1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209
210 /* HW requires this to be a power of two, between 128k and 16M, though driver
211 * is currently generally designed assuming the largest 16M size is used such
212 * that the overflow cases are unlikely in normal operation.
213 */
214 #define OA_BUFFER_SIZE SZ_16M
215
216 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
217
218 /**
219 * DOC: OA Tail Pointer Race
220 *
221 * There's a HW race condition between OA unit tail pointer register updates and
222 * writes to memory whereby the tail pointer can sometimes get ahead of what's
223 * been written out to the OA buffer so far (in terms of what's visible to the
224 * CPU).
225 *
226 * Although this can be observed explicitly while copying reports to userspace
227 * by checking for a zeroed report-id field in tail reports, we want to account
228 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
229 * read() attempts.
230 *
231 * In effect we define a tail pointer for reading that lags the real tail
232 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
233 * time for the corresponding reports to become visible to the CPU.
234 *
235 * To manage this we actually track two tail pointers:
236 * 1) An 'aging' tail with an associated timestamp that is tracked until we
237 * can trust the corresponding data is visible to the CPU; at which point
238 * it is considered 'aged'.
239 * 2) An 'aged' tail that can be used for read()ing.
240 *
241 * The two separate pointers let us decouple read()s from tail pointer aging.
242 *
243 * The tail pointers are checked and updated at a limited rate within a hrtimer
244 * callback (the same callback that is used for delivering POLLIN events)
245 *
246 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
247 * indicates that an updated tail pointer is needed.
248 *
249 * Most of the implementation details for this workaround are in
250 * oa_buffer_check_unlocked() and _append_oa_reports()
251 *
252 * Note for posterity: previously the driver used to define an effective tail
253 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
254 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
255 * This was flawed considering that the OA unit may also automatically generate
256 * non-periodic reports (such as on context switch) or the OA unit may be
257 * enabled without any periodic sampling.
258 */
259 #define OA_TAIL_MARGIN_NSEC 100000ULL
260 #define INVALID_TAIL_PTR 0xffffffff
261
262 /* frequency for checking whether the OA unit has written new reports to the
263 * circular OA buffer...
264 */
265 #define POLL_FREQUENCY 200
266 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
267
268 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
269 static int zero;
270 static int one = 1;
271 static u32 i915_perf_stream_paranoid = true;
272
273 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
274 * of the 64bit timestamp bits to trigger reports from) but there's currently
275 * no known use case for sampling as infrequently as once per 47 thousand years.
276 *
277 * Since the timestamps included in OA reports are only 32bits it seems
278 * reasonable to limit the OA exponent where it's still possible to account for
279 * overflow in OA report timestamps.
280 */
281 #define OA_EXPONENT_MAX 31
282
283 #define INVALID_CTX_ID 0xffffffff
284
285 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
286 #define OAREPORT_REASON_MASK 0x3f
287 #define OAREPORT_REASON_SHIFT 19
288 #define OAREPORT_REASON_TIMER (1<<0)
289 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
290 #define OAREPORT_REASON_CLK_RATIO (1<<5)
291
292
293 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
294 *
295 * The highest sampling frequency we can theoretically program the OA unit
296 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
297 *
298 * Initialized just before we register the sysctl parameter.
299 */
300 static int oa_sample_rate_hard_limit;
301
302 /* Theoretically we can program the OA unit to sample every 160ns but don't
303 * allow that by default unless root...
304 *
305 * The default threshold of 100000Hz is based on perf's similar
306 * kernel.perf_event_max_sample_rate sysctl parameter.
307 */
308 static u32 i915_oa_max_sample_rate = 100000;
309
310 /* XXX: beware if future OA HW adds new report formats that the current
311 * code assumes all reports have a power-of-two size and ~(size - 1) can
312 * be used as a mask to align the OA tail pointer.
313 */
314 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
315 [I915_OA_FORMAT_A13] = { 0, 64 },
316 [I915_OA_FORMAT_A29] = { 1, 128 },
317 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
318 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
319 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
320 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
321 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
322 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
323 };
324
325 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
326 [I915_OA_FORMAT_A12] = { 0, 64 },
327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
330 };
331
332 #define SAMPLE_OA_REPORT (1<<0)
333
334 /**
335 * struct perf_open_properties - for validated properties given to open a stream
336 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
337 * @single_context: Whether a single or all gpu contexts should be monitored
338 * @ctx_handle: A gem ctx handle for use with @single_context
339 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
340 * @oa_format: An OA unit HW report format
341 * @oa_periodic: Whether to enable periodic OA unit sampling
342 * @oa_period_exponent: The OA unit sampling period is derived from this
343 *
344 * As read_properties_unlocked() enumerates and validates the properties given
345 * to open a stream of metrics the configuration is built up in the structure
346 * which starts out zero initialized.
347 */
348 struct perf_open_properties {
349 u32 sample_flags;
350
351 u64 single_context:1;
352 u64 ctx_handle;
353
354 /* OA sampling state */
355 int metrics_set;
356 int oa_format;
357 bool oa_periodic;
358 int oa_period_exponent;
359 };
360
free_oa_config(struct drm_i915_private * dev_priv,struct i915_oa_config * oa_config)361 static void free_oa_config(struct drm_i915_private *dev_priv,
362 struct i915_oa_config *oa_config)
363 {
364 if (!PTR_ERR(oa_config->flex_regs))
365 kfree(oa_config->flex_regs);
366 if (!PTR_ERR(oa_config->b_counter_regs))
367 kfree(oa_config->b_counter_regs);
368 if (!PTR_ERR(oa_config->mux_regs))
369 kfree(oa_config->mux_regs);
370 kfree(oa_config);
371 }
372
put_oa_config(struct drm_i915_private * dev_priv,struct i915_oa_config * oa_config)373 static void put_oa_config(struct drm_i915_private *dev_priv,
374 struct i915_oa_config *oa_config)
375 {
376 if (!atomic_dec_and_test(&oa_config->ref_count))
377 return;
378
379 free_oa_config(dev_priv, oa_config);
380 }
381
get_oa_config(struct drm_i915_private * dev_priv,int metrics_set,struct i915_oa_config ** out_config)382 static int get_oa_config(struct drm_i915_private *dev_priv,
383 int metrics_set,
384 struct i915_oa_config **out_config)
385 {
386 int ret;
387
388 if (metrics_set == 1) {
389 *out_config = &dev_priv->perf.oa.test_config;
390 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
391 return 0;
392 }
393
394 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
395 if (ret)
396 return ret;
397
398 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
399 if (!*out_config)
400 ret = -EINVAL;
401 else
402 atomic_inc(&(*out_config)->ref_count);
403
404 mutex_unlock(&dev_priv->perf.metrics_lock);
405
406 return ret;
407 }
408
gen8_oa_hw_tail_read(struct drm_i915_private * dev_priv)409 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
410 {
411 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
412 }
413
gen7_oa_hw_tail_read(struct drm_i915_private * dev_priv)414 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
415 {
416 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
417
418 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
419 }
420
421 /**
422 * oa_buffer_check_unlocked - check for data and update tail ptr state
423 * @dev_priv: i915 device instance
424 *
425 * This is either called via fops (for blocking reads in user ctx) or the poll
426 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
427 * if there is data available for userspace to read.
428 *
429 * This function is central to providing a workaround for the OA unit tail
430 * pointer having a race with respect to what data is visible to the CPU.
431 * It is responsible for reading tail pointers from the hardware and giving
432 * the pointers time to 'age' before they are made available for reading.
433 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
434 *
435 * Besides returning true when there is data available to read() this function
436 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
437 * and .aged_tail_idx state used for reading.
438 *
439 * Note: It's safe to read OA config state here unlocked, assuming that this is
440 * only called while the stream is enabled, while the global OA configuration
441 * can't be modified.
442 *
443 * Returns: %true if the OA buffer contains data, else %false
444 */
oa_buffer_check_unlocked(struct drm_i915_private * dev_priv)445 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
446 {
447 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
448 unsigned long flags;
449 unsigned int aged_idx;
450 u32 head, hw_tail, aged_tail, aging_tail;
451 u64 now;
452
453 /* We have to consider the (unlikely) possibility that read() errors
454 * could result in an OA buffer reset which might reset the head,
455 * tails[] and aged_tail state.
456 */
457 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
458
459 /* NB: The head we observe here might effectively be a little out of
460 * date (between head and tails[aged_idx].offset if there is currently
461 * a read() in progress.
462 */
463 head = dev_priv->perf.oa.oa_buffer.head;
464
465 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
466 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
467 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
468
469 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
470
471 /* The tail pointer increases in 64 byte increments,
472 * not in report_size steps...
473 */
474 hw_tail &= ~(report_size - 1);
475
476 now = ktime_get_mono_fast_ns();
477
478 /* Update the aged tail
479 *
480 * Flip the tail pointer available for read()s once the aging tail is
481 * old enough to trust that the corresponding data will be visible to
482 * the CPU...
483 *
484 * Do this before updating the aging pointer in case we may be able to
485 * immediately start aging a new pointer too (if new data has become
486 * available) without needing to wait for a later hrtimer callback.
487 */
488 if (aging_tail != INVALID_TAIL_PTR &&
489 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
490 OA_TAIL_MARGIN_NSEC)) {
491
492 aged_idx ^= 1;
493 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
494
495 aged_tail = aging_tail;
496
497 /* Mark that we need a new pointer to start aging... */
498 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
499 aging_tail = INVALID_TAIL_PTR;
500 }
501
502 /* Update the aging tail
503 *
504 * We throttle aging tail updates until we have a new tail that
505 * represents >= one report more data than is already available for
506 * reading. This ensures there will be enough data for a successful
507 * read once this new pointer has aged and ensures we will give the new
508 * pointer time to age.
509 */
510 if (aging_tail == INVALID_TAIL_PTR &&
511 (aged_tail == INVALID_TAIL_PTR ||
512 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
513 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
514 u32 gtt_offset = i915_ggtt_offset(vma);
515
516 /* Be paranoid and do a bounds check on the pointer read back
517 * from hardware, just in case some spurious hardware condition
518 * could put the tail out of bounds...
519 */
520 if (hw_tail >= gtt_offset &&
521 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
522 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
523 aging_tail = hw_tail;
524 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
525 } else {
526 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
527 hw_tail);
528 }
529 }
530
531 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
532
533 return aged_tail == INVALID_TAIL_PTR ?
534 false : OA_TAKEN(aged_tail, head) >= report_size;
535 }
536
537 /**
538 * append_oa_status - Appends a status record to a userspace read() buffer.
539 * @stream: An i915-perf stream opened for OA metrics
540 * @buf: destination buffer given by userspace
541 * @count: the number of bytes userspace wants to read
542 * @offset: (inout): the current position for writing into @buf
543 * @type: The kind of status to report to userspace
544 *
545 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
546 * into the userspace read() buffer.
547 *
548 * The @buf @offset will only be updated on success.
549 *
550 * Returns: 0 on success, negative error code on failure.
551 */
append_oa_status(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,enum drm_i915_perf_record_type type)552 static int append_oa_status(struct i915_perf_stream *stream,
553 char __user *buf,
554 size_t count,
555 size_t *offset,
556 enum drm_i915_perf_record_type type)
557 {
558 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
559
560 if ((count - *offset) < header.size)
561 return -ENOSPC;
562
563 if (copy_to_user(buf + *offset, &header, sizeof(header)))
564 return -EFAULT;
565
566 (*offset) += header.size;
567
568 return 0;
569 }
570
571 /**
572 * append_oa_sample - Copies single OA report into userspace read() buffer.
573 * @stream: An i915-perf stream opened for OA metrics
574 * @buf: destination buffer given by userspace
575 * @count: the number of bytes userspace wants to read
576 * @offset: (inout): the current position for writing into @buf
577 * @report: A single OA report to (optionally) include as part of the sample
578 *
579 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
580 * properties when opening a stream, tracked as `stream->sample_flags`. This
581 * function copies the requested components of a single sample to the given
582 * read() @buf.
583 *
584 * The @buf @offset will only be updated on success.
585 *
586 * Returns: 0 on success, negative error code on failure.
587 */
append_oa_sample(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,const u8 * report)588 static int append_oa_sample(struct i915_perf_stream *stream,
589 char __user *buf,
590 size_t count,
591 size_t *offset,
592 const u8 *report)
593 {
594 struct drm_i915_private *dev_priv = stream->dev_priv;
595 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
596 struct drm_i915_perf_record_header header;
597 u32 sample_flags = stream->sample_flags;
598
599 header.type = DRM_I915_PERF_RECORD_SAMPLE;
600 header.pad = 0;
601 header.size = stream->sample_size;
602
603 if ((count - *offset) < header.size)
604 return -ENOSPC;
605
606 buf += *offset;
607 if (copy_to_user(buf, &header, sizeof(header)))
608 return -EFAULT;
609 buf += sizeof(header);
610
611 if (sample_flags & SAMPLE_OA_REPORT) {
612 if (copy_to_user(buf, report, report_size))
613 return -EFAULT;
614 }
615
616 (*offset) += header.size;
617
618 return 0;
619 }
620
621 /**
622 * Copies all buffered OA reports into userspace read() buffer.
623 * @stream: An i915-perf stream opened for OA metrics
624 * @buf: destination buffer given by userspace
625 * @count: the number of bytes userspace wants to read
626 * @offset: (inout): the current position for writing into @buf
627 *
628 * Notably any error condition resulting in a short read (-%ENOSPC or
629 * -%EFAULT) will be returned even though one or more records may
630 * have been successfully copied. In this case it's up to the caller
631 * to decide if the error should be squashed before returning to
632 * userspace.
633 *
634 * Note: reports are consumed from the head, and appended to the
635 * tail, so the tail chases the head?... If you think that's mad
636 * and back-to-front you're not alone, but this follows the
637 * Gen PRM naming convention.
638 *
639 * Returns: 0 on success, negative error code on failure.
640 */
gen8_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)641 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
642 char __user *buf,
643 size_t count,
644 size_t *offset)
645 {
646 struct drm_i915_private *dev_priv = stream->dev_priv;
647 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
648 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
649 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
650 u32 mask = (OA_BUFFER_SIZE - 1);
651 size_t start_offset = *offset;
652 unsigned long flags;
653 unsigned int aged_tail_idx;
654 u32 head, tail;
655 u32 taken;
656 int ret = 0;
657
658 if (WARN_ON(!stream->enabled))
659 return -EIO;
660
661 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
662
663 head = dev_priv->perf.oa.oa_buffer.head;
664 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
665 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
666
667 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
668
669 /*
670 * An invalid tail pointer here means we're still waiting for the poll
671 * hrtimer callback to give us a pointer
672 */
673 if (tail == INVALID_TAIL_PTR)
674 return -EAGAIN;
675
676 /*
677 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
678 * while indexing relative to oa_buf_base.
679 */
680 head -= gtt_offset;
681 tail -= gtt_offset;
682
683 /*
684 * An out of bounds or misaligned head or tail pointer implies a driver
685 * bug since we validate + align the tail pointers we read from the
686 * hardware and we are in full control of the head pointer which should
687 * only be incremented by multiples of the report size (notably also
688 * all a power of two).
689 */
690 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
691 tail > OA_BUFFER_SIZE || tail % report_size,
692 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
693 head, tail))
694 return -EIO;
695
696
697 for (/* none */;
698 (taken = OA_TAKEN(tail, head));
699 head = (head + report_size) & mask) {
700 u8 *report = oa_buf_base + head;
701 u32 *report32 = (void *)report;
702 u32 ctx_id;
703 u32 reason;
704
705 /*
706 * All the report sizes factor neatly into the buffer
707 * size so we never expect to see a report split
708 * between the beginning and end of the buffer.
709 *
710 * Given the initial alignment check a misalignment
711 * here would imply a driver bug that would result
712 * in an overrun.
713 */
714 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
715 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
716 break;
717 }
718
719 /*
720 * The reason field includes flags identifying what
721 * triggered this specific report (mostly timer
722 * triggered or e.g. due to a context switch).
723 *
724 * This field is never expected to be zero so we can
725 * check that the report isn't invalid before copying
726 * it to userspace...
727 */
728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 OAREPORT_REASON_MASK);
730 if (reason == 0) {
731 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
732 DRM_NOTE("Skipping spurious, invalid OA report\n");
733 continue;
734 }
735
736 /*
737 * XXX: Just keep the lower 21 bits for now since I'm not
738 * entirely sure if the HW touches any of the higher bits in
739 * this field
740 */
741 ctx_id = report32[2] & 0x1fffff;
742
743 /*
744 * Squash whatever is in the CTX_ID field if it's marked as
745 * invalid to be sure we avoid false-positive, single-context
746 * filtering below...
747 *
748 * Note: that we don't clear the valid_ctx_bit so userspace can
749 * understand that the ID has been squashed by the kernel.
750 */
751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
752 ctx_id = report32[2] = INVALID_CTX_ID;
753
754 /*
755 * NB: For Gen 8 the OA unit no longer supports clock gating
756 * off for a specific context and the kernel can't securely
757 * stop the counters from updating as system-wide / global
758 * values.
759 *
760 * Automatic reports now include a context ID so reports can be
761 * filtered on the cpu but it's not worth trying to
762 * automatically subtract/hide counter progress for other
763 * contexts while filtering since we can't stop userspace
764 * issuing MI_REPORT_PERF_COUNT commands which would still
765 * provide a side-band view of the real values.
766 *
767 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
768 * to normalize counters for a single filtered context then it
769 * needs be forwarded bookend context-switch reports so that it
770 * can track switches in between MI_REPORT_PERF_COUNT commands
771 * and can itself subtract/ignore the progress of counters
772 * associated with other contexts. Note that the hardware
773 * automatically triggers reports when switching to a new
774 * context which are tagged with the ID of the newly active
775 * context. To avoid the complexity (and likely fragility) of
776 * reading ahead while parsing reports to try and minimize
777 * forwarding redundant context switch reports (i.e. between
778 * other, unrelated contexts) we simply elect to forward them
779 * all.
780 *
781 * We don't rely solely on the reason field to identify context
782 * switches since it's not-uncommon for periodic samples to
783 * identify a switch before any 'context switch' report.
784 */
785 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
786 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
787 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
788 dev_priv->perf.oa.specific_ctx_id) ||
789 reason & OAREPORT_REASON_CTX_SWITCH) {
790
791 /*
792 * While filtering for a single context we avoid
793 * leaking the IDs of other contexts.
794 */
795 if (dev_priv->perf.oa.exclusive_stream->ctx &&
796 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
797 report32[2] = INVALID_CTX_ID;
798 }
799
800 ret = append_oa_sample(stream, buf, count, offset,
801 report);
802 if (ret)
803 break;
804
805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
806 }
807
808 /*
809 * The above reason field sanity check is based on
810 * the assumption that the OA buffer is initially
811 * zeroed and we reset the field after copying so the
812 * check is still meaningful once old reports start
813 * being overwritten.
814 */
815 report32[0] = 0;
816 }
817
818 if (start_offset != *offset) {
819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
820
821 /*
822 * We removed the gtt_offset for the copy loop above, indexing
823 * relative to oa_buf_base so put back here...
824 */
825 head += gtt_offset;
826
827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
828 dev_priv->perf.oa.oa_buffer.head = head;
829
830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
831 }
832
833 return ret;
834 }
835
836 /**
837 * gen8_oa_read - copy status records then buffered OA reports
838 * @stream: An i915-perf stream opened for OA metrics
839 * @buf: destination buffer given by userspace
840 * @count: the number of bytes userspace wants to read
841 * @offset: (inout): the current position for writing into @buf
842 *
843 * Checks OA unit status registers and if necessary appends corresponding
844 * status records for userspace (such as for a buffer full condition) and then
845 * initiate appending any buffered OA reports.
846 *
847 * Updates @offset according to the number of bytes successfully copied into
848 * the userspace buffer.
849 *
850 * NB: some data may be successfully copied to the userspace buffer
851 * even if an error is returned, and this is reflected in the
852 * updated @offset.
853 *
854 * Returns: zero on success or a negative error code
855 */
gen8_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 char __user *buf,
858 size_t count,
859 size_t *offset)
860 {
861 struct drm_i915_private *dev_priv = stream->dev_priv;
862 u32 oastatus;
863 int ret;
864
865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
866 return -EIO;
867
868 oastatus = I915_READ(GEN8_OASTATUS);
869
870 /*
871 * We treat OABUFFER_OVERFLOW as a significant error:
872 *
873 * Although theoretically we could handle this more gracefully
874 * sometimes, some Gens don't correctly suppress certain
875 * automatically triggered reports in this condition and so we
876 * have to assume that old reports are now being trampled
877 * over.
878 *
879 * Considering how we don't currently give userspace control
880 * over the OA buffer size and always configure a large 16MB
881 * buffer, then a buffer overflow does anyway likely indicate
882 * that something has gone quite badly wrong.
883 */
884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
885 ret = append_oa_status(stream, buf, count, offset,
886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
887 if (ret)
888 return ret;
889
890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
891 dev_priv->perf.oa.period_exponent);
892
893 dev_priv->perf.oa.ops.oa_disable(dev_priv);
894 dev_priv->perf.oa.ops.oa_enable(dev_priv);
895
896 /*
897 * Note: .oa_enable() is expected to re-init the oabuffer and
898 * reset GEN8_OASTATUS for us
899 */
900 oastatus = I915_READ(GEN8_OASTATUS);
901 }
902
903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
904 ret = append_oa_status(stream, buf, count, offset,
905 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
906 if (ret)
907 return ret;
908 I915_WRITE(GEN8_OASTATUS,
909 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
910 }
911
912 return gen8_append_oa_reports(stream, buf, count, offset);
913 }
914
915 /**
916 * Copies all buffered OA reports into userspace read() buffer.
917 * @stream: An i915-perf stream opened for OA metrics
918 * @buf: destination buffer given by userspace
919 * @count: the number of bytes userspace wants to read
920 * @offset: (inout): the current position for writing into @buf
921 *
922 * Notably any error condition resulting in a short read (-%ENOSPC or
923 * -%EFAULT) will be returned even though one or more records may
924 * have been successfully copied. In this case it's up to the caller
925 * to decide if the error should be squashed before returning to
926 * userspace.
927 *
928 * Note: reports are consumed from the head, and appended to the
929 * tail, so the tail chases the head?... If you think that's mad
930 * and back-to-front you're not alone, but this follows the
931 * Gen PRM naming convention.
932 *
933 * Returns: 0 on success, negative error code on failure.
934 */
gen7_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)935 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
936 char __user *buf,
937 size_t count,
938 size_t *offset)
939 {
940 struct drm_i915_private *dev_priv = stream->dev_priv;
941 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
944 u32 mask = (OA_BUFFER_SIZE - 1);
945 size_t start_offset = *offset;
946 unsigned long flags;
947 unsigned int aged_tail_idx;
948 u32 head, tail;
949 u32 taken;
950 int ret = 0;
951
952 if (WARN_ON(!stream->enabled))
953 return -EIO;
954
955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
956
957 head = dev_priv->perf.oa.oa_buffer.head;
958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
960
961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
962
963 /* An invalid tail pointer here means we're still waiting for the poll
964 * hrtimer callback to give us a pointer
965 */
966 if (tail == INVALID_TAIL_PTR)
967 return -EAGAIN;
968
969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
970 * while indexing relative to oa_buf_base.
971 */
972 head -= gtt_offset;
973 tail -= gtt_offset;
974
975 /* An out of bounds or misaligned head or tail pointer implies a driver
976 * bug since we validate + align the tail pointers we read from the
977 * hardware and we are in full control of the head pointer which should
978 * only be incremented by multiples of the report size (notably also
979 * all a power of two).
980 */
981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
982 tail > OA_BUFFER_SIZE || tail % report_size,
983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
984 head, tail))
985 return -EIO;
986
987
988 for (/* none */;
989 (taken = OA_TAKEN(tail, head));
990 head = (head + report_size) & mask) {
991 u8 *report = oa_buf_base + head;
992 u32 *report32 = (void *)report;
993
994 /* All the report sizes factor neatly into the buffer
995 * size so we never expect to see a report split
996 * between the beginning and end of the buffer.
997 *
998 * Given the initial alignment check a misalignment
999 * here would imply a driver bug that would result
1000 * in an overrun.
1001 */
1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1004 break;
1005 }
1006
1007 /* The report-ID field for periodic samples includes
1008 * some undocumented flags related to what triggered
1009 * the report and is never expected to be zero so we
1010 * can check that the report isn't invalid before
1011 * copying it to userspace...
1012 */
1013 if (report32[0] == 0) {
1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1015 DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 continue;
1017 }
1018
1019 ret = append_oa_sample(stream, buf, count, offset, report);
1020 if (ret)
1021 break;
1022
1023 /* The above report-id field sanity check is based on
1024 * the assumption that the OA buffer is initially
1025 * zeroed and we reset the field after copying so the
1026 * check is still meaningful once old reports start
1027 * being overwritten.
1028 */
1029 report32[0] = 0;
1030 }
1031
1032 if (start_offset != *offset) {
1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1034
1035 /* We removed the gtt_offset for the copy loop above, indexing
1036 * relative to oa_buf_base so put back here...
1037 */
1038 head += gtt_offset;
1039
1040 I915_WRITE(GEN7_OASTATUS2,
1041 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1042 OA_MEM_SELECT_GGTT));
1043 dev_priv->perf.oa.oa_buffer.head = head;
1044
1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1046 }
1047
1048 return ret;
1049 }
1050
1051 /**
1052 * gen7_oa_read - copy status records then buffered OA reports
1053 * @stream: An i915-perf stream opened for OA metrics
1054 * @buf: destination buffer given by userspace
1055 * @count: the number of bytes userspace wants to read
1056 * @offset: (inout): the current position for writing into @buf
1057 *
1058 * Checks Gen 7 specific OA unit status registers and if necessary appends
1059 * corresponding status records for userspace (such as for a buffer full
1060 * condition) and then initiate appending any buffered OA reports.
1061 *
1062 * Updates @offset according to the number of bytes successfully copied into
1063 * the userspace buffer.
1064 *
1065 * Returns: zero on success or a negative error code
1066 */
gen7_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1067 static int gen7_oa_read(struct i915_perf_stream *stream,
1068 char __user *buf,
1069 size_t count,
1070 size_t *offset)
1071 {
1072 struct drm_i915_private *dev_priv = stream->dev_priv;
1073 u32 oastatus1;
1074 int ret;
1075
1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1077 return -EIO;
1078
1079 oastatus1 = I915_READ(GEN7_OASTATUS1);
1080
1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1082 * bits while the OA unit is enabled (while the tail pointer
1083 * may be updated asynchronously) so we ignore status bits
1084 * that have already been reported to userspace.
1085 */
1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1087
1088 /* We treat OABUFFER_OVERFLOW as a significant error:
1089 *
1090 * - The status can be interpreted to mean that the buffer is
1091 * currently full (with a higher precedence than OA_TAKEN()
1092 * which will start to report a near-empty buffer after an
1093 * overflow) but it's awkward that we can't clear the status
1094 * on Haswell, so without a reset we won't be able to catch
1095 * the state again.
1096 *
1097 * - Since it also implies the HW has started overwriting old
1098 * reports it may also affect our sanity checks for invalid
1099 * reports when copying to userspace that assume new reports
1100 * are being written to cleared memory.
1101 *
1102 * - In the future we may want to introduce a flight recorder
1103 * mode where the driver will automatically maintain a safe
1104 * guard band between head/tail, avoiding this overflow
1105 * condition, but we avoid the added driver complexity for
1106 * now.
1107 */
1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1109 ret = append_oa_status(stream, buf, count, offset,
1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1111 if (ret)
1112 return ret;
1113
1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1115 dev_priv->perf.oa.period_exponent);
1116
1117 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1118 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1119
1120 oastatus1 = I915_READ(GEN7_OASTATUS1);
1121 }
1122
1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1124 ret = append_oa_status(stream, buf, count, offset,
1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1126 if (ret)
1127 return ret;
1128 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1129 GEN7_OASTATUS1_REPORT_LOST;
1130 }
1131
1132 return gen7_append_oa_reports(stream, buf, count, offset);
1133 }
1134
1135 /**
1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1137 * @stream: An i915-perf stream opened for OA metrics
1138 *
1139 * Called when userspace tries to read() from a blocking stream FD opened
1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1141 * OA buffer and wakes us.
1142 *
1143 * Note: it's acceptable to have this return with some false positives
1144 * since any subsequent read handling will return -EAGAIN if there isn't
1145 * really data ready for userspace yet.
1146 *
1147 * Returns: zero on success or a negative error code
1148 */
i915_oa_wait_unlocked(struct i915_perf_stream * stream)1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1150 {
1151 struct drm_i915_private *dev_priv = stream->dev_priv;
1152
1153 /* We would wait indefinitely if periodic sampling is not enabled */
1154 if (!dev_priv->perf.oa.periodic)
1155 return -EIO;
1156
1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1158 oa_buffer_check_unlocked(dev_priv));
1159 }
1160
1161 /**
1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1163 * @stream: An i915-perf stream opened for OA metrics
1164 * @file: An i915 perf stream file
1165 * @wait: poll() state table
1166 *
1167 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1169 * when it sees data ready to read in the circular OA buffer.
1170 */
i915_oa_poll_wait(struct i915_perf_stream * stream,struct file * file,poll_table * wait)1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1172 struct file *file,
1173 poll_table *wait)
1174 {
1175 struct drm_i915_private *dev_priv = stream->dev_priv;
1176
1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1178 }
1179
1180 /**
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1186 *
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1189 *
1190 * Returns: zero on success or a negative error code
1191 */
i915_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 char __user *buf,
1194 size_t count,
1195 size_t *offset)
1196 {
1197 struct drm_i915_private *dev_priv = stream->dev_priv;
1198
1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1200 }
1201
1202 /**
1203 * oa_get_render_ctx_id - determine and hold ctx hw id
1204 * @stream: An i915-perf stream opened for OA metrics
1205 *
1206 * Determine the render context hw id, and ensure it remains fixed for the
1207 * lifetime of the stream. This ensures that we don't have to worry about
1208 * updating the context ID in OACONTROL on the fly.
1209 *
1210 * Returns: zero on success or a negative error code
1211 */
oa_get_render_ctx_id(struct i915_perf_stream * stream)1212 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1213 {
1214 struct drm_i915_private *dev_priv = stream->dev_priv;
1215
1216 if (i915.enable_execlists)
1217 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1218 else {
1219 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1220 struct intel_ring *ring;
1221 int ret;
1222
1223 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1224 if (ret)
1225 return ret;
1226
1227 /*
1228 * As the ID is the gtt offset of the context's vma we
1229 * pin the vma to ensure the ID remains fixed.
1230 *
1231 * NB: implied RCS engine...
1232 */
1233 ring = engine->context_pin(engine, stream->ctx);
1234 mutex_unlock(&dev_priv->drm.struct_mutex);
1235 if (IS_ERR(ring))
1236 return PTR_ERR(ring);
1237
1238
1239 /*
1240 * Explicitly track the ID (instead of calling
1241 * i915_ggtt_offset() on the fly) considering the difference
1242 * with gen8+ and execlists
1243 */
1244 dev_priv->perf.oa.specific_ctx_id =
1245 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1246 }
1247
1248 return 0;
1249 }
1250
1251 /**
1252 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1253 * @stream: An i915-perf stream opened for OA metrics
1254 *
1255 * In case anything needed doing to ensure the context HW ID would remain valid
1256 * for the lifetime of the stream, then that can be undone here.
1257 */
oa_put_render_ctx_id(struct i915_perf_stream * stream)1258 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1259 {
1260 struct drm_i915_private *dev_priv = stream->dev_priv;
1261
1262 if (i915.enable_execlists) {
1263 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1264 } else {
1265 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1266
1267 mutex_lock(&dev_priv->drm.struct_mutex);
1268
1269 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1270 engine->context_unpin(engine, stream->ctx);
1271
1272 mutex_unlock(&dev_priv->drm.struct_mutex);
1273 }
1274 }
1275
1276 static void
free_oa_buffer(struct drm_i915_private * i915)1277 free_oa_buffer(struct drm_i915_private *i915)
1278 {
1279 mutex_lock(&i915->drm.struct_mutex);
1280
1281 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1282 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1283 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1284
1285 i915->perf.oa.oa_buffer.vma = NULL;
1286 i915->perf.oa.oa_buffer.vaddr = NULL;
1287
1288 mutex_unlock(&i915->drm.struct_mutex);
1289 }
1290
i915_oa_stream_destroy(struct i915_perf_stream * stream)1291 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1292 {
1293 struct drm_i915_private *dev_priv = stream->dev_priv;
1294
1295 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1296
1297 /*
1298 * Unset exclusive_stream first, it will be checked while disabling
1299 * the metric set on gen8+.
1300 */
1301 mutex_lock(&dev_priv->drm.struct_mutex);
1302 dev_priv->perf.oa.exclusive_stream = NULL;
1303 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1304 mutex_unlock(&dev_priv->drm.struct_mutex);
1305
1306 free_oa_buffer(dev_priv);
1307
1308 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1309 intel_runtime_pm_put(dev_priv);
1310
1311 if (stream->ctx)
1312 oa_put_render_ctx_id(stream);
1313
1314 put_oa_config(dev_priv, stream->oa_config);
1315
1316 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1317 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1318 dev_priv->perf.oa.spurious_report_rs.missed);
1319 }
1320 }
1321
gen7_init_oa_buffer(struct drm_i915_private * dev_priv)1322 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1323 {
1324 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1325 unsigned long flags;
1326
1327 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1328
1329 /* Pre-DevBDW: OABUFFER must be set with counters off,
1330 * before OASTATUS1, but after OASTATUS2
1331 */
1332 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1333 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1334
1335 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1336
1337 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1338
1339 /* Mark that we need updated tail pointers to read from... */
1340 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1341 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1342
1343 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1344
1345 /* On Haswell we have to track which OASTATUS1 flags we've
1346 * already seen since they can't be cleared while periodic
1347 * sampling is enabled.
1348 */
1349 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1350
1351 /* NB: although the OA buffer will initially be allocated
1352 * zeroed via shmfs (and so this memset is redundant when
1353 * first allocating), we may re-init the OA buffer, either
1354 * when re-enabling a stream or in error/reset paths.
1355 *
1356 * The reason we clear the buffer for each re-init is for the
1357 * sanity check in gen7_append_oa_reports() that looks at the
1358 * report-id field to make sure it's non-zero which relies on
1359 * the assumption that new reports are being written to zeroed
1360 * memory...
1361 */
1362 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1363
1364 /* Maybe make ->pollin per-stream state if we support multiple
1365 * concurrent streams in the future.
1366 */
1367 dev_priv->perf.oa.pollin = false;
1368 }
1369
gen8_init_oa_buffer(struct drm_i915_private * dev_priv)1370 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1371 {
1372 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1373 unsigned long flags;
1374
1375 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1376
1377 I915_WRITE(GEN8_OASTATUS, 0);
1378 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1379 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1380
1381 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1382
1383 /*
1384 * PRM says:
1385 *
1386 * "This MMIO must be set before the OATAILPTR
1387 * register and after the OAHEADPTR register. This is
1388 * to enable proper functionality of the overflow
1389 * bit."
1390 */
1391 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1392 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1393 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1394
1395 /* Mark that we need updated tail pointers to read from... */
1396 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1397 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1398
1399 /*
1400 * Reset state used to recognise context switches, affecting which
1401 * reports we will forward to userspace while filtering for a single
1402 * context.
1403 */
1404 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1405
1406 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1407
1408 /*
1409 * NB: although the OA buffer will initially be allocated
1410 * zeroed via shmfs (and so this memset is redundant when
1411 * first allocating), we may re-init the OA buffer, either
1412 * when re-enabling a stream or in error/reset paths.
1413 *
1414 * The reason we clear the buffer for each re-init is for the
1415 * sanity check in gen8_append_oa_reports() that looks at the
1416 * reason field to make sure it's non-zero which relies on
1417 * the assumption that new reports are being written to zeroed
1418 * memory...
1419 */
1420 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1421
1422 /*
1423 * Maybe make ->pollin per-stream state if we support multiple
1424 * concurrent streams in the future.
1425 */
1426 dev_priv->perf.oa.pollin = false;
1427 }
1428
alloc_oa_buffer(struct drm_i915_private * dev_priv)1429 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1430 {
1431 struct drm_i915_gem_object *bo;
1432 struct i915_vma *vma;
1433 int ret;
1434
1435 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1436 return -ENODEV;
1437
1438 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1439 if (ret)
1440 return ret;
1441
1442 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1443 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1444
1445 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1446 if (IS_ERR(bo)) {
1447 DRM_ERROR("Failed to allocate OA buffer\n");
1448 ret = PTR_ERR(bo);
1449 goto unlock;
1450 }
1451
1452 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1453 if (ret)
1454 goto err_unref;
1455
1456 /* PreHSW required 512K alignment, HSW requires 16M */
1457 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1458 if (IS_ERR(vma)) {
1459 ret = PTR_ERR(vma);
1460 goto err_unref;
1461 }
1462 dev_priv->perf.oa.oa_buffer.vma = vma;
1463
1464 dev_priv->perf.oa.oa_buffer.vaddr =
1465 i915_gem_object_pin_map(bo, I915_MAP_WB);
1466 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1467 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1468 goto err_unpin;
1469 }
1470
1471 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1472
1473 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1474 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1475 dev_priv->perf.oa.oa_buffer.vaddr);
1476
1477 goto unlock;
1478
1479 err_unpin:
1480 __i915_vma_unpin(vma);
1481
1482 err_unref:
1483 i915_gem_object_put(bo);
1484
1485 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1486 dev_priv->perf.oa.oa_buffer.vma = NULL;
1487
1488 unlock:
1489 mutex_unlock(&dev_priv->drm.struct_mutex);
1490 return ret;
1491 }
1492
config_oa_regs(struct drm_i915_private * dev_priv,const struct i915_oa_reg * regs,u32 n_regs)1493 static void config_oa_regs(struct drm_i915_private *dev_priv,
1494 const struct i915_oa_reg *regs,
1495 u32 n_regs)
1496 {
1497 u32 i;
1498
1499 for (i = 0; i < n_regs; i++) {
1500 const struct i915_oa_reg *reg = regs + i;
1501
1502 I915_WRITE(reg->addr, reg->value);
1503 }
1504 }
1505
hsw_enable_metric_set(struct drm_i915_private * dev_priv,const struct i915_oa_config * oa_config)1506 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1507 const struct i915_oa_config *oa_config)
1508 {
1509 /* PRM:
1510 *
1511 * OA unit is using “crclk” for its functionality. When trunk
1512 * level clock gating takes place, OA clock would be gated,
1513 * unable to count the events from non-render clock domain.
1514 * Render clock gating must be disabled when OA is enabled to
1515 * count the events from non-render domain. Unit level clock
1516 * gating for RCS should also be disabled.
1517 */
1518 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1519 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1520 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1521 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1522
1523 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1524
1525 /* It apparently takes a fairly long time for a new MUX
1526 * configuration to be be applied after these register writes.
1527 * This delay duration was derived empirically based on the
1528 * render_basic config but hopefully it covers the maximum
1529 * configuration latency.
1530 *
1531 * As a fallback, the checks in _append_oa_reports() to skip
1532 * invalid OA reports do also seem to work to discard reports
1533 * generated before this config has completed - albeit not
1534 * silently.
1535 *
1536 * Unfortunately this is essentially a magic number, since we
1537 * don't currently know of a reliable mechanism for predicting
1538 * how long the MUX config will take to apply and besides
1539 * seeing invalid reports we don't know of a reliable way to
1540 * explicitly check that the MUX config has landed.
1541 *
1542 * It's even possible we've miss characterized the underlying
1543 * problem - it just seems like the simplest explanation why
1544 * a delay at this location would mitigate any invalid reports.
1545 */
1546 usleep_range(15000, 20000);
1547
1548 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1549 oa_config->b_counter_regs_len);
1550
1551 return 0;
1552 }
1553
hsw_disable_metric_set(struct drm_i915_private * dev_priv)1554 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1555 {
1556 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1557 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1558 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1559 GEN7_DOP_CLOCK_GATE_ENABLE));
1560
1561 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1562 ~GT_NOA_ENABLE));
1563 }
1564
1565 /*
1566 * NB: It must always remain pointer safe to run this even if the OA unit
1567 * has been disabled.
1568 *
1569 * It's fine to put out-of-date values into these per-context registers
1570 * in the case that the OA unit has been disabled.
1571 */
gen8_update_reg_state_unlocked(struct i915_gem_context * ctx,u32 * reg_state,const struct i915_oa_config * oa_config)1572 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1573 u32 *reg_state,
1574 const struct i915_oa_config *oa_config)
1575 {
1576 struct drm_i915_private *dev_priv = ctx->i915;
1577 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1578 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1579 /* The MMIO offsets for Flex EU registers aren't contiguous */
1580 u32 flex_mmio[] = {
1581 i915_mmio_reg_offset(EU_PERF_CNTL0),
1582 i915_mmio_reg_offset(EU_PERF_CNTL1),
1583 i915_mmio_reg_offset(EU_PERF_CNTL2),
1584 i915_mmio_reg_offset(EU_PERF_CNTL3),
1585 i915_mmio_reg_offset(EU_PERF_CNTL4),
1586 i915_mmio_reg_offset(EU_PERF_CNTL5),
1587 i915_mmio_reg_offset(EU_PERF_CNTL6),
1588 };
1589 int i;
1590
1591 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1592 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1593 GEN8_OA_TIMER_PERIOD_SHIFT) |
1594 (dev_priv->perf.oa.periodic ?
1595 GEN8_OA_TIMER_ENABLE : 0) |
1596 GEN8_OA_COUNTER_RESUME;
1597
1598 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1599 u32 state_offset = ctx_flexeu0 + i * 2;
1600 u32 mmio = flex_mmio[i];
1601
1602 /*
1603 * This arbitrary default will select the 'EU FPU0 Pipeline
1604 * Active' event. In the future it's anticipated that there
1605 * will be an explicit 'No Event' we can select, but not yet...
1606 */
1607 u32 value = 0;
1608
1609 if (oa_config) {
1610 u32 j;
1611
1612 for (j = 0; j < oa_config->flex_regs_len; j++) {
1613 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1614 value = oa_config->flex_regs[j].value;
1615 break;
1616 }
1617 }
1618 }
1619
1620 reg_state[state_offset] = mmio;
1621 reg_state[state_offset+1] = value;
1622 }
1623 }
1624
1625 /*
1626 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1627 * is only used by the kernel context.
1628 */
gen8_emit_oa_config(struct drm_i915_gem_request * req,const struct i915_oa_config * oa_config)1629 static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1630 const struct i915_oa_config *oa_config)
1631 {
1632 struct drm_i915_private *dev_priv = req->i915;
1633 /* The MMIO offsets for Flex EU registers aren't contiguous */
1634 u32 flex_mmio[] = {
1635 i915_mmio_reg_offset(EU_PERF_CNTL0),
1636 i915_mmio_reg_offset(EU_PERF_CNTL1),
1637 i915_mmio_reg_offset(EU_PERF_CNTL2),
1638 i915_mmio_reg_offset(EU_PERF_CNTL3),
1639 i915_mmio_reg_offset(EU_PERF_CNTL4),
1640 i915_mmio_reg_offset(EU_PERF_CNTL5),
1641 i915_mmio_reg_offset(EU_PERF_CNTL6),
1642 };
1643 u32 *cs;
1644 int i;
1645
1646 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
1647 if (IS_ERR(cs))
1648 return PTR_ERR(cs);
1649
1650 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1651
1652 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1653 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1654 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1655 GEN8_OA_COUNTER_RESUME;
1656
1657 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1658 u32 mmio = flex_mmio[i];
1659
1660 /*
1661 * This arbitrary default will select the 'EU FPU0 Pipeline
1662 * Active' event. In the future it's anticipated that there
1663 * will be an explicit 'No Event' we can select, but not
1664 * yet...
1665 */
1666 u32 value = 0;
1667
1668 if (oa_config) {
1669 u32 j;
1670
1671 for (j = 0; j < oa_config->flex_regs_len; j++) {
1672 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1673 value = oa_config->flex_regs[j].value;
1674 break;
1675 }
1676 }
1677 }
1678
1679 *cs++ = mmio;
1680 *cs++ = value;
1681 }
1682
1683 *cs++ = MI_NOOP;
1684 intel_ring_advance(req, cs);
1685
1686 return 0;
1687 }
1688
gen8_switch_to_updated_kernel_context(struct drm_i915_private * dev_priv,const struct i915_oa_config * oa_config)1689 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1690 const struct i915_oa_config *oa_config)
1691 {
1692 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1693 struct i915_gem_timeline *timeline;
1694 struct drm_i915_gem_request *req;
1695 int ret;
1696
1697 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1698
1699 i915_gem_retire_requests(dev_priv);
1700
1701 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1702 if (IS_ERR(req))
1703 return PTR_ERR(req);
1704
1705 ret = gen8_emit_oa_config(req, oa_config);
1706 if (ret) {
1707 i915_add_request(req);
1708 return ret;
1709 }
1710
1711 /* Queue this switch after all other activity */
1712 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1713 struct drm_i915_gem_request *prev;
1714 struct intel_timeline *tl;
1715
1716 tl = &timeline->engine[engine->id];
1717 prev = i915_gem_active_raw(&tl->last_request,
1718 &dev_priv->drm.struct_mutex);
1719 if (prev)
1720 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1721 &prev->submit,
1722 GFP_KERNEL);
1723 }
1724
1725 ret = i915_switch_context(req);
1726 i915_add_request(req);
1727
1728 return ret;
1729 }
1730
1731 /*
1732 * Manages updating the per-context aspects of the OA stream
1733 * configuration across all contexts.
1734 *
1735 * The awkward consideration here is that OACTXCONTROL controls the
1736 * exponent for periodic sampling which is primarily used for system
1737 * wide profiling where we'd like a consistent sampling period even in
1738 * the face of context switches.
1739 *
1740 * Our approach of updating the register state context (as opposed to
1741 * say using a workaround batch buffer) ensures that the hardware
1742 * won't automatically reload an out-of-date timer exponent even
1743 * transiently before a WA BB could be parsed.
1744 *
1745 * This function needs to:
1746 * - Ensure the currently running context's per-context OA state is
1747 * updated
1748 * - Ensure that all existing contexts will have the correct per-context
1749 * OA state if they are scheduled for use.
1750 * - Ensure any new contexts will be initialized with the correct
1751 * per-context OA state.
1752 *
1753 * Note: it's only the RCS/Render context that has any OA state.
1754 */
gen8_configure_all_contexts(struct drm_i915_private * dev_priv,const struct i915_oa_config * oa_config)1755 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1756 const struct i915_oa_config *oa_config)
1757 {
1758 struct i915_gem_context *ctx;
1759 int ret;
1760 unsigned int wait_flags = I915_WAIT_LOCKED;
1761
1762 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1763
1764 /* Switch away from any user context. */
1765 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1766 if (ret)
1767 goto out;
1768
1769 /*
1770 * The OA register config is setup through the context image. This image
1771 * might be written to by the GPU on context switch (in particular on
1772 * lite-restore). This means we can't safely update a context's image,
1773 * if this context is scheduled/submitted to run on the GPU.
1774 *
1775 * We could emit the OA register config through the batch buffer but
1776 * this might leave small interval of time where the OA unit is
1777 * configured at an invalid sampling period.
1778 *
1779 * So far the best way to work around this issue seems to be draining
1780 * the GPU from any submitted work.
1781 */
1782 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1783 if (ret)
1784 goto out;
1785
1786 /* Update all contexts now that we've stalled the submission. */
1787 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1788 struct intel_context *ce = &ctx->engine[RCS];
1789 u32 *regs;
1790
1791 /* OA settings will be set upon first use */
1792 if (!ce->state)
1793 continue;
1794
1795 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1796 if (IS_ERR(regs)) {
1797 ret = PTR_ERR(regs);
1798 goto out;
1799 }
1800
1801 ce->state->obj->mm.dirty = true;
1802 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1803
1804 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1805
1806 i915_gem_object_unpin_map(ce->state->obj);
1807 }
1808
1809 out:
1810 return ret;
1811 }
1812
gen8_enable_metric_set(struct drm_i915_private * dev_priv,const struct i915_oa_config * oa_config)1813 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1814 const struct i915_oa_config *oa_config)
1815 {
1816 int ret;
1817
1818 /*
1819 * We disable slice/unslice clock ratio change reports on SKL since
1820 * they are too noisy. The HW generates a lot of redundant reports
1821 * where the ratio hasn't really changed causing a lot of redundant
1822 * work to processes and increasing the chances we'll hit buffer
1823 * overruns.
1824 *
1825 * Although we don't currently use the 'disable overrun' OABUFFER
1826 * feature it's worth noting that clock ratio reports have to be
1827 * disabled before considering to use that feature since the HW doesn't
1828 * correctly block these reports.
1829 *
1830 * Currently none of the high-level metrics we have depend on knowing
1831 * this ratio to normalize.
1832 *
1833 * Note: This register is not power context saved and restored, but
1834 * that's OK considering that we disable RC6 while the OA unit is
1835 * enabled.
1836 *
1837 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1838 * be read back from automatically triggered reports, as part of the
1839 * RPT_ID field.
1840 */
1841 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
1842 IS_KABYLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
1843 I915_WRITE(GEN8_OA_DEBUG,
1844 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1845 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1846 }
1847
1848 /*
1849 * Update all contexts prior writing the mux configurations as we need
1850 * to make sure all slices/subslices are ON before writing to NOA
1851 * registers.
1852 */
1853 ret = gen8_configure_all_contexts(dev_priv, oa_config);
1854 if (ret)
1855 return ret;
1856
1857 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1858
1859 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1860 oa_config->b_counter_regs_len);
1861
1862 return 0;
1863 }
1864
gen8_disable_metric_set(struct drm_i915_private * dev_priv)1865 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1866 {
1867 /* Reset all contexts' slices/subslices configurations. */
1868 gen8_configure_all_contexts(dev_priv, NULL);
1869
1870 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1871 ~GT_NOA_ENABLE));
1872
1873 }
1874
gen7_oa_enable(struct drm_i915_private * dev_priv)1875 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1876 {
1877 /*
1878 * Reset buf pointers so we don't forward reports from before now.
1879 *
1880 * Think carefully if considering trying to avoid this, since it
1881 * also ensures status flags and the buffer itself are cleared
1882 * in error paths, and we have checks for invalid reports based
1883 * on the assumption that certain fields are written to zeroed
1884 * memory which this helps maintains.
1885 */
1886 gen7_init_oa_buffer(dev_priv);
1887
1888 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1889 struct i915_gem_context *ctx =
1890 dev_priv->perf.oa.exclusive_stream->ctx;
1891 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1892
1893 bool periodic = dev_priv->perf.oa.periodic;
1894 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1895 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1896
1897 I915_WRITE(GEN7_OACONTROL,
1898 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1899 (period_exponent <<
1900 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1901 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1902 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1903 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1904 GEN7_OACONTROL_ENABLE);
1905 } else
1906 I915_WRITE(GEN7_OACONTROL, 0);
1907 }
1908
gen8_oa_enable(struct drm_i915_private * dev_priv)1909 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1910 {
1911 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1912
1913 /*
1914 * Reset buf pointers so we don't forward reports from before now.
1915 *
1916 * Think carefully if considering trying to avoid this, since it
1917 * also ensures status flags and the buffer itself are cleared
1918 * in error paths, and we have checks for invalid reports based
1919 * on the assumption that certain fields are written to zeroed
1920 * memory which this helps maintains.
1921 */
1922 gen8_init_oa_buffer(dev_priv);
1923
1924 /*
1925 * Note: we don't rely on the hardware to perform single context
1926 * filtering and instead filter on the cpu based on the context-id
1927 * field of reports
1928 */
1929 I915_WRITE(GEN8_OACONTROL, (report_format <<
1930 GEN8_OA_REPORT_FORMAT_SHIFT) |
1931 GEN8_OA_COUNTER_ENABLE);
1932 }
1933
1934 /**
1935 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1936 * @stream: An i915 perf stream opened for OA metrics
1937 *
1938 * [Re]enables hardware periodic sampling according to the period configured
1939 * when opening the stream. This also starts a hrtimer that will periodically
1940 * check for data in the circular OA buffer for notifying userspace (e.g.
1941 * during a read() or poll()).
1942 */
i915_oa_stream_enable(struct i915_perf_stream * stream)1943 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1944 {
1945 struct drm_i915_private *dev_priv = stream->dev_priv;
1946
1947 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1948
1949 if (dev_priv->perf.oa.periodic)
1950 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1951 ns_to_ktime(POLL_PERIOD),
1952 HRTIMER_MODE_REL_PINNED);
1953 }
1954
gen7_oa_disable(struct drm_i915_private * dev_priv)1955 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1956 {
1957 I915_WRITE(GEN7_OACONTROL, 0);
1958 }
1959
gen8_oa_disable(struct drm_i915_private * dev_priv)1960 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1961 {
1962 I915_WRITE(GEN8_OACONTROL, 0);
1963 }
1964
1965 /**
1966 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1967 * @stream: An i915 perf stream opened for OA metrics
1968 *
1969 * Stops the OA unit from periodically writing counter reports into the
1970 * circular OA buffer. This also stops the hrtimer that periodically checks for
1971 * data in the circular OA buffer, for notifying userspace.
1972 */
i915_oa_stream_disable(struct i915_perf_stream * stream)1973 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1974 {
1975 struct drm_i915_private *dev_priv = stream->dev_priv;
1976
1977 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1978
1979 if (dev_priv->perf.oa.periodic)
1980 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1981 }
1982
1983 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1984 .destroy = i915_oa_stream_destroy,
1985 .enable = i915_oa_stream_enable,
1986 .disable = i915_oa_stream_disable,
1987 .wait_unlocked = i915_oa_wait_unlocked,
1988 .poll_wait = i915_oa_poll_wait,
1989 .read = i915_oa_read,
1990 };
1991
1992 /**
1993 * i915_oa_stream_init - validate combined props for OA stream and init
1994 * @stream: An i915 perf stream
1995 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1996 * @props: The property state that configures stream (individually validated)
1997 *
1998 * While read_properties_unlocked() validates properties in isolation it
1999 * doesn't ensure that the combination necessarily makes sense.
2000 *
2001 * At this point it has been determined that userspace wants a stream of
2002 * OA metrics, but still we need to further validate the combined
2003 * properties are OK.
2004 *
2005 * If the configuration makes sense then we can allocate memory for
2006 * a circular OA buffer and apply the requested metric set configuration.
2007 *
2008 * Returns: zero on success or a negative error code.
2009 */
i915_oa_stream_init(struct i915_perf_stream * stream,struct drm_i915_perf_open_param * param,struct perf_open_properties * props)2010 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2011 struct drm_i915_perf_open_param *param,
2012 struct perf_open_properties *props)
2013 {
2014 struct drm_i915_private *dev_priv = stream->dev_priv;
2015 int format_size;
2016 int ret;
2017
2018 /* If the sysfs metrics/ directory wasn't registered for some
2019 * reason then don't let userspace try their luck with config
2020 * IDs
2021 */
2022 if (!dev_priv->perf.metrics_kobj) {
2023 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2024 return -EINVAL;
2025 }
2026
2027 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2028 DRM_DEBUG("Only OA report sampling supported\n");
2029 return -EINVAL;
2030 }
2031
2032 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2033 DRM_DEBUG("OA unit not supported\n");
2034 return -ENODEV;
2035 }
2036
2037 /* To avoid the complexity of having to accurately filter
2038 * counter reports and marshal to the appropriate client
2039 * we currently only allow exclusive access
2040 */
2041 if (dev_priv->perf.oa.exclusive_stream) {
2042 DRM_DEBUG("OA unit already in use\n");
2043 return -EBUSY;
2044 }
2045
2046 if (!props->oa_format) {
2047 DRM_DEBUG("OA report format not specified\n");
2048 return -EINVAL;
2049 }
2050
2051 /* We set up some ratelimit state to potentially throttle any _NOTES
2052 * about spurious, invalid OA reports which we don't forward to
2053 * userspace.
2054 *
2055 * The initialization is associated with opening the stream (not driver
2056 * init) considering we print a _NOTE about any throttling when closing
2057 * the stream instead of waiting until driver _fini which no one would
2058 * ever see.
2059 *
2060 * Using the same limiting factors as printk_ratelimit()
2061 */
2062 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2063 5 * HZ, 10);
2064 /* Since we use a DRM_NOTE for spurious reports it would be
2065 * inconsistent to let __ratelimit() automatically print a warning for
2066 * throttling.
2067 */
2068 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2069 RATELIMIT_MSG_ON_RELEASE);
2070
2071 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2072
2073 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2074
2075 stream->sample_flags |= SAMPLE_OA_REPORT;
2076 stream->sample_size += format_size;
2077
2078 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2079 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2080 return -EINVAL;
2081
2082 dev_priv->perf.oa.oa_buffer.format =
2083 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2084
2085 dev_priv->perf.oa.periodic = props->oa_periodic;
2086 if (dev_priv->perf.oa.periodic)
2087 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2088
2089 if (stream->ctx) {
2090 ret = oa_get_render_ctx_id(stream);
2091 if (ret)
2092 return ret;
2093 }
2094
2095 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2096 if (ret)
2097 goto err_config;
2098
2099 /* PRM - observability performance counters:
2100 *
2101 * OACONTROL, performance counter enable, note:
2102 *
2103 * "When this bit is set, in order to have coherent counts,
2104 * RC6 power state and trunk clock gating must be disabled.
2105 * This can be achieved by programming MMIO registers as
2106 * 0xA094=0 and 0xA090[31]=1"
2107 *
2108 * In our case we are expecting that taking pm + FORCEWAKE
2109 * references will effectively disable RC6.
2110 */
2111 intel_runtime_pm_get(dev_priv);
2112 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2113
2114 ret = alloc_oa_buffer(dev_priv);
2115 if (ret)
2116 goto err_oa_buf_alloc;
2117
2118 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2119 if (ret)
2120 goto err_lock;
2121
2122 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2123 stream->oa_config);
2124 if (ret)
2125 goto err_enable;
2126
2127 stream->ops = &i915_oa_stream_ops;
2128
2129 dev_priv->perf.oa.exclusive_stream = stream;
2130
2131 mutex_unlock(&dev_priv->drm.struct_mutex);
2132
2133 return 0;
2134
2135 err_enable:
2136 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2137 mutex_unlock(&dev_priv->drm.struct_mutex);
2138
2139 err_lock:
2140 free_oa_buffer(dev_priv);
2141
2142 err_oa_buf_alloc:
2143 put_oa_config(dev_priv, stream->oa_config);
2144
2145 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2146 intel_runtime_pm_put(dev_priv);
2147
2148 err_config:
2149 if (stream->ctx)
2150 oa_put_render_ctx_id(stream);
2151
2152 return ret;
2153 }
2154
i915_oa_init_reg_state(struct intel_engine_cs * engine,struct i915_gem_context * ctx,u32 * reg_state)2155 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2156 struct i915_gem_context *ctx,
2157 u32 *reg_state)
2158 {
2159 struct i915_perf_stream *stream;
2160
2161 if (engine->id != RCS)
2162 return;
2163
2164 stream = engine->i915->perf.oa.exclusive_stream;
2165 if (stream)
2166 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2167 }
2168
2169 /**
2170 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2171 * @stream: An i915 perf stream
2172 * @file: An i915 perf stream file
2173 * @buf: destination buffer given by userspace
2174 * @count: the number of bytes userspace wants to read
2175 * @ppos: (inout) file seek position (unused)
2176 *
2177 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2178 * ensure that if we've successfully copied any data then reporting that takes
2179 * precedence over any internal error status, so the data isn't lost.
2180 *
2181 * For example ret will be -ENOSPC whenever there is more buffered data than
2182 * can be copied to userspace, but that's only interesting if we weren't able
2183 * to copy some data because it implies the userspace buffer is too small to
2184 * receive a single record (and we never split records).
2185 *
2186 * Another case with ret == -EFAULT is more of a grey area since it would seem
2187 * like bad form for userspace to ask us to overrun its buffer, but the user
2188 * knows best:
2189 *
2190 * http://yarchive.net/comp/linux/partial_reads_writes.html
2191 *
2192 * Returns: The number of bytes copied or a negative error code on failure.
2193 */
i915_perf_read_locked(struct i915_perf_stream * stream,struct file * file,char __user * buf,size_t count,loff_t * ppos)2194 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2195 struct file *file,
2196 char __user *buf,
2197 size_t count,
2198 loff_t *ppos)
2199 {
2200 /* Note we keep the offset (aka bytes read) separate from any
2201 * error status so that the final check for whether we return
2202 * the bytes read with a higher precedence than any error (see
2203 * comment below) doesn't need to be handled/duplicated in
2204 * stream->ops->read() implementations.
2205 */
2206 size_t offset = 0;
2207 int ret = stream->ops->read(stream, buf, count, &offset);
2208
2209 return offset ?: (ret ?: -EAGAIN);
2210 }
2211
2212 /**
2213 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2214 * @file: An i915 perf stream file
2215 * @buf: destination buffer given by userspace
2216 * @count: the number of bytes userspace wants to read
2217 * @ppos: (inout) file seek position (unused)
2218 *
2219 * The entry point for handling a read() on a stream file descriptor from
2220 * userspace. Most of the work is left to the i915_perf_read_locked() and
2221 * &i915_perf_stream_ops->read but to save having stream implementations (of
2222 * which we might have multiple later) we handle blocking read here.
2223 *
2224 * We can also consistently treat trying to read from a disabled stream
2225 * as an IO error so implementations can assume the stream is enabled
2226 * while reading.
2227 *
2228 * Returns: The number of bytes copied or a negative error code on failure.
2229 */
i915_perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2230 static ssize_t i915_perf_read(struct file *file,
2231 char __user *buf,
2232 size_t count,
2233 loff_t *ppos)
2234 {
2235 struct i915_perf_stream *stream = file->private_data;
2236 struct drm_i915_private *dev_priv = stream->dev_priv;
2237 ssize_t ret;
2238
2239 /* To ensure it's handled consistently we simply treat all reads of a
2240 * disabled stream as an error. In particular it might otherwise lead
2241 * to a deadlock for blocking file descriptors...
2242 */
2243 if (!stream->enabled)
2244 return -EIO;
2245
2246 if (!(file->f_flags & O_NONBLOCK)) {
2247 /* There's the small chance of false positives from
2248 * stream->ops->wait_unlocked.
2249 *
2250 * E.g. with single context filtering since we only wait until
2251 * oabuffer has >= 1 report we don't immediately know whether
2252 * any reports really belong to the current context
2253 */
2254 do {
2255 ret = stream->ops->wait_unlocked(stream);
2256 if (ret)
2257 return ret;
2258
2259 mutex_lock(&dev_priv->perf.lock);
2260 ret = i915_perf_read_locked(stream, file,
2261 buf, count, ppos);
2262 mutex_unlock(&dev_priv->perf.lock);
2263 } while (ret == -EAGAIN);
2264 } else {
2265 mutex_lock(&dev_priv->perf.lock);
2266 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2267 mutex_unlock(&dev_priv->perf.lock);
2268 }
2269
2270 /* We allow the poll checking to sometimes report false positive POLLIN
2271 * events where we might actually report EAGAIN on read() if there's
2272 * not really any data available. In this situation though we don't
2273 * want to enter a busy loop between poll() reporting a POLLIN event
2274 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2275 * effectively ensures we back off until the next hrtimer callback
2276 * before reporting another POLLIN event.
2277 */
2278 if (ret >= 0 || ret == -EAGAIN) {
2279 /* Maybe make ->pollin per-stream state if we support multiple
2280 * concurrent streams in the future.
2281 */
2282 dev_priv->perf.oa.pollin = false;
2283 }
2284
2285 return ret;
2286 }
2287
oa_poll_check_timer_cb(struct hrtimer * hrtimer)2288 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2289 {
2290 struct drm_i915_private *dev_priv =
2291 container_of(hrtimer, typeof(*dev_priv),
2292 perf.oa.poll_check_timer);
2293
2294 if (oa_buffer_check_unlocked(dev_priv)) {
2295 dev_priv->perf.oa.pollin = true;
2296 wake_up(&dev_priv->perf.oa.poll_wq);
2297 }
2298
2299 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2300
2301 return HRTIMER_RESTART;
2302 }
2303
2304 /**
2305 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2306 * @dev_priv: i915 device instance
2307 * @stream: An i915 perf stream
2308 * @file: An i915 perf stream file
2309 * @wait: poll() state table
2310 *
2311 * For handling userspace polling on an i915 perf stream, this calls through to
2312 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2313 * will be woken for new stream data.
2314 *
2315 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2316 * with any non-file-operation driver hooks.
2317 *
2318 * Returns: any poll events that are ready without sleeping
2319 */
i915_perf_poll_locked(struct drm_i915_private * dev_priv,struct i915_perf_stream * stream,struct file * file,poll_table * wait)2320 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2321 struct i915_perf_stream *stream,
2322 struct file *file,
2323 poll_table *wait)
2324 {
2325 unsigned int events = 0;
2326
2327 stream->ops->poll_wait(stream, file, wait);
2328
2329 /* Note: we don't explicitly check whether there's something to read
2330 * here since this path may be very hot depending on what else
2331 * userspace is polling, or on the timeout in use. We rely solely on
2332 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2333 * samples to read.
2334 */
2335 if (dev_priv->perf.oa.pollin)
2336 events |= POLLIN;
2337
2338 return events;
2339 }
2340
2341 /**
2342 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2343 * @file: An i915 perf stream file
2344 * @wait: poll() state table
2345 *
2346 * For handling userspace polling on an i915 perf stream, this ensures
2347 * poll_wait() gets called with a wait queue that will be woken for new stream
2348 * data.
2349 *
2350 * Note: Implementation deferred to i915_perf_poll_locked()
2351 *
2352 * Returns: any poll events that are ready without sleeping
2353 */
i915_perf_poll(struct file * file,poll_table * wait)2354 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2355 {
2356 struct i915_perf_stream *stream = file->private_data;
2357 struct drm_i915_private *dev_priv = stream->dev_priv;
2358 int ret;
2359
2360 mutex_lock(&dev_priv->perf.lock);
2361 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2362 mutex_unlock(&dev_priv->perf.lock);
2363
2364 return ret;
2365 }
2366
2367 /**
2368 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2369 * @stream: A disabled i915 perf stream
2370 *
2371 * [Re]enables the associated capture of data for this stream.
2372 *
2373 * If a stream was previously enabled then there's currently no intention
2374 * to provide userspace any guarantee about the preservation of previously
2375 * buffered data.
2376 */
i915_perf_enable_locked(struct i915_perf_stream * stream)2377 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2378 {
2379 if (stream->enabled)
2380 return;
2381
2382 /* Allow stream->ops->enable() to refer to this */
2383 stream->enabled = true;
2384
2385 if (stream->ops->enable)
2386 stream->ops->enable(stream);
2387 }
2388
2389 /**
2390 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2391 * @stream: An enabled i915 perf stream
2392 *
2393 * Disables the associated capture of data for this stream.
2394 *
2395 * The intention is that disabling an re-enabling a stream will ideally be
2396 * cheaper than destroying and re-opening a stream with the same configuration,
2397 * though there are no formal guarantees about what state or buffered data
2398 * must be retained between disabling and re-enabling a stream.
2399 *
2400 * Note: while a stream is disabled it's considered an error for userspace
2401 * to attempt to read from the stream (-EIO).
2402 */
i915_perf_disable_locked(struct i915_perf_stream * stream)2403 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2404 {
2405 if (!stream->enabled)
2406 return;
2407
2408 /* Allow stream->ops->disable() to refer to this */
2409 stream->enabled = false;
2410
2411 if (stream->ops->disable)
2412 stream->ops->disable(stream);
2413 }
2414
2415 /**
2416 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2417 * @stream: An i915 perf stream
2418 * @cmd: the ioctl request
2419 * @arg: the ioctl data
2420 *
2421 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2422 * with any non-file-operation driver hooks.
2423 *
2424 * Returns: zero on success or a negative error code. Returns -EINVAL for
2425 * an unknown ioctl request.
2426 */
i915_perf_ioctl_locked(struct i915_perf_stream * stream,unsigned int cmd,unsigned long arg)2427 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2428 unsigned int cmd,
2429 unsigned long arg)
2430 {
2431 switch (cmd) {
2432 case I915_PERF_IOCTL_ENABLE:
2433 i915_perf_enable_locked(stream);
2434 return 0;
2435 case I915_PERF_IOCTL_DISABLE:
2436 i915_perf_disable_locked(stream);
2437 return 0;
2438 }
2439
2440 return -EINVAL;
2441 }
2442
2443 /**
2444 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2445 * @file: An i915 perf stream file
2446 * @cmd: the ioctl request
2447 * @arg: the ioctl data
2448 *
2449 * Implementation deferred to i915_perf_ioctl_locked().
2450 *
2451 * Returns: zero on success or a negative error code. Returns -EINVAL for
2452 * an unknown ioctl request.
2453 */
i915_perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2454 static long i915_perf_ioctl(struct file *file,
2455 unsigned int cmd,
2456 unsigned long arg)
2457 {
2458 struct i915_perf_stream *stream = file->private_data;
2459 struct drm_i915_private *dev_priv = stream->dev_priv;
2460 long ret;
2461
2462 mutex_lock(&dev_priv->perf.lock);
2463 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2464 mutex_unlock(&dev_priv->perf.lock);
2465
2466 return ret;
2467 }
2468
2469 /**
2470 * i915_perf_destroy_locked - destroy an i915 perf stream
2471 * @stream: An i915 perf stream
2472 *
2473 * Frees all resources associated with the given i915 perf @stream, disabling
2474 * any associated data capture in the process.
2475 *
2476 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2477 * with any non-file-operation driver hooks.
2478 */
i915_perf_destroy_locked(struct i915_perf_stream * stream)2479 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2480 {
2481 if (stream->enabled)
2482 i915_perf_disable_locked(stream);
2483
2484 if (stream->ops->destroy)
2485 stream->ops->destroy(stream);
2486
2487 list_del(&stream->link);
2488
2489 if (stream->ctx)
2490 i915_gem_context_put(stream->ctx);
2491
2492 kfree(stream);
2493 }
2494
2495 /**
2496 * i915_perf_release - handles userspace close() of a stream file
2497 * @inode: anonymous inode associated with file
2498 * @file: An i915 perf stream file
2499 *
2500 * Cleans up any resources associated with an open i915 perf stream file.
2501 *
2502 * NB: close() can't really fail from the userspace point of view.
2503 *
2504 * Returns: zero on success or a negative error code.
2505 */
i915_perf_release(struct inode * inode,struct file * file)2506 static int i915_perf_release(struct inode *inode, struct file *file)
2507 {
2508 struct i915_perf_stream *stream = file->private_data;
2509 struct drm_i915_private *dev_priv = stream->dev_priv;
2510
2511 mutex_lock(&dev_priv->perf.lock);
2512 i915_perf_destroy_locked(stream);
2513 mutex_unlock(&dev_priv->perf.lock);
2514
2515 return 0;
2516 }
2517
2518
2519 static const struct file_operations fops = {
2520 .owner = THIS_MODULE,
2521 .llseek = no_llseek,
2522 .release = i915_perf_release,
2523 .poll = i915_perf_poll,
2524 .read = i915_perf_read,
2525 .unlocked_ioctl = i915_perf_ioctl,
2526 /* Our ioctl have no arguments, so it's safe to use the same function
2527 * to handle 32bits compatibility.
2528 */
2529 .compat_ioctl = i915_perf_ioctl,
2530 };
2531
2532
2533 /**
2534 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2535 * @dev_priv: i915 device instance
2536 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2537 * @props: individually validated u64 property value pairs
2538 * @file: drm file
2539 *
2540 * See i915_perf_ioctl_open() for interface details.
2541 *
2542 * Implements further stream config validation and stream initialization on
2543 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2544 * taken to serialize with any non-file-operation driver hooks.
2545 *
2546 * Note: at this point the @props have only been validated in isolation and
2547 * it's still necessary to validate that the combination of properties makes
2548 * sense.
2549 *
2550 * In the case where userspace is interested in OA unit metrics then further
2551 * config validation and stream initialization details will be handled by
2552 * i915_oa_stream_init(). The code here should only validate config state that
2553 * will be relevant to all stream types / backends.
2554 *
2555 * Returns: zero on success or a negative error code.
2556 */
2557 static int
i915_perf_open_ioctl_locked(struct drm_i915_private * dev_priv,struct drm_i915_perf_open_param * param,struct perf_open_properties * props,struct drm_file * file)2558 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2559 struct drm_i915_perf_open_param *param,
2560 struct perf_open_properties *props,
2561 struct drm_file *file)
2562 {
2563 struct i915_gem_context *specific_ctx = NULL;
2564 struct i915_perf_stream *stream = NULL;
2565 unsigned long f_flags = 0;
2566 bool privileged_op = true;
2567 int stream_fd;
2568 int ret;
2569
2570 if (props->single_context) {
2571 u32 ctx_handle = props->ctx_handle;
2572 struct drm_i915_file_private *file_priv = file->driver_priv;
2573
2574 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2575 if (!specific_ctx) {
2576 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2577 ctx_handle);
2578 ret = -ENOENT;
2579 goto err;
2580 }
2581 }
2582
2583 /*
2584 * On Haswell the OA unit supports clock gating off for a specific
2585 * context and in this mode there's no visibility of metrics for the
2586 * rest of the system, which we consider acceptable for a
2587 * non-privileged client.
2588 *
2589 * For Gen8+ the OA unit no longer supports clock gating off for a
2590 * specific context and the kernel can't securely stop the counters
2591 * from updating as system-wide / global values. Even though we can
2592 * filter reports based on the included context ID we can't block
2593 * clients from seeing the raw / global counter values via
2594 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2595 * enable the OA unit by default.
2596 */
2597 if (IS_HASWELL(dev_priv) && specific_ctx)
2598 privileged_op = false;
2599
2600 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2601 * we check a dev.i915.perf_stream_paranoid sysctl option
2602 * to determine if it's ok to access system wide OA counters
2603 * without CAP_SYS_ADMIN privileges.
2604 */
2605 if (privileged_op &&
2606 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2607 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2608 ret = -EACCES;
2609 goto err_ctx;
2610 }
2611
2612 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2613 if (!stream) {
2614 ret = -ENOMEM;
2615 goto err_ctx;
2616 }
2617
2618 stream->dev_priv = dev_priv;
2619 stream->ctx = specific_ctx;
2620
2621 ret = i915_oa_stream_init(stream, param, props);
2622 if (ret)
2623 goto err_alloc;
2624
2625 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2626 * to have _stream_init check the combination of sample flags more
2627 * thoroughly, but still this is the expected result at this point.
2628 */
2629 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2630 ret = -ENODEV;
2631 goto err_flags;
2632 }
2633
2634 list_add(&stream->link, &dev_priv->perf.streams);
2635
2636 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2637 f_flags |= O_CLOEXEC;
2638 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2639 f_flags |= O_NONBLOCK;
2640
2641 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2642 if (stream_fd < 0) {
2643 ret = stream_fd;
2644 goto err_open;
2645 }
2646
2647 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2648 i915_perf_enable_locked(stream);
2649
2650 return stream_fd;
2651
2652 err_open:
2653 list_del(&stream->link);
2654 err_flags:
2655 if (stream->ops->destroy)
2656 stream->ops->destroy(stream);
2657 err_alloc:
2658 kfree(stream);
2659 err_ctx:
2660 if (specific_ctx)
2661 i915_gem_context_put(specific_ctx);
2662 err:
2663 return ret;
2664 }
2665
oa_exponent_to_ns(struct drm_i915_private * dev_priv,int exponent)2666 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2667 {
2668 return div_u64(1000000000ULL * (2ULL << exponent),
2669 dev_priv->perf.oa.timestamp_frequency);
2670 }
2671
2672 /**
2673 * read_properties_unlocked - validate + copy userspace stream open properties
2674 * @dev_priv: i915 device instance
2675 * @uprops: The array of u64 key value pairs given by userspace
2676 * @n_props: The number of key value pairs expected in @uprops
2677 * @props: The stream configuration built up while validating properties
2678 *
2679 * Note this function only validates properties in isolation it doesn't
2680 * validate that the combination of properties makes sense or that all
2681 * properties necessary for a particular kind of stream have been set.
2682 *
2683 * Note that there currently aren't any ordering requirements for properties so
2684 * we shouldn't validate or assume anything about ordering here. This doesn't
2685 * rule out defining new properties with ordering requirements in the future.
2686 */
read_properties_unlocked(struct drm_i915_private * dev_priv,u64 __user * uprops,u32 n_props,struct perf_open_properties * props)2687 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2688 u64 __user *uprops,
2689 u32 n_props,
2690 struct perf_open_properties *props)
2691 {
2692 u64 __user *uprop = uprops;
2693 u32 i;
2694
2695 memset(props, 0, sizeof(struct perf_open_properties));
2696
2697 if (!n_props) {
2698 DRM_DEBUG("No i915 perf properties given\n");
2699 return -EINVAL;
2700 }
2701
2702 /* Considering that ID = 0 is reserved and assuming that we don't
2703 * (currently) expect any configurations to ever specify duplicate
2704 * values for a particular property ID then the last _PROP_MAX value is
2705 * one greater than the maximum number of properties we expect to get
2706 * from userspace.
2707 */
2708 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2709 DRM_DEBUG("More i915 perf properties specified than exist\n");
2710 return -EINVAL;
2711 }
2712
2713 for (i = 0; i < n_props; i++) {
2714 u64 oa_period, oa_freq_hz;
2715 u64 id, value;
2716 int ret;
2717
2718 ret = get_user(id, uprop);
2719 if (ret)
2720 return ret;
2721
2722 ret = get_user(value, uprop + 1);
2723 if (ret)
2724 return ret;
2725
2726 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2727 DRM_DEBUG("Unknown i915 perf property ID\n");
2728 return -EINVAL;
2729 }
2730
2731 switch ((enum drm_i915_perf_property_id)id) {
2732 case DRM_I915_PERF_PROP_CTX_HANDLE:
2733 props->single_context = 1;
2734 props->ctx_handle = value;
2735 break;
2736 case DRM_I915_PERF_PROP_SAMPLE_OA:
2737 props->sample_flags |= SAMPLE_OA_REPORT;
2738 break;
2739 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2740 if (value == 0) {
2741 DRM_DEBUG("Unknown OA metric set ID\n");
2742 return -EINVAL;
2743 }
2744 props->metrics_set = value;
2745 break;
2746 case DRM_I915_PERF_PROP_OA_FORMAT:
2747 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2748 DRM_DEBUG("Out-of-range OA report format %llu\n",
2749 value);
2750 return -EINVAL;
2751 }
2752 if (!dev_priv->perf.oa.oa_formats[value].size) {
2753 DRM_DEBUG("Unsupported OA report format %llu\n",
2754 value);
2755 return -EINVAL;
2756 }
2757 props->oa_format = value;
2758 break;
2759 case DRM_I915_PERF_PROP_OA_EXPONENT:
2760 if (value > OA_EXPONENT_MAX) {
2761 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2762 OA_EXPONENT_MAX);
2763 return -EINVAL;
2764 }
2765
2766 /* Theoretically we can program the OA unit to sample
2767 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2768 * for BXT. We don't allow such high sampling
2769 * frequencies by default unless root.
2770 */
2771
2772 BUILD_BUG_ON(sizeof(oa_period) != 8);
2773 oa_period = oa_exponent_to_ns(dev_priv, value);
2774
2775 /* This check is primarily to ensure that oa_period <=
2776 * UINT32_MAX (before passing to do_div which only
2777 * accepts a u32 denominator), but we can also skip
2778 * checking anything < 1Hz which implicitly can't be
2779 * limited via an integer oa_max_sample_rate.
2780 */
2781 if (oa_period <= NSEC_PER_SEC) {
2782 u64 tmp = NSEC_PER_SEC;
2783 do_div(tmp, oa_period);
2784 oa_freq_hz = tmp;
2785 } else
2786 oa_freq_hz = 0;
2787
2788 if (oa_freq_hz > i915_oa_max_sample_rate &&
2789 !capable(CAP_SYS_ADMIN)) {
2790 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2791 i915_oa_max_sample_rate);
2792 return -EACCES;
2793 }
2794
2795 props->oa_periodic = true;
2796 props->oa_period_exponent = value;
2797 break;
2798 case DRM_I915_PERF_PROP_MAX:
2799 MISSING_CASE(id);
2800 return -EINVAL;
2801 }
2802
2803 uprop += 2;
2804 }
2805
2806 return 0;
2807 }
2808
2809 /**
2810 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2811 * @dev: drm device
2812 * @data: ioctl data copied from userspace (unvalidated)
2813 * @file: drm file
2814 *
2815 * Validates the stream open parameters given by userspace including flags
2816 * and an array of u64 key, value pair properties.
2817 *
2818 * Very little is assumed up front about the nature of the stream being
2819 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2820 * i915-perf stream is expected to be a suitable interface for other forms of
2821 * buffered data written by the GPU besides periodic OA metrics.
2822 *
2823 * Note we copy the properties from userspace outside of the i915 perf
2824 * mutex to avoid an awkward lockdep with mmap_sem.
2825 *
2826 * Most of the implementation details are handled by
2827 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2828 * mutex for serializing with any non-file-operation driver hooks.
2829 *
2830 * Return: A newly opened i915 Perf stream file descriptor or negative
2831 * error code on failure.
2832 */
i915_perf_open_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2833 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2834 struct drm_file *file)
2835 {
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct drm_i915_perf_open_param *param = data;
2838 struct perf_open_properties props;
2839 u32 known_open_flags;
2840 int ret;
2841
2842 if (!dev_priv->perf.initialized) {
2843 DRM_DEBUG("i915 perf interface not available for this system\n");
2844 return -ENOTSUPP;
2845 }
2846
2847 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2848 I915_PERF_FLAG_FD_NONBLOCK |
2849 I915_PERF_FLAG_DISABLED;
2850 if (param->flags & ~known_open_flags) {
2851 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2852 return -EINVAL;
2853 }
2854
2855 ret = read_properties_unlocked(dev_priv,
2856 u64_to_user_ptr(param->properties_ptr),
2857 param->num_properties,
2858 &props);
2859 if (ret)
2860 return ret;
2861
2862 mutex_lock(&dev_priv->perf.lock);
2863 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2864 mutex_unlock(&dev_priv->perf.lock);
2865
2866 return ret;
2867 }
2868
2869 /**
2870 * i915_perf_register - exposes i915-perf to userspace
2871 * @dev_priv: i915 device instance
2872 *
2873 * In particular OA metric sets are advertised under a sysfs metrics/
2874 * directory allowing userspace to enumerate valid IDs that can be
2875 * used to open an i915-perf stream.
2876 */
i915_perf_register(struct drm_i915_private * dev_priv)2877 void i915_perf_register(struct drm_i915_private *dev_priv)
2878 {
2879 int ret;
2880
2881 if (!dev_priv->perf.initialized)
2882 return;
2883
2884 /* To be sure we're synchronized with an attempted
2885 * i915_perf_open_ioctl(); considering that we register after
2886 * being exposed to userspace.
2887 */
2888 mutex_lock(&dev_priv->perf.lock);
2889
2890 dev_priv->perf.metrics_kobj =
2891 kobject_create_and_add("metrics",
2892 &dev_priv->drm.primary->kdev->kobj);
2893 if (!dev_priv->perf.metrics_kobj)
2894 goto exit;
2895
2896 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2897
2898 if (IS_HASWELL(dev_priv)) {
2899 i915_perf_load_test_config_hsw(dev_priv);
2900 } else if (IS_BROADWELL(dev_priv)) {
2901 i915_perf_load_test_config_bdw(dev_priv);
2902 } else if (IS_CHERRYVIEW(dev_priv)) {
2903 i915_perf_load_test_config_chv(dev_priv);
2904 } else if (IS_SKYLAKE(dev_priv)) {
2905 if (IS_SKL_GT2(dev_priv))
2906 i915_perf_load_test_config_sklgt2(dev_priv);
2907 else if (IS_SKL_GT3(dev_priv))
2908 i915_perf_load_test_config_sklgt3(dev_priv);
2909 else if (IS_SKL_GT4(dev_priv))
2910 i915_perf_load_test_config_sklgt4(dev_priv);
2911 } else if (IS_BROXTON(dev_priv)) {
2912 i915_perf_load_test_config_bxt(dev_priv);
2913 } else if (IS_KABYLAKE(dev_priv)) {
2914 if (IS_KBL_GT2(dev_priv))
2915 i915_perf_load_test_config_kblgt2(dev_priv);
2916 else if (IS_KBL_GT3(dev_priv))
2917 i915_perf_load_test_config_kblgt3(dev_priv);
2918 } else if (IS_GEMINILAKE(dev_priv)) {
2919 i915_perf_load_test_config_glk(dev_priv);
2920 }
2921
2922 if (dev_priv->perf.oa.test_config.id == 0)
2923 goto sysfs_error;
2924
2925 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2926 &dev_priv->perf.oa.test_config.sysfs_metric);
2927 if (ret)
2928 goto sysfs_error;
2929
2930 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2931
2932 goto exit;
2933
2934 sysfs_error:
2935 kobject_put(dev_priv->perf.metrics_kobj);
2936 dev_priv->perf.metrics_kobj = NULL;
2937
2938 exit:
2939 mutex_unlock(&dev_priv->perf.lock);
2940 }
2941
2942 /**
2943 * i915_perf_unregister - hide i915-perf from userspace
2944 * @dev_priv: i915 device instance
2945 *
2946 * i915-perf state cleanup is split up into an 'unregister' and
2947 * 'deinit' phase where the interface is first hidden from
2948 * userspace by i915_perf_unregister() before cleaning up
2949 * remaining state in i915_perf_fini().
2950 */
i915_perf_unregister(struct drm_i915_private * dev_priv)2951 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2952 {
2953 if (!dev_priv->perf.metrics_kobj)
2954 return;
2955
2956 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2957 &dev_priv->perf.oa.test_config.sysfs_metric);
2958
2959 kobject_put(dev_priv->perf.metrics_kobj);
2960 dev_priv->perf.metrics_kobj = NULL;
2961 }
2962
gen8_is_valid_flex_addr(struct drm_i915_private * dev_priv,u32 addr)2963 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2964 {
2965 static const i915_reg_t flex_eu_regs[] = {
2966 EU_PERF_CNTL0,
2967 EU_PERF_CNTL1,
2968 EU_PERF_CNTL2,
2969 EU_PERF_CNTL3,
2970 EU_PERF_CNTL4,
2971 EU_PERF_CNTL5,
2972 EU_PERF_CNTL6,
2973 };
2974 int i;
2975
2976 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2977 if (flex_eu_regs[i].reg == addr)
2978 return true;
2979 }
2980 return false;
2981 }
2982
gen7_is_valid_b_counter_addr(struct drm_i915_private * dev_priv,u32 addr)2983 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2984 {
2985 return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) ||
2986 (addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) ||
2987 (addr >= OACEC0_0.reg && addr <= OACEC7_1.reg);
2988 }
2989
gen7_is_valid_mux_addr(struct drm_i915_private * dev_priv,u32 addr)2990 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
2991 {
2992 return addr == HALF_SLICE_CHICKEN2.reg ||
2993 (addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) ||
2994 (addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) ||
2995 (addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg);
2996 }
2997
gen8_is_valid_mux_addr(struct drm_i915_private * dev_priv,u32 addr)2998 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
2999 {
3000 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3001 addr == WAIT_FOR_RC6_EXIT.reg ||
3002 (addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg);
3003 }
3004
hsw_is_valid_mux_addr(struct drm_i915_private * dev_priv,u32 addr)3005 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3006 {
3007 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3008 (addr >= 0x25100 && addr <= 0x2FF90) ||
3009 addr == 0x9ec0;
3010 }
3011
chv_is_valid_mux_addr(struct drm_i915_private * dev_priv,u32 addr)3012 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3013 {
3014 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3015 (addr >= 0x182300 && addr <= 0x1823A4);
3016 }
3017
mask_reg_value(u32 reg,u32 val)3018 static uint32_t mask_reg_value(u32 reg, u32 val)
3019 {
3020 /* HALF_SLICE_CHICKEN2 is programmed with a the
3021 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3022 * programmed by userspace doesn't change this.
3023 */
3024 if (HALF_SLICE_CHICKEN2.reg == reg)
3025 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3026
3027 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3028 * indicated by its name and a bunch of selection fields used by OA
3029 * configs.
3030 */
3031 if (WAIT_FOR_RC6_EXIT.reg == reg)
3032 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3033
3034 return val;
3035 }
3036
alloc_oa_regs(struct drm_i915_private * dev_priv,bool (* is_valid)(struct drm_i915_private * dev_priv,u32 addr),u32 __user * regs,u32 n_regs)3037 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3038 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3039 u32 __user *regs,
3040 u32 n_regs)
3041 {
3042 struct i915_oa_reg *oa_regs;
3043 int err;
3044 u32 i;
3045
3046 if (!n_regs)
3047 return NULL;
3048
3049 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3050 return ERR_PTR(-EFAULT);
3051
3052 /* No is_valid function means we're not allowing any register to be programmed. */
3053 GEM_BUG_ON(!is_valid);
3054 if (!is_valid)
3055 return ERR_PTR(-EINVAL);
3056
3057 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3058 if (!oa_regs)
3059 return ERR_PTR(-ENOMEM);
3060
3061 for (i = 0; i < n_regs; i++) {
3062 u32 addr, value;
3063
3064 err = get_user(addr, regs);
3065 if (err)
3066 goto addr_err;
3067
3068 if (!is_valid(dev_priv, addr)) {
3069 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3070 err = -EINVAL;
3071 goto addr_err;
3072 }
3073
3074 err = get_user(value, regs + 1);
3075 if (err)
3076 goto addr_err;
3077
3078 oa_regs[i].addr = _MMIO(addr);
3079 oa_regs[i].value = mask_reg_value(addr, value);
3080
3081 regs += 2;
3082 }
3083
3084 return oa_regs;
3085
3086 addr_err:
3087 kfree(oa_regs);
3088 return ERR_PTR(err);
3089 }
3090
show_dynamic_id(struct device * dev,struct device_attribute * attr,char * buf)3091 static ssize_t show_dynamic_id(struct device *dev,
3092 struct device_attribute *attr,
3093 char *buf)
3094 {
3095 struct i915_oa_config *oa_config =
3096 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3097
3098 return sprintf(buf, "%d\n", oa_config->id);
3099 }
3100
create_dynamic_oa_sysfs_entry(struct drm_i915_private * dev_priv,struct i915_oa_config * oa_config)3101 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3102 struct i915_oa_config *oa_config)
3103 {
3104 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3105 oa_config->sysfs_metric_id.attr.name = "id";
3106 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3107 oa_config->sysfs_metric_id.show = show_dynamic_id;
3108 oa_config->sysfs_metric_id.store = NULL;
3109
3110 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3111 oa_config->attrs[1] = NULL;
3112
3113 oa_config->sysfs_metric.name = oa_config->uuid;
3114 oa_config->sysfs_metric.attrs = oa_config->attrs;
3115
3116 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3117 &oa_config->sysfs_metric);
3118 }
3119
3120 /**
3121 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3122 * @dev: drm device
3123 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3124 * userspace (unvalidated)
3125 * @file: drm file
3126 *
3127 * Validates the submitted OA register to be saved into a new OA config that
3128 * can then be used for programming the OA unit and its NOA network.
3129 *
3130 * Returns: A new allocated config number to be used with the perf open ioctl
3131 * or a negative error code on failure.
3132 */
i915_perf_add_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3133 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3134 struct drm_file *file)
3135 {
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137 struct drm_i915_perf_oa_config *args = data;
3138 struct i915_oa_config *oa_config, *tmp;
3139 int err, id;
3140
3141 if (!dev_priv->perf.initialized) {
3142 DRM_DEBUG("i915 perf interface not available for this system\n");
3143 return -ENOTSUPP;
3144 }
3145
3146 if (!dev_priv->perf.metrics_kobj) {
3147 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3148 return -EINVAL;
3149 }
3150
3151 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3152 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3153 return -EACCES;
3154 }
3155
3156 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3157 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3158 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3159 DRM_DEBUG("No OA registers given\n");
3160 return -EINVAL;
3161 }
3162
3163 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3164 if (!oa_config) {
3165 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3166 return -ENOMEM;
3167 }
3168
3169 atomic_set(&oa_config->ref_count, 1);
3170
3171 if (!uuid_is_valid(args->uuid)) {
3172 DRM_DEBUG("Invalid uuid format for OA config\n");
3173 err = -EINVAL;
3174 goto reg_err;
3175 }
3176
3177 /* Last character in oa_config->uuid will be 0 because oa_config is
3178 * kzalloc.
3179 */
3180 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3181
3182 oa_config->mux_regs_len = args->n_mux_regs;
3183 oa_config->mux_regs =
3184 alloc_oa_regs(dev_priv,
3185 dev_priv->perf.oa.ops.is_valid_mux_reg,
3186 u64_to_user_ptr(args->mux_regs_ptr),
3187 args->n_mux_regs);
3188
3189 if (IS_ERR(oa_config->mux_regs)) {
3190 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3191 err = PTR_ERR(oa_config->mux_regs);
3192 goto reg_err;
3193 }
3194
3195 oa_config->b_counter_regs_len = args->n_boolean_regs;
3196 oa_config->b_counter_regs =
3197 alloc_oa_regs(dev_priv,
3198 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3199 u64_to_user_ptr(args->boolean_regs_ptr),
3200 args->n_boolean_regs);
3201
3202 if (IS_ERR(oa_config->b_counter_regs)) {
3203 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3204 err = PTR_ERR(oa_config->b_counter_regs);
3205 goto reg_err;
3206 }
3207
3208 if (INTEL_GEN(dev_priv) < 8) {
3209 if (args->n_flex_regs != 0) {
3210 err = -EINVAL;
3211 goto reg_err;
3212 }
3213 } else {
3214 oa_config->flex_regs_len = args->n_flex_regs;
3215 oa_config->flex_regs =
3216 alloc_oa_regs(dev_priv,
3217 dev_priv->perf.oa.ops.is_valid_flex_reg,
3218 u64_to_user_ptr(args->flex_regs_ptr),
3219 args->n_flex_regs);
3220
3221 if (IS_ERR(oa_config->flex_regs)) {
3222 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3223 err = PTR_ERR(oa_config->flex_regs);
3224 goto reg_err;
3225 }
3226 }
3227
3228 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3229 if (err)
3230 goto reg_err;
3231
3232 /* We shouldn't have too many configs, so this iteration shouldn't be
3233 * too costly.
3234 */
3235 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3236 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3237 DRM_DEBUG("OA config already exists with this uuid\n");
3238 err = -EADDRINUSE;
3239 goto sysfs_err;
3240 }
3241 }
3242
3243 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3244 if (err) {
3245 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3246 goto sysfs_err;
3247 }
3248
3249 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3250 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3251 oa_config, 2,
3252 0, GFP_KERNEL);
3253 if (oa_config->id < 0) {
3254 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3255 err = oa_config->id;
3256 goto sysfs_err;
3257 }
3258
3259 mutex_unlock(&dev_priv->perf.metrics_lock);
3260
3261 return oa_config->id;
3262
3263 sysfs_err:
3264 mutex_unlock(&dev_priv->perf.metrics_lock);
3265 reg_err:
3266 put_oa_config(dev_priv, oa_config);
3267 DRM_DEBUG("Failed to add new OA config\n");
3268 return err;
3269 }
3270
3271 /**
3272 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3273 * @dev: drm device
3274 * @data: ioctl data (pointer to u64 integer) copied from userspace
3275 * @file: drm file
3276 *
3277 * Configs can be removed while being used, the will stop appearing in sysfs
3278 * and their content will be freed when the stream using the config is closed.
3279 *
3280 * Returns: 0 on success or a negative error code on failure.
3281 */
i915_perf_remove_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3282 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3283 struct drm_file *file)
3284 {
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 u64 *arg = data;
3287 struct i915_oa_config *oa_config;
3288 int ret;
3289
3290 if (!dev_priv->perf.initialized) {
3291 DRM_DEBUG("i915 perf interface not available for this system\n");
3292 return -ENOTSUPP;
3293 }
3294
3295 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3296 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3297 return -EACCES;
3298 }
3299
3300 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3301 if (ret)
3302 goto lock_err;
3303
3304 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3305 if (!oa_config) {
3306 DRM_DEBUG("Failed to remove unknown OA config\n");
3307 ret = -ENOENT;
3308 goto config_err;
3309 }
3310
3311 GEM_BUG_ON(*arg != oa_config->id);
3312
3313 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3314 &oa_config->sysfs_metric);
3315
3316 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3317 put_oa_config(dev_priv, oa_config);
3318
3319 config_err:
3320 mutex_unlock(&dev_priv->perf.metrics_lock);
3321 lock_err:
3322 return ret;
3323 }
3324
3325 static struct ctl_table oa_table[] = {
3326 {
3327 .procname = "perf_stream_paranoid",
3328 .data = &i915_perf_stream_paranoid,
3329 .maxlen = sizeof(i915_perf_stream_paranoid),
3330 .mode = 0644,
3331 .proc_handler = proc_dointvec_minmax,
3332 .extra1 = &zero,
3333 .extra2 = &one,
3334 },
3335 {
3336 .procname = "oa_max_sample_rate",
3337 .data = &i915_oa_max_sample_rate,
3338 .maxlen = sizeof(i915_oa_max_sample_rate),
3339 .mode = 0644,
3340 .proc_handler = proc_dointvec_minmax,
3341 .extra1 = &zero,
3342 .extra2 = &oa_sample_rate_hard_limit,
3343 },
3344 {}
3345 };
3346
3347 static struct ctl_table i915_root[] = {
3348 {
3349 .procname = "i915",
3350 .maxlen = 0,
3351 .mode = 0555,
3352 .child = oa_table,
3353 },
3354 {}
3355 };
3356
3357 static struct ctl_table dev_root[] = {
3358 {
3359 .procname = "dev",
3360 .maxlen = 0,
3361 .mode = 0555,
3362 .child = i915_root,
3363 },
3364 {}
3365 };
3366
3367 /**
3368 * i915_perf_init - initialize i915-perf state on module load
3369 * @dev_priv: i915 device instance
3370 *
3371 * Initializes i915-perf state without exposing anything to userspace.
3372 *
3373 * Note: i915-perf initialization is split into an 'init' and 'register'
3374 * phase with the i915_perf_register() exposing state to userspace.
3375 */
i915_perf_init(struct drm_i915_private * dev_priv)3376 void i915_perf_init(struct drm_i915_private *dev_priv)
3377 {
3378 dev_priv->perf.oa.timestamp_frequency = 0;
3379
3380 if (IS_HASWELL(dev_priv)) {
3381 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3382 gen7_is_valid_b_counter_addr;
3383 dev_priv->perf.oa.ops.is_valid_mux_reg =
3384 hsw_is_valid_mux_addr;
3385 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3386 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3387 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3388 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3389 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3390 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3391 dev_priv->perf.oa.ops.read = gen7_oa_read;
3392 dev_priv->perf.oa.ops.oa_hw_tail_read =
3393 gen7_oa_hw_tail_read;
3394
3395 dev_priv->perf.oa.timestamp_frequency = 12500000;
3396
3397 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3398 } else if (i915.enable_execlists) {
3399 /* Note: that although we could theoretically also support the
3400 * legacy ringbuffer mode on BDW (and earlier iterations of
3401 * this driver, before upstreaming did this) it didn't seem
3402 * worth the complexity to maintain now that BDW+ enable
3403 * execlist mode by default.
3404 */
3405 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3406 gen7_is_valid_b_counter_addr;
3407 dev_priv->perf.oa.ops.is_valid_mux_reg =
3408 gen8_is_valid_mux_addr;
3409 dev_priv->perf.oa.ops.is_valid_flex_reg =
3410 gen8_is_valid_flex_addr;
3411
3412 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3413 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3414 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3415 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3416 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3417 dev_priv->perf.oa.ops.read = gen8_oa_read;
3418 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3419
3420 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3421
3422 if (IS_GEN8(dev_priv)) {
3423 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3424 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3425
3426 dev_priv->perf.oa.timestamp_frequency = 12500000;
3427
3428 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3429 if (IS_CHERRYVIEW(dev_priv)) {
3430 dev_priv->perf.oa.ops.is_valid_mux_reg =
3431 chv_is_valid_mux_addr;
3432 }
3433 } else if (IS_GEN9(dev_priv)) {
3434 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3435 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3436
3437 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3438
3439 switch (dev_priv->info.platform) {
3440 case INTEL_BROXTON:
3441 case INTEL_GEMINILAKE:
3442 dev_priv->perf.oa.timestamp_frequency = 19200000;
3443 break;
3444 case INTEL_SKYLAKE:
3445 case INTEL_KABYLAKE:
3446 dev_priv->perf.oa.timestamp_frequency = 12000000;
3447 break;
3448 default:
3449 /* Leave timestamp_frequency to 0 so we can
3450 * detect unsupported platforms.
3451 */
3452 break;
3453 }
3454 }
3455 }
3456
3457 if (dev_priv->perf.oa.timestamp_frequency) {
3458 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3459 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3460 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3461 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3462
3463 INIT_LIST_HEAD(&dev_priv->perf.streams);
3464 mutex_init(&dev_priv->perf.lock);
3465 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3466
3467 oa_sample_rate_hard_limit =
3468 dev_priv->perf.oa.timestamp_frequency / 2;
3469 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3470
3471 mutex_init(&dev_priv->perf.metrics_lock);
3472 idr_init(&dev_priv->perf.metrics_idr);
3473
3474 dev_priv->perf.initialized = true;
3475 }
3476 }
3477
destroy_config(int id,void * p,void * data)3478 static int destroy_config(int id, void *p, void *data)
3479 {
3480 struct drm_i915_private *dev_priv = data;
3481 struct i915_oa_config *oa_config = p;
3482
3483 put_oa_config(dev_priv, oa_config);
3484
3485 return 0;
3486 }
3487
3488 /**
3489 * i915_perf_fini - Counter part to i915_perf_init()
3490 * @dev_priv: i915 device instance
3491 */
i915_perf_fini(struct drm_i915_private * dev_priv)3492 void i915_perf_fini(struct drm_i915_private *dev_priv)
3493 {
3494 if (!dev_priv->perf.initialized)
3495 return;
3496
3497 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3498 idr_destroy(&dev_priv->perf.metrics_idr);
3499
3500 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3501
3502 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3503
3504 dev_priv->perf.initialized = false;
3505 }
3506