_timeline(tl, flags);
3420 if (ret)
3421 return ret;
3422 }
3423
3424 i915_gem_retire_requests(i915);
3425 GEM_BUG_ON(i915->gt.active_requests);
3426
3427 ret = wait_for_engines(i915);
3428 } else {
3429 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3430 }
3431
3432 return ret;
3433 }
3434
__i915_gem_object_flush_for_display(struct drm_i915_gem_object * obj)3435 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3436 {
3437 /*
3438 * We manually flush the CPU domain so that we can override and
3439 * force the flush for the display, and perform it asyncrhonously.
3440 */
3441 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3442 if (obj->cache_dirty)
3443 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3444 obj->base.write_domain = 0;
3445 }
3446
i915_gem_object_flush_if_display(struct drm_i915_gem_object * obj)3447 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3448 {
3449 if (!READ_ONCE(obj->pin_display))
3450 return;
3451
3452 mutex_lock(&obj->base.dev->struct_mutex);
3453 __i915_gem_object_flush_for_display(obj);
3454 mutex_unlock(&obj->base.dev->struct_mutex);
3455 }
3456
3457 /**
3458 * Moves a single object to the WC read, and possibly write domain.
3459 * @obj: object to act on
3460 * @write: ask for write access or read only
3461 *
3462 * This function returns when the move is complete, including waiting on
3463 * flushes to occur.
3464 */
3465 int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object * obj,bool write)3466 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3467 {
3468 int ret;
3469
3470 lockdep_assert_held(&obj->base.dev->struct_mutex);
3471
3472 ret = i915_gem_object_wait(obj,
3473 I915_WAIT_INTERRUPTIBLE |
3474 I915_WAIT_LOCKED |
3475 (write ? I915_WAIT_ALL : 0),
3476 MAX_SCHEDULE_TIMEOUT,
3477 NULL);
3478 if (ret)
3479 return ret;
3480
3481 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3482 return 0;
3483
3484 /* Flush and acquire obj->pages so that we are coherent through
3485 * direct access in memory with previous cached writes through
3486 * shmemfs and that our cache domain tracking remains valid.
3487 * For example, if the obj->filp was moved to swap without us
3488 * being notified and releasing the pages, we would mistakenly
3489 * continue to assume that the obj remained out of the CPU cached
3490 * domain.
3491 */
3492 ret = i915_gem_object_pin_pages(obj);
3493 if (ret)
3494 return ret;
3495
3496 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3497
3498 /* Serialise direct access to this object with the barriers for
3499 * coherent writes from the GPU, by effectively invalidating the
3500 * WC domain upon first access.
3501 */
3502 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3503 mb();
3504
3505 /* It should now be out of any other write domains, and we can update
3506 * the domain values for our changes.
3507 */
3508 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3509 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3510 if (write) {
3511 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3512 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3513 obj->mm.dirty = true;
3514 }
3515
3516 i915_gem_object_unpin_pages(obj);
3517 return 0;
3518 }
3519
3520 /**
3521 * Moves a single object to the GTT read, and possibly write domain.
3522 * @obj: object to act on
3523 * @write: ask for write access or read only
3524 *
3525 * This function returns when the move is complete, including waiting on
3526 * flushes to occur.
3527 */
3528 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3529 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3530 {
3531 int ret;
3532
3533 lockdep_assert_held(&obj->base.dev->struct_mutex);
3534
3535 ret = i915_gem_object_wait(obj,
3536 I915_WAIT_INTERRUPTIBLE |
3537 I915_WAIT_LOCKED |
3538 (write ? I915_WAIT_ALL : 0),
3539 MAX_SCHEDULE_TIMEOUT,
3540 NULL);
3541 if (ret)
3542 return ret;
3543
3544 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545 return 0;
3546
3547 /* Flush and acquire obj->pages so that we are coherent through
3548 * direct access in memory with previous cached writes through
3549 * shmemfs and that our cache domain tracking remains valid.
3550 * For example, if the obj->filp was moved to swap without us
3551 * being notified and releasing the pages, we would mistakenly
3552 * continue to assume that the obj remained out of the CPU cached
3553 * domain.
3554 */
3555 ret = i915_gem_object_pin_pages(obj);
3556 if (ret)
3557 return ret;
3558
3559 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3560
3561 /* Serialise direct access to this object with the barriers for
3562 * coherent writes from the GPU, by effectively invalidating the
3563 * GTT domain upon first access.
3564 */
3565 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3566 mb();
3567
3568 /* It should now be out of any other write domains, and we can update
3569 * the domain values for our changes.
3570 */
3571 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3572 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3573 if (write) {
3574 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3575 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3576 obj->mm.dirty = true;
3577 }
3578
3579 i915_gem_object_unpin_pages(obj);
3580 return 0;
3581 }
3582
3583 /**
3584 * Changes the cache-level of an object across all VMA.
3585 * @obj: object to act on
3586 * @cache_level: new cache level to set for the object
3587 *
3588 * After this function returns, the object will be in the new cache-level
3589 * across all GTT and the contents of the backing storage will be coherent,
3590 * with respect to the new cache-level. In order to keep the backing storage
3591 * coherent for all users, we only allow a single cache level to be set
3592 * globally on the object and prevent it from being changed whilst the
3593 * hardware is reading from the object. That is if the object is currently
3594 * on the scanout it will be set to uncached (or equivalent display
3595 * cache coherency) and all non-MOCS GPU access will also be uncached so
3596 * that all direct access to the scanout remains coherent.
3597 */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3598 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3599 enum i915_cache_level cache_level)
3600 {
3601 struct i915_vma *vma;
3602 int ret;
3603
3604 lockdep_assert_held(&obj->base.dev->struct_mutex);
3605
3606 if (obj->cache_level == cache_level)
3607 return 0;
3608
3609 /* Inspect the list of currently bound VMA and unbind any that would
3610 * be invalid given the new cache-level. This is principally to
3611 * catch the issue of the CS prefetch crossing page boundaries and
3612 * reading an invalid PTE on older architectures.
3613 */
3614 restart:
3615 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3616 if (!drm_mm_node_allocated(&vma->node))
3617 continue;
3618
3619 if (i915_vma_is_pinned(vma)) {
3620 DRM_DEBUG("can not change the cache level of pinned objects\n");
3621 return -EBUSY;
3622 }
3623
3624 if (!i915_vma_is_closed(vma) &&
3625 i915_gem_valid_gtt_space(vma, cache_level))
3626 continue;
3627
3628 ret = i915_vma_unbind(vma);
3629 if (ret)
3630 return ret;
3631
3632 /* As unbinding may affect other elements in the
3633 * obj->vma_list (due to side-effects from retiring
3634 * an active vma), play safe and restart the iterator.
3635 */
3636 goto restart;
3637 }
3638
3639 /* We can reuse the existing drm_mm nodes but need to change the
3640 * cache-level on the PTE. We could simply unbind them all and
3641 * rebind with the correct cache-level on next use. However since
3642 * we already have a valid slot, dma mapping, pages etc, we may as
3643 * rewrite the PTE in the belief that doing so tramples upon less
3644 * state and so involves less work.
3645 */
3646 if (obj->bind_count) {
3647 /* Before we change the PTE, the GPU must not be accessing it.
3648 * If we wait upon the object, we know that all the bound
3649 * VMA are no longer active.
3650 */
3651 ret = i915_gem_object_wait(obj,
3652 I915_WAIT_INTERRUPTIBLE |
3653 I915_WAIT_LOCKED |
3654 I915_WAIT_ALL,
3655 MAX_SCHEDULE_TIMEOUT,
3656 NULL);
3657 if (ret)
3658 return ret;
3659
3660 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3661 cache_level != I915_CACHE_NONE) {
3662 /* Access to snoopable pages through the GTT is
3663 * incoherent and on some machines causes a hard
3664 * lockup. Relinquish the CPU mmaping to force
3665 * userspace to refault in the pages and we can
3666 * then double check if the GTT mapping is still
3667 * valid for that pointer access.
3668 */
3669 i915_gem_release_mmap(obj);
3670
3671 /* As we no longer need a fence for GTT access,
3672 * we can relinquish it now (and so prevent having
3673 * to steal a fence from someone else on the next
3674 * fence request). Note GPU activity would have
3675 * dropped the fence as all snoopable access is
3676 * supposed to be linear.
3677 */
3678 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3679 ret = i915_vma_put_fence(vma);
3680 if (ret)
3681 return ret;
3682 }
3683 } else {
3684 /* We either have incoherent backing store and
3685 * so no GTT access or the architecture is fully
3686 * coherent. In such cases, existing GTT mmaps
3687 * ignore the cache bit in the PTE and we can
3688 * rewrite it without confusing the GPU or having
3689 * to force userspace to fault back in its mmaps.
3690 */
3691 }
3692
3693 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3694 if (!drm_mm_node_allocated(&vma->node))
3695 continue;
3696
3697 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3698 if (ret)
3699 return ret;
3700 }
3701 }
3702
3703 list_for_each_entry(vma, &obj->vma_list, obj_link)
3704 vma->node.color = cache_level;
3705 i915_gem_object_set_cache_coherency(obj, cache_level);
3706 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3707
3708 return 0;
3709 }
3710
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3711 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3712 struct drm_file *file)
3713 {
3714 struct drm_i915_gem_caching *args = data;
3715 struct drm_i915_gem_object *obj;
3716 int err = 0;
3717
3718 rcu_read_lock();
3719 obj = i915_gem_object_lookup_rcu(file, args->handle);
3720 if (!obj) {
3721 err = -ENOENT;
3722 goto out;
3723 }
3724
3725 switch (obj->cache_level) {
3726 case I915_CACHE_LLC:
3727 case I915_CACHE_L3_LLC:
3728 args->caching = I915_CACHING_CACHED;
3729 break;
3730
3731 case I915_CACHE_WT:
3732 args->caching = I915_CACHING_DISPLAY;
3733 break;
3734
3735 default:
3736 args->caching = I915_CACHING_NONE;
3737 break;
3738 }
3739 out:
3740 rcu_read_unlock();
3741 return err;
3742 }
3743
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3744 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3745 struct drm_file *file)
3746 {
3747 struct drm_i915_private *i915 = to_i915(dev);
3748 struct drm_i915_gem_caching *args = data;
3749 struct drm_i915_gem_object *obj;
3750 enum i915_cache_level level;
3751 int ret = 0;
3752
3753 switch (args->caching) {
3754 case I915_CACHING_NONE:
3755 level = I915_CACHE_NONE;
3756 break;
3757 case I915_CACHING_CACHED:
3758 /*
3759 * Due to a HW issue on BXT A stepping, GPU stores via a
3760 * snooped mapping may leave stale data in a corresponding CPU
3761 * cacheline, whereas normally such cachelines would get
3762 * invalidated.
3763 */
3764 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3765 return -ENODEV;
3766
3767 level = I915_CACHE_LLC;
3768 break;
3769 case I915_CACHING_DISPLAY:
3770 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3771 break;
3772 default:
3773 return -EINVAL;
3774 }
3775
3776 obj = i915_gem_object_lookup(file, args->handle);
3777 if (!obj)
3778 return -ENOENT;
3779
3780 if (obj->cache_level == level)
3781 goto out;
3782
3783 ret = i915_gem_object_wait(obj,
3784 I915_WAIT_INTERRUPTIBLE,
3785 MAX_SCHEDULE_TIMEOUT,
3786 to_rps_client(file));
3787 if (ret)
3788 goto out;
3789
3790 ret = i915_mutex_lock_interruptible(dev);
3791 if (ret)
3792 goto out;
3793
3794 ret = i915_gem_object_set_cache_level(obj, level);
3795 mutex_unlock(&dev->struct_mutex);
3796
3797 out:
3798 i915_gem_object_put(obj);
3799 return ret;
3800 }
3801
3802 /*
3803 * Prepare buffer for display plane (scanout, cursors, etc).
3804 * Can be called from an uninterruptible phase (modesetting) and allows
3805 * any flushes to be pipelined (for pageflips).
3806 */
3807 struct i915_vma *
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,const struct i915_ggtt_view * view)3808 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3809 u32 alignment,
3810 const struct i915_ggtt_view *view)
3811 {
3812 struct i915_vma *vma;
3813 int ret;
3814
3815 lockdep_assert_held(&obj->base.dev->struct_mutex);
3816
3817 /* Mark the pin_display early so that we account for the
3818 * display coherency whilst setting up the cache domains.
3819 */
3820 obj->pin_display++;
3821
3822 /* The display engine is not coherent with the LLC cache on gen6. As
3823 * a result, we make sure that the pinning that is about to occur is
3824 * done with uncached PTEs. This is lowest common denominator for all
3825 * chipsets.
3826 *
3827 * However for gen6+, we could do better by using the GFDT bit instead
3828 * of uncaching, which would allow us to flush all the LLC-cached data
3829 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3830 */
3831 ret = i915_gem_object_set_cache_level(obj,
3832 HAS_WT(to_i915(obj->base.dev)) ?
3833 I915_CACHE_WT : I915_CACHE_NONE);
3834 if (ret) {
3835 vma = ERR_PTR(ret);
3836 goto err_unpin_display;
3837 }
3838
3839 /* As the user may map the buffer once pinned in the display plane
3840 * (e.g. libkms for the bootup splash), we have to ensure that we
3841 * always use map_and_fenceable for all scanout buffers. However,
3842 * it may simply be too big to fit into mappable, in which case
3843 * put it anyway and hope that userspace can cope (but always first
3844 * try to preserve the existing ABI).
3845 */
3846 vma = ERR_PTR(-ENOSPC);
3847 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3848 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3849 PIN_MAPPABLE | PIN_NONBLOCK);
3850 if (IS_ERR(vma)) {
3851 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3852 unsigned int flags;
3853
3854 /* Valleyview is definitely limited to scanning out the first
3855 * 512MiB. Lets presume this behaviour was inherited from the
3856 * g4x display engine and that all earlier gen are similarly
3857 * limited. Testing suggests that it is a little more
3858 * complicated than this. For example, Cherryview appears quite
3859 * happy to scanout from anywhere within its global aperture.
3860 */
3861 flags = 0;
3862 if (HAS_GMCH_DISPLAY(i915))
3863 flags = PIN_MAPPABLE;
3864 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3865 }
3866 if (IS_ERR(vma))
3867 goto err_unpin_display;
3868
3869 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3870
3871 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3872 __i915_gem_object_flush_for_display(obj);
3873 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3874
3875 /* It should now be out of any other write domains, and we can update
3876 * the domain values for our changes.
3877 */
3878 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3879
3880 return vma;
3881
3882 err_unpin_display:
3883 obj->pin_display--;
3884 return vma;
3885 }
3886
3887 void
i915_gem_object_unpin_from_display_plane(struct i915_vma * vma)3888 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3889 {
3890 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3891
3892 if (WARN_ON(vma->obj->pin_display == 0))
3893 return;
3894
3895 if (--vma->obj->pin_display == 0)
3896 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3897
3898 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3899 i915_gem_object_bump_inactive_ggtt(vma->obj);
3900
3901 i915_vma_unpin(vma);
3902 }
3903
3904 /**
3905 * Moves a single object to the CPU read, and possibly write domain.
3906 * @obj: object to act on
3907 * @write: requesting write or read-only access
3908 *
3909 * This function returns when the move is complete, including waiting on
3910 * flushes to occur.
3911 */
3912 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3913 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3914 {
3915 int ret;
3916
3917 lockdep_assert_held(&obj->base.dev->struct_mutex);
3918
3919 ret = i915_gem_object_wait(obj,
3920 I915_WAIT_INTERRUPTIBLE |
3921 I915_WAIT_LOCKED |
3922 (write ? I915_WAIT_ALL : 0),
3923 MAX_SCHEDULE_TIMEOUT,
3924 NULL);
3925 if (ret)
3926 return ret;
3927
3928 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3929
3930 /* Flush the CPU cache if it's still invalid. */
3931 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3932 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3933 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3934 }
3935
3936 /* It should now be out of any other write domains, and we can update
3937 * the domain values for our changes.
3938 */
3939 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3940
3941 /* If we're writing through the CPU, then the GPU read domains will
3942 * need to be invalidated at next use.
3943 */
3944 if (write)
3945 __start_cpu_write(obj);
3946
3947 return 0;
3948 }
3949
3950 /* Throttle our rendering by waiting until the ring has completed our requests
3951 * emitted over 20 msec ago.
3952 *
3953 * Note that if we were to use the current jiffies each time around the loop,
3954 * we wouldn't escape the function with any frames outstanding if the time to
3955 * render a frame was over 20ms.
3956 *
3957 * This should get us reasonable parallelism between CPU and GPU but also
3958 * relatively low latency when blocking on a particular request to finish.
3959 */
3960 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)3961 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3962 {
3963 struct drm_i915_private *dev_priv = to_i915(dev);
3964 struct drm_i915_file_private *file_priv = file->driver_priv;
3965 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3966 struct drm_i915_gem_request *request, *target = NULL;
3967 long ret;
3968
3969 /* ABI: return -EIO if already wedged */
3970 if (i915_terminally_wedged(&dev_priv->gpu_error))
3971 return -EIO;
3972
3973 spin_lock(&file_priv->mm.lock);
3974 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3975 if (time_after_eq(request->emitted_jiffies, recent_enough))
3976 break;
3977
3978 if (target) {
3979 list_del(&target->client_link);
3980 target->file_priv = NULL;
3981 }
3982
3983 target = request;
3984 }
3985 if (target)
3986 i915_gem_request_get(target);
3987 spin_unlock(&file_priv->mm.lock);
3988
3989 if (target == NULL)
3990 return 0;
3991
3992 ret = i915_wait_request(target,
3993 I915_WAIT_INTERRUPTIBLE,
3994 MAX_SCHEDULE_TIMEOUT);
3995 i915_gem_request_put(target);
3996
3997 return ret < 0 ? ret : 0;
3998 }
3999
4000 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4001 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4002 const struct i915_ggtt_view *view,
4003 u64 size,
4004 u64 alignment,
4005 u64 flags)
4006 {
4007 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4008 struct i915_address_space *vm = &dev_priv->ggtt.base;
4009
4010 return i915_gem_object_pin(obj, vm, view, size, alignment,
4011 flags | PIN_GLOBAL);
4012 }
4013
4014 struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)4015 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4016 struct i915_address_space *vm,
4017 const struct i915_ggtt_view *view,
4018 u64 size,
4019 u64 alignment,
4020 u64 flags)
4021 {
4022 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4023 struct i915_vma *vma;
4024 int ret;
4025
4026 lockdep_assert_held(&obj->base.dev->struct_mutex);
4027
4028 vma = i915_vma_instance(obj, vm, view);
4029 if (unlikely(IS_ERR(vma)))
4030 return vma;
4031
4032 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4033 if (flags & PIN_NONBLOCK &&
4034 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4035 return ERR_PTR(-ENOSPC);
4036
4037 if (flags & PIN_MAPPABLE) {
4038 /* If the required space is larger than the available
4039 * aperture, we will not able to find a slot for the
4040 * object and unbinding the object now will be in
4041 * vain. Worse, doing so may cause us to ping-pong
4042 * the object in and out of the Global GTT and
4043 * waste a lot of cycles under the mutex.
4044 */
4045 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4046 return ERR_PTR(-E2BIG);
4047
4048 /* If NONBLOCK is set the caller is optimistically
4049 * trying to cache the full object within the mappable
4050 * aperture, and *must* have a fallback in place for
4051 * situations where we cannot bind the object. We
4052 * can be a little more lax here and use the fallback
4053 * more often to avoid costly migrations of ourselves
4054 * and other objects within the aperture.
4055 *
4056 * Half-the-aperture is used as a simple heuristic.
4057 * More interesting would to do search for a free
4058 * block prior to making the commitment to unbind.
4059 * That caters for the self-harm case, and with a
4060 * little more heuristics (e.g. NOFAULT, NOEVICT)
4061 * we could try to minimise harm to others.
4062 */
4063 if (flags & PIN_NONBLOCK &&
4064 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4065 return ERR_PTR(-ENOSPC);
4066 }
4067
4068 WARN(i915_vma_is_pinned(vma),
4069 "bo is already pinned in ggtt with incorrect alignment:"
4070 " offset=%08x, req.alignment=%llx,"
4071 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4072 i915_ggtt_offset(vma), alignment,
4073 !!(flags & PIN_MAPPABLE),
4074 i915_vma_is_map_and_fenceable(vma));
4075 ret = i915_vma_unbind(vma);
4076 if (ret)
4077 return ERR_PTR(ret);
4078 }
4079
4080 ret = i915_vma_pin(vma, size, alignment, flags);
4081 if (ret)
4082 return ERR_PTR(ret);
4083
4084 return vma;
4085 }
4086
__busy_read_flag(unsigned int id)4087 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4088 {
4089 /* Note that we could alias engines in the execbuf API, but
4090 * that would be very unwise as it prevents userspace from
4091 * fine control over engine selection. Ahem.
4092 *
4093 * This should be something like EXEC_MAX_ENGINE instead of
4094 * I915_NUM_ENGINES.
4095 */
4096 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4097 return 0x10000 << id;
4098 }
4099
__busy_write_id(unsigned int id)4100 static __always_inline unsigned int __busy_write_id(unsigned int id)
4101 {
4102 /* The uABI guarantees an active writer is also amongst the read
4103 * engines. This would be true if we accessed the activity tracking
4104 * under the lock, but as we perform the lookup of the object and
4105 * its activity locklessly we can not guarantee that the last_write
4106 * being active implies that we have set the same engine flag from
4107 * last_read - hence we always set both read and write busy for
4108 * last_write.
4109 */
4110 return id | __busy_read_flag(id);
4111 }
4112
4113 static __always_inline unsigned int
__busy_set_if_active(const struct dma_fence * fence,unsigned int (* flag)(unsigned int id))4114 __busy_set_if_active(const struct dma_fence *fence,
4115 unsigned int (*flag)(unsigned int id))
4116 {
4117 struct drm_i915_gem_request *rq;
4118
4119 /* We have to check the current hw status of the fence as the uABI
4120 * guarantees forward progress. We could rely on the idle worker
4121 * to eventually flush us, but to minimise latency just ask the
4122 * hardware.
4123 *
4124 * Note we only report on the status of native fences.
4125 */
4126 if (!dma_fence_is_i915(fence))
4127 return 0;
4128
4129 /* opencode to_request() in order to avoid const warnings */
4130 rq = container_of(fence, struct drm_i915_gem_request, fence);
4131 if (i915_gem_request_completed(rq))
4132 return 0;
4133
4134 return flag(rq->engine->uabi_id);
4135 }
4136
4137 static __always_inline unsigned int
busy_check_reader(const struct dma_fence * fence)4138 busy_check_reader(const struct dma_fence *fence)
4139 {
4140 return __busy_set_if_active(fence, __busy_read_flag);
4141 }
4142
4143 static __always_inline unsigned int
busy_check_writer(const struct dma_fence * fence)4144 busy_check_writer(const struct dma_fence *fence)
4145 {
4146 if (!fence)
4147 return 0;
4148
4149 return __busy_set_if_active(fence, __busy_write_id);
4150 }
4151
4152 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4153 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4154 struct drm_file *file)
4155 {
4156 struct drm_i915_gem_busy *args = data;
4157 struct drm_i915_gem_object *obj;
4158 struct reservation_object_list *list;
4159 unsigned int seq;
4160 int err;
4161
4162 err = -ENOENT;
4163 rcu_read_lock();
4164 obj = i915_gem_object_lookup_rcu(file, args->handle);
4165 if (!obj)
4166 goto out;
4167
4168 /* A discrepancy here is that we do not report the status of
4169 * non-i915 fences, i.e. even though we may report the object as idle,
4170 * a call to set-domain may still stall waiting for foreign rendering.
4171 * This also means that wait-ioctl may report an object as busy,
4172 * where busy-ioctl considers it idle.
4173 *
4174 * We trade the ability to warn of foreign fences to report on which
4175 * i915 engines are active for the object.
4176 *
4177 * Alternatively, we can trade that extra information on read/write
4178 * activity with
4179 * args->busy =
4180 * !reservation_object_test_signaled_rcu(obj->resv, true);
4181 * to report the overall busyness. This is what the wait-ioctl does.
4182 *
4183 */
4184 retry:
4185 seq = raw_read_seqcount(&obj->resv->seq);
4186
4187 /* Translate the exclusive fence to the READ *and* WRITE engine */
4188 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4189
4190 /* Translate shared fences to READ set of engines */
4191 list = rcu_dereference(obj->resv->fence);
4192 if (list) {
4193 unsigned int shared_count = list->shared_count, i;
4194
4195 for (i = 0; i < shared_count; ++i) {
4196 struct dma_fence *fence =
4197 rcu_dereference(list->shared[i]);
4198
4199 args->busy |= busy_check_reader(fence);
4200 }
4201 }
4202
4203 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4204 goto retry;
4205
4206 err = 0;
4207 out:
4208 rcu_read_unlock();
4209 return err;
4210 }
4211
4212 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4213 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4215 {
4216 return i915_gem_ring_throttle(dev, file_priv);
4217 }
4218
4219 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4220 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4221 struct drm_file *file_priv)
4222 {
4223 struct drm_i915_private *dev_priv = to_i915(dev);
4224 struct drm_i915_gem_madvise *args = data;
4225 struct drm_i915_gem_object *obj;
4226 int err;
4227
4228 switch (args->madv) {
4229 case I915_MADV_DONTNEED:
4230 case I915_MADV_WILLNEED:
4231 break;
4232 default:
4233 return -EINVAL;
4234 }
4235
4236 obj = i915_gem_object_lookup(file_priv, args->handle);
4237 if (!obj)
4238 return -ENOENT;
4239
4240 err = mutex_lock_interruptible(&obj->mm.lock);
4241 if (err)
4242 goto out;
4243
4244 if (obj->mm.pages &&
4245 i915_gem_object_is_tiled(obj) &&
4246 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4247 if (obj->mm.madv == I915_MADV_WILLNEED) {
4248 GEM_BUG_ON(!obj->mm.quirked);
4249 __i915_gem_object_unpin_pages(obj);
4250 obj->mm.quirked = false;
4251 }
4252 if (args->madv == I915_MADV_WILLNEED) {
4253 GEM_BUG_ON(obj->mm.quirked);
4254 __i915_gem_object_pin_pages(obj);
4255 obj->mm.quirked = true;
4256 }
4257 }
4258
4259 if (obj->mm.madv != __I915_MADV_PURGED)
4260 obj->mm.madv = args->madv;
4261
4262 /* if the object is no longer attached, discard its backing storage */
4263 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4264 i915_gem_object_truncate(obj);
4265
4266 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4267 mutex_unlock(&obj->mm.lock);
4268
4269 out:
4270 i915_gem_object_put(obj);
4271 return err;
4272 }
4273
4274 static void
frontbuffer_retire(struct i915_gem_active * active,struct drm_i915_gem_request * request)4275 frontbuffer_retire(struct i915_gem_active *active,
4276 struct drm_i915_gem_request *request)
4277 {
4278 struct drm_i915_gem_object *obj =
4279 container_of(active, typeof(*obj), frontbuffer_write);
4280
4281 intel_fb_obj_flush(obj, ORIGIN_CS);
4282 }
4283
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4284 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4285 const struct drm_i915_gem_object_ops *ops)
4286 {
4287 mutex_init(&obj->mm.lock);
4288
4289 INIT_LIST_HEAD(&obj->global_link);
4290 INIT_LIST_HEAD(&obj->userfault_link);
4291 INIT_LIST_HEAD(&obj->vma_list);
4292 INIT_LIST_HEAD(&obj->lut_list);
4293 INIT_LIST_HEAD(&obj->batch_pool_link);
4294
4295 obj->ops = ops;
4296
4297 reservation_object_init(&obj->__builtin_resv);
4298 obj->resv = &obj->__builtin_resv;
4299
4300 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4301 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4302
4303 obj->mm.madv = I915_MADV_WILLNEED;
4304 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4305 mutex_init(&obj->mm.get_page.lock);
4306
4307 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4308 }
4309
4310 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4311 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4312 I915_GEM_OBJECT_IS_SHRINKABLE,
4313
4314 .get_pages = i915_gem_object_get_pages_gtt,
4315 .put_pages = i915_gem_object_put_pages_gtt,
4316
4317 .pwrite = i915_gem_object_pwrite_gtt,
4318 };
4319
4320 struct drm_i915_gem_object *
i915_gem_object_create(struct drm_i915_private * dev_priv,u64 size)4321 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4322 {
4323 struct drm_i915_gem_object *obj;
4324 struct address_space *mapping;
4325 unsigned int cache_level;
4326 gfp_t mask;
4327 int ret;
4328
4329 /* There is a prevalence of the assumption that we fit the object's
4330 * page count inside a 32bit _signed_ variable. Let's document this and
4331 * catch if we ever need to fix it. In the meantime, if you do spot
4332 * such a local variable, please consider fixing!
4333 */
4334 if (size >> PAGE_SHIFT > INT_MAX)
4335 return ERR_PTR(-E2BIG);
4336
4337 if (overflows_type(size, obj->base.size))
4338 return ERR_PTR(-E2BIG);
4339
4340 obj = i915_gem_object_alloc(dev_priv);
4341 if (obj == NULL)
4342 return ERR_PTR(-ENOMEM);
4343
4344 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4345 if (ret)
4346 goto fail;
4347
4348 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4349 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4350 /* 965gm cannot relocate objects above 4GiB. */
4351 mask &= ~__GFP_HIGHMEM;
4352 mask |= __GFP_DMA32;
4353 }
4354
4355 mapping = obj->base.filp->f_mapping;
4356 mapping_set_gfp_mask(mapping, mask);
4357 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4358
4359 i915_gem_object_init(obj, &i915_gem_object_ops);
4360
4361 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4362 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4363
4364 if (HAS_LLC(dev_priv))
4365 /* On some devices, we can have the GPU use the LLC (the CPU
4366 * cache) for about a 10% performance improvement
4367 * compared to uncached. Graphics requests other than
4368 * display scanout are coherent with the CPU in
4369 * accessing this cache. This means in this mode we
4370 * don't need to clflush on the CPU side, and on the
4371 * GPU side we only need to flush internal caches to
4372 * get data visible to the CPU.
4373 *
4374 * However, we maintain the display planes as UC, and so
4375 * need to rebind when first used as such.
4376 */
4377 cache_level = I915_CACHE_LLC;
4378 else
4379 cache_level = I915_CACHE_NONE;
4380
4381 i915_gem_object_set_cache_coherency(obj, cache_level);
4382
4383 trace_i915_gem_object_create(obj);
4384
4385 return obj;
4386
4387 fail:
4388 i915_gem_object_free(obj);
4389 return ERR_PTR(ret);
4390 }
4391
discard_backing_storage(struct drm_i915_gem_object * obj)4392 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4393 {
4394 /* If we are the last user of the backing storage (be it shmemfs
4395 * pages or stolen etc), we know that the pages are going to be
4396 * immediately released. In this case, we can then skip copying
4397 * back the contents from the GPU.
4398 */
4399
4400 if (obj->mm.madv != I915_MADV_WILLNEED)
4401 return false;
4402
4403 if (obj->base.filp == NULL)
4404 return true;
4405
4406 /* At first glance, this looks racy, but then again so would be
4407 * userspace racing mmap against close. However, the first external
4408 * reference to the filp can only be obtained through the
4409 * i915_gem_mmap_ioctl() which safeguards us against the user
4410 * acquiring such a reference whilst we are in the middle of
4411 * freeing the object.
4412 */
4413 return atomic_long_read(&obj->base.filp->f_count) == 1;
4414 }
4415
__i915_gem_free_objects(struct drm_i915_private * i915,struct llist_node * freed)4416 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4417 struct llist_node *freed)
4418 {
4419 struct drm_i915_gem_object *obj, *on;
4420
4421 mutex_lock(&i915->drm.struct_mutex);
4422 intel_runtime_pm_get(i915);
4423 llist_for_each_entry(obj, freed, freed) {
4424 struct i915_vma *vma, *vn;
4425
4426 trace_i915_gem_object_destroy(obj);
4427
4428 GEM_BUG_ON(i915_gem_object_is_active(obj));
4429 list_for_each_entry_safe(vma, vn,
4430 &obj->vma_list, obj_link) {
4431 GEM_BUG_ON(i915_vma_is_active(vma));
4432 vma->flags &= ~I915_VMA_PIN_MASK;
4433 i915_vma_close(vma);
4434 }
4435 GEM_BUG_ON(!list_empty(&obj->vma_list));
4436 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4437
4438 list_del(&obj->global_link);
4439 }
4440 intel_runtime_pm_put(i915);
4441 mutex_unlock(&i915->drm.struct_mutex);
4442
4443 cond_resched();
4444
4445 llist_for_each_entry_safe(obj, on, freed, freed) {
4446 GEM_BUG_ON(obj->bind_count);
4447 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4448
4449 if (obj->ops->release)
4450 obj->ops->release(obj);
4451
4452 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4453 atomic_set(&obj->mm.pages_pin_count, 0);
4454 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4455 GEM_BUG_ON(obj->mm.pages);
4456
4457 if (obj->base.import_attach)
4458 drm_prime_gem_destroy(&obj->base, NULL);
4459
4460 reservation_object_fini(&obj->__builtin_resv);
4461 drm_gem_object_release(&obj->base);
4462 i915_gem_info_remove_obj(i915, obj->base.size);
4463
4464 kfree(obj->bit_17);
4465 i915_gem_object_free(obj);
4466 }
4467 }
4468
i915_gem_flush_free_objects(struct drm_i915_private * i915)4469 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4470 {
4471 struct llist_node *freed;
4472
4473 freed = llist_del_all(&i915->mm.free_list);
4474 if (unlikely(freed))
4475 __i915_gem_free_objects(i915, freed);
4476 }
4477
__i915_gem_free_work(struct work_struct * work)4478 static void __i915_gem_free_work(struct work_struct *work)
4479 {
4480 struct drm_i915_private *i915 =
4481 container_of(work, struct drm_i915_private, mm.free_work);
4482 struct llist_node *freed;
4483
4484 /* All file-owned VMA should have been released by this point through
4485 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4486 * However, the object may also be bound into the global GTT (e.g.
4487 * older GPUs without per-process support, or for direct access through
4488 * the GTT either for the user or for scanout). Those VMA still need to
4489 * unbound now.
4490 */
4491
4492 while ((freed = llist_del_all(&i915->mm.free_list))) {
4493 __i915_gem_free_objects(i915, freed);
4494 if (need_resched())
4495 break;
4496 }
4497 }
4498
__i915_gem_free_object_rcu(struct rcu_head * head)4499 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4500 {
4501 struct drm_i915_gem_object *obj =
4502 container_of(head, typeof(*obj), rcu);
4503 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4504
4505 /* We can't simply use call_rcu() from i915_gem_free_object()
4506 * as we need to block whilst unbinding, and the call_rcu
4507 * task may be called from softirq context. So we take a
4508 * detour through a worker.
4509 */
4510 if (llist_add(&obj->freed, &i915->mm.free_list))
4511 schedule_work(&i915->mm.free_work);
4512 }
4513
i915_gem_free_object(struct drm_gem_object * gem_obj)4514 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4515 {
4516 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4517
4518 if (obj->mm.quirked)
4519 __i915_gem_object_unpin_pages(obj);
4520
4521 if (discard_backing_storage(obj))
4522 obj->mm.madv = I915_MADV_DONTNEED;
4523
4524 /* Before we free the object, make sure any pure RCU-only
4525 * read-side critical sections are complete, e.g.
4526 * i915_gem_busy_ioctl(). For the corresponding synchronized
4527 * lookup see i915_gem_object_lookup_rcu().
4528 */
4529 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4530 }
4531
__i915_gem_object_release_unless_active(struct drm_i915_gem_object * obj)4532 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4533 {
4534 lockdep_assert_held(&obj->base.dev->struct_mutex);
4535
4536 if (!i915_gem_object_has_active_reference(obj) &&
4537 i915_gem_object_is_active(obj))
4538 i915_gem_object_set_active_reference(obj);
4539 else
4540 i915_gem_object_put(obj);
4541 }
4542
assert_kernel_context_is_current(struct drm_i915_private * dev_priv)4543 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4544 {
4545 struct intel_engine_cs *engine;
4546 enum intel_engine_id id;
4547
4548 for_each_engine(engine, dev_priv, id)
4549 GEM_BUG_ON(engine->last_retired_context &&
4550 !i915_gem_context_is_kernel(engine->last_retired_context));
4551 }
4552
i915_gem_sanitize(struct drm_i915_private * i915)4553 void i915_gem_sanitize(struct drm_i915_private *i915)
4554 {
4555 /*
4556 * If we inherit context state from the BIOS or earlier occupants
4557 * of the GPU, the GPU may be in an inconsistent state when we
4558 * try to take over. The only way to remove the earlier state
4559 * is by resetting. However, resetting on earlier gen is tricky as
4560 * it may impact the display and we are uncertain about the stability
4561 * of the reset, so this could be applied to even earlier gen.
4562 */
4563 if (INTEL_GEN(i915) >= 5) {
4564 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4565 WARN_ON(reset && reset != -ENODEV);
4566 }
4567 }
4568
i915_gem_suspend(struct drm_i915_private * dev_priv)4569 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4570 {
4571 struct drm_device *dev = &dev_priv->drm;
4572 int ret;
4573
4574 intel_runtime_pm_get(dev_priv);
4575 intel_suspend_gt_powersave(dev_priv);
4576
4577 mutex_lock(&dev->struct_mutex);
4578
4579 /* We have to flush all the executing contexts to main memory so
4580 * that they can saved in the hibernation image. To ensure the last
4581 * context image is coherent, we have to switch away from it. That
4582 * leaves the dev_priv->kernel_context still active when
4583 * we actually suspend, and its image in memory may not match the GPU
4584 * state. Fortunately, the kernel_context is disposable and we do
4585 * not rely on its state.
4586 */
4587 ret = i915_gem_switch_to_kernel_context(dev_priv);
4588 if (ret)
4589 goto err_unlock;
4590
4591 ret = i915_gem_wait_for_idle(dev_priv,
4592 I915_WAIT_INTERRUPTIBLE |
4593 I915_WAIT_LOCKED);
4594 if (ret && ret != -EIO)
4595 goto err_unlock;
4596
4597 assert_kernel_context_is_current(dev_priv);
4598 i915_gem_contexts_lost(dev_priv);
4599 mutex_unlock(&dev->struct_mutex);
4600
4601 intel_guc_suspend(dev_priv);
4602
4603 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4604 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4605
4606 /* As the idle_work is rearming if it detects a race, play safe and
4607 * repeat the flush until it is definitely idle.
4608 */
4609 while (flush_delayed_work(&dev_priv->gt.idle_work))
4610 ;
4611
4612 /* Assert that we sucessfully flushed all the work and
4613 * reset the GPU back to its idle, low power state.
4614 */
4615 WARN_ON(dev_priv->gt.awake);
4616 WARN_ON(!intel_engines_are_idle(dev_priv));
4617
4618 /*
4619 * Neither the BIOS, ourselves or any other kernel
4620 * expects the system to be in execlists mode on startup,
4621 * so we need to reset the GPU back to legacy mode. And the only
4622 * known way to disable logical contexts is through a GPU reset.
4623 *
4624 * So in order to leave the system in a known default configuration,
4625 * always reset the GPU upon unload and suspend. Afterwards we then
4626 * clean up the GEM state tracking, flushing off the requests and
4627 * leaving the system in a known idle state.
4628 *
4629 * Note that is of the upmost importance that the GPU is idle and
4630 * all stray writes are flushed *before* we dismantle the backing
4631 * storage for the pinned objects.
4632 *
4633 * However, since we are uncertain that resetting the GPU on older
4634 * machines is a good idea, we don't - just in case it leaves the
4635 * machine in an unusable condition.
4636 */
4637 i915_gem_sanitize(dev_priv);
4638
4639 intel_runtime_pm_put(dev_priv);
4640 return 0;
4641
4642 err_unlock:
4643 mutex_unlock(&dev->struct_mutex);
4644 intel_runtime_pm_put(dev_priv);
4645 return ret;
4646 }
4647
i915_gem_resume(struct drm_i915_private * dev_priv)4648 void i915_gem_resume(struct drm_i915_private *dev_priv)
4649 {
4650 struct drm_device *dev = &dev_priv->drm;
4651
4652 WARN_ON(dev_priv->gt.awake);
4653
4654 mutex_lock(&dev->struct_mutex);
4655 i915_gem_restore_gtt_mappings(dev_priv);
4656
4657 /* As we didn't flush the kernel context before suspend, we cannot
4658 * guarantee that the context image is complete. So let's just reset
4659 * it and start again.
4660 */
4661 dev_priv->gt.resume(dev_priv);
4662
4663 mutex_unlock(&dev->struct_mutex);
4664 }
4665
i915_gem_init_swizzling(struct drm_i915_private * dev_priv)4666 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4667 {
4668 if (INTEL_GEN(dev_priv) < 5 ||
4669 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4670 return;
4671
4672 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4673 DISP_TILE_SURFACE_SWIZZLING);
4674
4675 if (IS_GEN5(dev_priv))
4676 return;
4677
4678 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4679 if (IS_GEN6(dev_priv))
4680 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4681 else if (IS_GEN7(dev_priv))
4682 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4683 else if (IS_GEN8(dev_priv))
4684 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4685 else
4686 BUG();
4687 }
4688
init_unused_ring(struct drm_i915_private * dev_priv,u32 base)4689 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4690 {
4691 I915_WRITE(RING_CTL(base), 0);
4692 I915_WRITE(RING_HEAD(base), 0);
4693 I915_WRITE(RING_TAIL(base), 0);
4694 I915_WRITE(RING_START(base), 0);
4695 }
4696
init_unused_rings(struct drm_i915_private * dev_priv)4697 static void init_unused_rings(struct drm_i915_private *dev_priv)
4698 {
4699 if (IS_I830(dev_priv)) {
4700 init_unused_ring(dev_priv, PRB1_BASE);
4701 init_unused_ring(dev_priv, SRB0_BASE);
4702 init_unused_ring(dev_priv, SRB1_BASE);
4703 init_unused_ring(dev_priv, SRB2_BASE);
4704 init_unused_ring(dev_priv, SRB3_BASE);
4705 } else if (IS_GEN2(dev_priv)) {
4706 init_unused_ring(dev_priv, SRB0_BASE);
4707 init_unused_ring(dev_priv, SRB1_BASE);
4708 } else if (IS_GEN3(dev_priv)) {
4709 init_unused_ring(dev_priv, PRB1_BASE);
4710 init_unused_ring(dev_priv, PRB2_BASE);
4711 }
4712 }
4713
__i915_gem_restart_engines(void * data)4714 static int __i915_gem_restart_engines(void *data)
4715 {
4716 struct drm_i915_private *i915 = data;
4717 struct intel_engine_cs *engine;
4718 enum intel_engine_id id;
4719 int err;
4720
4721 for_each_engine(engine, i915, id) {
4722 err = engine->init_hw(engine);
4723 if (err)
4724 return err;
4725 }
4726
4727 return 0;
4728 }
4729
i915_gem_init_hw(struct drm_i915_private * dev_priv)4730 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4731 {
4732 int ret;
4733
4734 dev_priv->gt.last_init_time = ktime_get();
4735
4736 /* Double layer security blanket, see i915_gem_init() */
4737 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4738
4739 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4740 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4741
4742 if (IS_HASWELL(dev_priv))
4743 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4744 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4745
4746 if (HAS_PCH_NOP(dev_priv)) {
4747 if (IS_IVYBRIDGE(dev_priv)) {
4748 u32 temp = I915_READ(GEN7_MSG_CTL);
4749 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4750 I915_WRITE(GEN7_MSG_CTL, temp);
4751 } else if (INTEL_GEN(dev_priv) >= 7) {
4752 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4753 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4754 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4755 }
4756 }
4757
4758 i915_gem_init_swizzling(dev_priv);
4759
4760 /*
4761 * At least 830 can leave some of the unused rings
4762 * "active" (ie. head != tail) after resume which
4763 * will prevent c3 entry. Makes sure all unused rings
4764 * are totally idle.
4765 */
4766 init_unused_rings(dev_priv);
4767
4768 BUG_ON(!dev_priv->kernel_context);
4769
4770 ret = i915_ppgtt_init_hw(dev_priv);
4771 if (ret) {
4772 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4773 goto out;
4774 }
4775
4776 /* Need to do basic initialisation of all rings first: */
4777 ret = __i915_gem_restart_engines(dev_priv);
4778 if (ret)
4779 goto out;
4780
4781 intel_mocs_init_l3cc_table(dev_priv);
4782
4783 /* We can't enable contexts until all firmware is loaded */
4784 ret = intel_uc_init_hw(dev_priv);
4785 if (ret)
4786 goto out;
4787
4788 out:
4789 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4790 return ret;
4791 }
4792
intel_sanitize_semaphores(struct drm_i915_private * dev_priv,int value)4793 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4794 {
4795 if (INTEL_INFO(dev_priv)->gen < 6)
4796 return false;
4797
4798 /* TODO: make semaphores and Execlists play nicely together */
4799 if (i915.enable_execlists)
4800 return false;
4801
4802 if (value >= 0)
4803 return value;
4804
4805 /* Enable semaphores on SNB when IO remapping is off */
4806 if (IS_GEN6(dev_priv) && intel_vtd_active())
4807 return false;
4808
4809 return true;
4810 }
4811
i915_gem_init(struct drm_i915_private * dev_priv)4812 int i915_gem_init(struct drm_i915_private *dev_priv)
4813 {
4814 int ret;
4815
4816 mutex_lock(&dev_priv->drm.struct_mutex);
4817
4818 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4819
4820 if (!i915.enable_execlists) {
4821 dev_priv->gt.resume = intel_legacy_submission_resume;
4822 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4823 } else {
4824 dev_priv->gt.resume = intel_lr_context_resume;
4825 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4826 }
4827
4828 /* This is just a security blanket to placate dragons.
4829 * On some systems, we very sporadically observe that the first TLBs
4830 * used by the CS may be stale, despite us poking the TLB reset. If
4831 * we hold the forcewake during initialisation these problems
4832 * just magically go away.
4833 */
4834 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4835
4836 ret = i915_gem_init_userptr(dev_priv);
4837 if (ret)
4838 goto out_unlock;
4839
4840 ret = i915_gem_init_ggtt(dev_priv);
4841 if (ret)
4842 goto out_unlock;
4843
4844 ret = i915_gem_contexts_init(dev_priv);
4845 if (ret)
4846 goto out_unlock;
4847
4848 ret = intel_engines_init(dev_priv);
4849 if (ret)
4850 goto out_unlock;
4851
4852 ret = i915_gem_init_hw(dev_priv);
4853 if (ret == -EIO) {
4854 /* Allow engine initialisation to fail by marking the GPU as
4855 * wedged. But we only want to do this where the GPU is angry,
4856 * for all other failure, such as an allocation failure, bail.
4857 */
4858 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4859 i915_gem_set_wedged(dev_priv);
4860 ret = 0;
4861 }
4862
4863 out_unlock:
4864 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4865 mutex_unlock(&dev_priv->drm.struct_mutex);
4866
4867 return ret;
4868 }
4869
i915_gem_init_mmio(struct drm_i915_private * i915)4870 void i915_gem_init_mmio(struct drm_i915_private *i915)
4871 {
4872 i915_gem_sanitize(i915);
4873 }
4874
4875 void
i915_gem_cleanup_engines(struct drm_i915_private * dev_priv)4876 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4877 {
4878 struct intel_engine_cs *engine;
4879 enum intel_engine_id id;
4880
4881 for_each_engine(engine, dev_priv, id)
4882 dev_priv->gt.cleanup_engine(engine);
4883 }
4884
4885 void
i915_gem_load_init_fences(struct drm_i915_private * dev_priv)4886 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4887 {
4888 int i;
4889
4890 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4891 !IS_CHERRYVIEW(dev_priv))
4892 dev_priv->num_fence_regs = 32;
4893 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4894 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4895 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4896 dev_priv->num_fence_regs = 16;
4897 else
4898 dev_priv->num_fence_regs = 8;
4899
4900 if (intel_vgpu_active(dev_priv))
4901 dev_priv->num_fence_regs =
4902 I915_READ(vgtif_reg(avail_rs.fence_num));
4903
4904 /* Initialize fence registers to zero */
4905 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4906 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4907
4908 fence->i915 = dev_priv;
4909 fence->id = i;
4910 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4911 }
4912 i915_gem_restore_fences(dev_priv);
4913
4914 i915_gem_detect_bit_6_swizzle(dev_priv);
4915 }
4916
4917 int
i915_gem_load_init(struct drm_i915_private * dev_priv)4918 i915_gem_load_init(struct drm_i915_private *dev_priv)
4919 {
4920 int err = -ENOMEM;
4921
4922 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4923 if (!dev_priv->objects)
4924 goto err_out;
4925
4926 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4927 if (!dev_priv->vmas)
4928 goto err_objects;
4929
4930 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4931 if (!dev_priv->luts)
4932 goto err_vmas;
4933
4934 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4935 SLAB_HWCACHE_ALIGN |
4936 SLAB_RECLAIM_ACCOUNT |
4937 SLAB_TYPESAFE_BY_RCU);
4938 if (!dev_priv->requests)
4939 goto err_luts;
4940
4941 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4942 SLAB_HWCACHE_ALIGN |
4943 SLAB_RECLAIM_ACCOUNT);
4944 if (!dev_priv->dependencies)
4945 goto err_requests;
4946
4947 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4948 if (!dev_priv->priorities)
4949 goto err_dependencies;
4950
4951 mutex_lock(&dev_priv->drm.struct_mutex);
4952 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4953 err = i915_gem_timeline_init__global(dev_priv);
4954 mutex_unlock(&dev_priv->drm.struct_mutex);
4955 if (err)
4956 goto err_priorities;
4957
4958 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4959 init_llist_head(&dev_priv->mm.free_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4961 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4962 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4963 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4964 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4965 i915_gem_retire_work_handler);
4966 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4967 i915_gem_idle_work_handler);
4968 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4969 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970
4971 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4972
4973 spin_lock_init(&dev_priv->fb_tracking.lock);
4974
4975 return 0;
4976
4977 err_priorities:
4978 kmem_cache_destroy(dev_priv->priorities);
4979 err_dependencies:
4980 kmem_cache_destroy(dev_priv->dependencies);
4981 err_requests:
4982 kmem_cache_destroy(dev_priv->requests);
4983 err_luts:
4984 kmem_cache_destroy(dev_priv->luts);
4985 err_vmas:
4986 kmem_cache_destroy(dev_priv->vmas);
4987 err_objects:
4988 kmem_cache_destroy(dev_priv->objects);
4989 err_out:
4990 return err;
4991 }
4992
i915_gem_load_cleanup(struct drm_i915_private * dev_priv)4993 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4994 {
4995 i915_gem_drain_freed_objects(dev_priv);
4996 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4997 WARN_ON(dev_priv->mm.object_count);
4998
4999 mutex_lock(&dev_priv->drm.struct_mutex);
5000 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5001 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5002 mutex_unlock(&dev_priv->drm.struct_mutex);
5003
5004 kmem_cache_destroy(dev_priv->priorities);
5005 kmem_cache_destroy(dev_priv->dependencies);
5006 kmem_cache_destroy(dev_priv->requests);
5007 kmem_cache_destroy(dev_priv->luts);
5008 kmem_cache_destroy(dev_priv->vmas);
5009 kmem_cache_destroy(dev_priv->objects);
5010
5011 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5012 rcu_barrier();
5013 }
5014
i915_gem_freeze(struct drm_i915_private * dev_priv)5015 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5016 {
5017 /* Discard all purgeable objects, let userspace recover those as
5018 * required after resuming.
5019 */
5020 i915_gem_shrink_all(dev_priv);
5021
5022 return 0;
5023 }
5024
i915_gem_freeze_late(struct drm_i915_private * dev_priv)5025 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5026 {
5027 struct drm_i915_gem_object *obj;
5028 struct list_head *phases[] = {
5029 &dev_priv->mm.unbound_list,
5030 &dev_priv->mm.bound_list,
5031 NULL
5032 }, **p;
5033
5034 /* Called just before we write the hibernation image.
5035 *
5036 * We need to update the domain tracking to reflect that the CPU
5037 * will be accessing all the pages to create and restore from the
5038 * hibernation, and so upon restoration those pages will be in the
5039 * CPU domain.
5040 *
5041 * To make sure the hibernation image contains the latest state,
5042 * we update that state just before writing out the image.
5043 *
5044 * To try and reduce the hibernation image, we manually shrink
5045 * the objects as well, see i915_gem_freeze()
5046 */
5047
5048 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5049 i915_gem_drain_freed_objects(dev_priv);
5050
5051 mutex_lock(&dev_priv->drm.struct_mutex);
5052 for (p = phases; *p; p++) {
5053 list_for_each_entry(obj, *p, global_link)
5054 __start_cpu_write(obj);
5055 }
5056 mutex_unlock(&dev_priv->drm.struct_mutex);
5057
5058 return 0;
5059 }
5060
i915_gem_release(struct drm_device * dev,struct drm_file * file)5061 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5062 {
5063 struct drm_i915_file_private *file_priv = file->driver_priv;
5064 struct drm_i915_gem_request *request;
5065
5066 /* Clean up our request list when the client is going away, so that
5067 * later retire_requests won't dereference our soon-to-be-gone
5068 * file_priv.
5069 */
5070 spin_lock(&file_priv->mm.lock);
5071 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5072 request->file_priv = NULL;
5073 spin_unlock(&file_priv->mm.lock);
5074 }
5075
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)5076 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5077 {
5078 struct drm_i915_file_private *file_priv;
5079 int ret;
5080
5081 DRM_DEBUG("\n");
5082
5083 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5084 if (!file_priv)
5085 return -ENOMEM;
5086
5087 file->driver_priv = file_priv;
5088 file_priv->dev_priv = i915;
5089 file_priv->file = file;
5090
5091 spin_lock_init(&file_priv->mm.lock);
5092 INIT_LIST_HEAD(&file_priv->mm.request_list);
5093
5094 file_priv->bsd_engine = -1;
5095
5096 ret = i915_gem_context_open(i915, file);
5097 if (ret)
5098 kfree(file_priv);
5099
5100 return ret;
5101 }
5102
5103 /**
5104 * i915_gem_track_fb - update frontbuffer tracking
5105 * @old: current GEM buffer for the frontbuffer slots
5106 * @new: new GEM buffer for the frontbuffer slots
5107 * @frontbuffer_bits: bitmask of frontbuffer slots
5108 *
5109 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5110 * from @old and setting them in @new. Both @old and @new can be NULL.
5111 */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5112 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5113 struct drm_i915_gem_object *new,
5114 unsigned frontbuffer_bits)
5115 {
5116 /* Control of individual bits within the mask are guarded by
5117 * the owning plane->mutex, i.e. we can never see concurrent
5118 * manipulation of individual bits. But since the bitfield as a whole
5119 * is updated using RMW, we need to use atomics in order to update
5120 * the bits.
5121 */
5122 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5123 sizeof(atomic_t) * BITS_PER_BYTE);
5124
5125 if (old) {
5126 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5127 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5128 }
5129
5130 if (new) {
5131 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5132 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5133 }
5134 }
5135
5136 /* Allocate a new GEM object and fill it with the supplied data */
5137 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_i915_private * dev_priv,const void * data,size_t size)5138 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5139 const void *data, size_t size)
5140 {
5141 struct drm_i915_gem_object *obj;
5142 struct file *file;
5143 size_t offset;
5144 int err;
5145
5146 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5147 if (IS_ERR(obj))
5148 return obj;
5149
5150 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5151
5152 file = obj->base.filp;
5153 offset = 0;
5154 do {
5155 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5156 struct page *page;
5157 void *pgdata, *vaddr;
5158
5159 err = pagecache_write_begin(file, file->f_mapping,
5160 offset, len, 0,
5161 &page, &pgdata);
5162 if (err < 0)
5163 goto fail;
5164
5165 vaddr = kmap(page);
5166 memcpy(vaddr, data, len);
5167 kunmap(page);
5168
5169 err = pagecache_write_end(file, file->f_mapping,
5170 offset, len, len,
5171 page, pgdata);
5172 if (err < 0)
5173 goto fail;
5174
5175 size -= len;
5176 data += len;
5177 offset += len;
5178 } while (size);
5179
5180 return obj;
5181
5182 fail:
5183 i915_gem_object_put(obj);
5184 return ERR_PTR(err);
5185 }
5186
5187 struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object * obj,unsigned int n,unsigned int * offset)5188 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5189 unsigned int n,
5190 unsigned int *offset)
5191 {
5192 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5193 struct scatterlist *sg;
5194 unsigned int idx, count;
5195
5196 might_sleep();
5197 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5198 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5199
5200 /* As we iterate forward through the sg, we record each entry in a
5201 * radixtree for quick repeated (backwards) lookups. If we have seen
5202 * this index previously, we will have an entry for it.
5203 *
5204 * Initial lookup is O(N), but this is amortized to O(1) for
5205 * sequential page access (where each new request is consecutive
5206 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5207 * i.e. O(1) with a large constant!
5208 */
5209 if (n < READ_ONCE(iter->sg_idx))
5210 goto lookup;
5211
5212 mutex_lock(&iter->lock);
5213
5214 /* We prefer to reuse the last sg so that repeated lookup of this
5215 * (or the subsequent) sg are fast - comparing against the last
5216 * sg is faster than going through the radixtree.
5217 */
5218
5219 sg = iter->sg_pos;
5220 idx = iter->sg_idx;
5221 count = __sg_page_count(sg);
5222
5223 while (idx + count <= n) {
5224 unsigned long exception, i;
5225 int ret;
5226
5227 /* If we cannot allocate and insert this entry, or the
5228 * individual pages from this range, cancel updating the
5229 * sg_idx so that on this lookup we are forced to linearly
5230 * scan onwards, but on future lookups we will try the
5231 * insertion again (in which case we need to be careful of
5232 * the error return reporting that we have already inserted
5233 * this index).
5234 */
5235 ret = radix_tree_insert(&iter->radix, idx, sg);
5236 if (ret && ret != -EEXIST)
5237 goto scan;
5238
5239 exception =
5240 RADIX_TREE_EXCEPTIONAL_ENTRY |
5241 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5242 for (i = 1; i < count; i++) {
5243 ret = radix_tree_insert(&iter->radix, idx + i,
5244 (void *)exception);
5245 if (ret && ret != -EEXIST)
5246 goto scan;
5247 }
5248
5249 idx += count;
5250 sg = ____sg_next(sg);
5251 count = __sg_page_count(sg);
5252 }
5253
5254 scan:
5255 iter->sg_pos = sg;
5256 iter->sg_idx = idx;
5257
5258 mutex_unlock(&iter->lock);
5259
5260 if (unlikely(n < idx)) /* insertion completed by another thread */
5261 goto lookup;
5262
5263 /* In case we failed to insert the entry into the radixtree, we need
5264 * to look beyond the current sg.
5265 */
5266 while (idx + count <= n) {
5267 idx += count;
5268 sg = ____sg_next(sg);
5269 count = __sg_page_count(sg);
5270 }
5271
5272 *offset = n - idx;
5273 return sg;
5274
5275 lookup:
5276 rcu_read_lock();
5277
5278 sg = radix_tree_lookup(&iter->radix, n);
5279 GEM_BUG_ON(!sg);
5280
5281 /* If this index is in the middle of multi-page sg entry,
5282 * the radixtree will contain an exceptional entry that points
5283 * to the start of that range. We will return the pointer to
5284 * the base page and the offset of this page within the
5285 * sg entry's range.
5286 */
5287 *offset = 0;
5288 if (unlikely(radix_tree_exception(sg))) {
5289 unsigned long base =
5290 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5291
5292 sg = radix_tree_lookup(&iter->radix, base);
5293 GEM_BUG_ON(!sg);
5294
5295 *offset = n - base;
5296 }
5297
5298 rcu_read_unlock();
5299
5300 return sg;
5301 }
5302
5303 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)5304 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5305 {
5306 struct scatterlist *sg;
5307 unsigned int offset;
5308
5309 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5310
5311 sg = i915_gem_object_get_sg(obj, n, &offset);
5312 return nth_page(sg_page(sg), offset);
5313 }
5314
5315 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5316 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)5317 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5318 unsigned int n)
5319 {
5320 struct page *page;
5321
5322 page = i915_gem_object_get_page(obj, n);
5323 if (!obj->mm.dirty)
5324 set_page_dirty(page);
5325
5326 return page;
5327 }
5328
5329 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)5330 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5331 unsigned long n)
5332 {
5333 struct scatterlist *sg;
5334 unsigned int offset;
5335
5336 sg = i915_gem_object_get_sg(obj, n, &offset);
5337 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5338 }
5339
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)5340 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5341 {
5342 struct sg_table *pages;
5343 int err;
5344
5345 if (align > obj->base.size)
5346 return -EINVAL;
5347
5348 if (obj->ops == &i915_gem_phys_ops)
5349 return 0;
5350
5351 if (obj->ops != &i915_gem_object_ops)
5352 return -EINVAL;
5353
5354 err = i915_gem_object_unbind(obj);
5355 if (err)
5356 return err;
5357
5358 mutex_lock(&obj->mm.lock);
5359
5360 if (obj->mm.madv != I915_MADV_WILLNEED) {
5361 err = -EFAULT;
5362 goto err_unlock;
5363 }
5364
5365 if (obj->mm.quirked) {
5366 err = -EFAULT;
5367 goto err_unlock;
5368 }
5369
5370 if (obj->mm.mapping) {
5371 err = -EBUSY;
5372 goto err_unlock;
5373 }
5374
5375 pages = obj->mm.pages;
5376 obj->ops = &i915_gem_phys_ops;
5377
5378 err = ____i915_gem_object_get_pages(obj);
5379 if (err)
5380 goto err_xfer;
5381
5382 /* Perma-pin (until release) the physical set of pages */
5383 __i915_gem_object_pin_pages(obj);
5384
5385 if (!IS_ERR_OR_NULL(pages))
5386 i915_gem_object_ops.put_pages(obj, pages);
5387 mutex_unlock(&obj->mm.lock);
5388 return 0;
5389
5390 err_xfer:
5391 obj->ops = &i915_gem_object_ops;
5392 obj->mm.pages = pages;
5393 err_unlock:
5394 mutex_unlock(&obj->mm.lock);
5395 return err;
5396 }
5397
5398 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5399 #include "selftests/scatterlist.c"
5400 #include "selftests/mock_gem_device.c"
5401 #include "selftests/huge_gem_object.c"
5402 #include "selftests/i915_gem_object.c"
5403 #include "selftests/i915_gem_coherency.c"
5404 #endif
5405