• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static const char * const ib_events[] = {
57 	[IB_EVENT_CQ_ERR]		= "CQ error",
58 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
59 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
60 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
61 	[IB_EVENT_COMM_EST]		= "communication established",
62 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
63 	[IB_EVENT_PATH_MIG]		= "path migration successful",
64 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
65 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
66 	[IB_EVENT_PORT_ACTIVE]		= "port active",
67 	[IB_EVENT_PORT_ERR]		= "port error",
68 	[IB_EVENT_LID_CHANGE]		= "LID change",
69 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
70 	[IB_EVENT_SM_CHANGE]		= "SM change",
71 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
72 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
73 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
74 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
75 	[IB_EVENT_GID_CHANGE]		= "GID changed",
76 };
77 
ib_event_msg(enum ib_event_type event)78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80 	size_t index = event;
81 
82 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83 			ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86 
87 static const char * const wc_statuses[] = {
88 	[IB_WC_SUCCESS]			= "success",
89 	[IB_WC_LOC_LEN_ERR]		= "local length error",
90 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
91 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
92 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
93 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
94 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
95 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
96 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
97 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
98 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
99 	[IB_WC_REM_OP_ERR]		= "remote operation error",
100 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
101 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
102 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
103 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
104 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
105 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
106 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
107 	[IB_WC_FATAL_ERR]		= "fatal error",
108 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
109 	[IB_WC_GENERAL_ERR]		= "general error",
110 };
111 
ib_wc_status_msg(enum ib_wc_status status)112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114 	size_t index = status;
115 
116 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117 			wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120 
ib_rate_to_mult(enum ib_rate rate)121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123 	switch (rate) {
124 	case IB_RATE_2_5_GBPS: return  1;
125 	case IB_RATE_5_GBPS:   return  2;
126 	case IB_RATE_10_GBPS:  return  4;
127 	case IB_RATE_20_GBPS:  return  8;
128 	case IB_RATE_30_GBPS:  return 12;
129 	case IB_RATE_40_GBPS:  return 16;
130 	case IB_RATE_60_GBPS:  return 24;
131 	case IB_RATE_80_GBPS:  return 32;
132 	case IB_RATE_120_GBPS: return 48;
133 	default:	       return -1;
134 	}
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137 
mult_to_ib_rate(int mult)138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140 	switch (mult) {
141 	case 1:  return IB_RATE_2_5_GBPS;
142 	case 2:  return IB_RATE_5_GBPS;
143 	case 4:  return IB_RATE_10_GBPS;
144 	case 8:  return IB_RATE_20_GBPS;
145 	case 12: return IB_RATE_30_GBPS;
146 	case 16: return IB_RATE_40_GBPS;
147 	case 24: return IB_RATE_60_GBPS;
148 	case 32: return IB_RATE_80_GBPS;
149 	case 48: return IB_RATE_120_GBPS;
150 	default: return IB_RATE_PORT_CURRENT;
151 	}
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154 
ib_rate_to_mbps(enum ib_rate rate)155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157 	switch (rate) {
158 	case IB_RATE_2_5_GBPS: return 2500;
159 	case IB_RATE_5_GBPS:   return 5000;
160 	case IB_RATE_10_GBPS:  return 10000;
161 	case IB_RATE_20_GBPS:  return 20000;
162 	case IB_RATE_30_GBPS:  return 30000;
163 	case IB_RATE_40_GBPS:  return 40000;
164 	case IB_RATE_60_GBPS:  return 60000;
165 	case IB_RATE_80_GBPS:  return 80000;
166 	case IB_RATE_120_GBPS: return 120000;
167 	case IB_RATE_14_GBPS:  return 14062;
168 	case IB_RATE_56_GBPS:  return 56250;
169 	case IB_RATE_112_GBPS: return 112500;
170 	case IB_RATE_168_GBPS: return 168750;
171 	case IB_RATE_25_GBPS:  return 25781;
172 	case IB_RATE_100_GBPS: return 103125;
173 	case IB_RATE_200_GBPS: return 206250;
174 	case IB_RATE_300_GBPS: return 309375;
175 	default:	       return -1;
176 	}
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179 
180 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183 
184 	if (node_type == RDMA_NODE_USNIC)
185 		return RDMA_TRANSPORT_USNIC;
186 	if (node_type == RDMA_NODE_USNIC_UDP)
187 		return RDMA_TRANSPORT_USNIC_UDP;
188 	if (node_type == RDMA_NODE_RNIC)
189 		return RDMA_TRANSPORT_IWARP;
190 
191 	return RDMA_TRANSPORT_IB;
192 }
193 EXPORT_SYMBOL(rdma_node_get_transport);
194 
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)195 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
196 {
197 	enum rdma_transport_type lt;
198 	if (device->get_link_layer)
199 		return device->get_link_layer(device, port_num);
200 
201 	lt = rdma_node_get_transport(device->node_type);
202 	if (lt == RDMA_TRANSPORT_IB)
203 		return IB_LINK_LAYER_INFINIBAND;
204 
205 	return IB_LINK_LAYER_ETHERNET;
206 }
207 EXPORT_SYMBOL(rdma_port_get_link_layer);
208 
209 /* Protection domains */
210 
211 /**
212  * ib_alloc_pd - Allocates an unused protection domain.
213  * @device: The device on which to allocate the protection domain.
214  *
215  * A protection domain object provides an association between QPs, shared
216  * receive queues, address handles, memory regions, and memory windows.
217  *
218  * Every PD has a local_dma_lkey which can be used as the lkey value for local
219  * memory operations.
220  */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)221 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
222 		const char *caller)
223 {
224 	struct ib_pd *pd;
225 	int mr_access_flags = 0;
226 
227 	pd = device->alloc_pd(device, NULL, NULL);
228 	if (IS_ERR(pd))
229 		return pd;
230 
231 	pd->device = device;
232 	pd->uobject = NULL;
233 	pd->__internal_mr = NULL;
234 	atomic_set(&pd->usecnt, 0);
235 	pd->flags = flags;
236 
237 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
238 		pd->local_dma_lkey = device->local_dma_lkey;
239 	else
240 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
241 
242 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
243 		pr_warn("%s: enabling unsafe global rkey\n", caller);
244 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
245 	}
246 
247 	if (mr_access_flags) {
248 		struct ib_mr *mr;
249 
250 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
251 		if (IS_ERR(mr)) {
252 			ib_dealloc_pd(pd);
253 			return ERR_CAST(mr);
254 		}
255 
256 		mr->device	= pd->device;
257 		mr->pd		= pd;
258 		mr->uobject	= NULL;
259 		mr->need_inval	= false;
260 
261 		pd->__internal_mr = mr;
262 
263 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
264 			pd->local_dma_lkey = pd->__internal_mr->lkey;
265 
266 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
267 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
268 	}
269 
270 	return pd;
271 }
272 EXPORT_SYMBOL(__ib_alloc_pd);
273 
274 /**
275  * ib_dealloc_pd - Deallocates a protection domain.
276  * @pd: The protection domain to deallocate.
277  *
278  * It is an error to call this function while any resources in the pd still
279  * exist.  The caller is responsible to synchronously destroy them and
280  * guarantee no new allocations will happen.
281  */
ib_dealloc_pd(struct ib_pd * pd)282 void ib_dealloc_pd(struct ib_pd *pd)
283 {
284 	int ret;
285 
286 	if (pd->__internal_mr) {
287 		ret = pd->device->dereg_mr(pd->__internal_mr);
288 		WARN_ON(ret);
289 		pd->__internal_mr = NULL;
290 	}
291 
292 	/* uverbs manipulates usecnt with proper locking, while the kabi
293 	   requires the caller to guarantee we can't race here. */
294 	WARN_ON(atomic_read(&pd->usecnt));
295 
296 	/* Making delalloc_pd a void return is a WIP, no driver should return
297 	   an error here. */
298 	ret = pd->device->dealloc_pd(pd);
299 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
300 }
301 EXPORT_SYMBOL(ib_dealloc_pd);
302 
303 /* Address handles */
304 
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr)305 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
306 {
307 	struct ib_ah *ah;
308 
309 	ah = pd->device->create_ah(pd, ah_attr, NULL);
310 
311 	if (!IS_ERR(ah)) {
312 		ah->device  = pd->device;
313 		ah->pd      = pd;
314 		ah->uobject = NULL;
315 		ah->type    = ah_attr->type;
316 		atomic_inc(&pd->usecnt);
317 	}
318 
319 	return ah;
320 }
321 EXPORT_SYMBOL(rdma_create_ah);
322 
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)323 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
324 {
325 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
326 	struct iphdr ip4h_checked;
327 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
328 
329 	/* If it's IPv6, the version must be 6, otherwise, the first
330 	 * 20 bytes (before the IPv4 header) are garbled.
331 	 */
332 	if (ip6h->version != 6)
333 		return (ip4h->version == 4) ? 4 : 0;
334 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
335 
336 	/* RoCE v2 requires no options, thus header length
337 	 * must be 5 words
338 	 */
339 	if (ip4h->ihl != 5)
340 		return 6;
341 
342 	/* Verify checksum.
343 	 * We can't write on scattered buffers so we need to copy to
344 	 * temp buffer.
345 	 */
346 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
347 	ip4h_checked.check = 0;
348 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
349 	/* if IPv4 header checksum is OK, believe it */
350 	if (ip4h->check == ip4h_checked.check)
351 		return 4;
352 	return 6;
353 }
354 EXPORT_SYMBOL(ib_get_rdma_header_version);
355 
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)356 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
357 						     u8 port_num,
358 						     const struct ib_grh *grh)
359 {
360 	int grh_version;
361 
362 	if (rdma_protocol_ib(device, port_num))
363 		return RDMA_NETWORK_IB;
364 
365 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
366 
367 	if (grh_version == 4)
368 		return RDMA_NETWORK_IPV4;
369 
370 	if (grh->next_hdr == IPPROTO_UDP)
371 		return RDMA_NETWORK_IPV6;
372 
373 	return RDMA_NETWORK_ROCE_V1;
374 }
375 
376 struct find_gid_index_context {
377 	u16 vlan_id;
378 	enum ib_gid_type gid_type;
379 };
380 
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)381 static bool find_gid_index(const union ib_gid *gid,
382 			   const struct ib_gid_attr *gid_attr,
383 			   void *context)
384 {
385 	struct find_gid_index_context *ctx =
386 		(struct find_gid_index_context *)context;
387 
388 	if (ctx->gid_type != gid_attr->gid_type)
389 		return false;
390 
391 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
392 	    (is_vlan_dev(gid_attr->ndev) &&
393 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
394 		return false;
395 
396 	return true;
397 }
398 
get_sgid_index_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type,u16 * gid_index)399 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
400 				   u16 vlan_id, const union ib_gid *sgid,
401 				   enum ib_gid_type gid_type,
402 				   u16 *gid_index)
403 {
404 	struct find_gid_index_context context = {.vlan_id = vlan_id,
405 						 .gid_type = gid_type};
406 
407 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
408 				     &context, gid_index);
409 }
410 
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)411 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
412 			      enum rdma_network_type net_type,
413 			      union ib_gid *sgid, union ib_gid *dgid)
414 {
415 	struct sockaddr_in  src_in;
416 	struct sockaddr_in  dst_in;
417 	__be32 src_saddr, dst_saddr;
418 
419 	if (!sgid || !dgid)
420 		return -EINVAL;
421 
422 	if (net_type == RDMA_NETWORK_IPV4) {
423 		memcpy(&src_in.sin_addr.s_addr,
424 		       &hdr->roce4grh.saddr, 4);
425 		memcpy(&dst_in.sin_addr.s_addr,
426 		       &hdr->roce4grh.daddr, 4);
427 		src_saddr = src_in.sin_addr.s_addr;
428 		dst_saddr = dst_in.sin_addr.s_addr;
429 		ipv6_addr_set_v4mapped(src_saddr,
430 				       (struct in6_addr *)sgid);
431 		ipv6_addr_set_v4mapped(dst_saddr,
432 				       (struct in6_addr *)dgid);
433 		return 0;
434 	} else if (net_type == RDMA_NETWORK_IPV6 ||
435 		   net_type == RDMA_NETWORK_IB) {
436 		*dgid = hdr->ibgrh.dgid;
437 		*sgid = hdr->ibgrh.sgid;
438 		return 0;
439 	} else {
440 		return -EINVAL;
441 	}
442 }
443 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
444 
445 /*
446  * This function creates ah from the incoming packet.
447  * Incoming packet has dgid of the receiver node on which this code is
448  * getting executed and, sgid contains the GID of the sender.
449  *
450  * When resolving mac address of destination, the arrived dgid is used
451  * as sgid and, sgid is used as dgid because sgid contains destinations
452  * GID whom to respond to.
453  *
454  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
455  * position of arguments dgid and sgid do not match the order of the
456  * parameters.
457  */
ib_init_ah_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)458 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
459 		       const struct ib_wc *wc, const struct ib_grh *grh,
460 		       struct rdma_ah_attr *ah_attr)
461 {
462 	u32 flow_class;
463 	u16 gid_index;
464 	int ret;
465 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
466 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
467 	int hoplimit = 0xff;
468 	union ib_gid dgid;
469 	union ib_gid sgid;
470 
471 	might_sleep();
472 
473 	memset(ah_attr, 0, sizeof *ah_attr);
474 	ah_attr->type = rdma_ah_find_type(device, port_num);
475 	if (rdma_cap_eth_ah(device, port_num)) {
476 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
477 			net_type = wc->network_hdr_type;
478 		else
479 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
480 		gid_type = ib_network_to_gid_type(net_type);
481 	}
482 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
483 					&sgid, &dgid);
484 	if (ret)
485 		return ret;
486 
487 	if (rdma_protocol_roce(device, port_num)) {
488 		int if_index = 0;
489 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
490 				wc->vlan_id : 0xffff;
491 		struct net_device *idev;
492 		struct net_device *resolved_dev;
493 
494 		if (!(wc->wc_flags & IB_WC_GRH))
495 			return -EPROTOTYPE;
496 
497 		if (!device->get_netdev)
498 			return -EOPNOTSUPP;
499 
500 		idev = device->get_netdev(device, port_num);
501 		if (!idev)
502 			return -ENODEV;
503 
504 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
505 						   ah_attr->roce.dmac,
506 						   wc->wc_flags & IB_WC_WITH_VLAN ?
507 						   NULL : &vlan_id,
508 						   &if_index, &hoplimit);
509 		if (ret) {
510 			dev_put(idev);
511 			return ret;
512 		}
513 
514 		resolved_dev = dev_get_by_index(&init_net, if_index);
515 		rcu_read_lock();
516 		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
517 								   resolved_dev))
518 			ret = -EHOSTUNREACH;
519 		rcu_read_unlock();
520 		dev_put(idev);
521 		dev_put(resolved_dev);
522 		if (ret)
523 			return ret;
524 
525 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
526 					      &dgid, gid_type, &gid_index);
527 		if (ret)
528 			return ret;
529 	}
530 
531 	rdma_ah_set_dlid(ah_attr, wc->slid);
532 	rdma_ah_set_sl(ah_attr, wc->sl);
533 	rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
534 	rdma_ah_set_port_num(ah_attr, port_num);
535 
536 	if (wc->wc_flags & IB_WC_GRH) {
537 		if (!rdma_cap_eth_ah(device, port_num)) {
538 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
539 				ret = ib_find_cached_gid_by_port(device, &dgid,
540 								 IB_GID_TYPE_IB,
541 								 port_num, NULL,
542 								 &gid_index);
543 				if (ret)
544 					return ret;
545 			} else {
546 				gid_index = 0;
547 			}
548 		}
549 
550 		flow_class = be32_to_cpu(grh->version_tclass_flow);
551 		rdma_ah_set_grh(ah_attr, &sgid,
552 				flow_class & 0xFFFFF,
553 				(u8)gid_index, hoplimit,
554 				(flow_class >> 20) & 0xFF);
555 
556 	}
557 	return 0;
558 }
559 EXPORT_SYMBOL(ib_init_ah_from_wc);
560 
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)561 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
562 				   const struct ib_grh *grh, u8 port_num)
563 {
564 	struct rdma_ah_attr ah_attr;
565 	int ret;
566 
567 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
568 	if (ret)
569 		return ERR_PTR(ret);
570 
571 	return rdma_create_ah(pd, &ah_attr);
572 }
573 EXPORT_SYMBOL(ib_create_ah_from_wc);
574 
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)575 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
576 {
577 	if (ah->type != ah_attr->type)
578 		return -EINVAL;
579 
580 	return ah->device->modify_ah ?
581 		ah->device->modify_ah(ah, ah_attr) :
582 		-ENOSYS;
583 }
584 EXPORT_SYMBOL(rdma_modify_ah);
585 
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)586 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
587 {
588 	return ah->device->query_ah ?
589 		ah->device->query_ah(ah, ah_attr) :
590 		-ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_query_ah);
593 
rdma_destroy_ah(struct ib_ah * ah)594 int rdma_destroy_ah(struct ib_ah *ah)
595 {
596 	struct ib_pd *pd;
597 	int ret;
598 
599 	pd = ah->pd;
600 	ret = ah->device->destroy_ah(ah);
601 	if (!ret)
602 		atomic_dec(&pd->usecnt);
603 
604 	return ret;
605 }
606 EXPORT_SYMBOL(rdma_destroy_ah);
607 
608 /* Shared receive queues */
609 
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)610 struct ib_srq *ib_create_srq(struct ib_pd *pd,
611 			     struct ib_srq_init_attr *srq_init_attr)
612 {
613 	struct ib_srq *srq;
614 
615 	if (!pd->device->create_srq)
616 		return ERR_PTR(-ENOSYS);
617 
618 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
619 
620 	if (!IS_ERR(srq)) {
621 		srq->device    	   = pd->device;
622 		srq->pd        	   = pd;
623 		srq->uobject       = NULL;
624 		srq->event_handler = srq_init_attr->event_handler;
625 		srq->srq_context   = srq_init_attr->srq_context;
626 		srq->srq_type      = srq_init_attr->srq_type;
627 		if (ib_srq_has_cq(srq->srq_type)) {
628 			srq->ext.cq   = srq_init_attr->ext.cq;
629 			atomic_inc(&srq->ext.cq->usecnt);
630 		}
631 		if (srq->srq_type == IB_SRQT_XRC) {
632 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
633 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
634 		}
635 		atomic_inc(&pd->usecnt);
636 		atomic_set(&srq->usecnt, 0);
637 	}
638 
639 	return srq;
640 }
641 EXPORT_SYMBOL(ib_create_srq);
642 
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)643 int ib_modify_srq(struct ib_srq *srq,
644 		  struct ib_srq_attr *srq_attr,
645 		  enum ib_srq_attr_mask srq_attr_mask)
646 {
647 	return srq->device->modify_srq ?
648 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
649 		-ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_modify_srq);
652 
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)653 int ib_query_srq(struct ib_srq *srq,
654 		 struct ib_srq_attr *srq_attr)
655 {
656 	return srq->device->query_srq ?
657 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
658 }
659 EXPORT_SYMBOL(ib_query_srq);
660 
ib_destroy_srq(struct ib_srq * srq)661 int ib_destroy_srq(struct ib_srq *srq)
662 {
663 	struct ib_pd *pd;
664 	enum ib_srq_type srq_type;
665 	struct ib_xrcd *uninitialized_var(xrcd);
666 	struct ib_cq *uninitialized_var(cq);
667 	int ret;
668 
669 	if (atomic_read(&srq->usecnt))
670 		return -EBUSY;
671 
672 	pd = srq->pd;
673 	srq_type = srq->srq_type;
674 	if (ib_srq_has_cq(srq_type))
675 		cq = srq->ext.cq;
676 	if (srq_type == IB_SRQT_XRC)
677 		xrcd = srq->ext.xrc.xrcd;
678 
679 	ret = srq->device->destroy_srq(srq);
680 	if (!ret) {
681 		atomic_dec(&pd->usecnt);
682 		if (srq_type == IB_SRQT_XRC)
683 			atomic_dec(&xrcd->usecnt);
684 		if (ib_srq_has_cq(srq_type))
685 			atomic_dec(&cq->usecnt);
686 	}
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL(ib_destroy_srq);
691 
692 /* Queue pairs */
693 
__ib_shared_qp_event_handler(struct ib_event * event,void * context)694 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
695 {
696 	struct ib_qp *qp = context;
697 	unsigned long flags;
698 
699 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
700 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
701 		if (event->element.qp->event_handler)
702 			event->element.qp->event_handler(event, event->element.qp->qp_context);
703 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
704 }
705 
__ib_insert_xrcd_qp(struct ib_xrcd * xrcd,struct ib_qp * qp)706 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
707 {
708 	mutex_lock(&xrcd->tgt_qp_mutex);
709 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
710 	mutex_unlock(&xrcd->tgt_qp_mutex);
711 }
712 
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)713 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
714 				  void (*event_handler)(struct ib_event *, void *),
715 				  void *qp_context)
716 {
717 	struct ib_qp *qp;
718 	unsigned long flags;
719 	int err;
720 
721 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
722 	if (!qp)
723 		return ERR_PTR(-ENOMEM);
724 
725 	qp->real_qp = real_qp;
726 	err = ib_open_shared_qp_security(qp, real_qp->device);
727 	if (err) {
728 		kfree(qp);
729 		return ERR_PTR(err);
730 	}
731 
732 	qp->real_qp = real_qp;
733 	atomic_inc(&real_qp->usecnt);
734 	qp->device = real_qp->device;
735 	qp->event_handler = event_handler;
736 	qp->qp_context = qp_context;
737 	qp->qp_num = real_qp->qp_num;
738 	qp->qp_type = real_qp->qp_type;
739 
740 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
741 	list_add(&qp->open_list, &real_qp->open_list);
742 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
743 
744 	return qp;
745 }
746 
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)747 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
748 			 struct ib_qp_open_attr *qp_open_attr)
749 {
750 	struct ib_qp *qp, *real_qp;
751 
752 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
753 		return ERR_PTR(-EINVAL);
754 
755 	qp = ERR_PTR(-EINVAL);
756 	mutex_lock(&xrcd->tgt_qp_mutex);
757 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
758 		if (real_qp->qp_num == qp_open_attr->qp_num) {
759 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
760 					  qp_open_attr->qp_context);
761 			break;
762 		}
763 	}
764 	mutex_unlock(&xrcd->tgt_qp_mutex);
765 	return qp;
766 }
767 EXPORT_SYMBOL(ib_open_qp);
768 
create_xrc_qp(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)769 static struct ib_qp *create_xrc_qp(struct ib_qp *qp,
770 				   struct ib_qp_init_attr *qp_init_attr)
771 {
772 	struct ib_qp *real_qp = qp;
773 
774 	qp->event_handler = __ib_shared_qp_event_handler;
775 	qp->qp_context = qp;
776 	qp->pd = NULL;
777 	qp->send_cq = qp->recv_cq = NULL;
778 	qp->srq = NULL;
779 	qp->xrcd = qp_init_attr->xrcd;
780 	atomic_inc(&qp_init_attr->xrcd->usecnt);
781 	INIT_LIST_HEAD(&qp->open_list);
782 
783 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
784 			  qp_init_attr->qp_context);
785 	if (IS_ERR(qp))
786 		return qp;
787 
788 	__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
789 	return qp;
790 }
791 
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)792 struct ib_qp *ib_create_qp(struct ib_pd *pd,
793 			   struct ib_qp_init_attr *qp_init_attr)
794 {
795 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
796 	struct ib_qp *qp;
797 	int ret;
798 
799 	if (qp_init_attr->rwq_ind_tbl &&
800 	    (qp_init_attr->recv_cq ||
801 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
802 	    qp_init_attr->cap.max_recv_sge))
803 		return ERR_PTR(-EINVAL);
804 
805 	/*
806 	 * If the callers is using the RDMA API calculate the resources
807 	 * needed for the RDMA READ/WRITE operations.
808 	 *
809 	 * Note that these callers need to pass in a port number.
810 	 */
811 	if (qp_init_attr->cap.max_rdma_ctxs)
812 		rdma_rw_init_qp(device, qp_init_attr);
813 
814 	qp = device->create_qp(pd, qp_init_attr, NULL);
815 	if (IS_ERR(qp))
816 		return qp;
817 
818 	ret = ib_create_qp_security(qp, device);
819 	if (ret)
820 		goto err;
821 
822 	qp->device     = device;
823 	qp->real_qp    = qp;
824 	qp->uobject    = NULL;
825 	qp->qp_type    = qp_init_attr->qp_type;
826 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
827 
828 	atomic_set(&qp->usecnt, 0);
829 	qp->mrs_used = 0;
830 	spin_lock_init(&qp->mr_lock);
831 	INIT_LIST_HEAD(&qp->rdma_mrs);
832 	INIT_LIST_HEAD(&qp->sig_mrs);
833 	qp->port = 0;
834 
835 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
836 		struct ib_qp *xrc_qp = create_xrc_qp(qp, qp_init_attr);
837 
838 		if (IS_ERR(xrc_qp)) {
839 			ret = PTR_ERR(xrc_qp);
840 			goto err;
841 		}
842 		return xrc_qp;
843 	}
844 
845 	qp->event_handler = qp_init_attr->event_handler;
846 	qp->qp_context = qp_init_attr->qp_context;
847 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
848 		qp->recv_cq = NULL;
849 		qp->srq = NULL;
850 	} else {
851 		qp->recv_cq = qp_init_attr->recv_cq;
852 		if (qp_init_attr->recv_cq)
853 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
854 		qp->srq = qp_init_attr->srq;
855 		if (qp->srq)
856 			atomic_inc(&qp_init_attr->srq->usecnt);
857 	}
858 
859 	qp->pd	    = pd;
860 	qp->send_cq = qp_init_attr->send_cq;
861 	qp->xrcd    = NULL;
862 
863 	atomic_inc(&pd->usecnt);
864 	if (qp_init_attr->send_cq)
865 		atomic_inc(&qp_init_attr->send_cq->usecnt);
866 	if (qp_init_attr->rwq_ind_tbl)
867 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
868 
869 	if (qp_init_attr->cap.max_rdma_ctxs) {
870 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
871 		if (ret)
872 			goto err;
873 	}
874 
875 	/*
876 	 * Note: all hw drivers guarantee that max_send_sge is lower than
877 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
878 	 * max_send_sge <= max_sge_rd.
879 	 */
880 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
881 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
882 				 device->attrs.max_sge_rd);
883 
884 	return qp;
885 
886 err:
887 	ib_destroy_qp(qp);
888 	return ERR_PTR(ret);
889 
890 }
891 EXPORT_SYMBOL(ib_create_qp);
892 
893 static const struct {
894 	int			valid;
895 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
896 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
897 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
898 	[IB_QPS_RESET] = {
899 		[IB_QPS_RESET] = { .valid = 1 },
900 		[IB_QPS_INIT]  = {
901 			.valid = 1,
902 			.req_param = {
903 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
904 						IB_QP_PORT			|
905 						IB_QP_QKEY),
906 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
907 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
908 						IB_QP_PORT			|
909 						IB_QP_ACCESS_FLAGS),
910 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
911 						IB_QP_PORT			|
912 						IB_QP_ACCESS_FLAGS),
913 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
914 						IB_QP_PORT			|
915 						IB_QP_ACCESS_FLAGS),
916 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
917 						IB_QP_PORT			|
918 						IB_QP_ACCESS_FLAGS),
919 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
920 						IB_QP_QKEY),
921 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
922 						IB_QP_QKEY),
923 			}
924 		},
925 	},
926 	[IB_QPS_INIT]  = {
927 		[IB_QPS_RESET] = { .valid = 1 },
928 		[IB_QPS_ERR] =   { .valid = 1 },
929 		[IB_QPS_INIT]  = {
930 			.valid = 1,
931 			.opt_param = {
932 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
933 						IB_QP_PORT			|
934 						IB_QP_QKEY),
935 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
936 						IB_QP_PORT			|
937 						IB_QP_ACCESS_FLAGS),
938 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
939 						IB_QP_PORT			|
940 						IB_QP_ACCESS_FLAGS),
941 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
942 						IB_QP_PORT			|
943 						IB_QP_ACCESS_FLAGS),
944 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
945 						IB_QP_PORT			|
946 						IB_QP_ACCESS_FLAGS),
947 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
948 						IB_QP_QKEY),
949 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
950 						IB_QP_QKEY),
951 			}
952 		},
953 		[IB_QPS_RTR]   = {
954 			.valid = 1,
955 			.req_param = {
956 				[IB_QPT_UC]  = (IB_QP_AV			|
957 						IB_QP_PATH_MTU			|
958 						IB_QP_DEST_QPN			|
959 						IB_QP_RQ_PSN),
960 				[IB_QPT_RC]  = (IB_QP_AV			|
961 						IB_QP_PATH_MTU			|
962 						IB_QP_DEST_QPN			|
963 						IB_QP_RQ_PSN			|
964 						IB_QP_MAX_DEST_RD_ATOMIC	|
965 						IB_QP_MIN_RNR_TIMER),
966 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
967 						IB_QP_PATH_MTU			|
968 						IB_QP_DEST_QPN			|
969 						IB_QP_RQ_PSN),
970 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
971 						IB_QP_PATH_MTU			|
972 						IB_QP_DEST_QPN			|
973 						IB_QP_RQ_PSN			|
974 						IB_QP_MAX_DEST_RD_ATOMIC	|
975 						IB_QP_MIN_RNR_TIMER),
976 			},
977 			.opt_param = {
978 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
979 						 IB_QP_QKEY),
980 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
981 						 IB_QP_ACCESS_FLAGS		|
982 						 IB_QP_PKEY_INDEX),
983 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
984 						 IB_QP_ACCESS_FLAGS		|
985 						 IB_QP_PKEY_INDEX),
986 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
987 						 IB_QP_ACCESS_FLAGS		|
988 						 IB_QP_PKEY_INDEX),
989 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
990 						 IB_QP_ACCESS_FLAGS		|
991 						 IB_QP_PKEY_INDEX),
992 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
993 						 IB_QP_QKEY),
994 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
995 						 IB_QP_QKEY),
996 			 },
997 		},
998 	},
999 	[IB_QPS_RTR]   = {
1000 		[IB_QPS_RESET] = { .valid = 1 },
1001 		[IB_QPS_ERR] =   { .valid = 1 },
1002 		[IB_QPS_RTS]   = {
1003 			.valid = 1,
1004 			.req_param = {
1005 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1006 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1007 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1008 						IB_QP_RETRY_CNT			|
1009 						IB_QP_RNR_RETRY			|
1010 						IB_QP_SQ_PSN			|
1011 						IB_QP_MAX_QP_RD_ATOMIC),
1012 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1013 						IB_QP_RETRY_CNT			|
1014 						IB_QP_RNR_RETRY			|
1015 						IB_QP_SQ_PSN			|
1016 						IB_QP_MAX_QP_RD_ATOMIC),
1017 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1018 						IB_QP_SQ_PSN),
1019 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1020 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1021 			},
1022 			.opt_param = {
1023 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1024 						 IB_QP_QKEY),
1025 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1026 						 IB_QP_ALT_PATH			|
1027 						 IB_QP_ACCESS_FLAGS		|
1028 						 IB_QP_PATH_MIG_STATE),
1029 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1030 						 IB_QP_ALT_PATH			|
1031 						 IB_QP_ACCESS_FLAGS		|
1032 						 IB_QP_MIN_RNR_TIMER		|
1033 						 IB_QP_PATH_MIG_STATE),
1034 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1035 						 IB_QP_ALT_PATH			|
1036 						 IB_QP_ACCESS_FLAGS		|
1037 						 IB_QP_PATH_MIG_STATE),
1038 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1039 						 IB_QP_ALT_PATH			|
1040 						 IB_QP_ACCESS_FLAGS		|
1041 						 IB_QP_MIN_RNR_TIMER		|
1042 						 IB_QP_PATH_MIG_STATE),
1043 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1044 						 IB_QP_QKEY),
1045 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1046 						 IB_QP_QKEY),
1047 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1048 			 }
1049 		}
1050 	},
1051 	[IB_QPS_RTS]   = {
1052 		[IB_QPS_RESET] = { .valid = 1 },
1053 		[IB_QPS_ERR] =   { .valid = 1 },
1054 		[IB_QPS_RTS]   = {
1055 			.valid = 1,
1056 			.opt_param = {
1057 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1058 						IB_QP_QKEY),
1059 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1060 						IB_QP_ACCESS_FLAGS		|
1061 						IB_QP_ALT_PATH			|
1062 						IB_QP_PATH_MIG_STATE),
1063 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1064 						IB_QP_ACCESS_FLAGS		|
1065 						IB_QP_ALT_PATH			|
1066 						IB_QP_PATH_MIG_STATE		|
1067 						IB_QP_MIN_RNR_TIMER),
1068 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1069 						IB_QP_ACCESS_FLAGS		|
1070 						IB_QP_ALT_PATH			|
1071 						IB_QP_PATH_MIG_STATE),
1072 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1073 						IB_QP_ACCESS_FLAGS		|
1074 						IB_QP_ALT_PATH			|
1075 						IB_QP_PATH_MIG_STATE		|
1076 						IB_QP_MIN_RNR_TIMER),
1077 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1078 						IB_QP_QKEY),
1079 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1080 						IB_QP_QKEY),
1081 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1082 			}
1083 		},
1084 		[IB_QPS_SQD]   = {
1085 			.valid = 1,
1086 			.opt_param = {
1087 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1088 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1089 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1090 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1091 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1092 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1093 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1094 			}
1095 		},
1096 	},
1097 	[IB_QPS_SQD]   = {
1098 		[IB_QPS_RESET] = { .valid = 1 },
1099 		[IB_QPS_ERR] =   { .valid = 1 },
1100 		[IB_QPS_RTS]   = {
1101 			.valid = 1,
1102 			.opt_param = {
1103 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1104 						IB_QP_QKEY),
1105 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1106 						IB_QP_ALT_PATH			|
1107 						IB_QP_ACCESS_FLAGS		|
1108 						IB_QP_PATH_MIG_STATE),
1109 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1110 						IB_QP_ALT_PATH			|
1111 						IB_QP_ACCESS_FLAGS		|
1112 						IB_QP_MIN_RNR_TIMER		|
1113 						IB_QP_PATH_MIG_STATE),
1114 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1115 						IB_QP_ALT_PATH			|
1116 						IB_QP_ACCESS_FLAGS		|
1117 						IB_QP_PATH_MIG_STATE),
1118 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1119 						IB_QP_ALT_PATH			|
1120 						IB_QP_ACCESS_FLAGS		|
1121 						IB_QP_MIN_RNR_TIMER		|
1122 						IB_QP_PATH_MIG_STATE),
1123 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1124 						IB_QP_QKEY),
1125 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1126 						IB_QP_QKEY),
1127 			}
1128 		},
1129 		[IB_QPS_SQD]   = {
1130 			.valid = 1,
1131 			.opt_param = {
1132 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1133 						IB_QP_QKEY),
1134 				[IB_QPT_UC]  = (IB_QP_AV			|
1135 						IB_QP_ALT_PATH			|
1136 						IB_QP_ACCESS_FLAGS		|
1137 						IB_QP_PKEY_INDEX		|
1138 						IB_QP_PATH_MIG_STATE),
1139 				[IB_QPT_RC]  = (IB_QP_PORT			|
1140 						IB_QP_AV			|
1141 						IB_QP_TIMEOUT			|
1142 						IB_QP_RETRY_CNT			|
1143 						IB_QP_RNR_RETRY			|
1144 						IB_QP_MAX_QP_RD_ATOMIC		|
1145 						IB_QP_MAX_DEST_RD_ATOMIC	|
1146 						IB_QP_ALT_PATH			|
1147 						IB_QP_ACCESS_FLAGS		|
1148 						IB_QP_PKEY_INDEX		|
1149 						IB_QP_MIN_RNR_TIMER		|
1150 						IB_QP_PATH_MIG_STATE),
1151 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1152 						IB_QP_AV			|
1153 						IB_QP_TIMEOUT			|
1154 						IB_QP_RETRY_CNT			|
1155 						IB_QP_RNR_RETRY			|
1156 						IB_QP_MAX_QP_RD_ATOMIC		|
1157 						IB_QP_ALT_PATH			|
1158 						IB_QP_ACCESS_FLAGS		|
1159 						IB_QP_PKEY_INDEX		|
1160 						IB_QP_PATH_MIG_STATE),
1161 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1162 						IB_QP_AV			|
1163 						IB_QP_TIMEOUT			|
1164 						IB_QP_MAX_DEST_RD_ATOMIC	|
1165 						IB_QP_ALT_PATH			|
1166 						IB_QP_ACCESS_FLAGS		|
1167 						IB_QP_PKEY_INDEX		|
1168 						IB_QP_MIN_RNR_TIMER		|
1169 						IB_QP_PATH_MIG_STATE),
1170 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1171 						IB_QP_QKEY),
1172 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1173 						IB_QP_QKEY),
1174 			}
1175 		}
1176 	},
1177 	[IB_QPS_SQE]   = {
1178 		[IB_QPS_RESET] = { .valid = 1 },
1179 		[IB_QPS_ERR] =   { .valid = 1 },
1180 		[IB_QPS_RTS]   = {
1181 			.valid = 1,
1182 			.opt_param = {
1183 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1184 						IB_QP_QKEY),
1185 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1186 						IB_QP_ACCESS_FLAGS),
1187 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1188 						IB_QP_QKEY),
1189 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1190 						IB_QP_QKEY),
1191 			}
1192 		}
1193 	},
1194 	[IB_QPS_ERR] = {
1195 		[IB_QPS_RESET] = { .valid = 1 },
1196 		[IB_QPS_ERR] =   { .valid = 1 }
1197 	}
1198 };
1199 
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask,enum rdma_link_layer ll)1200 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1201 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1202 		       enum rdma_link_layer ll)
1203 {
1204 	enum ib_qp_attr_mask req_param, opt_param;
1205 
1206 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1207 	    next_state < 0 || next_state > IB_QPS_ERR)
1208 		return 0;
1209 
1210 	if (mask & IB_QP_CUR_STATE  &&
1211 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1212 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1213 		return 0;
1214 
1215 	if (!qp_state_table[cur_state][next_state].valid)
1216 		return 0;
1217 
1218 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1219 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1220 
1221 	if ((mask & req_param) != req_param)
1222 		return 0;
1223 
1224 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1225 		return 0;
1226 
1227 	return 1;
1228 }
1229 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1230 
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1231 int ib_resolve_eth_dmac(struct ib_device *device,
1232 			struct rdma_ah_attr *ah_attr)
1233 {
1234 	int           ret = 0;
1235 	struct ib_global_route *grh;
1236 
1237 	if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1238 		return -EINVAL;
1239 
1240 	if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1241 		return 0;
1242 
1243 	grh = rdma_ah_retrieve_grh(ah_attr);
1244 
1245 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1246 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1247 				ah_attr->roce.dmac);
1248 		return 0;
1249 	}
1250 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1251 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1252 			__be32 addr = 0;
1253 
1254 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1255 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1256 		} else {
1257 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1258 					(char *)ah_attr->roce.dmac);
1259 		}
1260 	} else {
1261 		union ib_gid		sgid;
1262 		struct ib_gid_attr	sgid_attr;
1263 		int			ifindex;
1264 		int			hop_limit;
1265 
1266 		ret = ib_query_gid(device,
1267 				   rdma_ah_get_port_num(ah_attr),
1268 				   grh->sgid_index,
1269 				   &sgid, &sgid_attr);
1270 
1271 		if (ret || !sgid_attr.ndev) {
1272 			if (!ret)
1273 				ret = -ENXIO;
1274 			goto out;
1275 		}
1276 
1277 		ifindex = sgid_attr.ndev->ifindex;
1278 
1279 		ret =
1280 		rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1281 					     ah_attr->roce.dmac,
1282 					     NULL, &ifindex, &hop_limit);
1283 
1284 		dev_put(sgid_attr.ndev);
1285 
1286 		grh->hop_limit = hop_limit;
1287 	}
1288 out:
1289 	return ret;
1290 }
1291 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1292 
1293 /**
1294  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1295  * @ib_qp: The QP to modify.
1296  * @attr: On input, specifies the QP attributes to modify.  On output,
1297  *   the current values of selected QP attributes are returned.
1298  * @attr_mask: A bit-mask used to specify which attributes of the QP
1299  *   are being modified.
1300  * @udata: pointer to user's input output buffer information
1301  *   are being modified.
1302  * It returns 0 on success and returns appropriate error code on error.
1303  */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1304 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1305 			    int attr_mask, struct ib_udata *udata)
1306 {
1307 	struct ib_qp *qp = ib_qp->real_qp;
1308 	int ret;
1309 
1310 	if (attr_mask & IB_QP_AV) {
1311 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1312 		if (ret)
1313 			return ret;
1314 	}
1315 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1316 	if (!ret && (attr_mask & IB_QP_PORT))
1317 		qp->port = attr->port_num;
1318 
1319 	return ret;
1320 }
1321 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1322 
ib_get_eth_speed(struct ib_device * dev,u8 port_num,u8 * speed,u8 * width)1323 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1324 {
1325 	int rc;
1326 	u32 netdev_speed;
1327 	struct net_device *netdev;
1328 	struct ethtool_link_ksettings lksettings;
1329 
1330 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1331 		return -EINVAL;
1332 
1333 	if (!dev->get_netdev)
1334 		return -EOPNOTSUPP;
1335 
1336 	netdev = dev->get_netdev(dev, port_num);
1337 	if (!netdev)
1338 		return -ENODEV;
1339 
1340 	rtnl_lock();
1341 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1342 	rtnl_unlock();
1343 
1344 	dev_put(netdev);
1345 
1346 	if (!rc) {
1347 		netdev_speed = lksettings.base.speed;
1348 	} else {
1349 		netdev_speed = SPEED_1000;
1350 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1351 			netdev_speed);
1352 	}
1353 
1354 	if (netdev_speed <= SPEED_1000) {
1355 		*width = IB_WIDTH_1X;
1356 		*speed = IB_SPEED_SDR;
1357 	} else if (netdev_speed <= SPEED_10000) {
1358 		*width = IB_WIDTH_1X;
1359 		*speed = IB_SPEED_FDR10;
1360 	} else if (netdev_speed <= SPEED_20000) {
1361 		*width = IB_WIDTH_4X;
1362 		*speed = IB_SPEED_DDR;
1363 	} else if (netdev_speed <= SPEED_25000) {
1364 		*width = IB_WIDTH_1X;
1365 		*speed = IB_SPEED_EDR;
1366 	} else if (netdev_speed <= SPEED_40000) {
1367 		*width = IB_WIDTH_4X;
1368 		*speed = IB_SPEED_FDR10;
1369 	} else {
1370 		*width = IB_WIDTH_4X;
1371 		*speed = IB_SPEED_EDR;
1372 	}
1373 
1374 	return 0;
1375 }
1376 EXPORT_SYMBOL(ib_get_eth_speed);
1377 
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1378 int ib_modify_qp(struct ib_qp *qp,
1379 		 struct ib_qp_attr *qp_attr,
1380 		 int qp_attr_mask)
1381 {
1382 	return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1383 }
1384 EXPORT_SYMBOL(ib_modify_qp);
1385 
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1386 int ib_query_qp(struct ib_qp *qp,
1387 		struct ib_qp_attr *qp_attr,
1388 		int qp_attr_mask,
1389 		struct ib_qp_init_attr *qp_init_attr)
1390 {
1391 	return qp->device->query_qp ?
1392 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1393 		-ENOSYS;
1394 }
1395 EXPORT_SYMBOL(ib_query_qp);
1396 
ib_close_qp(struct ib_qp * qp)1397 int ib_close_qp(struct ib_qp *qp)
1398 {
1399 	struct ib_qp *real_qp;
1400 	unsigned long flags;
1401 
1402 	real_qp = qp->real_qp;
1403 	if (real_qp == qp)
1404 		return -EINVAL;
1405 
1406 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1407 	list_del(&qp->open_list);
1408 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1409 
1410 	atomic_dec(&real_qp->usecnt);
1411 	if (qp->qp_sec)
1412 		ib_close_shared_qp_security(qp->qp_sec);
1413 	kfree(qp);
1414 
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL(ib_close_qp);
1418 
__ib_destroy_shared_qp(struct ib_qp * qp)1419 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1420 {
1421 	struct ib_xrcd *xrcd;
1422 	struct ib_qp *real_qp;
1423 	int ret;
1424 
1425 	real_qp = qp->real_qp;
1426 	xrcd = real_qp->xrcd;
1427 
1428 	mutex_lock(&xrcd->tgt_qp_mutex);
1429 	ib_close_qp(qp);
1430 	if (atomic_read(&real_qp->usecnt) == 0)
1431 		list_del(&real_qp->xrcd_list);
1432 	else
1433 		real_qp = NULL;
1434 	mutex_unlock(&xrcd->tgt_qp_mutex);
1435 
1436 	if (real_qp) {
1437 		ret = ib_destroy_qp(real_qp);
1438 		if (!ret)
1439 			atomic_dec(&xrcd->usecnt);
1440 		else
1441 			__ib_insert_xrcd_qp(xrcd, real_qp);
1442 	}
1443 
1444 	return 0;
1445 }
1446 
ib_destroy_qp(struct ib_qp * qp)1447 int ib_destroy_qp(struct ib_qp *qp)
1448 {
1449 	struct ib_pd *pd;
1450 	struct ib_cq *scq, *rcq;
1451 	struct ib_srq *srq;
1452 	struct ib_rwq_ind_table *ind_tbl;
1453 	struct ib_qp_security *sec;
1454 	int ret;
1455 
1456 	WARN_ON_ONCE(qp->mrs_used > 0);
1457 
1458 	if (atomic_read(&qp->usecnt))
1459 		return -EBUSY;
1460 
1461 	if (qp->real_qp != qp)
1462 		return __ib_destroy_shared_qp(qp);
1463 
1464 	pd   = qp->pd;
1465 	scq  = qp->send_cq;
1466 	rcq  = qp->recv_cq;
1467 	srq  = qp->srq;
1468 	ind_tbl = qp->rwq_ind_tbl;
1469 	sec  = qp->qp_sec;
1470 	if (sec)
1471 		ib_destroy_qp_security_begin(sec);
1472 
1473 	if (!qp->uobject)
1474 		rdma_rw_cleanup_mrs(qp);
1475 
1476 	ret = qp->device->destroy_qp(qp);
1477 	if (!ret) {
1478 		if (pd)
1479 			atomic_dec(&pd->usecnt);
1480 		if (scq)
1481 			atomic_dec(&scq->usecnt);
1482 		if (rcq)
1483 			atomic_dec(&rcq->usecnt);
1484 		if (srq)
1485 			atomic_dec(&srq->usecnt);
1486 		if (ind_tbl)
1487 			atomic_dec(&ind_tbl->usecnt);
1488 		if (sec)
1489 			ib_destroy_qp_security_end(sec);
1490 	} else {
1491 		if (sec)
1492 			ib_destroy_qp_security_abort(sec);
1493 	}
1494 
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL(ib_destroy_qp);
1498 
1499 /* Completion queues */
1500 
ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr)1501 struct ib_cq *ib_create_cq(struct ib_device *device,
1502 			   ib_comp_handler comp_handler,
1503 			   void (*event_handler)(struct ib_event *, void *),
1504 			   void *cq_context,
1505 			   const struct ib_cq_init_attr *cq_attr)
1506 {
1507 	struct ib_cq *cq;
1508 
1509 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1510 
1511 	if (!IS_ERR(cq)) {
1512 		cq->device        = device;
1513 		cq->uobject       = NULL;
1514 		cq->comp_handler  = comp_handler;
1515 		cq->event_handler = event_handler;
1516 		cq->cq_context    = cq_context;
1517 		atomic_set(&cq->usecnt, 0);
1518 	}
1519 
1520 	return cq;
1521 }
1522 EXPORT_SYMBOL(ib_create_cq);
1523 
ib_modify_cq(struct ib_cq * cq,u16 cq_count,u16 cq_period)1524 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1525 {
1526 	return cq->device->modify_cq ?
1527 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1528 }
1529 EXPORT_SYMBOL(ib_modify_cq);
1530 
ib_destroy_cq(struct ib_cq * cq)1531 int ib_destroy_cq(struct ib_cq *cq)
1532 {
1533 	if (atomic_read(&cq->usecnt))
1534 		return -EBUSY;
1535 
1536 	return cq->device->destroy_cq(cq);
1537 }
1538 EXPORT_SYMBOL(ib_destroy_cq);
1539 
ib_resize_cq(struct ib_cq * cq,int cqe)1540 int ib_resize_cq(struct ib_cq *cq, int cqe)
1541 {
1542 	return cq->device->resize_cq ?
1543 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1544 }
1545 EXPORT_SYMBOL(ib_resize_cq);
1546 
1547 /* Memory regions */
1548 
ib_dereg_mr(struct ib_mr * mr)1549 int ib_dereg_mr(struct ib_mr *mr)
1550 {
1551 	struct ib_pd *pd = mr->pd;
1552 	int ret;
1553 
1554 	ret = mr->device->dereg_mr(mr);
1555 	if (!ret)
1556 		atomic_dec(&pd->usecnt);
1557 
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL(ib_dereg_mr);
1561 
1562 /**
1563  * ib_alloc_mr() - Allocates a memory region
1564  * @pd:            protection domain associated with the region
1565  * @mr_type:       memory region type
1566  * @max_num_sg:    maximum sg entries available for registration.
1567  *
1568  * Notes:
1569  * Memory registeration page/sg lists must not exceed max_num_sg.
1570  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1571  * max_num_sg * used_page_size.
1572  *
1573  */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1574 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1575 			  enum ib_mr_type mr_type,
1576 			  u32 max_num_sg)
1577 {
1578 	struct ib_mr *mr;
1579 
1580 	if (!pd->device->alloc_mr)
1581 		return ERR_PTR(-ENOSYS);
1582 
1583 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1584 	if (!IS_ERR(mr)) {
1585 		mr->device  = pd->device;
1586 		mr->pd      = pd;
1587 		mr->uobject = NULL;
1588 		atomic_inc(&pd->usecnt);
1589 		mr->need_inval = false;
1590 	}
1591 
1592 	return mr;
1593 }
1594 EXPORT_SYMBOL(ib_alloc_mr);
1595 
1596 /* "Fast" memory regions */
1597 
ib_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)1598 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1599 			    int mr_access_flags,
1600 			    struct ib_fmr_attr *fmr_attr)
1601 {
1602 	struct ib_fmr *fmr;
1603 
1604 	if (!pd->device->alloc_fmr)
1605 		return ERR_PTR(-ENOSYS);
1606 
1607 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1608 	if (!IS_ERR(fmr)) {
1609 		fmr->device = pd->device;
1610 		fmr->pd     = pd;
1611 		atomic_inc(&pd->usecnt);
1612 	}
1613 
1614 	return fmr;
1615 }
1616 EXPORT_SYMBOL(ib_alloc_fmr);
1617 
ib_unmap_fmr(struct list_head * fmr_list)1618 int ib_unmap_fmr(struct list_head *fmr_list)
1619 {
1620 	struct ib_fmr *fmr;
1621 
1622 	if (list_empty(fmr_list))
1623 		return 0;
1624 
1625 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1626 	return fmr->device->unmap_fmr(fmr_list);
1627 }
1628 EXPORT_SYMBOL(ib_unmap_fmr);
1629 
ib_dealloc_fmr(struct ib_fmr * fmr)1630 int ib_dealloc_fmr(struct ib_fmr *fmr)
1631 {
1632 	struct ib_pd *pd;
1633 	int ret;
1634 
1635 	pd = fmr->pd;
1636 	ret = fmr->device->dealloc_fmr(fmr);
1637 	if (!ret)
1638 		atomic_dec(&pd->usecnt);
1639 
1640 	return ret;
1641 }
1642 EXPORT_SYMBOL(ib_dealloc_fmr);
1643 
1644 /* Multicast groups */
1645 
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)1646 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1647 {
1648 	struct ib_qp_init_attr init_attr = {};
1649 	struct ib_qp_attr attr = {};
1650 	int num_eth_ports = 0;
1651 	int port;
1652 
1653 	/* If QP state >= init, it is assigned to a port and we can check this
1654 	 * port only.
1655 	 */
1656 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1657 		if (attr.qp_state >= IB_QPS_INIT) {
1658 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1659 			    IB_LINK_LAYER_INFINIBAND)
1660 				return true;
1661 			goto lid_check;
1662 		}
1663 	}
1664 
1665 	/* Can't get a quick answer, iterate over all ports */
1666 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1667 		if (rdma_port_get_link_layer(qp->device, port) !=
1668 		    IB_LINK_LAYER_INFINIBAND)
1669 			num_eth_ports++;
1670 
1671 	/* If we have at lease one Ethernet port, RoCE annex declares that
1672 	 * multicast LID should be ignored. We can't tell at this step if the
1673 	 * QP belongs to an IB or Ethernet port.
1674 	 */
1675 	if (num_eth_ports)
1676 		return true;
1677 
1678 	/* If all the ports are IB, we can check according to IB spec. */
1679 lid_check:
1680 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1681 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1682 }
1683 
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1684 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1685 {
1686 	int ret;
1687 
1688 	if (!qp->device->attach_mcast)
1689 		return -ENOSYS;
1690 
1691 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1692 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1693 		return -EINVAL;
1694 
1695 	ret = qp->device->attach_mcast(qp, gid, lid);
1696 	if (!ret)
1697 		atomic_inc(&qp->usecnt);
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL(ib_attach_mcast);
1701 
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1702 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1703 {
1704 	int ret;
1705 
1706 	if (!qp->device->detach_mcast)
1707 		return -ENOSYS;
1708 
1709 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1710 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1711 		return -EINVAL;
1712 
1713 	ret = qp->device->detach_mcast(qp, gid, lid);
1714 	if (!ret)
1715 		atomic_dec(&qp->usecnt);
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL(ib_detach_mcast);
1719 
ib_alloc_xrcd(struct ib_device * device)1720 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1721 {
1722 	struct ib_xrcd *xrcd;
1723 
1724 	if (!device->alloc_xrcd)
1725 		return ERR_PTR(-ENOSYS);
1726 
1727 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1728 	if (!IS_ERR(xrcd)) {
1729 		xrcd->device = device;
1730 		xrcd->inode = NULL;
1731 		atomic_set(&xrcd->usecnt, 0);
1732 		mutex_init(&xrcd->tgt_qp_mutex);
1733 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1734 	}
1735 
1736 	return xrcd;
1737 }
1738 EXPORT_SYMBOL(ib_alloc_xrcd);
1739 
ib_dealloc_xrcd(struct ib_xrcd * xrcd)1740 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1741 {
1742 	struct ib_qp *qp;
1743 	int ret;
1744 
1745 	if (atomic_read(&xrcd->usecnt))
1746 		return -EBUSY;
1747 
1748 	while (!list_empty(&xrcd->tgt_qp_list)) {
1749 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1750 		ret = ib_destroy_qp(qp);
1751 		if (ret)
1752 			return ret;
1753 	}
1754 
1755 	return xrcd->device->dealloc_xrcd(xrcd);
1756 }
1757 EXPORT_SYMBOL(ib_dealloc_xrcd);
1758 
1759 /**
1760  * ib_create_wq - Creates a WQ associated with the specified protection
1761  * domain.
1762  * @pd: The protection domain associated with the WQ.
1763  * @wq_init_attr: A list of initial attributes required to create the
1764  * WQ. If WQ creation succeeds, then the attributes are updated to
1765  * the actual capabilities of the created WQ.
1766  *
1767  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1768  * the requested size of the WQ, and set to the actual values allocated
1769  * on return.
1770  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1771  * at least as large as the requested values.
1772  */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)1773 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1774 			   struct ib_wq_init_attr *wq_attr)
1775 {
1776 	struct ib_wq *wq;
1777 
1778 	if (!pd->device->create_wq)
1779 		return ERR_PTR(-ENOSYS);
1780 
1781 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1782 	if (!IS_ERR(wq)) {
1783 		wq->event_handler = wq_attr->event_handler;
1784 		wq->wq_context = wq_attr->wq_context;
1785 		wq->wq_type = wq_attr->wq_type;
1786 		wq->cq = wq_attr->cq;
1787 		wq->device = pd->device;
1788 		wq->pd = pd;
1789 		wq->uobject = NULL;
1790 		atomic_inc(&pd->usecnt);
1791 		atomic_inc(&wq_attr->cq->usecnt);
1792 		atomic_set(&wq->usecnt, 0);
1793 	}
1794 	return wq;
1795 }
1796 EXPORT_SYMBOL(ib_create_wq);
1797 
1798 /**
1799  * ib_destroy_wq - Destroys the specified WQ.
1800  * @wq: The WQ to destroy.
1801  */
ib_destroy_wq(struct ib_wq * wq)1802 int ib_destroy_wq(struct ib_wq *wq)
1803 {
1804 	int err;
1805 	struct ib_cq *cq = wq->cq;
1806 	struct ib_pd *pd = wq->pd;
1807 
1808 	if (atomic_read(&wq->usecnt))
1809 		return -EBUSY;
1810 
1811 	err = wq->device->destroy_wq(wq);
1812 	if (!err) {
1813 		atomic_dec(&pd->usecnt);
1814 		atomic_dec(&cq->usecnt);
1815 	}
1816 	return err;
1817 }
1818 EXPORT_SYMBOL(ib_destroy_wq);
1819 
1820 /**
1821  * ib_modify_wq - Modifies the specified WQ.
1822  * @wq: The WQ to modify.
1823  * @wq_attr: On input, specifies the WQ attributes to modify.
1824  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1825  *   are being modified.
1826  * On output, the current values of selected WQ attributes are returned.
1827  */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)1828 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1829 		 u32 wq_attr_mask)
1830 {
1831 	int err;
1832 
1833 	if (!wq->device->modify_wq)
1834 		return -ENOSYS;
1835 
1836 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1837 	return err;
1838 }
1839 EXPORT_SYMBOL(ib_modify_wq);
1840 
1841 /*
1842  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1843  * @device: The device on which to create the rwq indirection table.
1844  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1845  * create the Indirection Table.
1846  *
1847  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1848  *	than the created ib_rwq_ind_table object and the caller is responsible
1849  *	for its memory allocation/free.
1850  */
ib_create_rwq_ind_table(struct ib_device * device,struct ib_rwq_ind_table_init_attr * init_attr)1851 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1852 						 struct ib_rwq_ind_table_init_attr *init_attr)
1853 {
1854 	struct ib_rwq_ind_table *rwq_ind_table;
1855 	int i;
1856 	u32 table_size;
1857 
1858 	if (!device->create_rwq_ind_table)
1859 		return ERR_PTR(-ENOSYS);
1860 
1861 	table_size = (1 << init_attr->log_ind_tbl_size);
1862 	rwq_ind_table = device->create_rwq_ind_table(device,
1863 				init_attr, NULL);
1864 	if (IS_ERR(rwq_ind_table))
1865 		return rwq_ind_table;
1866 
1867 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1868 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1869 	rwq_ind_table->device = device;
1870 	rwq_ind_table->uobject = NULL;
1871 	atomic_set(&rwq_ind_table->usecnt, 0);
1872 
1873 	for (i = 0; i < table_size; i++)
1874 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1875 
1876 	return rwq_ind_table;
1877 }
1878 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1879 
1880 /*
1881  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1882  * @wq_ind_table: The Indirection Table to destroy.
1883 */
ib_destroy_rwq_ind_table(struct ib_rwq_ind_table * rwq_ind_table)1884 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1885 {
1886 	int err, i;
1887 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1888 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1889 
1890 	if (atomic_read(&rwq_ind_table->usecnt))
1891 		return -EBUSY;
1892 
1893 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1894 	if (!err) {
1895 		for (i = 0; i < table_size; i++)
1896 			atomic_dec(&ind_tbl[i]->usecnt);
1897 	}
1898 
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1902 
ib_create_flow(struct ib_qp * qp,struct ib_flow_attr * flow_attr,int domain)1903 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1904 			       struct ib_flow_attr *flow_attr,
1905 			       int domain)
1906 {
1907 	struct ib_flow *flow_id;
1908 	if (!qp->device->create_flow)
1909 		return ERR_PTR(-ENOSYS);
1910 
1911 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1912 	if (!IS_ERR(flow_id)) {
1913 		atomic_inc(&qp->usecnt);
1914 		flow_id->qp = qp;
1915 	}
1916 	return flow_id;
1917 }
1918 EXPORT_SYMBOL(ib_create_flow);
1919 
ib_destroy_flow(struct ib_flow * flow_id)1920 int ib_destroy_flow(struct ib_flow *flow_id)
1921 {
1922 	int err;
1923 	struct ib_qp *qp = flow_id->qp;
1924 
1925 	err = qp->device->destroy_flow(flow_id);
1926 	if (!err)
1927 		atomic_dec(&qp->usecnt);
1928 	return err;
1929 }
1930 EXPORT_SYMBOL(ib_destroy_flow);
1931 
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)1932 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1933 		       struct ib_mr_status *mr_status)
1934 {
1935 	return mr->device->check_mr_status ?
1936 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1937 }
1938 EXPORT_SYMBOL(ib_check_mr_status);
1939 
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)1940 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1941 			 int state)
1942 {
1943 	if (!device->set_vf_link_state)
1944 		return -ENOSYS;
1945 
1946 	return device->set_vf_link_state(device, vf, port, state);
1947 }
1948 EXPORT_SYMBOL(ib_set_vf_link_state);
1949 
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)1950 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1951 		     struct ifla_vf_info *info)
1952 {
1953 	if (!device->get_vf_config)
1954 		return -ENOSYS;
1955 
1956 	return device->get_vf_config(device, vf, port, info);
1957 }
1958 EXPORT_SYMBOL(ib_get_vf_config);
1959 
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)1960 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1961 		    struct ifla_vf_stats *stats)
1962 {
1963 	if (!device->get_vf_stats)
1964 		return -ENOSYS;
1965 
1966 	return device->get_vf_stats(device, vf, port, stats);
1967 }
1968 EXPORT_SYMBOL(ib_get_vf_stats);
1969 
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)1970 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1971 		   int type)
1972 {
1973 	if (!device->set_vf_guid)
1974 		return -ENOSYS;
1975 
1976 	return device->set_vf_guid(device, vf, port, guid, type);
1977 }
1978 EXPORT_SYMBOL(ib_set_vf_guid);
1979 
1980 /**
1981  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1982  *     and set it the memory region.
1983  * @mr:            memory region
1984  * @sg:            dma mapped scatterlist
1985  * @sg_nents:      number of entries in sg
1986  * @sg_offset:     offset in bytes into sg
1987  * @page_size:     page vector desired page size
1988  *
1989  * Constraints:
1990  * - The first sg element is allowed to have an offset.
1991  * - Each sg element must either be aligned to page_size or virtually
1992  *   contiguous to the previous element. In case an sg element has a
1993  *   non-contiguous offset, the mapping prefix will not include it.
1994  * - The last sg element is allowed to have length less than page_size.
1995  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1996  *   then only max_num_sg entries will be mapped.
1997  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1998  *   constraints holds and the page_size argument is ignored.
1999  *
2000  * Returns the number of sg elements that were mapped to the memory region.
2001  *
2002  * After this completes successfully, the  memory region
2003  * is ready for registration.
2004  */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2005 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2006 		 unsigned int *sg_offset, unsigned int page_size)
2007 {
2008 	if (unlikely(!mr->device->map_mr_sg))
2009 		return -ENOSYS;
2010 
2011 	mr->page_size = page_size;
2012 
2013 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2014 }
2015 EXPORT_SYMBOL(ib_map_mr_sg);
2016 
2017 /**
2018  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2019  *     to a page vector
2020  * @mr:            memory region
2021  * @sgl:           dma mapped scatterlist
2022  * @sg_nents:      number of entries in sg
2023  * @sg_offset_p:   IN:  start offset in bytes into sg
2024  *                 OUT: offset in bytes for element n of the sg of the first
2025  *                      byte that has not been processed where n is the return
2026  *                      value of this function.
2027  * @set_page:      driver page assignment function pointer
2028  *
2029  * Core service helper for drivers to convert the largest
2030  * prefix of given sg list to a page vector. The sg list
2031  * prefix converted is the prefix that meet the requirements
2032  * of ib_map_mr_sg.
2033  *
2034  * Returns the number of sg elements that were assigned to
2035  * a page vector.
2036  */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2037 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2038 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2039 {
2040 	struct scatterlist *sg;
2041 	u64 last_end_dma_addr = 0;
2042 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2043 	unsigned int last_page_off = 0;
2044 	u64 page_mask = ~((u64)mr->page_size - 1);
2045 	int i, ret;
2046 
2047 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2048 		return -EINVAL;
2049 
2050 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2051 	mr->length = 0;
2052 
2053 	for_each_sg(sgl, sg, sg_nents, i) {
2054 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2055 		u64 prev_addr = dma_addr;
2056 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2057 		u64 end_dma_addr = dma_addr + dma_len;
2058 		u64 page_addr = dma_addr & page_mask;
2059 
2060 		/*
2061 		 * For the second and later elements, check whether either the
2062 		 * end of element i-1 or the start of element i is not aligned
2063 		 * on a page boundary.
2064 		 */
2065 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2066 			/* Stop mapping if there is a gap. */
2067 			if (last_end_dma_addr != dma_addr)
2068 				break;
2069 
2070 			/*
2071 			 * Coalesce this element with the last. If it is small
2072 			 * enough just update mr->length. Otherwise start
2073 			 * mapping from the next page.
2074 			 */
2075 			goto next_page;
2076 		}
2077 
2078 		do {
2079 			ret = set_page(mr, page_addr);
2080 			if (unlikely(ret < 0)) {
2081 				sg_offset = prev_addr - sg_dma_address(sg);
2082 				mr->length += prev_addr - dma_addr;
2083 				if (sg_offset_p)
2084 					*sg_offset_p = sg_offset;
2085 				return i || sg_offset ? i : ret;
2086 			}
2087 			prev_addr = page_addr;
2088 next_page:
2089 			page_addr += mr->page_size;
2090 		} while (page_addr < end_dma_addr);
2091 
2092 		mr->length += dma_len;
2093 		last_end_dma_addr = end_dma_addr;
2094 		last_page_off = end_dma_addr & ~page_mask;
2095 
2096 		sg_offset = 0;
2097 	}
2098 
2099 	if (sg_offset_p)
2100 		*sg_offset_p = 0;
2101 	return i;
2102 }
2103 EXPORT_SYMBOL(ib_sg_to_pages);
2104 
2105 struct ib_drain_cqe {
2106 	struct ib_cqe cqe;
2107 	struct completion done;
2108 };
2109 
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2110 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2111 {
2112 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2113 						cqe);
2114 
2115 	complete(&cqe->done);
2116 }
2117 
2118 /*
2119  * Post a WR and block until its completion is reaped for the SQ.
2120  */
__ib_drain_sq(struct ib_qp * qp)2121 static void __ib_drain_sq(struct ib_qp *qp)
2122 {
2123 	struct ib_cq *cq = qp->send_cq;
2124 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2125 	struct ib_drain_cqe sdrain;
2126 	struct ib_send_wr *bad_swr;
2127 	struct ib_rdma_wr swr = {
2128 		.wr = {
2129 			.next = NULL,
2130 			{ .wr_cqe	= &sdrain.cqe, },
2131 			.opcode	= IB_WR_RDMA_WRITE,
2132 		},
2133 	};
2134 	int ret;
2135 
2136 	sdrain.cqe.done = ib_drain_qp_done;
2137 	init_completion(&sdrain.done);
2138 
2139 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2140 	if (ret) {
2141 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2142 		return;
2143 	}
2144 
2145 	ret = ib_post_send(qp, &swr.wr, &bad_swr);
2146 	if (ret) {
2147 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2148 		return;
2149 	}
2150 
2151 	if (cq->poll_ctx == IB_POLL_DIRECT)
2152 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2153 			ib_process_cq_direct(cq, -1);
2154 	else
2155 		wait_for_completion(&sdrain.done);
2156 }
2157 
2158 /*
2159  * Post a WR and block until its completion is reaped for the RQ.
2160  */
__ib_drain_rq(struct ib_qp * qp)2161 static void __ib_drain_rq(struct ib_qp *qp)
2162 {
2163 	struct ib_cq *cq = qp->recv_cq;
2164 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2165 	struct ib_drain_cqe rdrain;
2166 	struct ib_recv_wr rwr = {}, *bad_rwr;
2167 	int ret;
2168 
2169 	rwr.wr_cqe = &rdrain.cqe;
2170 	rdrain.cqe.done = ib_drain_qp_done;
2171 	init_completion(&rdrain.done);
2172 
2173 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2174 	if (ret) {
2175 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2176 		return;
2177 	}
2178 
2179 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2180 	if (ret) {
2181 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2182 		return;
2183 	}
2184 
2185 	if (cq->poll_ctx == IB_POLL_DIRECT)
2186 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2187 			ib_process_cq_direct(cq, -1);
2188 	else
2189 		wait_for_completion(&rdrain.done);
2190 }
2191 
2192 /**
2193  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2194  *		   application.
2195  * @qp:            queue pair to drain
2196  *
2197  * If the device has a provider-specific drain function, then
2198  * call that.  Otherwise call the generic drain function
2199  * __ib_drain_sq().
2200  *
2201  * The caller must:
2202  *
2203  * ensure there is room in the CQ and SQ for the drain work request and
2204  * completion.
2205  *
2206  * allocate the CQ using ib_alloc_cq().
2207  *
2208  * ensure that there are no other contexts that are posting WRs concurrently.
2209  * Otherwise the drain is not guaranteed.
2210  */
ib_drain_sq(struct ib_qp * qp)2211 void ib_drain_sq(struct ib_qp *qp)
2212 {
2213 	if (qp->device->drain_sq)
2214 		qp->device->drain_sq(qp);
2215 	else
2216 		__ib_drain_sq(qp);
2217 }
2218 EXPORT_SYMBOL(ib_drain_sq);
2219 
2220 /**
2221  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2222  *		   application.
2223  * @qp:            queue pair to drain
2224  *
2225  * If the device has a provider-specific drain function, then
2226  * call that.  Otherwise call the generic drain function
2227  * __ib_drain_rq().
2228  *
2229  * The caller must:
2230  *
2231  * ensure there is room in the CQ and RQ for the drain work request and
2232  * completion.
2233  *
2234  * allocate the CQ using ib_alloc_cq().
2235  *
2236  * ensure that there are no other contexts that are posting WRs concurrently.
2237  * Otherwise the drain is not guaranteed.
2238  */
ib_drain_rq(struct ib_qp * qp)2239 void ib_drain_rq(struct ib_qp *qp)
2240 {
2241 	if (qp->device->drain_rq)
2242 		qp->device->drain_rq(qp);
2243 	else
2244 		__ib_drain_rq(qp);
2245 }
2246 EXPORT_SYMBOL(ib_drain_rq);
2247 
2248 /**
2249  * ib_drain_qp() - Block until all CQEs have been consumed by the
2250  *		   application on both the RQ and SQ.
2251  * @qp:            queue pair to drain
2252  *
2253  * The caller must:
2254  *
2255  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2256  * and completions.
2257  *
2258  * allocate the CQs using ib_alloc_cq().
2259  *
2260  * ensure that there are no other contexts that are posting WRs concurrently.
2261  * Otherwise the drain is not guaranteed.
2262  */
ib_drain_qp(struct ib_qp * qp)2263 void ib_drain_qp(struct ib_qp *qp)
2264 {
2265 	ib_drain_sq(qp);
2266 	if (!qp->srq)
2267 		ib_drain_rq(qp);
2268 }
2269 EXPORT_SYMBOL(ib_drain_qp);
2270