• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
7  */
8 
9 #ifndef _ASM_IA64_SN_SHUBIO_H
10 #define _ASM_IA64_SN_SHUBIO_H
11 
12 #define HUB_WIDGET_ID_MAX	0xf
13 #define IIO_NUM_ITTES		7
14 #define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
15 
16 #define		IIO_WID			0x00400000	/* Crosstalk Widget Identification */
17 							/* This register is also accessible from
18 							 * Crosstalk at address 0x0.  */
19 #define		IIO_WSTAT		0x00400008	/* Crosstalk Widget Status */
20 #define		IIO_WCR			0x00400020	/* Crosstalk Widget Control Register */
21 #define		IIO_ILAPR		0x00400100	/* IO Local Access Protection Register */
22 #define		IIO_ILAPO		0x00400108	/* IO Local Access Protection Override */
23 #define		IIO_IOWA		0x00400110	/* IO Outbound Widget Access */
24 #define		IIO_IIWA		0x00400118	/* IO Inbound Widget Access */
25 #define		IIO_IIDEM		0x00400120	/* IO Inbound Device Error Mask */
26 #define		IIO_ILCSR		0x00400128	/* IO LLP Control and Status Register */
27 #define		IIO_ILLR		0x00400130	/* IO LLP Log Register    */
28 #define		IIO_IIDSR		0x00400138	/* IO Interrupt Destination */
29 
30 #define		IIO_IGFX0		0x00400140	/* IO Graphics Node-Widget Map 0 */
31 #define		IIO_IGFX1		0x00400148	/* IO Graphics Node-Widget Map 1 */
32 
33 #define		IIO_ISCR0		0x00400150	/* IO Scratch Register 0 */
34 #define		IIO_ISCR1		0x00400158	/* IO Scratch Register 1 */
35 
36 #define		IIO_ITTE1		0x00400160	/* IO Translation Table Entry 1 */
37 #define		IIO_ITTE2		0x00400168	/* IO Translation Table Entry 2 */
38 #define		IIO_ITTE3		0x00400170	/* IO Translation Table Entry 3 */
39 #define		IIO_ITTE4		0x00400178	/* IO Translation Table Entry 4 */
40 #define		IIO_ITTE5		0x00400180	/* IO Translation Table Entry 5 */
41 #define		IIO_ITTE6		0x00400188	/* IO Translation Table Entry 6 */
42 #define		IIO_ITTE7		0x00400190	/* IO Translation Table Entry 7 */
43 
44 #define		IIO_IPRB0		0x00400198	/* IO PRB Entry 0   */
45 #define		IIO_IPRB8		0x004001A0	/* IO PRB Entry 8   */
46 #define		IIO_IPRB9		0x004001A8	/* IO PRB Entry 9   */
47 #define		IIO_IPRBA		0x004001B0	/* IO PRB Entry A   */
48 #define		IIO_IPRBB		0x004001B8	/* IO PRB Entry B   */
49 #define		IIO_IPRBC		0x004001C0	/* IO PRB Entry C   */
50 #define		IIO_IPRBD		0x004001C8	/* IO PRB Entry D   */
51 #define		IIO_IPRBE		0x004001D0	/* IO PRB Entry E   */
52 #define		IIO_IPRBF		0x004001D8	/* IO PRB Entry F   */
53 
54 #define		IIO_IXCC		0x004001E0	/* IO Crosstalk Credit Count Timeout */
55 #define		IIO_IMEM		0x004001E8	/* IO Miscellaneous Error Mask */
56 #define		IIO_IXTT		0x004001F0	/* IO Crosstalk Timeout Threshold */
57 #define		IIO_IECLR		0x004001F8	/* IO Error Clear Register */
58 #define		IIO_IBCR		0x00400200	/* IO BTE Control Register */
59 
60 #define		IIO_IXSM		0x00400208	/* IO Crosstalk Spurious Message */
61 #define		IIO_IXSS		0x00400210	/* IO Crosstalk Spurious Sideband */
62 
63 #define		IIO_ILCT		0x00400218	/* IO LLP Channel Test    */
64 
65 #define		IIO_IIEPH1 		0x00400220	/* IO Incoming Error Packet Header, Part 1 */
66 #define		IIO_IIEPH2 		0x00400228	/* IO Incoming Error Packet Header, Part 2 */
67 
68 #define		IIO_ISLAPR 		0x00400230	/* IO SXB Local Access Protection Regster */
69 #define		IIO_ISLAPO 		0x00400238	/* IO SXB Local Access Protection Override */
70 
71 #define		IIO_IWI			0x00400240	/* IO Wrapper Interrupt Register */
72 #define		IIO_IWEL		0x00400248	/* IO Wrapper Error Log Register */
73 #define		IIO_IWC			0x00400250	/* IO Wrapper Control Register */
74 #define		IIO_IWS			0x00400258	/* IO Wrapper Status Register */
75 #define		IIO_IWEIM		0x00400260	/* IO Wrapper Error Interrupt Masking Register */
76 
77 #define		IIO_IPCA		0x00400300	/* IO PRB Counter Adjust */
78 
79 #define		IIO_IPRTE0_A		0x00400308	/* IO PIO Read Address Table Entry 0, Part A */
80 #define		IIO_IPRTE1_A		0x00400310	/* IO PIO Read Address Table Entry 1, Part A */
81 #define		IIO_IPRTE2_A		0x00400318	/* IO PIO Read Address Table Entry 2, Part A */
82 #define		IIO_IPRTE3_A		0x00400320	/* IO PIO Read Address Table Entry 3, Part A */
83 #define		IIO_IPRTE4_A		0x00400328	/* IO PIO Read Address Table Entry 4, Part A */
84 #define		IIO_IPRTE5_A		0x00400330	/* IO PIO Read Address Table Entry 5, Part A */
85 #define		IIO_IPRTE6_A		0x00400338	/* IO PIO Read Address Table Entry 6, Part A */
86 #define		IIO_IPRTE7_A		0x00400340	/* IO PIO Read Address Table Entry 7, Part A */
87 
88 #define		IIO_IPRTE0_B		0x00400348	/* IO PIO Read Address Table Entry 0, Part B */
89 #define		IIO_IPRTE1_B		0x00400350	/* IO PIO Read Address Table Entry 1, Part B */
90 #define		IIO_IPRTE2_B		0x00400358	/* IO PIO Read Address Table Entry 2, Part B */
91 #define		IIO_IPRTE3_B		0x00400360	/* IO PIO Read Address Table Entry 3, Part B */
92 #define		IIO_IPRTE4_B		0x00400368	/* IO PIO Read Address Table Entry 4, Part B */
93 #define		IIO_IPRTE5_B		0x00400370	/* IO PIO Read Address Table Entry 5, Part B */
94 #define		IIO_IPRTE6_B		0x00400378	/* IO PIO Read Address Table Entry 6, Part B */
95 #define		IIO_IPRTE7_B		0x00400380	/* IO PIO Read Address Table Entry 7, Part B */
96 
97 #define		IIO_IPDR		0x00400388	/* IO PIO Deallocation Register */
98 #define		IIO_ICDR		0x00400390	/* IO CRB Entry Deallocation Register */
99 #define		IIO_IFDR		0x00400398	/* IO IOQ FIFO Depth Register */
100 #define		IIO_IIAP		0x004003A0	/* IO IIQ Arbitration Parameters */
101 #define		IIO_ICMR		0x004003A8	/* IO CRB Management Register */
102 #define		IIO_ICCR		0x004003B0	/* IO CRB Control Register */
103 #define		IIO_ICTO		0x004003B8	/* IO CRB Timeout   */
104 #define		IIO_ICTP		0x004003C0	/* IO CRB Timeout Prescalar */
105 
106 #define		IIO_ICRB0_A		0x00400400	/* IO CRB Entry 0_A */
107 #define		IIO_ICRB0_B		0x00400408	/* IO CRB Entry 0_B */
108 #define		IIO_ICRB0_C		0x00400410	/* IO CRB Entry 0_C */
109 #define		IIO_ICRB0_D		0x00400418	/* IO CRB Entry 0_D */
110 #define		IIO_ICRB0_E		0x00400420	/* IO CRB Entry 0_E */
111 
112 #define		IIO_ICRB1_A		0x00400430	/* IO CRB Entry 1_A */
113 #define		IIO_ICRB1_B		0x00400438	/* IO CRB Entry 1_B */
114 #define		IIO_ICRB1_C		0x00400440	/* IO CRB Entry 1_C */
115 #define		IIO_ICRB1_D		0x00400448	/* IO CRB Entry 1_D */
116 #define		IIO_ICRB1_E		0x00400450	/* IO CRB Entry 1_E */
117 
118 #define		IIO_ICRB2_A		0x00400460	/* IO CRB Entry 2_A */
119 #define		IIO_ICRB2_B		0x00400468	/* IO CRB Entry 2_B */
120 #define		IIO_ICRB2_C		0x00400470	/* IO CRB Entry 2_C */
121 #define		IIO_ICRB2_D		0x00400478	/* IO CRB Entry 2_D */
122 #define		IIO_ICRB2_E		0x00400480	/* IO CRB Entry 2_E */
123 
124 #define		IIO_ICRB3_A		0x00400490	/* IO CRB Entry 3_A */
125 #define		IIO_ICRB3_B		0x00400498	/* IO CRB Entry 3_B */
126 #define		IIO_ICRB3_C		0x004004a0	/* IO CRB Entry 3_C */
127 #define		IIO_ICRB3_D		0x004004a8	/* IO CRB Entry 3_D */
128 #define		IIO_ICRB3_E		0x004004b0	/* IO CRB Entry 3_E */
129 
130 #define		IIO_ICRB4_A		0x004004c0	/* IO CRB Entry 4_A */
131 #define		IIO_ICRB4_B		0x004004c8	/* IO CRB Entry 4_B */
132 #define		IIO_ICRB4_C		0x004004d0	/* IO CRB Entry 4_C */
133 #define		IIO_ICRB4_D		0x004004d8	/* IO CRB Entry 4_D */
134 #define		IIO_ICRB4_E		0x004004e0	/* IO CRB Entry 4_E */
135 
136 #define		IIO_ICRB5_A		0x004004f0	/* IO CRB Entry 5_A */
137 #define		IIO_ICRB5_B		0x004004f8	/* IO CRB Entry 5_B */
138 #define		IIO_ICRB5_C		0x00400500	/* IO CRB Entry 5_C */
139 #define		IIO_ICRB5_D		0x00400508	/* IO CRB Entry 5_D */
140 #define		IIO_ICRB5_E		0x00400510	/* IO CRB Entry 5_E */
141 
142 #define		IIO_ICRB6_A		0x00400520	/* IO CRB Entry 6_A */
143 #define		IIO_ICRB6_B		0x00400528	/* IO CRB Entry 6_B */
144 #define		IIO_ICRB6_C		0x00400530	/* IO CRB Entry 6_C */
145 #define		IIO_ICRB6_D		0x00400538	/* IO CRB Entry 6_D */
146 #define		IIO_ICRB6_E		0x00400540	/* IO CRB Entry 6_E */
147 
148 #define		IIO_ICRB7_A		0x00400550	/* IO CRB Entry 7_A */
149 #define		IIO_ICRB7_B		0x00400558	/* IO CRB Entry 7_B */
150 #define		IIO_ICRB7_C		0x00400560	/* IO CRB Entry 7_C */
151 #define		IIO_ICRB7_D		0x00400568	/* IO CRB Entry 7_D */
152 #define		IIO_ICRB7_E		0x00400570	/* IO CRB Entry 7_E */
153 
154 #define		IIO_ICRB8_A		0x00400580	/* IO CRB Entry 8_A */
155 #define		IIO_ICRB8_B		0x00400588	/* IO CRB Entry 8_B */
156 #define		IIO_ICRB8_C		0x00400590	/* IO CRB Entry 8_C */
157 #define		IIO_ICRB8_D		0x00400598	/* IO CRB Entry 8_D */
158 #define		IIO_ICRB8_E		0x004005a0	/* IO CRB Entry 8_E */
159 
160 #define		IIO_ICRB9_A		0x004005b0	/* IO CRB Entry 9_A */
161 #define		IIO_ICRB9_B		0x004005b8	/* IO CRB Entry 9_B */
162 #define		IIO_ICRB9_C		0x004005c0	/* IO CRB Entry 9_C */
163 #define		IIO_ICRB9_D		0x004005c8	/* IO CRB Entry 9_D */
164 #define		IIO_ICRB9_E		0x004005d0	/* IO CRB Entry 9_E */
165 
166 #define		IIO_ICRBA_A		0x004005e0	/* IO CRB Entry A_A */
167 #define		IIO_ICRBA_B		0x004005e8	/* IO CRB Entry A_B */
168 #define		IIO_ICRBA_C		0x004005f0	/* IO CRB Entry A_C */
169 #define		IIO_ICRBA_D		0x004005f8	/* IO CRB Entry A_D */
170 #define		IIO_ICRBA_E		0x00400600	/* IO CRB Entry A_E */
171 
172 #define		IIO_ICRBB_A		0x00400610	/* IO CRB Entry B_A */
173 #define		IIO_ICRBB_B		0x00400618	/* IO CRB Entry B_B */
174 #define		IIO_ICRBB_C		0x00400620	/* IO CRB Entry B_C */
175 #define		IIO_ICRBB_D		0x00400628	/* IO CRB Entry B_D */
176 #define		IIO_ICRBB_E		0x00400630	/* IO CRB Entry B_E */
177 
178 #define		IIO_ICRBC_A		0x00400640	/* IO CRB Entry C_A */
179 #define		IIO_ICRBC_B		0x00400648	/* IO CRB Entry C_B */
180 #define		IIO_ICRBC_C		0x00400650	/* IO CRB Entry C_C */
181 #define		IIO_ICRBC_D		0x00400658	/* IO CRB Entry C_D */
182 #define		IIO_ICRBC_E		0x00400660	/* IO CRB Entry C_E */
183 
184 #define		IIO_ICRBD_A		0x00400670	/* IO CRB Entry D_A */
185 #define		IIO_ICRBD_B		0x00400678	/* IO CRB Entry D_B */
186 #define		IIO_ICRBD_C		0x00400680	/* IO CRB Entry D_C */
187 #define		IIO_ICRBD_D		0x00400688	/* IO CRB Entry D_D */
188 #define		IIO_ICRBD_E		0x00400690	/* IO CRB Entry D_E */
189 
190 #define		IIO_ICRBE_A		0x004006a0	/* IO CRB Entry E_A */
191 #define		IIO_ICRBE_B		0x004006a8	/* IO CRB Entry E_B */
192 #define		IIO_ICRBE_C		0x004006b0	/* IO CRB Entry E_C */
193 #define		IIO_ICRBE_D		0x004006b8	/* IO CRB Entry E_D */
194 #define		IIO_ICRBE_E		0x004006c0	/* IO CRB Entry E_E */
195 
196 #define		IIO_ICSML		0x00400700	/* IO CRB Spurious Message Low */
197 #define		IIO_ICSMM		0x00400708	/* IO CRB Spurious Message Middle */
198 #define		IIO_ICSMH		0x00400710	/* IO CRB Spurious Message High */
199 
200 #define		IIO_IDBSS		0x00400718	/* IO Debug Submenu Select */
201 
202 #define		IIO_IBLS0		0x00410000	/* IO BTE Length Status 0 */
203 #define		IIO_IBSA0		0x00410008	/* IO BTE Source Address 0 */
204 #define		IIO_IBDA0		0x00410010	/* IO BTE Destination Address 0 */
205 #define		IIO_IBCT0		0x00410018	/* IO BTE Control Terminate 0 */
206 #define		IIO_IBNA0		0x00410020	/* IO BTE Notification Address 0 */
207 #define		IIO_IBIA0		0x00410028	/* IO BTE Interrupt Address 0 */
208 #define		IIO_IBLS1		0x00420000	/* IO BTE Length Status 1 */
209 #define		IIO_IBSA1		0x00420008	/* IO BTE Source Address 1 */
210 #define		IIO_IBDA1		0x00420010	/* IO BTE Destination Address 1 */
211 #define		IIO_IBCT1		0x00420018	/* IO BTE Control Terminate 1 */
212 #define		IIO_IBNA1		0x00420020	/* IO BTE Notification Address 1 */
213 #define		IIO_IBIA1		0x00420028	/* IO BTE Interrupt Address 1 */
214 
215 #define		IIO_IPCR		0x00430000	/* IO Performance Control */
216 #define		IIO_IPPR		0x00430008	/* IO Performance Profiling */
217 
218 /************************************************************************
219  *									*
220  * Description:  This register echoes some information from the         *
221  * LB_REV_ID register. It is available through Crosstalk as described   *
222  * above. The REV_NUM and MFG_NUM fields receive their values from      *
223  * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
224  * The PART_NUM field's value is the Crosstalk device ID number that    *
225  * Steve Miller assigned to the SHub chip.                              *
226  *									*
227  ************************************************************************/
228 
229 typedef union ii_wid_u {
230 	u64 ii_wid_regval;
231 	struct {
232 		u64 w_rsvd_1:1;
233 		u64 w_mfg_num:11;
234 		u64 w_part_num:16;
235 		u64 w_rev_num:4;
236 		u64 w_rsvd:32;
237 	} ii_wid_fld_s;
238 } ii_wid_u_t;
239 
240 /************************************************************************
241  *									*
242  *  The fields in this register are set upon detection of an error      *
243  * and cleared by various mechanisms, as explained in the               *
244  * description.                                                         *
245  *									*
246  ************************************************************************/
247 
248 typedef union ii_wstat_u {
249 	u64 ii_wstat_regval;
250 	struct {
251 		u64 w_pending:4;
252 		u64 w_xt_crd_to:1;
253 		u64 w_xt_tail_to:1;
254 		u64 w_rsvd_3:3;
255 		u64 w_tx_mx_rty:1;
256 		u64 w_rsvd_2:6;
257 		u64 w_llp_tx_cnt:8;
258 		u64 w_rsvd_1:8;
259 		u64 w_crazy:1;
260 		u64 w_rsvd:31;
261 	} ii_wstat_fld_s;
262 } ii_wstat_u_t;
263 
264 /************************************************************************
265  *									*
266  * Description:  This is a read-write enabled register. It controls     *
267  * various aspects of the Crosstalk flow control.                       *
268  *									*
269  ************************************************************************/
270 
271 typedef union ii_wcr_u {
272 	u64 ii_wcr_regval;
273 	struct {
274 		u64 w_wid:4;
275 		u64 w_tag:1;
276 		u64 w_rsvd_1:8;
277 		u64 w_dst_crd:3;
278 		u64 w_f_bad_pkt:1;
279 		u64 w_dir_con:1;
280 		u64 w_e_thresh:5;
281 		u64 w_rsvd:41;
282 	} ii_wcr_fld_s;
283 } ii_wcr_u_t;
284 
285 /************************************************************************
286  *									*
287  * Description:  This register's value is a bit vector that guards      *
288  * access to local registers within the II as well as to external       *
289  * Crosstalk widgets. Each bit in the register corresponds to a         *
290  * particular region in the system; a region consists of one, two or    *
291  * four nodes (depending on the value of the REGION_SIZE field in the   *
292  * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
293  * protection provided by this register applies to PIO read             *
294  * operations as well as PIO write operations. The II will perform a    *
295  * PIO read or write request only if the bit for the requestor's        *
296  * region is set; otherwise, the II will not perform the requested      *
297  * operation and will return an error response. When a PIO read or      *
298  * write request targets an external Crosstalk widget, then not only    *
299  * must the bit for the requestor's region be set in the ILAPR, but     *
300  * also the target widget's bit in the IOWA register must be set in     *
301  * order for the II to perform the requested operation; otherwise,      *
302  * the II will return an error response. Hence, the protection          *
303  * provided by the IOWA register supplements the protection provided    *
304  * by the ILAPR for requests that target external Crosstalk widgets.    *
305  * This register itself can be accessed only by the nodes whose         *
306  * region ID bits are enabled in this same register. It can also be     *
307  * accessed through the IAlias space by the local processors.           *
308  * The reset value of this register allows access by all nodes.         *
309  *									*
310  ************************************************************************/
311 
312 typedef union ii_ilapr_u {
313 	u64 ii_ilapr_regval;
314 	struct {
315 		u64 i_region:64;
316 	} ii_ilapr_fld_s;
317 } ii_ilapr_u_t;
318 
319 /************************************************************************
320  *									*
321  * Description:  A write to this register of the 64-bit value           *
322  * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
323  * corresponding to the region of the requestor to be set (allow        *
324  * access). A write of any other value will be ignored. Access          *
325  * protection for this register is "SGIrules".                          *
326  * This register can also be accessed through the IAlias space.         *
327  * However, this access will not change the access permissions in the   *
328  * ILAPR.                                                               *
329  *									*
330  ************************************************************************/
331 
332 typedef union ii_ilapo_u {
333 	u64 ii_ilapo_regval;
334 	struct {
335 		u64 i_io_ovrride:64;
336 	} ii_ilapo_fld_s;
337 } ii_ilapo_u_t;
338 
339 /************************************************************************
340  *									*
341  *  This register qualifies all the PIO and Graphics writes launched    *
342  * from the SHUB towards a widget.                                      *
343  *									*
344  ************************************************************************/
345 
346 typedef union ii_iowa_u {
347 	u64 ii_iowa_regval;
348 	struct {
349 		u64 i_w0_oac:1;
350 		u64 i_rsvd_1:7;
351 		u64 i_wx_oac:8;
352 		u64 i_rsvd:48;
353 	} ii_iowa_fld_s;
354 } ii_iowa_u_t;
355 
356 /************************************************************************
357  *									*
358  * Description:  This register qualifies all the requests launched      *
359  * from a widget towards the Shub. This register is intended to be      *
360  * used by software in case of misbehaving widgets.                     *
361  *									*
362  *									*
363  ************************************************************************/
364 
365 typedef union ii_iiwa_u {
366 	u64 ii_iiwa_regval;
367 	struct {
368 		u64 i_w0_iac:1;
369 		u64 i_rsvd_1:7;
370 		u64 i_wx_iac:8;
371 		u64 i_rsvd:48;
372 	} ii_iiwa_fld_s;
373 } ii_iiwa_u_t;
374 
375 /************************************************************************
376  *									*
377  * Description:  This register qualifies all the operations launched    *
378  * from a widget towards the SHub. It allows individual access          *
379  * control for up to 8 devices per widget. A device refers to           *
380  * individual DMA master hosted by a widget.                            *
381  * The bits in each field of this register are cleared by the Shub      *
382  * upon detection of an error which requires the device to be           *
383  * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
384  * Crosstalk). Whether or not a device has access rights to this        *
385  * Shub is determined by an AND of the device enable bit in the         *
386  * appropriate field of this register and the corresponding bit in      *
387  * the Wx_IAC field (for the widget which this device belongs to).      *
388  * The bits in this field are set by writing a 1 to them. Incoming      *
389  * replies from Crosstalk are not subject to this access control        *
390  * mechanism.                                                           *
391  *									*
392  ************************************************************************/
393 
394 typedef union ii_iidem_u {
395 	u64 ii_iidem_regval;
396 	struct {
397 		u64 i_w8_dxs:8;
398 		u64 i_w9_dxs:8;
399 		u64 i_wa_dxs:8;
400 		u64 i_wb_dxs:8;
401 		u64 i_wc_dxs:8;
402 		u64 i_wd_dxs:8;
403 		u64 i_we_dxs:8;
404 		u64 i_wf_dxs:8;
405 	} ii_iidem_fld_s;
406 } ii_iidem_u_t;
407 
408 /************************************************************************
409  *									*
410  *  This register contains the various programmable fields necessary    *
411  * for controlling and observing the LLP signals.                       *
412  *									*
413  ************************************************************************/
414 
415 typedef union ii_ilcsr_u {
416 	u64 ii_ilcsr_regval;
417 	struct {
418 		u64 i_nullto:6;
419 		u64 i_rsvd_4:2;
420 		u64 i_wrmrst:1;
421 		u64 i_rsvd_3:1;
422 		u64 i_llp_en:1;
423 		u64 i_bm8:1;
424 		u64 i_llp_stat:2;
425 		u64 i_remote_power:1;
426 		u64 i_rsvd_2:1;
427 		u64 i_maxrtry:10;
428 		u64 i_d_avail_sel:2;
429 		u64 i_rsvd_1:4;
430 		u64 i_maxbrst:10;
431 		u64 i_rsvd:22;
432 
433 	} ii_ilcsr_fld_s;
434 } ii_ilcsr_u_t;
435 
436 /************************************************************************
437  *									*
438  *  This is simply a status registers that monitors the LLP error       *
439  * rate.								*
440  *									*
441  ************************************************************************/
442 
443 typedef union ii_illr_u {
444 	u64 ii_illr_regval;
445 	struct {
446 		u64 i_sn_cnt:16;
447 		u64 i_cb_cnt:16;
448 		u64 i_rsvd:32;
449 	} ii_illr_fld_s;
450 } ii_illr_u_t;
451 
452 /************************************************************************
453  *									*
454  * Description:  All II-detected non-BTE error interrupts are           *
455  * specified via this register.                                         *
456  * NOTE: The PI interrupt register address is hardcoded in the II. If   *
457  * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
458  * packet) to address offset 0x0180_0090 within the local register      *
459  * address space of PI0 on the node specified by the NODE field. If     *
460  * PI_ID==1, then the II sends the interrupt request to address         *
461  * offset 0x01A0_0090 within the local register address space of PI1    *
462  * on the node specified by the NODE field.                             *
463  *									*
464  ************************************************************************/
465 
466 typedef union ii_iidsr_u {
467 	u64 ii_iidsr_regval;
468 	struct {
469 		u64 i_level:8;
470 		u64 i_pi_id:1;
471 		u64 i_node:11;
472 		u64 i_rsvd_3:4;
473 		u64 i_enable:1;
474 		u64 i_rsvd_2:3;
475 		u64 i_int_sent:2;
476 		u64 i_rsvd_1:2;
477 		u64 i_pi0_forward_int:1;
478 		u64 i_pi1_forward_int:1;
479 		u64 i_rsvd:30;
480 	} ii_iidsr_fld_s;
481 } ii_iidsr_u_t;
482 
483 /************************************************************************
484  *									*
485  *  There are two instances of this register. This register is used     *
486  * for matching up the incoming responses from the graphics widget to   *
487  * the processor that initiated the graphics operation. The             *
488  * write-responses are converted to graphics credits and returned to    *
489  * the processor so that the processor interface can manage the flow    *
490  * control.                                                             *
491  *									*
492  ************************************************************************/
493 
494 typedef union ii_igfx0_u {
495 	u64 ii_igfx0_regval;
496 	struct {
497 		u64 i_w_num:4;
498 		u64 i_pi_id:1;
499 		u64 i_n_num:12;
500 		u64 i_p_num:1;
501 		u64 i_rsvd:46;
502 	} ii_igfx0_fld_s;
503 } ii_igfx0_u_t;
504 
505 /************************************************************************
506  *									*
507  *  There are two instances of this register. This register is used     *
508  * for matching up the incoming responses from the graphics widget to   *
509  * the processor that initiated the graphics operation. The             *
510  * write-responses are converted to graphics credits and returned to    *
511  * the processor so that the processor interface can manage the flow    *
512  * control.                                                             *
513  *									*
514  ************************************************************************/
515 
516 typedef union ii_igfx1_u {
517 	u64 ii_igfx1_regval;
518 	struct {
519 		u64 i_w_num:4;
520 		u64 i_pi_id:1;
521 		u64 i_n_num:12;
522 		u64 i_p_num:1;
523 		u64 i_rsvd:46;
524 	} ii_igfx1_fld_s;
525 } ii_igfx1_u_t;
526 
527 /************************************************************************
528  *									*
529  *  There are two instances of this registers. These registers are      *
530  * used as scratch registers for software use.                          *
531  *									*
532  ************************************************************************/
533 
534 typedef union ii_iscr0_u {
535 	u64 ii_iscr0_regval;
536 	struct {
537 		u64 i_scratch:64;
538 	} ii_iscr0_fld_s;
539 } ii_iscr0_u_t;
540 
541 /************************************************************************
542  *									*
543  *  There are two instances of this registers. These registers are      *
544  * used as scratch registers for software use.                          *
545  *									*
546  ************************************************************************/
547 
548 typedef union ii_iscr1_u {
549 	u64 ii_iscr1_regval;
550 	struct {
551 		u64 i_scratch:64;
552 	} ii_iscr1_fld_s;
553 } ii_iscr1_u_t;
554 
555 /************************************************************************
556  *									*
557  * Description:  There are seven instances of translation table entry   *
558  * registers. Each register maps a Shub Big Window to a 48-bit          *
559  * address on Crosstalk.                                                *
560  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
561  * number) are used to select one of these 7 registers. The Widget      *
562  * number field is then derived from the W_NUM field for synthesizing   *
563  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
564  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
565  * are padded with zeros. Although the maximum Crosstalk space          *
566  * addressable by the SHub is thus the lower 16 GBytes per widget       *
567  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
568  * space can be accessed.                                               *
569  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
570  * Window number) are used to select one of these 7 registers. The      *
571  * Widget number field is then derived from the W_NUM field for         *
572  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
573  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
574  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
575  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
576  * Crosstalk space addressable by the Shub is thus the lower            *
577  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
578  * of this space can be accessed.                                       *
579  *									*
580  ************************************************************************/
581 
582 typedef union ii_itte1_u {
583 	u64 ii_itte1_regval;
584 	struct {
585 		u64 i_offset:5;
586 		u64 i_rsvd_1:3;
587 		u64 i_w_num:4;
588 		u64 i_iosp:1;
589 		u64 i_rsvd:51;
590 	} ii_itte1_fld_s;
591 } ii_itte1_u_t;
592 
593 /************************************************************************
594  *									*
595  * Description:  There are seven instances of translation table entry   *
596  * registers. Each register maps a Shub Big Window to a 48-bit          *
597  * address on Crosstalk.                                                *
598  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
599  * number) are used to select one of these 7 registers. The Widget      *
600  * number field is then derived from the W_NUM field for synthesizing   *
601  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
602  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
603  * are padded with zeros. Although the maximum Crosstalk space          *
604  * addressable by the Shub is thus the lower 16 GBytes per widget       *
605  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
606  * space can be accessed.                                               *
607  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
608  * Window number) are used to select one of these 7 registers. The      *
609  * Widget number field is then derived from the W_NUM field for         *
610  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
611  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
612  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
613  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
614  * Crosstalk space addressable by the Shub is thus the lower            *
615  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
616  * of this space can be accessed.                                       *
617  *									*
618  ************************************************************************/
619 
620 typedef union ii_itte2_u {
621 	u64 ii_itte2_regval;
622 	struct {
623 		u64 i_offset:5;
624 		u64 i_rsvd_1:3;
625 		u64 i_w_num:4;
626 		u64 i_iosp:1;
627 		u64 i_rsvd:51;
628 	} ii_itte2_fld_s;
629 } ii_itte2_u_t;
630 
631 /************************************************************************
632  *									*
633  * Description:  There are seven instances of translation table entry   *
634  * registers. Each register maps a Shub Big Window to a 48-bit          *
635  * address on Crosstalk.                                                *
636  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
637  * number) are used to select one of these 7 registers. The Widget      *
638  * number field is then derived from the W_NUM field for synthesizing   *
639  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
640  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
641  * are padded with zeros. Although the maximum Crosstalk space          *
642  * addressable by the Shub is thus the lower 16 GBytes per widget       *
643  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
644  * space can be accessed.                                               *
645  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
646  * Window number) are used to select one of these 7 registers. The      *
647  * Widget number field is then derived from the W_NUM field for         *
648  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
649  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
650  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
651  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
652  * Crosstalk space addressable by the SHub is thus the lower            *
653  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
654  * of this space can be accessed.                                       *
655  *									*
656  ************************************************************************/
657 
658 typedef union ii_itte3_u {
659 	u64 ii_itte3_regval;
660 	struct {
661 		u64 i_offset:5;
662 		u64 i_rsvd_1:3;
663 		u64 i_w_num:4;
664 		u64 i_iosp:1;
665 		u64 i_rsvd:51;
666 	} ii_itte3_fld_s;
667 } ii_itte3_u_t;
668 
669 /************************************************************************
670  *									*
671  * Description:  There are seven instances of translation table entry   *
672  * registers. Each register maps a SHub Big Window to a 48-bit          *
673  * address on Crosstalk.                                                *
674  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
675  * number) are used to select one of these 7 registers. The Widget      *
676  * number field is then derived from the W_NUM field for synthesizing   *
677  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
678  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
679  * are padded with zeros. Although the maximum Crosstalk space          *
680  * addressable by the SHub is thus the lower 16 GBytes per widget       *
681  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
682  * space can be accessed.                                               *
683  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
684  * Window number) are used to select one of these 7 registers. The      *
685  * Widget number field is then derived from the W_NUM field for         *
686  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
687  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
688  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
689  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
690  * Crosstalk space addressable by the SHub is thus the lower            *
691  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
692  * of this space can be accessed.                                       *
693  *									*
694  ************************************************************************/
695 
696 typedef union ii_itte4_u {
697 	u64 ii_itte4_regval;
698 	struct {
699 		u64 i_offset:5;
700 		u64 i_rsvd_1:3;
701 		u64 i_w_num:4;
702 		u64 i_iosp:1;
703 		u64 i_rsvd:51;
704 	} ii_itte4_fld_s;
705 } ii_itte4_u_t;
706 
707 /************************************************************************
708  *									*
709  * Description:  There are seven instances of translation table entry   *
710  * registers. Each register maps a SHub Big Window to a 48-bit          *
711  * address on Crosstalk.                                                *
712  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
713  * number) are used to select one of these 7 registers. The Widget      *
714  * number field is then derived from the W_NUM field for synthesizing   *
715  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
716  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
717  * are padded with zeros. Although the maximum Crosstalk space          *
718  * addressable by the Shub is thus the lower 16 GBytes per widget       *
719  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
720  * space can be accessed.                                               *
721  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
722  * Window number) are used to select one of these 7 registers. The      *
723  * Widget number field is then derived from the W_NUM field for         *
724  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
725  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
726  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
727  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
728  * Crosstalk space addressable by the Shub is thus the lower            *
729  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
730  * of this space can be accessed.                                       *
731  *									*
732  ************************************************************************/
733 
734 typedef union ii_itte5_u {
735 	u64 ii_itte5_regval;
736 	struct {
737 		u64 i_offset:5;
738 		u64 i_rsvd_1:3;
739 		u64 i_w_num:4;
740 		u64 i_iosp:1;
741 		u64 i_rsvd:51;
742 	} ii_itte5_fld_s;
743 } ii_itte5_u_t;
744 
745 /************************************************************************
746  *									*
747  * Description:  There are seven instances of translation table entry   *
748  * registers. Each register maps a Shub Big Window to a 48-bit          *
749  * address on Crosstalk.                                                *
750  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
751  * number) are used to select one of these 7 registers. The Widget      *
752  * number field is then derived from the W_NUM field for synthesizing   *
753  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
754  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
755  * are padded with zeros. Although the maximum Crosstalk space          *
756  * addressable by the Shub is thus the lower 16 GBytes per widget       *
757  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
758  * space can be accessed.                                               *
759  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
760  * Window number) are used to select one of these 7 registers. The      *
761  * Widget number field is then derived from the W_NUM field for         *
762  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
763  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
764  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
765  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
766  * Crosstalk space addressable by the Shub is thus the lower            *
767  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
768  * of this space can be accessed.                                       *
769  *									*
770  ************************************************************************/
771 
772 typedef union ii_itte6_u {
773 	u64 ii_itte6_regval;
774 	struct {
775 		u64 i_offset:5;
776 		u64 i_rsvd_1:3;
777 		u64 i_w_num:4;
778 		u64 i_iosp:1;
779 		u64 i_rsvd:51;
780 	} ii_itte6_fld_s;
781 } ii_itte6_u_t;
782 
783 /************************************************************************
784  *									*
785  * Description:  There are seven instances of translation table entry   *
786  * registers. Each register maps a Shub Big Window to a 48-bit          *
787  * address on Crosstalk.                                                *
788  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
789  * number) are used to select one of these 7 registers. The Widget      *
790  * number field is then derived from the W_NUM field for synthesizing   *
791  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
792  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
793  * are padded with zeros. Although the maximum Crosstalk space          *
794  * addressable by the Shub is thus the lower 16 GBytes per widget       *
795  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
796  * space can be accessed.                                               *
797  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
798  * Window number) are used to select one of these 7 registers. The      *
799  * Widget number field is then derived from the W_NUM field for         *
800  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
801  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
802  * field is used as Crosstalk[47], and remainder of the Crosstalk       *
803  * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
804  * Crosstalk space addressable by the SHub is thus the lower            *
805  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
806  * of this space can be accessed.                                       *
807  *									*
808  ************************************************************************/
809 
810 typedef union ii_itte7_u {
811 	u64 ii_itte7_regval;
812 	struct {
813 		u64 i_offset:5;
814 		u64 i_rsvd_1:3;
815 		u64 i_w_num:4;
816 		u64 i_iosp:1;
817 		u64 i_rsvd:51;
818 	} ii_itte7_fld_s;
819 } ii_itte7_u_t;
820 
821 /************************************************************************
822  *									*
823  * Description:  There are 9 instances of this register, one per        *
824  * actual widget in this implementation of SHub and Crossbow.           *
825  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
826  * refers to Crossbow's internal space.                                 *
827  * This register contains the state elements per widget that are        *
828  * necessary to manage the PIO flow control on Crosstalk and on the     *
829  * Router Network. See the PIO Flow Control chapter for a complete      *
830  * description of this register                                         *
831  * The SPUR_WR bit requires some explanation. When this register is     *
832  * written, the new value of the C field is captured in an internal     *
833  * register so the hardware can remember what the programmer wrote      *
834  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
835  * increments above this stored value, which indicates that there       *
836  * have been more responses received than requests sent. The SPUR_WR    *
837  * bit cannot be cleared until a value is written to the IPRBx          *
838  * register; the write will correct the C field and capture its new     *
839  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
840  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
841  * .    								*
842  *									*
843  ************************************************************************/
844 
845 typedef union ii_iprb0_u {
846 	u64 ii_iprb0_regval;
847 	struct {
848 		u64 i_c:8;
849 		u64 i_na:14;
850 		u64 i_rsvd_2:2;
851 		u64 i_nb:14;
852 		u64 i_rsvd_1:2;
853 		u64 i_m:2;
854 		u64 i_f:1;
855 		u64 i_of_cnt:5;
856 		u64 i_error:1;
857 		u64 i_rd_to:1;
858 		u64 i_spur_wr:1;
859 		u64 i_spur_rd:1;
860 		u64 i_rsvd:11;
861 		u64 i_mult_err:1;
862 	} ii_iprb0_fld_s;
863 } ii_iprb0_u_t;
864 
865 /************************************************************************
866  *									*
867  * Description:  There are 9 instances of this register, one per        *
868  * actual widget in this implementation of SHub and Crossbow.           *
869  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
870  * refers to Crossbow's internal space.                                 *
871  * This register contains the state elements per widget that are        *
872  * necessary to manage the PIO flow control on Crosstalk and on the     *
873  * Router Network. See the PIO Flow Control chapter for a complete      *
874  * description of this register                                         *
875  * The SPUR_WR bit requires some explanation. When this register is     *
876  * written, the new value of the C field is captured in an internal     *
877  * register so the hardware can remember what the programmer wrote      *
878  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
879  * increments above this stored value, which indicates that there       *
880  * have been more responses received than requests sent. The SPUR_WR    *
881  * bit cannot be cleared until a value is written to the IPRBx          *
882  * register; the write will correct the C field and capture its new     *
883  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
884  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
885  * .    								*
886  *									*
887  ************************************************************************/
888 
889 typedef union ii_iprb8_u {
890 	u64 ii_iprb8_regval;
891 	struct {
892 		u64 i_c:8;
893 		u64 i_na:14;
894 		u64 i_rsvd_2:2;
895 		u64 i_nb:14;
896 		u64 i_rsvd_1:2;
897 		u64 i_m:2;
898 		u64 i_f:1;
899 		u64 i_of_cnt:5;
900 		u64 i_error:1;
901 		u64 i_rd_to:1;
902 		u64 i_spur_wr:1;
903 		u64 i_spur_rd:1;
904 		u64 i_rsvd:11;
905 		u64 i_mult_err:1;
906 	} ii_iprb8_fld_s;
907 } ii_iprb8_u_t;
908 
909 /************************************************************************
910  *									*
911  * Description:  There are 9 instances of this register, one per        *
912  * actual widget in this implementation of SHub and Crossbow.           *
913  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
914  * refers to Crossbow's internal space.                                 *
915  * This register contains the state elements per widget that are        *
916  * necessary to manage the PIO flow control on Crosstalk and on the     *
917  * Router Network. See the PIO Flow Control chapter for a complete      *
918  * description of this register                                         *
919  * The SPUR_WR bit requires some explanation. When this register is     *
920  * written, the new value of the C field is captured in an internal     *
921  * register so the hardware can remember what the programmer wrote      *
922  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
923  * increments above this stored value, which indicates that there       *
924  * have been more responses received than requests sent. The SPUR_WR    *
925  * bit cannot be cleared until a value is written to the IPRBx          *
926  * register; the write will correct the C field and capture its new     *
927  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
928  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
929  * .    								*
930  *									*
931  ************************************************************************/
932 
933 typedef union ii_iprb9_u {
934 	u64 ii_iprb9_regval;
935 	struct {
936 		u64 i_c:8;
937 		u64 i_na:14;
938 		u64 i_rsvd_2:2;
939 		u64 i_nb:14;
940 		u64 i_rsvd_1:2;
941 		u64 i_m:2;
942 		u64 i_f:1;
943 		u64 i_of_cnt:5;
944 		u64 i_error:1;
945 		u64 i_rd_to:1;
946 		u64 i_spur_wr:1;
947 		u64 i_spur_rd:1;
948 		u64 i_rsvd:11;
949 		u64 i_mult_err:1;
950 	} ii_iprb9_fld_s;
951 } ii_iprb9_u_t;
952 
953 /************************************************************************
954  *									*
955  * Description:  There are 9 instances of this register, one per        *
956  * actual widget in this implementation of SHub and Crossbow.        *
957  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
958  * refers to Crossbow's internal space.                                 *
959  * This register contains the state elements per widget that are        *
960  * necessary to manage the PIO flow control on Crosstalk and on the     *
961  * Router Network. See the PIO Flow Control chapter for a complete      *
962  * description of this register                                         *
963  * The SPUR_WR bit requires some explanation. When this register is     *
964  * written, the new value of the C field is captured in an internal     *
965  * register so the hardware can remember what the programmer wrote      *
966  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
967  * increments above this stored value, which indicates that there       *
968  * have been more responses received than requests sent. The SPUR_WR    *
969  * bit cannot be cleared until a value is written to the IPRBx          *
970  * register; the write will correct the C field and capture its new     *
971  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
972  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
973  *									*
974  *									*
975  ************************************************************************/
976 
977 typedef union ii_iprba_u {
978 	u64 ii_iprba_regval;
979 	struct {
980 		u64 i_c:8;
981 		u64 i_na:14;
982 		u64 i_rsvd_2:2;
983 		u64 i_nb:14;
984 		u64 i_rsvd_1:2;
985 		u64 i_m:2;
986 		u64 i_f:1;
987 		u64 i_of_cnt:5;
988 		u64 i_error:1;
989 		u64 i_rd_to:1;
990 		u64 i_spur_wr:1;
991 		u64 i_spur_rd:1;
992 		u64 i_rsvd:11;
993 		u64 i_mult_err:1;
994 	} ii_iprba_fld_s;
995 } ii_iprba_u_t;
996 
997 /************************************************************************
998  *									*
999  * Description:  There are 9 instances of this register, one per        *
1000  * actual widget in this implementation of SHub and Crossbow.           *
1001  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1002  * refers to Crossbow's internal space.                                 *
1003  * This register contains the state elements per widget that are        *
1004  * necessary to manage the PIO flow control on Crosstalk and on the     *
1005  * Router Network. See the PIO Flow Control chapter for a complete      *
1006  * description of this register                                         *
1007  * The SPUR_WR bit requires some explanation. When this register is     *
1008  * written, the new value of the C field is captured in an internal     *
1009  * register so the hardware can remember what the programmer wrote      *
1010  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1011  * increments above this stored value, which indicates that there       *
1012  * have been more responses received than requests sent. The SPUR_WR    *
1013  * bit cannot be cleared until a value is written to the IPRBx          *
1014  * register; the write will correct the C field and capture its new     *
1015  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1016  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1017  * .    								*
1018  *									*
1019  ************************************************************************/
1020 
1021 typedef union ii_iprbb_u {
1022 	u64 ii_iprbb_regval;
1023 	struct {
1024 		u64 i_c:8;
1025 		u64 i_na:14;
1026 		u64 i_rsvd_2:2;
1027 		u64 i_nb:14;
1028 		u64 i_rsvd_1:2;
1029 		u64 i_m:2;
1030 		u64 i_f:1;
1031 		u64 i_of_cnt:5;
1032 		u64 i_error:1;
1033 		u64 i_rd_to:1;
1034 		u64 i_spur_wr:1;
1035 		u64 i_spur_rd:1;
1036 		u64 i_rsvd:11;
1037 		u64 i_mult_err:1;
1038 	} ii_iprbb_fld_s;
1039 } ii_iprbb_u_t;
1040 
1041 /************************************************************************
1042  *									*
1043  * Description:  There are 9 instances of this register, one per        *
1044  * actual widget in this implementation of SHub and Crossbow.           *
1045  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1046  * refers to Crossbow's internal space.                                 *
1047  * This register contains the state elements per widget that are        *
1048  * necessary to manage the PIO flow control on Crosstalk and on the     *
1049  * Router Network. See the PIO Flow Control chapter for a complete      *
1050  * description of this register                                         *
1051  * The SPUR_WR bit requires some explanation. When this register is     *
1052  * written, the new value of the C field is captured in an internal     *
1053  * register so the hardware can remember what the programmer wrote      *
1054  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1055  * increments above this stored value, which indicates that there       *
1056  * have been more responses received than requests sent. The SPUR_WR    *
1057  * bit cannot be cleared until a value is written to the IPRBx          *
1058  * register; the write will correct the C field and capture its new     *
1059  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1060  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1061  * .    								*
1062  *									*
1063  ************************************************************************/
1064 
1065 typedef union ii_iprbc_u {
1066 	u64 ii_iprbc_regval;
1067 	struct {
1068 		u64 i_c:8;
1069 		u64 i_na:14;
1070 		u64 i_rsvd_2:2;
1071 		u64 i_nb:14;
1072 		u64 i_rsvd_1:2;
1073 		u64 i_m:2;
1074 		u64 i_f:1;
1075 		u64 i_of_cnt:5;
1076 		u64 i_error:1;
1077 		u64 i_rd_to:1;
1078 		u64 i_spur_wr:1;
1079 		u64 i_spur_rd:1;
1080 		u64 i_rsvd:11;
1081 		u64 i_mult_err:1;
1082 	} ii_iprbc_fld_s;
1083 } ii_iprbc_u_t;
1084 
1085 /************************************************************************
1086  *									*
1087  * Description:  There are 9 instances of this register, one per        *
1088  * actual widget in this implementation of SHub and Crossbow.           *
1089  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1090  * refers to Crossbow's internal space.                                 *
1091  * This register contains the state elements per widget that are        *
1092  * necessary to manage the PIO flow control on Crosstalk and on the     *
1093  * Router Network. See the PIO Flow Control chapter for a complete      *
1094  * description of this register                                         *
1095  * The SPUR_WR bit requires some explanation. When this register is     *
1096  * written, the new value of the C field is captured in an internal     *
1097  * register so the hardware can remember what the programmer wrote      *
1098  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1099  * increments above this stored value, which indicates that there       *
1100  * have been more responses received than requests sent. The SPUR_WR    *
1101  * bit cannot be cleared until a value is written to the IPRBx          *
1102  * register; the write will correct the C field and capture its new     *
1103  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1104  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1105  * .    								*
1106  *									*
1107  ************************************************************************/
1108 
1109 typedef union ii_iprbd_u {
1110 	u64 ii_iprbd_regval;
1111 	struct {
1112 		u64 i_c:8;
1113 		u64 i_na:14;
1114 		u64 i_rsvd_2:2;
1115 		u64 i_nb:14;
1116 		u64 i_rsvd_1:2;
1117 		u64 i_m:2;
1118 		u64 i_f:1;
1119 		u64 i_of_cnt:5;
1120 		u64 i_error:1;
1121 		u64 i_rd_to:1;
1122 		u64 i_spur_wr:1;
1123 		u64 i_spur_rd:1;
1124 		u64 i_rsvd:11;
1125 		u64 i_mult_err:1;
1126 	} ii_iprbd_fld_s;
1127 } ii_iprbd_u_t;
1128 
1129 /************************************************************************
1130  *									*
1131  * Description:  There are 9 instances of this register, one per        *
1132  * actual widget in this implementation of SHub and Crossbow.           *
1133  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1134  * refers to Crossbow's internal space.                                 *
1135  * This register contains the state elements per widget that are        *
1136  * necessary to manage the PIO flow control on Crosstalk and on the     *
1137  * Router Network. See the PIO Flow Control chapter for a complete      *
1138  * description of this register                                         *
1139  * The SPUR_WR bit requires some explanation. When this register is     *
1140  * written, the new value of the C field is captured in an internal     *
1141  * register so the hardware can remember what the programmer wrote      *
1142  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1143  * increments above this stored value, which indicates that there       *
1144  * have been more responses received than requests sent. The SPUR_WR    *
1145  * bit cannot be cleared until a value is written to the IPRBx          *
1146  * register; the write will correct the C field and capture its new     *
1147  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1148  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1149  * .    								*
1150  *									*
1151  ************************************************************************/
1152 
1153 typedef union ii_iprbe_u {
1154 	u64 ii_iprbe_regval;
1155 	struct {
1156 		u64 i_c:8;
1157 		u64 i_na:14;
1158 		u64 i_rsvd_2:2;
1159 		u64 i_nb:14;
1160 		u64 i_rsvd_1:2;
1161 		u64 i_m:2;
1162 		u64 i_f:1;
1163 		u64 i_of_cnt:5;
1164 		u64 i_error:1;
1165 		u64 i_rd_to:1;
1166 		u64 i_spur_wr:1;
1167 		u64 i_spur_rd:1;
1168 		u64 i_rsvd:11;
1169 		u64 i_mult_err:1;
1170 	} ii_iprbe_fld_s;
1171 } ii_iprbe_u_t;
1172 
1173 /************************************************************************
1174  *									*
1175  * Description:  There are 9 instances of this register, one per        *
1176  * actual widget in this implementation of Shub and Crossbow.           *
1177  * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1178  * refers to Crossbow's internal space.                                 *
1179  * This register contains the state elements per widget that are        *
1180  * necessary to manage the PIO flow control on Crosstalk and on the     *
1181  * Router Network. See the PIO Flow Control chapter for a complete      *
1182  * description of this register                                         *
1183  * The SPUR_WR bit requires some explanation. When this register is     *
1184  * written, the new value of the C field is captured in an internal     *
1185  * register so the hardware can remember what the programmer wrote      *
1186  * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1187  * increments above this stored value, which indicates that there       *
1188  * have been more responses received than requests sent. The SPUR_WR    *
1189  * bit cannot be cleared until a value is written to the IPRBx          *
1190  * register; the write will correct the C field and capture its new     *
1191  * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1192  * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1193  * .    								*
1194  *									*
1195  ************************************************************************/
1196 
1197 typedef union ii_iprbf_u {
1198 	u64 ii_iprbf_regval;
1199 	struct {
1200 		u64 i_c:8;
1201 		u64 i_na:14;
1202 		u64 i_rsvd_2:2;
1203 		u64 i_nb:14;
1204 		u64 i_rsvd_1:2;
1205 		u64 i_m:2;
1206 		u64 i_f:1;
1207 		u64 i_of_cnt:5;
1208 		u64 i_error:1;
1209 		u64 i_rd_to:1;
1210 		u64 i_spur_wr:1;
1211 		u64 i_spur_rd:1;
1212 		u64 i_rsvd:11;
1213 		u64 i_mult_err:1;
1214 	} ii_iprbe_fld_s;
1215 } ii_iprbf_u_t;
1216 
1217 /************************************************************************
1218  *									*
1219  *  This register specifies the timeout value to use for monitoring     *
1220  * Crosstalk credits which are used outbound to Crosstalk. An           *
1221  * internal counter called the Crosstalk Credit Timeout Counter         *
1222  * increments every 128 II clocks. The counter starts counting          *
1223  * anytime the credit count drops below a threshold, and resets to      *
1224  * zero (stops counting) anytime the credit count is at or above the    *
1225  * threshold. The threshold is 1 credit in direct connect mode and 2    *
1226  * in Crossbow connect mode. When the internal Crosstalk Credit         *
1227  * Timeout Counter reaches the value programmed in this register, a     *
1228  * Crosstalk Credit Timeout has occurred. The internal counter is not   *
1229  * readable from software, and stops counting at its maximum value,     *
1230  * so it cannot cause more than one interrupt.                          *
1231  *									*
1232  ************************************************************************/
1233 
1234 typedef union ii_ixcc_u {
1235 	u64 ii_ixcc_regval;
1236 	struct {
1237 		u64 i_time_out:26;
1238 		u64 i_rsvd:38;
1239 	} ii_ixcc_fld_s;
1240 } ii_ixcc_u_t;
1241 
1242 /************************************************************************
1243  *									*
1244  * Description:  This register qualifies all the PIO and DMA            *
1245  * operations launched from widget 0 towards the SHub. In               *
1246  * addition, it also qualifies accesses by the BTE streams.             *
1247  * The bits in each field of this register are cleared by the SHub      *
1248  * upon detection of an error which requires widget 0 or the BTE        *
1249  * streams to be terminated. Whether or not widget x has access         *
1250  * rights to this SHub is determined by an AND of the device            *
1251  * enable bit in the appropriate field of this register and bit 0 in    *
1252  * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
1253  * them. Incoming replies from Crosstalk are not subject to this        *
1254  * access control mechanism.                                            *
1255  *									*
1256  ************************************************************************/
1257 
1258 typedef union ii_imem_u {
1259 	u64 ii_imem_regval;
1260 	struct {
1261 		u64 i_w0_esd:1;
1262 		u64 i_rsvd_3:3;
1263 		u64 i_b0_esd:1;
1264 		u64 i_rsvd_2:3;
1265 		u64 i_b1_esd:1;
1266 		u64 i_rsvd_1:3;
1267 		u64 i_clr_precise:1;
1268 		u64 i_rsvd:51;
1269 	} ii_imem_fld_s;
1270 } ii_imem_u_t;
1271 
1272 /************************************************************************
1273  *									*
1274  * Description:  This register specifies the timeout value to use for   *
1275  * monitoring Crosstalk tail flits coming into the Shub in the          *
1276  * TAIL_TO field. An internal counter associated with this register     *
1277  * is incremented every 128 II internal clocks (7 bits). The counter    *
1278  * starts counting anytime a header micropacket is received and stops   *
1279  * counting (and resets to zero) any time a micropacket with a Tail     *
1280  * bit is received. Once the counter reaches the threshold value        *
1281  * programmed in this register, it generates an interrupt to the        *
1282  * processor that is programmed into the IIDSR. The counter saturates   *
1283  * (does not roll over) at its maximum value, so it cannot cause        *
1284  * another interrupt until after it is cleared.                         *
1285  * The register also contains the Read Response Timeout values. The     *
1286  * Prescalar is 23 bits, and counts II clocks. An internal counter      *
1287  * increments on every II clock and when it reaches the value in the    *
1288  * Prescalar field, all IPRTE registers with their valid bits set       *
1289  * have their Read Response timers bumped. Whenever any of them match   *
1290  * the value in the RRSP_TO field, a Read Response Timeout has          *
1291  * occurred, and error handling occurs as described in the Error        *
1292  * Handling section of this document.                                   *
1293  *									*
1294  ************************************************************************/
1295 
1296 typedef union ii_ixtt_u {
1297 	u64 ii_ixtt_regval;
1298 	struct {
1299 		u64 i_tail_to:26;
1300 		u64 i_rsvd_1:6;
1301 		u64 i_rrsp_ps:23;
1302 		u64 i_rrsp_to:5;
1303 		u64 i_rsvd:4;
1304 	} ii_ixtt_fld_s;
1305 } ii_ixtt_u_t;
1306 
1307 /************************************************************************
1308  *									*
1309  *  Writing a 1 to the fields of this register clears the appropriate   *
1310  * error bits in other areas of SHub. Note that when the                *
1311  * E_PRB_x bits are used to clear error bits in PRB registers,          *
1312  * SPUR_RD and SPUR_WR may persist, because they require additional     *
1313  * action to clear them. See the IPRBx and IXSS Register                *
1314  * specifications.                                                      *
1315  *									*
1316  ************************************************************************/
1317 
1318 typedef union ii_ieclr_u {
1319 	u64 ii_ieclr_regval;
1320 	struct {
1321 		u64 i_e_prb_0:1;
1322 		u64 i_rsvd:7;
1323 		u64 i_e_prb_8:1;
1324 		u64 i_e_prb_9:1;
1325 		u64 i_e_prb_a:1;
1326 		u64 i_e_prb_b:1;
1327 		u64 i_e_prb_c:1;
1328 		u64 i_e_prb_d:1;
1329 		u64 i_e_prb_e:1;
1330 		u64 i_e_prb_f:1;
1331 		u64 i_e_crazy:1;
1332 		u64 i_e_bte_0:1;
1333 		u64 i_e_bte_1:1;
1334 		u64 i_reserved_1:10;
1335 		u64 i_spur_rd_hdr:1;
1336 		u64 i_cam_intr_to:1;
1337 		u64 i_cam_overflow:1;
1338 		u64 i_cam_read_miss:1;
1339 		u64 i_ioq_rep_underflow:1;
1340 		u64 i_ioq_req_underflow:1;
1341 		u64 i_ioq_rep_overflow:1;
1342 		u64 i_ioq_req_overflow:1;
1343 		u64 i_iiq_rep_overflow:1;
1344 		u64 i_iiq_req_overflow:1;
1345 		u64 i_ii_xn_rep_cred_overflow:1;
1346 		u64 i_ii_xn_req_cred_overflow:1;
1347 		u64 i_ii_xn_invalid_cmd:1;
1348 		u64 i_xn_ii_invalid_cmd:1;
1349 		u64 i_reserved_2:21;
1350 	} ii_ieclr_fld_s;
1351 } ii_ieclr_u_t;
1352 
1353 /************************************************************************
1354  *									*
1355  *  This register controls both BTEs. SOFT_RESET is intended for        *
1356  * recovery after an error. COUNT controls the total number of CRBs     *
1357  * that both BTEs (combined) can use, which affects total BTE           *
1358  * bandwidth.                                                           *
1359  *									*
1360  ************************************************************************/
1361 
1362 typedef union ii_ibcr_u {
1363 	u64 ii_ibcr_regval;
1364 	struct {
1365 		u64 i_count:4;
1366 		u64 i_rsvd_1:4;
1367 		u64 i_soft_reset:1;
1368 		u64 i_rsvd:55;
1369 	} ii_ibcr_fld_s;
1370 } ii_ibcr_u_t;
1371 
1372 /************************************************************************
1373  *									*
1374  *  This register contains the header of a spurious read response       *
1375  * received from Crosstalk. A spurious read response is defined as a    *
1376  * read response received by II from a widget for which (1) the SIDN    *
1377  * has a value between 1 and 7, inclusive (II never sends requests to   *
1378  * these widgets (2) there is no valid IPRTE register which             *
1379  * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
1380  * not the same as the widget recorded in the IPRTE register            *
1381  * referenced by the TNUM. If this condition is true, and if the        *
1382  * IXSS[VALID] bit is clear, then the header of the spurious read       *
1383  * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
1384  * errant header is thereby captured, and no further spurious read      *
1385  * respones are captured until IXSS[VALID] is cleared by setting the    *
1386  * appropriate bit in IECLR. Every time a spurious read response is     *
1387  * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
1388  * message's SIDN field is set. This always happens, regardless of       *
1389  * whether a header is captured. The programmer should check            *
1390  * IXSM[SIDN] to determine which widget sent the spurious response,     *
1391  * because there may be more than one SPUR_RD bit set in the PRB        *
1392  * registers. The widget indicated by IXSM[SIDN] was the first          *
1393  * spurious read response to be received since the last time            *
1394  * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
1395  * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
1396  * spurious messages from other widets which were detected after the    *
1397  * header was captured..                                                *
1398  *									*
1399  ************************************************************************/
1400 
1401 typedef union ii_ixsm_u {
1402 	u64 ii_ixsm_regval;
1403 	struct {
1404 		u64 i_byte_en:32;
1405 		u64 i_reserved:1;
1406 		u64 i_tag:3;
1407 		u64 i_alt_pactyp:4;
1408 		u64 i_bo:1;
1409 		u64 i_error:1;
1410 		u64 i_vbpm:1;
1411 		u64 i_gbr:1;
1412 		u64 i_ds:2;
1413 		u64 i_ct:1;
1414 		u64 i_tnum:5;
1415 		u64 i_pactyp:4;
1416 		u64 i_sidn:4;
1417 		u64 i_didn:4;
1418 	} ii_ixsm_fld_s;
1419 } ii_ixsm_u_t;
1420 
1421 /************************************************************************
1422  *									*
1423  *  This register contains the sideband bits of a spurious read         *
1424  * response received from Crosstalk.                                    *
1425  *									*
1426  ************************************************************************/
1427 
1428 typedef union ii_ixss_u {
1429 	u64 ii_ixss_regval;
1430 	struct {
1431 		u64 i_sideband:8;
1432 		u64 i_rsvd:55;
1433 		u64 i_valid:1;
1434 	} ii_ixss_fld_s;
1435 } ii_ixss_u_t;
1436 
1437 /************************************************************************
1438  *									*
1439  *  This register enables software to access the II LLP's test port.    *
1440  * Refer to the LLP 2.5 documentation for an explanation of the test    *
1441  * port. Software can write to this register to program the values      *
1442  * for the control fields (TestErrCapture, TestClear, TestFlit,         *
1443  * TestMask and TestSeed). Similarly, software can read from this       *
1444  * register to obtain the values of the test port's status outputs      *
1445  * (TestCBerr, TestValid and TestData).                                 *
1446  *									*
1447  ************************************************************************/
1448 
1449 typedef union ii_ilct_u {
1450 	u64 ii_ilct_regval;
1451 	struct {
1452 		u64 i_test_seed:20;
1453 		u64 i_test_mask:8;
1454 		u64 i_test_data:20;
1455 		u64 i_test_valid:1;
1456 		u64 i_test_cberr:1;
1457 		u64 i_test_flit:3;
1458 		u64 i_test_clear:1;
1459 		u64 i_test_err_capture:1;
1460 		u64 i_rsvd:9;
1461 	} ii_ilct_fld_s;
1462 } ii_ilct_u_t;
1463 
1464 /************************************************************************
1465  *									*
1466  *  If the II detects an illegal incoming Duplonet packet (request or   *
1467  * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
1468  * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
1469  * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
1470  * and assigns a value to the ERR_TYPE field which indicates the        *
1471  * specific nature of the error. The II recognizes four different       *
1472  * types of errors: short request packets (ERR_TYPE==2), short reply    *
1473  * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
1474  * reply packets (ERR_TYPE==5). The encodings for these types of        *
1475  * errors were chosen to be consistent with the same types of errors    *
1476  * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
1477  * the LB unit). If the II detects an illegal incoming Duplonet         *
1478  * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
1479  * the OVERRUN bit to indicate that a subsequent error has happened,    *
1480  * and does nothing further.                                            *
1481  *									*
1482  ************************************************************************/
1483 
1484 typedef union ii_iieph1_u {
1485 	u64 ii_iieph1_regval;
1486 	struct {
1487 		u64 i_command:7;
1488 		u64 i_rsvd_5:1;
1489 		u64 i_suppl:14;
1490 		u64 i_rsvd_4:1;
1491 		u64 i_source:14;
1492 		u64 i_rsvd_3:1;
1493 		u64 i_err_type:4;
1494 		u64 i_rsvd_2:4;
1495 		u64 i_overrun:1;
1496 		u64 i_rsvd_1:3;
1497 		u64 i_valid:1;
1498 		u64 i_rsvd:13;
1499 	} ii_iieph1_fld_s;
1500 } ii_iieph1_u_t;
1501 
1502 /************************************************************************
1503  *									*
1504  *  This register holds the Address field from the header flit of an    *
1505  * incoming erroneous Duplonet packet, along with the tail bit which    *
1506  * accompanied this header flit. This register is essentially an        *
1507  * extension of IIEPH1. Two registers were necessary because the 64     *
1508  * bits available in only a single register were insufficient to        *
1509  * capture the entire header flit of an erroneous packet.               *
1510  *									*
1511  ************************************************************************/
1512 
1513 typedef union ii_iieph2_u {
1514 	u64 ii_iieph2_regval;
1515 	struct {
1516 		u64 i_rsvd_0:3;
1517 		u64 i_address:47;
1518 		u64 i_rsvd_1:10;
1519 		u64 i_tail:1;
1520 		u64 i_rsvd:3;
1521 	} ii_iieph2_fld_s;
1522 } ii_iieph2_u_t;
1523 
1524 /******************************/
1525 
1526 /************************************************************************
1527  *									*
1528  *  This register's value is a bit vector that guards access from SXBs  *
1529  * to local registers within the II as well as to external Crosstalk    *
1530  * widgets								*
1531  *									*
1532  ************************************************************************/
1533 
1534 typedef union ii_islapr_u {
1535 	u64 ii_islapr_regval;
1536 	struct {
1537 		u64 i_region:64;
1538 	} ii_islapr_fld_s;
1539 } ii_islapr_u_t;
1540 
1541 /************************************************************************
1542  *									*
1543  *  A write to this register of the 56-bit value "Pup+Bun" will cause	*
1544  * the bit in the ISLAPR register corresponding to the region of the	*
1545  * requestor to be set (access allowed).				(
1546  *									*
1547  ************************************************************************/
1548 
1549 typedef union ii_islapo_u {
1550 	u64 ii_islapo_regval;
1551 	struct {
1552 		u64 i_io_sbx_ovrride:56;
1553 		u64 i_rsvd:8;
1554 	} ii_islapo_fld_s;
1555 } ii_islapo_u_t;
1556 
1557 /************************************************************************
1558  *									*
1559  *  Determines how long the wrapper will wait aftr an interrupt is	*
1560  * initially issued from the II before it times out the outstanding	*
1561  * interrupt and drops it from the interrupt queue.			*
1562  *									*
1563  ************************************************************************/
1564 
1565 typedef union ii_iwi_u {
1566 	u64 ii_iwi_regval;
1567 	struct {
1568 		u64 i_prescale:24;
1569 		u64 i_rsvd:8;
1570 		u64 i_timeout:8;
1571 		u64 i_rsvd1:8;
1572 		u64 i_intrpt_retry_period:8;
1573 		u64 i_rsvd2:8;
1574 	} ii_iwi_fld_s;
1575 } ii_iwi_u_t;
1576 
1577 /************************************************************************
1578  *									*
1579  *  Log errors which have occurred in the II wrapper. The errors are	*
1580  * cleared by writing to the IECLR register.				*
1581  *									*
1582  ************************************************************************/
1583 
1584 typedef union ii_iwel_u {
1585 	u64 ii_iwel_regval;
1586 	struct {
1587 		u64 i_intr_timed_out:1;
1588 		u64 i_rsvd:7;
1589 		u64 i_cam_overflow:1;
1590 		u64 i_cam_read_miss:1;
1591 		u64 i_rsvd1:2;
1592 		u64 i_ioq_rep_underflow:1;
1593 		u64 i_ioq_req_underflow:1;
1594 		u64 i_ioq_rep_overflow:1;
1595 		u64 i_ioq_req_overflow:1;
1596 		u64 i_iiq_rep_overflow:1;
1597 		u64 i_iiq_req_overflow:1;
1598 		u64 i_rsvd2:6;
1599 		u64 i_ii_xn_rep_cred_over_under:1;
1600 		u64 i_ii_xn_req_cred_over_under:1;
1601 		u64 i_rsvd3:6;
1602 		u64 i_ii_xn_invalid_cmd:1;
1603 		u64 i_xn_ii_invalid_cmd:1;
1604 		u64 i_rsvd4:30;
1605 	} ii_iwel_fld_s;
1606 } ii_iwel_u_t;
1607 
1608 /************************************************************************
1609  *									*
1610  *  Controls the II wrapper.						*
1611  *									*
1612  ************************************************************************/
1613 
1614 typedef union ii_iwc_u {
1615 	u64 ii_iwc_regval;
1616 	struct {
1617 		u64 i_dma_byte_swap:1;
1618 		u64 i_rsvd:3;
1619 		u64 i_cam_read_lines_reset:1;
1620 		u64 i_rsvd1:3;
1621 		u64 i_ii_xn_cred_over_under_log:1;
1622 		u64 i_rsvd2:19;
1623 		u64 i_xn_rep_iq_depth:5;
1624 		u64 i_rsvd3:3;
1625 		u64 i_xn_req_iq_depth:5;
1626 		u64 i_rsvd4:3;
1627 		u64 i_iiq_depth:6;
1628 		u64 i_rsvd5:12;
1629 		u64 i_force_rep_cred:1;
1630 		u64 i_force_req_cred:1;
1631 	} ii_iwc_fld_s;
1632 } ii_iwc_u_t;
1633 
1634 /************************************************************************
1635  *									*
1636  *  Status in the II wrapper.						*
1637  *									*
1638  ************************************************************************/
1639 
1640 typedef union ii_iws_u {
1641 	u64 ii_iws_regval;
1642 	struct {
1643 		u64 i_xn_rep_iq_credits:5;
1644 		u64 i_rsvd:3;
1645 		u64 i_xn_req_iq_credits:5;
1646 		u64 i_rsvd1:51;
1647 	} ii_iws_fld_s;
1648 } ii_iws_u_t;
1649 
1650 /************************************************************************
1651  *									*
1652  *  Masks errors in the IWEL register.					*
1653  *									*
1654  ************************************************************************/
1655 
1656 typedef union ii_iweim_u {
1657 	u64 ii_iweim_regval;
1658 	struct {
1659 		u64 i_intr_timed_out:1;
1660 		u64 i_rsvd:7;
1661 		u64 i_cam_overflow:1;
1662 		u64 i_cam_read_miss:1;
1663 		u64 i_rsvd1:2;
1664 		u64 i_ioq_rep_underflow:1;
1665 		u64 i_ioq_req_underflow:1;
1666 		u64 i_ioq_rep_overflow:1;
1667 		u64 i_ioq_req_overflow:1;
1668 		u64 i_iiq_rep_overflow:1;
1669 		u64 i_iiq_req_overflow:1;
1670 		u64 i_rsvd2:6;
1671 		u64 i_ii_xn_rep_cred_overflow:1;
1672 		u64 i_ii_xn_req_cred_overflow:1;
1673 		u64 i_rsvd3:6;
1674 		u64 i_ii_xn_invalid_cmd:1;
1675 		u64 i_xn_ii_invalid_cmd:1;
1676 		u64 i_rsvd4:30;
1677 	} ii_iweim_fld_s;
1678 } ii_iweim_u_t;
1679 
1680 /************************************************************************
1681  *									*
1682  *  A write to this register causes a particular field in the           *
1683  * corresponding widget's PRB entry to be adjusted up or down by 1.     *
1684  * This counter should be used when recovering from error and reset     *
1685  * conditions. Note that software would be capable of causing           *
1686  * inadvertent overflow or underflow of these counters.                 *
1687  *									*
1688  ************************************************************************/
1689 
1690 typedef union ii_ipca_u {
1691 	u64 ii_ipca_regval;
1692 	struct {
1693 		u64 i_wid:4;
1694 		u64 i_adjust:1;
1695 		u64 i_rsvd_1:3;
1696 		u64 i_field:2;
1697 		u64 i_rsvd:54;
1698 	} ii_ipca_fld_s;
1699 } ii_ipca_u_t;
1700 
1701 /************************************************************************
1702  *									*
1703  *  There are 8 instances of this register. This register contains      *
1704  * the information that the II has to remember once it has launched a   *
1705  * PIO Read operation. The contents are used to form the correct        *
1706  * Router Network packet and direct the Crosstalk reply to the          *
1707  * appropriate processor.                                               *
1708  *									*
1709  ************************************************************************/
1710 
1711 typedef union ii_iprte0a_u {
1712 	u64 ii_iprte0a_regval;
1713 	struct {
1714 		u64 i_rsvd_1:54;
1715 		u64 i_widget:4;
1716 		u64 i_to_cnt:5;
1717 		u64 i_vld:1;
1718 	} ii_iprte0a_fld_s;
1719 } ii_iprte0a_u_t;
1720 
1721 /************************************************************************
1722  *									*
1723  *  There are 8 instances of this register. This register contains      *
1724  * the information that the II has to remember once it has launched a   *
1725  * PIO Read operation. The contents are used to form the correct        *
1726  * Router Network packet and direct the Crosstalk reply to the          *
1727  * appropriate processor.                                               *
1728  *									*
1729  ************************************************************************/
1730 
1731 typedef union ii_iprte1a_u {
1732 	u64 ii_iprte1a_regval;
1733 	struct {
1734 		u64 i_rsvd_1:54;
1735 		u64 i_widget:4;
1736 		u64 i_to_cnt:5;
1737 		u64 i_vld:1;
1738 	} ii_iprte1a_fld_s;
1739 } ii_iprte1a_u_t;
1740 
1741 /************************************************************************
1742  *									*
1743  *  There are 8 instances of this register. This register contains      *
1744  * the information that the II has to remember once it has launched a   *
1745  * PIO Read operation. The contents are used to form the correct        *
1746  * Router Network packet and direct the Crosstalk reply to the          *
1747  * appropriate processor.                                               *
1748  *									*
1749  ************************************************************************/
1750 
1751 typedef union ii_iprte2a_u {
1752 	u64 ii_iprte2a_regval;
1753 	struct {
1754 		u64 i_rsvd_1:54;
1755 		u64 i_widget:4;
1756 		u64 i_to_cnt:5;
1757 		u64 i_vld:1;
1758 	} ii_iprte2a_fld_s;
1759 } ii_iprte2a_u_t;
1760 
1761 /************************************************************************
1762  *									*
1763  *  There are 8 instances of this register. This register contains      *
1764  * the information that the II has to remember once it has launched a   *
1765  * PIO Read operation. The contents are used to form the correct        *
1766  * Router Network packet and direct the Crosstalk reply to the          *
1767  * appropriate processor.                                               *
1768  *									*
1769  ************************************************************************/
1770 
1771 typedef union ii_iprte3a_u {
1772 	u64 ii_iprte3a_regval;
1773 	struct {
1774 		u64 i_rsvd_1:54;
1775 		u64 i_widget:4;
1776 		u64 i_to_cnt:5;
1777 		u64 i_vld:1;
1778 	} ii_iprte3a_fld_s;
1779 } ii_iprte3a_u_t;
1780 
1781 /************************************************************************
1782  *									*
1783  *  There are 8 instances of this register. This register contains      *
1784  * the information that the II has to remember once it has launched a   *
1785  * PIO Read operation. The contents are used to form the correct        *
1786  * Router Network packet and direct the Crosstalk reply to the          *
1787  * appropriate processor.                                               *
1788  *									*
1789  ************************************************************************/
1790 
1791 typedef union ii_iprte4a_u {
1792 	u64 ii_iprte4a_regval;
1793 	struct {
1794 		u64 i_rsvd_1:54;
1795 		u64 i_widget:4;
1796 		u64 i_to_cnt:5;
1797 		u64 i_vld:1;
1798 	} ii_iprte4a_fld_s;
1799 } ii_iprte4a_u_t;
1800 
1801 /************************************************************************
1802  *									*
1803  *  There are 8 instances of this register. This register contains      *
1804  * the information that the II has to remember once it has launched a   *
1805  * PIO Read operation. The contents are used to form the correct        *
1806  * Router Network packet and direct the Crosstalk reply to the          *
1807  * appropriate processor.                                               *
1808  *									*
1809  ************************************************************************/
1810 
1811 typedef union ii_iprte5a_u {
1812 	u64 ii_iprte5a_regval;
1813 	struct {
1814 		u64 i_rsvd_1:54;
1815 		u64 i_widget:4;
1816 		u64 i_to_cnt:5;
1817 		u64 i_vld:1;
1818 	} ii_iprte5a_fld_s;
1819 } ii_iprte5a_u_t;
1820 
1821 /************************************************************************
1822  *									*
1823  *  There are 8 instances of this register. This register contains      *
1824  * the information that the II has to remember once it has launched a   *
1825  * PIO Read operation. The contents are used to form the correct        *
1826  * Router Network packet and direct the Crosstalk reply to the          *
1827  * appropriate processor.                                               *
1828  *									*
1829  ************************************************************************/
1830 
1831 typedef union ii_iprte6a_u {
1832 	u64 ii_iprte6a_regval;
1833 	struct {
1834 		u64 i_rsvd_1:54;
1835 		u64 i_widget:4;
1836 		u64 i_to_cnt:5;
1837 		u64 i_vld:1;
1838 	} ii_iprte6a_fld_s;
1839 } ii_iprte6a_u_t;
1840 
1841 /************************************************************************
1842  *									*
1843  *  There are 8 instances of this register. This register contains      *
1844  * the information that the II has to remember once it has launched a   *
1845  * PIO Read operation. The contents are used to form the correct        *
1846  * Router Network packet and direct the Crosstalk reply to the          *
1847  * appropriate processor.                                               *
1848  *									*
1849  ************************************************************************/
1850 
1851 typedef union ii_iprte7a_u {
1852 	u64 ii_iprte7a_regval;
1853 	struct {
1854 		u64 i_rsvd_1:54;
1855 		u64 i_widget:4;
1856 		u64 i_to_cnt:5;
1857 		u64 i_vld:1;
1858 	} ii_iprtea7_fld_s;
1859 } ii_iprte7a_u_t;
1860 
1861 /************************************************************************
1862  *									*
1863  *  There are 8 instances of this register. This register contains      *
1864  * the information that the II has to remember once it has launched a   *
1865  * PIO Read operation. The contents are used to form the correct        *
1866  * Router Network packet and direct the Crosstalk reply to the          *
1867  * appropriate processor.                                               *
1868  *									*
1869  ************************************************************************/
1870 
1871 typedef union ii_iprte0b_u {
1872 	u64 ii_iprte0b_regval;
1873 	struct {
1874 		u64 i_rsvd_1:3;
1875 		u64 i_address:47;
1876 		u64 i_init:3;
1877 		u64 i_source:11;
1878 	} ii_iprte0b_fld_s;
1879 } ii_iprte0b_u_t;
1880 
1881 /************************************************************************
1882  *									*
1883  *  There are 8 instances of this register. This register contains      *
1884  * the information that the II has to remember once it has launched a   *
1885  * PIO Read operation. The contents are used to form the correct        *
1886  * Router Network packet and direct the Crosstalk reply to the          *
1887  * appropriate processor.                                               *
1888  *									*
1889  ************************************************************************/
1890 
1891 typedef union ii_iprte1b_u {
1892 	u64 ii_iprte1b_regval;
1893 	struct {
1894 		u64 i_rsvd_1:3;
1895 		u64 i_address:47;
1896 		u64 i_init:3;
1897 		u64 i_source:11;
1898 	} ii_iprte1b_fld_s;
1899 } ii_iprte1b_u_t;
1900 
1901 /************************************************************************
1902  *									*
1903  *  There are 8 instances of this register. This register contains      *
1904  * the information that the II has to remember once it has launched a   *
1905  * PIO Read operation. The contents are used to form the correct        *
1906  * Router Network packet and direct the Crosstalk reply to the          *
1907  * appropriate processor.                                               *
1908  *									*
1909  ************************************************************************/
1910 
1911 typedef union ii_iprte2b_u {
1912 	u64 ii_iprte2b_regval;
1913 	struct {
1914 		u64 i_rsvd_1:3;
1915 		u64 i_address:47;
1916 		u64 i_init:3;
1917 		u64 i_source:11;
1918 	} ii_iprte2b_fld_s;
1919 } ii_iprte2b_u_t;
1920 
1921 /************************************************************************
1922  *									*
1923  *  There are 8 instances of this register. This register contains      *
1924  * the information that the II has to remember once it has launched a   *
1925  * PIO Read operation. The contents are used to form the correct        *
1926  * Router Network packet and direct the Crosstalk reply to the          *
1927  * appropriate processor.                                               *
1928  *									*
1929  ************************************************************************/
1930 
1931 typedef union ii_iprte3b_u {
1932 	u64 ii_iprte3b_regval;
1933 	struct {
1934 		u64 i_rsvd_1:3;
1935 		u64 i_address:47;
1936 		u64 i_init:3;
1937 		u64 i_source:11;
1938 	} ii_iprte3b_fld_s;
1939 } ii_iprte3b_u_t;
1940 
1941 /************************************************************************
1942  *									*
1943  *  There are 8 instances of this register. This register contains      *
1944  * the information that the II has to remember once it has launched a   *
1945  * PIO Read operation. The contents are used to form the correct        *
1946  * Router Network packet and direct the Crosstalk reply to the          *
1947  * appropriate processor.                                               *
1948  *									*
1949  ************************************************************************/
1950 
1951 typedef union ii_iprte4b_u {
1952 	u64 ii_iprte4b_regval;
1953 	struct {
1954 		u64 i_rsvd_1:3;
1955 		u64 i_address:47;
1956 		u64 i_init:3;
1957 		u64 i_source:11;
1958 	} ii_iprte4b_fld_s;
1959 } ii_iprte4b_u_t;
1960 
1961 /************************************************************************
1962  *									*
1963  *  There are 8 instances of this register. This register contains      *
1964  * the information that the II has to remember once it has launched a   *
1965  * PIO Read operation. The contents are used to form the correct        *
1966  * Router Network packet and direct the Crosstalk reply to the          *
1967  * appropriate processor.                                               *
1968  *									*
1969  ************************************************************************/
1970 
1971 typedef union ii_iprte5b_u {
1972 	u64 ii_iprte5b_regval;
1973 	struct {
1974 		u64 i_rsvd_1:3;
1975 		u64 i_address:47;
1976 		u64 i_init:3;
1977 		u64 i_source:11;
1978 	} ii_iprte5b_fld_s;
1979 } ii_iprte5b_u_t;
1980 
1981 /************************************************************************
1982  *									*
1983  *  There are 8 instances of this register. This register contains      *
1984  * the information that the II has to remember once it has launched a   *
1985  * PIO Read operation. The contents are used to form the correct        *
1986  * Router Network packet and direct the Crosstalk reply to the          *
1987  * appropriate processor.                                               *
1988  *									*
1989  ************************************************************************/
1990 
1991 typedef union ii_iprte6b_u {
1992 	u64 ii_iprte6b_regval;
1993 	struct {
1994 		u64 i_rsvd_1:3;
1995 		u64 i_address:47;
1996 		u64 i_init:3;
1997 		u64 i_source:11;
1998 
1999 	} ii_iprte6b_fld_s;
2000 } ii_iprte6b_u_t;
2001 
2002 /************************************************************************
2003  *									*
2004  *  There are 8 instances of this register. This register contains      *
2005  * the information that the II has to remember once it has launched a   *
2006  * PIO Read operation. The contents are used to form the correct        *
2007  * Router Network packet and direct the Crosstalk reply to the          *
2008  * appropriate processor.                                               *
2009  *									*
2010  ************************************************************************/
2011 
2012 typedef union ii_iprte7b_u {
2013 	u64 ii_iprte7b_regval;
2014 	struct {
2015 		u64 i_rsvd_1:3;
2016 		u64 i_address:47;
2017 		u64 i_init:3;
2018 		u64 i_source:11;
2019 	} ii_iprte7b_fld_s;
2020 } ii_iprte7b_u_t;
2021 
2022 /************************************************************************
2023  *									*
2024  * Description:  SHub II contains a feature which did not exist in      *
2025  * the Hub which automatically cleans up after a Read Response          *
2026  * timeout, including deallocation of the IPRTE and recovery of IBuf    *
2027  * space. The inclusion of this register in SHub is for backward        *
2028  * compatibility                                                        *
2029  * A write to this register causes an entry from the table of           *
2030  * outstanding PIO Read Requests to be freed and returned to the        *
2031  * stack of free entries. This register is used in handling the         *
2032  * timeout errors that result in a PIO Reply never returning from       *
2033  * Crosstalk.                                                           *
2034  * Note that this register does not affect the contents of the IPRTE    *
2035  * registers. The Valid bits in those registers have to be              *
2036  * specifically turned off by software.                                 *
2037  *									*
2038  ************************************************************************/
2039 
2040 typedef union ii_ipdr_u {
2041 	u64 ii_ipdr_regval;
2042 	struct {
2043 		u64 i_te:3;
2044 		u64 i_rsvd_1:1;
2045 		u64 i_pnd:1;
2046 		u64 i_init_rpcnt:1;
2047 		u64 i_rsvd:58;
2048 	} ii_ipdr_fld_s;
2049 } ii_ipdr_u_t;
2050 
2051 /************************************************************************
2052  *									*
2053  *  A write to this register causes a CRB entry to be returned to the   *
2054  * queue of free CRBs. The entry should have previously been cleared    *
2055  * (mark bit) via backdoor access to the pertinent CRB entry. This      *
2056  * register is used in the last step of handling the errors that are    *
2057  * captured and marked in CRB entries.  Briefly: 1) first error for     *
2058  * DMA write from a particular device, and first error for a            *
2059  * particular BTE stream, lead to a marked CRB entry, and processor     *
2060  * interrupt, 2) software reads the error information captured in the   *
2061  * CRB entry, and presumably takes some corrective action, 3)           *
2062  * software clears the mark bit, and finally 4) software writes to      *
2063  * the ICDR register to return the CRB entry to the list of free CRB    *
2064  * entries.                                                             *
2065  *									*
2066  ************************************************************************/
2067 
2068 typedef union ii_icdr_u {
2069 	u64 ii_icdr_regval;
2070 	struct {
2071 		u64 i_crb_num:4;
2072 		u64 i_pnd:1;
2073 		u64 i_rsvd:59;
2074 	} ii_icdr_fld_s;
2075 } ii_icdr_u_t;
2076 
2077 /************************************************************************
2078  *									*
2079  *  This register provides debug access to two FIFOs inside of II.      *
2080  * Both IOQ_MAX* fields of this register contain the instantaneous      *
2081  * depth (in units of the number of available entries) of the           *
2082  * associated IOQ FIFO.  A read of this register will return the        *
2083  * number of free entries on each FIFO at the time of the read.  So     *
2084  * when a FIFO is idle, the associated field contains the maximum       *
2085  * depth of the FIFO.  This register is writable for debug reasons      *
2086  * and is intended to be written with the maximum desired FIFO depth    *
2087  * while the FIFO is idle. Software must assure that II is idle when    *
2088  * this register is written. If there are any active entries in any     *
2089  * of these FIFOs when this register is written, the results are        *
2090  * undefined.                                                           *
2091  *									*
2092  ************************************************************************/
2093 
2094 typedef union ii_ifdr_u {
2095 	u64 ii_ifdr_regval;
2096 	struct {
2097 		u64 i_ioq_max_rq:7;
2098 		u64 i_set_ioq_rq:1;
2099 		u64 i_ioq_max_rp:7;
2100 		u64 i_set_ioq_rp:1;
2101 		u64 i_rsvd:48;
2102 	} ii_ifdr_fld_s;
2103 } ii_ifdr_u_t;
2104 
2105 /************************************************************************
2106  *									*
2107  *  This register allows the II to become sluggish in removing          *
2108  * messages from its inbound queue (IIQ). This will cause messages to   *
2109  * back up in either virtual channel. Disabling the "molasses" mode     *
2110  * subsequently allows the II to be tested under stress. In the         *
2111  * sluggish ("Molasses") mode, the localized effects of congestion      *
2112  * can be observed.                                                     *
2113  *									*
2114  ************************************************************************/
2115 
2116 typedef union ii_iiap_u {
2117 	u64 ii_iiap_regval;
2118 	struct {
2119 		u64 i_rq_mls:6;
2120 		u64 i_rsvd_1:2;
2121 		u64 i_rp_mls:6;
2122 		u64 i_rsvd:50;
2123 	} ii_iiap_fld_s;
2124 } ii_iiap_u_t;
2125 
2126 /************************************************************************
2127  *									*
2128  *  This register allows several parameters of CRB operation to be      *
2129  * set. Note that writing to this register can have catastrophic side   *
2130  * effects, if the CRB is not quiescent, i.e. if the CRB is             *
2131  * processing protocol messages when the write occurs.                  *
2132  *									*
2133  ************************************************************************/
2134 
2135 typedef union ii_icmr_u {
2136 	u64 ii_icmr_regval;
2137 	struct {
2138 		u64 i_sp_msg:1;
2139 		u64 i_rd_hdr:1;
2140 		u64 i_rsvd_4:2;
2141 		u64 i_c_cnt:4;
2142 		u64 i_rsvd_3:4;
2143 		u64 i_clr_rqpd:1;
2144 		u64 i_clr_rppd:1;
2145 		u64 i_rsvd_2:2;
2146 		u64 i_fc_cnt:4;
2147 		u64 i_crb_vld:15;
2148 		u64 i_crb_mark:15;
2149 		u64 i_rsvd_1:2;
2150 		u64 i_precise:1;
2151 		u64 i_rsvd:11;
2152 	} ii_icmr_fld_s;
2153 } ii_icmr_u_t;
2154 
2155 /************************************************************************
2156  *									*
2157  *  This register allows control of the table portion of the CRB        *
2158  * logic via software. Control operations from this register have       *
2159  * priority over all incoming Crosstalk or BTE requests.                *
2160  *									*
2161  ************************************************************************/
2162 
2163 typedef union ii_iccr_u {
2164 	u64 ii_iccr_regval;
2165 	struct {
2166 		u64 i_crb_num:4;
2167 		u64 i_rsvd_1:4;
2168 		u64 i_cmd:8;
2169 		u64 i_pending:1;
2170 		u64 i_rsvd:47;
2171 	} ii_iccr_fld_s;
2172 } ii_iccr_u_t;
2173 
2174 /************************************************************************
2175  *									*
2176  *  This register allows the maximum timeout value to be programmed.    *
2177  *									*
2178  ************************************************************************/
2179 
2180 typedef union ii_icto_u {
2181 	u64 ii_icto_regval;
2182 	struct {
2183 		u64 i_timeout:8;
2184 		u64 i_rsvd:56;
2185 	} ii_icto_fld_s;
2186 } ii_icto_u_t;
2187 
2188 /************************************************************************
2189  *									*
2190  *  This register allows the timeout prescalar to be programmed. An     *
2191  * internal counter is associated with this register. When the          *
2192  * internal counter reaches the value of the PRESCALE field, the        *
2193  * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
2194  * field). The internal counter resets to zero, and then continues      *
2195  * counting.                                                            *
2196  *									*
2197  ************************************************************************/
2198 
2199 typedef union ii_ictp_u {
2200 	u64 ii_ictp_regval;
2201 	struct {
2202 		u64 i_prescale:24;
2203 		u64 i_rsvd:40;
2204 	} ii_ictp_fld_s;
2205 } ii_ictp_u_t;
2206 
2207 /************************************************************************
2208  *									*
2209  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2210  * used for Crosstalk operations (both cacheline and partial            *
2211  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2212  * registers (_A to _E) are required to read and write each entry.      *
2213  * The CRB Entry registers can be conceptualized as rows and columns    *
2214  * (illustrated in the table above). Each row contains the 4            *
2215  * registers required for a single CRB Entry. The first doubleword      *
2216  * (column) for each entry is labeled A, and the second doubleword      *
2217  * (higher address) is labeled B, the third doubleword is labeled C,    *
2218  * the fourth doubleword is labeled D and the fifth doubleword is       *
2219  * labeled E. All CRB entries have their addresses on a quarter         *
2220  * cacheline aligned boundary.                   *
2221  * Upon reset, only the following fields are initialized: valid         *
2222  * (VLD), priority count, timeout, timeout valid, and context valid.    *
2223  * All other bits should be cleared by software before use (after       *
2224  * recovering any potential error state from before the reset).         *
2225  * The following four tables summarize the format for the four          *
2226  * registers that are used for each ICRB# Entry.                        *
2227  *									*
2228  ************************************************************************/
2229 
2230 typedef union ii_icrb0_a_u {
2231 	u64 ii_icrb0_a_regval;
2232 	struct {
2233 		u64 ia_iow:1;
2234 		u64 ia_vld:1;
2235 		u64 ia_addr:47;
2236 		u64 ia_tnum:5;
2237 		u64 ia_sidn:4;
2238 		u64 ia_rsvd:6;
2239 	} ii_icrb0_a_fld_s;
2240 } ii_icrb0_a_u_t;
2241 
2242 /************************************************************************
2243  *									*
2244  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2245  * used for Crosstalk operations (both cacheline and partial            *
2246  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2247  * registers (_A to _E) are required to read and write each entry.      *
2248  *									*
2249  ************************************************************************/
2250 
2251 typedef union ii_icrb0_b_u {
2252 	u64 ii_icrb0_b_regval;
2253 	struct {
2254 		u64 ib_xt_err:1;
2255 		u64 ib_mark:1;
2256 		u64 ib_ln_uce:1;
2257 		u64 ib_errcode:3;
2258 		u64 ib_error:1;
2259 		u64 ib_stall__bte_1:1;
2260 		u64 ib_stall__bte_0:1;
2261 		u64 ib_stall__intr:1;
2262 		u64 ib_stall_ib:1;
2263 		u64 ib_intvn:1;
2264 		u64 ib_wb:1;
2265 		u64 ib_hold:1;
2266 		u64 ib_ack:1;
2267 		u64 ib_resp:1;
2268 		u64 ib_ack_cnt:11;
2269 		u64 ib_rsvd:7;
2270 		u64 ib_exc:5;
2271 		u64 ib_init:3;
2272 		u64 ib_imsg:8;
2273 		u64 ib_imsgtype:2;
2274 		u64 ib_use_old:1;
2275 		u64 ib_rsvd_1:11;
2276 	} ii_icrb0_b_fld_s;
2277 } ii_icrb0_b_u_t;
2278 
2279 /************************************************************************
2280  *									*
2281  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2282  * used for Crosstalk operations (both cacheline and partial            *
2283  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2284  * registers (_A to _E) are required to read and write each entry.      *
2285  *									*
2286  ************************************************************************/
2287 
2288 typedef union ii_icrb0_c_u {
2289 	u64 ii_icrb0_c_regval;
2290 	struct {
2291 		u64 ic_source:15;
2292 		u64 ic_size:2;
2293 		u64 ic_ct:1;
2294 		u64 ic_bte_num:1;
2295 		u64 ic_gbr:1;
2296 		u64 ic_resprqd:1;
2297 		u64 ic_bo:1;
2298 		u64 ic_suppl:15;
2299 		u64 ic_rsvd:27;
2300 	} ii_icrb0_c_fld_s;
2301 } ii_icrb0_c_u_t;
2302 
2303 /************************************************************************
2304  *									*
2305  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2306  * used for Crosstalk operations (both cacheline and partial            *
2307  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2308  * registers (_A to _E) are required to read and write each entry.      *
2309  *									*
2310  ************************************************************************/
2311 
2312 typedef union ii_icrb0_d_u {
2313 	u64 ii_icrb0_d_regval;
2314 	struct {
2315 		u64 id_pa_be:43;
2316 		u64 id_bte_op:1;
2317 		u64 id_pr_psc:4;
2318 		u64 id_pr_cnt:4;
2319 		u64 id_sleep:1;
2320 		u64 id_rsvd:11;
2321 	} ii_icrb0_d_fld_s;
2322 } ii_icrb0_d_u_t;
2323 
2324 /************************************************************************
2325  *									*
2326  * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2327  * used for Crosstalk operations (both cacheline and partial            *
2328  * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2329  * registers (_A to _E) are required to read and write each entry.      *
2330  *									*
2331  ************************************************************************/
2332 
2333 typedef union ii_icrb0_e_u {
2334 	u64 ii_icrb0_e_regval;
2335 	struct {
2336 		u64 ie_timeout:8;
2337 		u64 ie_context:15;
2338 		u64 ie_rsvd:1;
2339 		u64 ie_tvld:1;
2340 		u64 ie_cvld:1;
2341 		u64 ie_rsvd_0:38;
2342 	} ii_icrb0_e_fld_s;
2343 } ii_icrb0_e_u_t;
2344 
2345 /************************************************************************
2346  *									*
2347  *  This register contains the lower 64 bits of the header of the       *
2348  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2349  * register is set.                                                     *
2350  *									*
2351  ************************************************************************/
2352 
2353 typedef union ii_icsml_u {
2354 	u64 ii_icsml_regval;
2355 	struct {
2356 		u64 i_tt_addr:47;
2357 		u64 i_newsuppl_ex:14;
2358 		u64 i_reserved:2;
2359 		u64 i_overflow:1;
2360 	} ii_icsml_fld_s;
2361 } ii_icsml_u_t;
2362 
2363 /************************************************************************
2364  *									*
2365  *  This register contains the middle 64 bits of the header of the      *
2366  * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2367  * register is set.                                                     *
2368  *									*
2369  ************************************************************************/
2370 
2371 typedef union ii_icsmm_u {
2372 	u64 ii_icsmm_regval;
2373 	struct {
2374 		u64 i_tt_ack_cnt:11;
2375 		u64 i_reserved:53;
2376 	} ii_icsmm_fld_s;
2377 } ii_icsmm_u_t;
2378 
2379 /************************************************************************
2380  *									*
2381  *  This register contains the microscopic state, all the inputs to     *
2382  * the protocol table, captured with the spurious message. Valid when   *
2383  * the SP_MSG bit in the ICMR register is set.                          *
2384  *									*
2385  ************************************************************************/
2386 
2387 typedef union ii_icsmh_u {
2388 	u64 ii_icsmh_regval;
2389 	struct {
2390 		u64 i_tt_vld:1;
2391 		u64 i_xerr:1;
2392 		u64 i_ft_cwact_o:1;
2393 		u64 i_ft_wact_o:1;
2394 		u64 i_ft_active_o:1;
2395 		u64 i_sync:1;
2396 		u64 i_mnusg:1;
2397 		u64 i_mnusz:1;
2398 		u64 i_plusz:1;
2399 		u64 i_plusg:1;
2400 		u64 i_tt_exc:5;
2401 		u64 i_tt_wb:1;
2402 		u64 i_tt_hold:1;
2403 		u64 i_tt_ack:1;
2404 		u64 i_tt_resp:1;
2405 		u64 i_tt_intvn:1;
2406 		u64 i_g_stall_bte1:1;
2407 		u64 i_g_stall_bte0:1;
2408 		u64 i_g_stall_il:1;
2409 		u64 i_g_stall_ib:1;
2410 		u64 i_tt_imsg:8;
2411 		u64 i_tt_imsgtype:2;
2412 		u64 i_tt_use_old:1;
2413 		u64 i_tt_respreqd:1;
2414 		u64 i_tt_bte_num:1;
2415 		u64 i_cbn:1;
2416 		u64 i_match:1;
2417 		u64 i_rpcnt_lt_34:1;
2418 		u64 i_rpcnt_ge_34:1;
2419 		u64 i_rpcnt_lt_18:1;
2420 		u64 i_rpcnt_ge_18:1;
2421 		u64 i_rpcnt_lt_2:1;
2422 		u64 i_rpcnt_ge_2:1;
2423 		u64 i_rqcnt_lt_18:1;
2424 		u64 i_rqcnt_ge_18:1;
2425 		u64 i_rqcnt_lt_2:1;
2426 		u64 i_rqcnt_ge_2:1;
2427 		u64 i_tt_device:7;
2428 		u64 i_tt_init:3;
2429 		u64 i_reserved:5;
2430 	} ii_icsmh_fld_s;
2431 } ii_icsmh_u_t;
2432 
2433 /************************************************************************
2434  *									*
2435  *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
2436  * II core and a 3-bit selection signal to the fsbclk domain in the II  *
2437  * wrapper.                                                             *
2438  *									*
2439  ************************************************************************/
2440 
2441 typedef union ii_idbss_u {
2442 	u64 ii_idbss_regval;
2443 	struct {
2444 		u64 i_iioclk_core_submenu:3;
2445 		u64 i_rsvd:5;
2446 		u64 i_fsbclk_wrapper_submenu:3;
2447 		u64 i_rsvd_1:5;
2448 		u64 i_iioclk_menu:5;
2449 		u64 i_rsvd_2:43;
2450 	} ii_idbss_fld_s;
2451 } ii_idbss_u_t;
2452 
2453 /************************************************************************
2454  *									*
2455  * Description:  This register is used to set up the length for a       *
2456  * transfer and then to monitor the progress of that transfer. This     *
2457  * register needs to be initialized before a transfer is started. A     *
2458  * legitimate write to this register will set the Busy bit, clear the   *
2459  * Error bit, and initialize the length to the value desired.           *
2460  * While the transfer is in progress, hardware will decrement the       *
2461  * length field with each successful block that is copied. Once the     *
2462  * transfer completes, hardware will clear the Busy bit. The length     *
2463  * field will also contain the number of cache lines left to be         *
2464  * transferred.                                                         *
2465  *									*
2466  ************************************************************************/
2467 
2468 typedef union ii_ibls0_u {
2469 	u64 ii_ibls0_regval;
2470 	struct {
2471 		u64 i_length:16;
2472 		u64 i_error:1;
2473 		u64 i_rsvd_1:3;
2474 		u64 i_busy:1;
2475 		u64 i_rsvd:43;
2476 	} ii_ibls0_fld_s;
2477 } ii_ibls0_u_t;
2478 
2479 /************************************************************************
2480  *									*
2481  *  This register should be loaded before a transfer is started. The    *
2482  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2483  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2484  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2485  * transfers are always cacheline-aligned.                              *
2486  *									*
2487  ************************************************************************/
2488 
2489 typedef union ii_ibsa0_u {
2490 	u64 ii_ibsa0_regval;
2491 	struct {
2492 		u64 i_rsvd_1:7;
2493 		u64 i_addr:42;
2494 		u64 i_rsvd:15;
2495 	} ii_ibsa0_fld_s;
2496 } ii_ibsa0_u_t;
2497 
2498 /************************************************************************
2499  *									*
2500  *  This register should be loaded before a transfer is started. The    *
2501  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2502  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2503  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2504  * transfers are always cacheline-aligned.                              *
2505  *									*
2506  ************************************************************************/
2507 
2508 typedef union ii_ibda0_u {
2509 	u64 ii_ibda0_regval;
2510 	struct {
2511 		u64 i_rsvd_1:7;
2512 		u64 i_addr:42;
2513 		u64 i_rsvd:15;
2514 	} ii_ibda0_fld_s;
2515 } ii_ibda0_u_t;
2516 
2517 /************************************************************************
2518  *									*
2519  *  Writing to this register sets up the attributes of the transfer     *
2520  * and initiates the transfer operation. Reading this register has      *
2521  * the side effect of terminating any transfer in progress. Note:       *
2522  * stopping a transfer midstream could have an adverse impact on the    *
2523  * other BTE. If a BTE stream has to be stopped (due to error           *
2524  * handling for example), both BTE streams should be stopped and        *
2525  * their transfers discarded.                                           *
2526  *									*
2527  ************************************************************************/
2528 
2529 typedef union ii_ibct0_u {
2530 	u64 ii_ibct0_regval;
2531 	struct {
2532 		u64 i_zerofill:1;
2533 		u64 i_rsvd_2:3;
2534 		u64 i_notify:1;
2535 		u64 i_rsvd_1:3;
2536 		u64 i_poison:1;
2537 		u64 i_rsvd:55;
2538 	} ii_ibct0_fld_s;
2539 } ii_ibct0_u_t;
2540 
2541 /************************************************************************
2542  *									*
2543  *  This register contains the address to which the WINV is sent.       *
2544  * This address has to be cache line aligned.                           *
2545  *									*
2546  ************************************************************************/
2547 
2548 typedef union ii_ibna0_u {
2549 	u64 ii_ibna0_regval;
2550 	struct {
2551 		u64 i_rsvd_1:7;
2552 		u64 i_addr:42;
2553 		u64 i_rsvd:15;
2554 	} ii_ibna0_fld_s;
2555 } ii_ibna0_u_t;
2556 
2557 /************************************************************************
2558  *									*
2559  *  This register contains the programmable level as well as the node   *
2560  * ID and PI unit of the processor to which the interrupt will be       *
2561  * sent.								*
2562  *									*
2563  ************************************************************************/
2564 
2565 typedef union ii_ibia0_u {
2566 	u64 ii_ibia0_regval;
2567 	struct {
2568 		u64 i_rsvd_2:1;
2569 		u64 i_node_id:11;
2570 		u64 i_rsvd_1:4;
2571 		u64 i_level:7;
2572 		u64 i_rsvd:41;
2573 	} ii_ibia0_fld_s;
2574 } ii_ibia0_u_t;
2575 
2576 /************************************************************************
2577  *									*
2578  * Description:  This register is used to set up the length for a       *
2579  * transfer and then to monitor the progress of that transfer. This     *
2580  * register needs to be initialized before a transfer is started. A     *
2581  * legitimate write to this register will set the Busy bit, clear the   *
2582  * Error bit, and initialize the length to the value desired.           *
2583  * While the transfer is in progress, hardware will decrement the       *
2584  * length field with each successful block that is copied. Once the     *
2585  * transfer completes, hardware will clear the Busy bit. The length     *
2586  * field will also contain the number of cache lines left to be         *
2587  * transferred.                                                         *
2588  *									*
2589  ************************************************************************/
2590 
2591 typedef union ii_ibls1_u {
2592 	u64 ii_ibls1_regval;
2593 	struct {
2594 		u64 i_length:16;
2595 		u64 i_error:1;
2596 		u64 i_rsvd_1:3;
2597 		u64 i_busy:1;
2598 		u64 i_rsvd:43;
2599 	} ii_ibls1_fld_s;
2600 } ii_ibls1_u_t;
2601 
2602 /************************************************************************
2603  *									*
2604  *  This register should be loaded before a transfer is started. The    *
2605  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2606  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2607  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2608  * transfers are always cacheline-aligned.                              *
2609  *									*
2610  ************************************************************************/
2611 
2612 typedef union ii_ibsa1_u {
2613 	u64 ii_ibsa1_regval;
2614 	struct {
2615 		u64 i_rsvd_1:7;
2616 		u64 i_addr:33;
2617 		u64 i_rsvd:24;
2618 	} ii_ibsa1_fld_s;
2619 } ii_ibsa1_u_t;
2620 
2621 /************************************************************************
2622  *									*
2623  *  This register should be loaded before a transfer is started. The    *
2624  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2625  * address as described in Section 1.3, Figure2 and Figure3. Since      *
2626  * the bottom 7 bits of the address are always taken to be zero, BTE    *
2627  * transfers are always cacheline-aligned.                              *
2628  *									*
2629  ************************************************************************/
2630 
2631 typedef union ii_ibda1_u {
2632 	u64 ii_ibda1_regval;
2633 	struct {
2634 		u64 i_rsvd_1:7;
2635 		u64 i_addr:33;
2636 		u64 i_rsvd:24;
2637 	} ii_ibda1_fld_s;
2638 } ii_ibda1_u_t;
2639 
2640 /************************************************************************
2641  *									*
2642  *  Writing to this register sets up the attributes of the transfer     *
2643  * and initiates the transfer operation. Reading this register has      *
2644  * the side effect of terminating any transfer in progress. Note:       *
2645  * stopping a transfer midstream could have an adverse impact on the    *
2646  * other BTE. If a BTE stream has to be stopped (due to error           *
2647  * handling for example), both BTE streams should be stopped and        *
2648  * their transfers discarded.                                           *
2649  *									*
2650  ************************************************************************/
2651 
2652 typedef union ii_ibct1_u {
2653 	u64 ii_ibct1_regval;
2654 	struct {
2655 		u64 i_zerofill:1;
2656 		u64 i_rsvd_2:3;
2657 		u64 i_notify:1;
2658 		u64 i_rsvd_1:3;
2659 		u64 i_poison:1;
2660 		u64 i_rsvd:55;
2661 	} ii_ibct1_fld_s;
2662 } ii_ibct1_u_t;
2663 
2664 /************************************************************************
2665  *									*
2666  *  This register contains the address to which the WINV is sent.       *
2667  * This address has to be cache line aligned.                           *
2668  *									*
2669  ************************************************************************/
2670 
2671 typedef union ii_ibna1_u {
2672 	u64 ii_ibna1_regval;
2673 	struct {
2674 		u64 i_rsvd_1:7;
2675 		u64 i_addr:33;
2676 		u64 i_rsvd:24;
2677 	} ii_ibna1_fld_s;
2678 } ii_ibna1_u_t;
2679 
2680 /************************************************************************
2681  *									*
2682  *  This register contains the programmable level as well as the node   *
2683  * ID and PI unit of the processor to which the interrupt will be       *
2684  * sent.								*
2685  *									*
2686  ************************************************************************/
2687 
2688 typedef union ii_ibia1_u {
2689 	u64 ii_ibia1_regval;
2690 	struct {
2691 		u64 i_pi_id:1;
2692 		u64 i_node_id:8;
2693 		u64 i_rsvd_1:7;
2694 		u64 i_level:7;
2695 		u64 i_rsvd:41;
2696 	} ii_ibia1_fld_s;
2697 } ii_ibia1_u_t;
2698 
2699 /************************************************************************
2700  *									*
2701  *  This register defines the resources that feed information into      *
2702  * the two performance counters located in the IO Performance           *
2703  * Profiling Register. There are 17 different quantities that can be    *
2704  * measured. Given these 17 different options, the two performance      *
2705  * counters have 15 of them in common; menu selections 0 through 0xE    *
2706  * are identical for each performance counter. As for the other two     *
2707  * options, one is available from one performance counter and the       *
2708  * other is available from the other performance counter. Hence, the    *
2709  * II supports all 17*16=272 possible combinations of quantities to     *
2710  * measure.                                                             *
2711  *									*
2712  ************************************************************************/
2713 
2714 typedef union ii_ipcr_u {
2715 	u64 ii_ipcr_regval;
2716 	struct {
2717 		u64 i_ippr0_c:4;
2718 		u64 i_ippr1_c:4;
2719 		u64 i_icct:8;
2720 		u64 i_rsvd:48;
2721 	} ii_ipcr_fld_s;
2722 } ii_ipcr_u_t;
2723 
2724 /************************************************************************
2725  *									*
2726  *									*
2727  *									*
2728  ************************************************************************/
2729 
2730 typedef union ii_ippr_u {
2731 	u64 ii_ippr_regval;
2732 	struct {
2733 		u64 i_ippr0:32;
2734 		u64 i_ippr1:32;
2735 	} ii_ippr_fld_s;
2736 } ii_ippr_u_t;
2737 
2738 /************************************************************************
2739  *									*
2740  * The following defines which were not formed into structures are	*
2741  * probably identical to another register, and the name of the		*
2742  * register is provided against each of these registers. This		*
2743  * information needs to be checked carefully				*
2744  *									*
2745  *		IIO_ICRB1_A		IIO_ICRB0_A			*
2746  *		IIO_ICRB1_B		IIO_ICRB0_B			*
2747  *		IIO_ICRB1_C		IIO_ICRB0_C			*
2748  *		IIO_ICRB1_D		IIO_ICRB0_D			*
2749  *		IIO_ICRB1_E		IIO_ICRB0_E			*
2750  *		IIO_ICRB2_A		IIO_ICRB0_A			*
2751  *		IIO_ICRB2_B		IIO_ICRB0_B			*
2752  *		IIO_ICRB2_C		IIO_ICRB0_C			*
2753  *		IIO_ICRB2_D		IIO_ICRB0_D			*
2754  *		IIO_ICRB2_E		IIO_ICRB0_E			*
2755  *		IIO_ICRB3_A		IIO_ICRB0_A			*
2756  *		IIO_ICRB3_B		IIO_ICRB0_B			*
2757  *		IIO_ICRB3_C		IIO_ICRB0_C			*
2758  *		IIO_ICRB3_D		IIO_ICRB0_D			*
2759  *		IIO_ICRB3_E		IIO_ICRB0_E			*
2760  *		IIO_ICRB4_A		IIO_ICRB0_A			*
2761  *		IIO_ICRB4_B		IIO_ICRB0_B			*
2762  *		IIO_ICRB4_C		IIO_ICRB0_C			*
2763  *		IIO_ICRB4_D		IIO_ICRB0_D			*
2764  *		IIO_ICRB4_E		IIO_ICRB0_E			*
2765  *		IIO_ICRB5_A		IIO_ICRB0_A			*
2766  *		IIO_ICRB5_B		IIO_ICRB0_B			*
2767  *		IIO_ICRB5_C		IIO_ICRB0_C			*
2768  *		IIO_ICRB5_D		IIO_ICRB0_D			*
2769  *		IIO_ICRB5_E		IIO_ICRB0_E			*
2770  *		IIO_ICRB6_A		IIO_ICRB0_A			*
2771  *		IIO_ICRB6_B		IIO_ICRB0_B			*
2772  *		IIO_ICRB6_C		IIO_ICRB0_C			*
2773  *		IIO_ICRB6_D		IIO_ICRB0_D			*
2774  *		IIO_ICRB6_E		IIO_ICRB0_E			*
2775  *		IIO_ICRB7_A		IIO_ICRB0_A			*
2776  *		IIO_ICRB7_B		IIO_ICRB0_B			*
2777  *		IIO_ICRB7_C		IIO_ICRB0_C			*
2778  *		IIO_ICRB7_D		IIO_ICRB0_D			*
2779  *		IIO_ICRB7_E		IIO_ICRB0_E			*
2780  *		IIO_ICRB8_A		IIO_ICRB0_A			*
2781  *		IIO_ICRB8_B		IIO_ICRB0_B			*
2782  *		IIO_ICRB8_C		IIO_ICRB0_C			*
2783  *		IIO_ICRB8_D		IIO_ICRB0_D			*
2784  *		IIO_ICRB8_E		IIO_ICRB0_E			*
2785  *		IIO_ICRB9_A		IIO_ICRB0_A			*
2786  *		IIO_ICRB9_B		IIO_ICRB0_B			*
2787  *		IIO_ICRB9_C		IIO_ICRB0_C			*
2788  *		IIO_ICRB9_D		IIO_ICRB0_D			*
2789  *		IIO_ICRB9_E		IIO_ICRB0_E			*
2790  *		IIO_ICRBA_A		IIO_ICRB0_A			*
2791  *		IIO_ICRBA_B		IIO_ICRB0_B			*
2792  *		IIO_ICRBA_C		IIO_ICRB0_C			*
2793  *		IIO_ICRBA_D		IIO_ICRB0_D			*
2794  *		IIO_ICRBA_E		IIO_ICRB0_E			*
2795  *		IIO_ICRBB_A		IIO_ICRB0_A			*
2796  *		IIO_ICRBB_B		IIO_ICRB0_B			*
2797  *		IIO_ICRBB_C		IIO_ICRB0_C			*
2798  *		IIO_ICRBB_D		IIO_ICRB0_D			*
2799  *		IIO_ICRBB_E		IIO_ICRB0_E			*
2800  *		IIO_ICRBC_A		IIO_ICRB0_A			*
2801  *		IIO_ICRBC_B		IIO_ICRB0_B			*
2802  *		IIO_ICRBC_C		IIO_ICRB0_C			*
2803  *		IIO_ICRBC_D		IIO_ICRB0_D			*
2804  *		IIO_ICRBC_E		IIO_ICRB0_E			*
2805  *		IIO_ICRBD_A		IIO_ICRB0_A			*
2806  *		IIO_ICRBD_B		IIO_ICRB0_B			*
2807  *		IIO_ICRBD_C		IIO_ICRB0_C			*
2808  *		IIO_ICRBD_D		IIO_ICRB0_D			*
2809  *		IIO_ICRBD_E		IIO_ICRB0_E			*
2810  *		IIO_ICRBE_A		IIO_ICRB0_A			*
2811  *		IIO_ICRBE_B		IIO_ICRB0_B			*
2812  *		IIO_ICRBE_C		IIO_ICRB0_C			*
2813  *		IIO_ICRBE_D		IIO_ICRB0_D			*
2814  *		IIO_ICRBE_E		IIO_ICRB0_E			*
2815  *									*
2816  ************************************************************************/
2817 
2818 /*
2819  * Slightly friendlier names for some common registers.
2820  */
2821 #define IIO_WIDGET              IIO_WID		/* Widget identification */
2822 #define IIO_WIDGET_STAT         IIO_WSTAT	/* Widget status register */
2823 #define IIO_WIDGET_CTRL         IIO_WCR		/* Widget control register */
2824 #define IIO_PROTECT             IIO_ILAPR	/* IO interface protection */
2825 #define IIO_PROTECT_OVRRD       IIO_ILAPO	/* IO protect override */
2826 #define IIO_OUTWIDGET_ACCESS    IIO_IOWA	/* Outbound widget access */
2827 #define IIO_INWIDGET_ACCESS     IIO_IIWA	/* Inbound widget access */
2828 #define IIO_INDEV_ERR_MASK      IIO_IIDEM	/* Inbound device error mask */
2829 #define IIO_LLP_CSR             IIO_ILCSR	/* LLP control and status */
2830 #define IIO_LLP_LOG             IIO_ILLR	/* LLP log */
2831 #define IIO_XTALKCC_TOUT        IIO_IXCC	/* Xtalk credit count timeout */
2832 #define IIO_XTALKTT_TOUT        IIO_IXTT	/* Xtalk tail timeout */
2833 #define IIO_IO_ERR_CLR          IIO_IECLR	/* IO error clear */
2834 #define IIO_IGFX_0 		IIO_IGFX0
2835 #define IIO_IGFX_1 		IIO_IGFX1
2836 #define IIO_IBCT_0		IIO_IBCT0
2837 #define IIO_IBCT_1		IIO_IBCT1
2838 #define IIO_IBLS_0		IIO_IBLS0
2839 #define IIO_IBLS_1		IIO_IBLS1
2840 #define IIO_IBSA_0		IIO_IBSA0
2841 #define IIO_IBSA_1		IIO_IBSA1
2842 #define IIO_IBDA_0		IIO_IBDA0
2843 #define IIO_IBDA_1		IIO_IBDA1
2844 #define IIO_IBNA_0		IIO_IBNA0
2845 #define IIO_IBNA_1		IIO_IBNA1
2846 #define IIO_IBIA_0		IIO_IBIA0
2847 #define IIO_IBIA_1		IIO_IBIA1
2848 #define IIO_IOPRB_0		IIO_IPRB0
2849 
2850 #define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))
2851 #define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))
2852 #define IIO_NUM_PRTES		8	/* Total number of PRB table entries */
2853 #define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8))	/* widget ID to its PRTE num */
2854 #define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8))	/* widget ID to its PRTE num */
2855 
2856 #define IIO_NUM_IPRBS 		9
2857 
2858 #define IIO_LLP_CSR_IS_UP		0x00002000
2859 #define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
2860 #define IIO_LLP_CSR_LLP_STAT_SHFT       12
2861 
2862 #define IIO_LLP_CB_MAX  0xffff	/* in ILLR CB_CNT, Max Check Bit errors */
2863 #define IIO_LLP_SN_MAX  0xffff	/* in ILLR SN_CNT, Max Sequence Number errors */
2864 
2865 /* key to IIO_PROTECT_OVRRD */
2866 #define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull	/* "SGIrules" */
2867 
2868 /* BTE register names */
2869 #define IIO_BTE_STAT_0          IIO_IBLS_0	/* Also BTE length/status 0 */
2870 #define IIO_BTE_SRC_0           IIO_IBSA_0	/* Also BTE source address  0 */
2871 #define IIO_BTE_DEST_0          IIO_IBDA_0	/* Also BTE dest. address 0 */
2872 #define IIO_BTE_CTRL_0          IIO_IBCT_0	/* Also BTE control/terminate 0 */
2873 #define IIO_BTE_NOTIFY_0        IIO_IBNA_0	/* Also BTE notification 0 */
2874 #define IIO_BTE_INT_0           IIO_IBIA_0	/* Also BTE interrupt 0 */
2875 #define IIO_BTE_OFF_0           0	/* Base offset from BTE 0 regs. */
2876 #define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0)	/* Offset from base to BTE 1 */
2877 
2878 /* BTE register offsets from base */
2879 #define BTEOFF_STAT             0
2880 #define BTEOFF_SRC      	(IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2881 #define BTEOFF_DEST     	(IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2882 #define BTEOFF_CTRL     	(IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2883 #define BTEOFF_NOTIFY   	(IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2884 #define BTEOFF_INT      	(IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2885 
2886 /* names used in shub diags */
2887 #define IIO_BASE_BTE0   IIO_IBLS_0
2888 #define IIO_BASE_BTE1   IIO_IBLS_1
2889 
2890 /*
2891  * Macro which takes the widget number, and returns the
2892  * IO PRB address of that widget.
2893  * value _x is expected to be a widget number in the range
2894  * 0, 8 - 0xF
2895  */
2896 #define IIO_IOPRB(_x)	(IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
2897                 	(_x) : \
2898                 	(_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
2899 
2900 /* GFX Flow Control Node/Widget Register */
2901 #define IIO_IGFX_W_NUM_BITS	4	/* size of widget num field */
2902 #define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)
2903 #define IIO_IGFX_W_NUM_SHIFT	0
2904 #define IIO_IGFX_PI_NUM_BITS	1	/* size of PI num field */
2905 #define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)
2906 #define IIO_IGFX_PI_NUM_SHIFT	4
2907 #define IIO_IGFX_N_NUM_BITS	8	/* size of node num field */
2908 #define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)
2909 #define IIO_IGFX_N_NUM_SHIFT	5
2910 #define IIO_IGFX_P_NUM_BITS	1	/* size of processor num field */
2911 #define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)
2912 #define IIO_IGFX_P_NUM_SHIFT	16
2913 #define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
2914 	(((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |	 \
2915 	(((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|	 \
2916 	(((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |	 \
2917 	(((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
2918 
2919 /* Scratch registers (all bits available) */
2920 #define IIO_SCRATCH_REG0        IIO_ISCR0
2921 #define IIO_SCRATCH_REG1        IIO_ISCR1
2922 #define IIO_SCRATCH_MASK        0xffffffffffffffffUL
2923 
2924 #define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
2925 #define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
2926 #define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
2927 #define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
2928 #define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
2929 #define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
2930 #define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
2931 #define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
2932 #define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
2933 #define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
2934 #define IIO_SCRATCH_BIT0_A      0x0000000000000400UL
2935 
2936 #define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
2937 #define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
2938 /* IO Translation Table Entries */
2939 #define IIO_NUM_ITTES   7	/* ITTEs numbered 0..6 */
2940 					/* Hw manuals number them 1..7! */
2941 /*
2942  * IIO_IMEM Register fields.
2943  */
2944 #define IIO_IMEM_W0ESD  0x1UL	/* Widget 0 shut down due to error */
2945 #define IIO_IMEM_B0ESD	(1UL << 4)	/* BTE 0 shut down due to error */
2946 #define IIO_IMEM_B1ESD	(1UL << 8)	/* BTE 1 Shut down due to error */
2947 
2948 /*
2949  * As a permanent workaround for a bug in the PI side of the shub, we've
2950  * redefined big window 7 as small window 0.
2951  XXX does this still apply for SN1??
2952  */
2953 #define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)
2954 
2955 /*
2956  * Use the top big window as a surrogate for the first small window
2957  */
2958 #define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
2959 
2960 #define ILCSR_WARM_RESET        0x100
2961 
2962 /*
2963  * CRB manipulation macros
2964  *	The CRB macros are slightly complicated, since there are up to
2965  *	four registers associated with each CRB entry.
2966  */
2967 #define IIO_NUM_CRBS            15	/* Number of CRBs */
2968 #define IIO_NUM_PC_CRBS         4	/* Number of partial cache CRBs */
2969 #define IIO_ICRB_OFFSET         8
2970 #define IIO_ICRB_0              IIO_ICRB0_A
2971 #define IIO_ICRB_ADDR_SHFT	2	/* Shift to get proper address */
2972 /* XXX - This is now tuneable:
2973         #define IIO_FIRST_PC_ENTRY 12
2974  */
2975 
2976 #define IIO_ICRB_A(_x)	((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
2977 #define IIO_ICRB_B(_x)	((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
2978 #define IIO_ICRB_C(_x)	((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
2979 #define IIO_ICRB_D(_x)	((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
2980 #define IIO_ICRB_E(_x)	((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
2981 
2982 #define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)
2983 
2984 /*
2985  * values for "ecode" field
2986  */
2987 #define IIO_ICRB_ECODE_DERR     0	/* Directory error due to IIO access */
2988 #define IIO_ICRB_ECODE_PERR     1	/* Poison error on IO access */
2989 #define IIO_ICRB_ECODE_WERR     2	/* Write error by IIO access
2990 					 * e.g. WINV to a Read only line. */
2991 #define IIO_ICRB_ECODE_AERR     3	/* Access error caused by IIO access */
2992 #define IIO_ICRB_ECODE_PWERR    4	/* Error on partial write */
2993 #define IIO_ICRB_ECODE_PRERR    5	/* Error on partial read  */
2994 #define IIO_ICRB_ECODE_TOUT     6	/* CRB timeout before deallocating */
2995 #define IIO_ICRB_ECODE_XTERR    7	/* Incoming xtalk pkt had error bit */
2996 
2997 /*
2998  * Values for field imsgtype
2999  */
3000 #define IIO_ICRB_IMSGT_XTALK    0	/* Incoming message from Xtalk */
3001 #define IIO_ICRB_IMSGT_BTE      1	/* Incoming message from BTE    */
3002 #define IIO_ICRB_IMSGT_SN1NET   2	/* Incoming message from SN1 net */
3003 #define IIO_ICRB_IMSGT_CRB      3	/* Incoming message from CRB ???  */
3004 
3005 /*
3006  * values for field initiator.
3007  */
3008 #define IIO_ICRB_INIT_XTALK     0	/* Message originated in xtalk  */
3009 #define IIO_ICRB_INIT_BTE0      0x1	/* Message originated in BTE 0  */
3010 #define IIO_ICRB_INIT_SN1NET    0x2	/* Message originated in SN1net */
3011 #define IIO_ICRB_INIT_CRB       0x3	/* Message originated in CRB ?  */
3012 #define IIO_ICRB_INIT_BTE1      0x5	/* MEssage originated in BTE 1  */
3013 
3014 /*
3015  * Number of credits Hub widget has while sending req/response to
3016  * xbow.
3017  * Value of 3 is required by Xbow 1.1
3018  * We may be able to increase this to 4 with Xbow 1.2.
3019  */
3020 #define		   HUBII_XBOW_CREDIT       3
3021 #define		   HUBII_XBOW_REV2_CREDIT  4
3022 
3023 /*
3024  * Number of credits that xtalk devices should use when communicating
3025  * with a SHub (depth of SHub's queue).
3026  */
3027 #define HUB_CREDIT 4
3028 
3029 /*
3030  * Some IIO_PRB fields
3031  */
3032 #define IIO_PRB_MULTI_ERR	(1LL << 63)
3033 #define IIO_PRB_SPUR_RD		(1LL << 51)
3034 #define IIO_PRB_SPUR_WR		(1LL << 50)
3035 #define IIO_PRB_RD_TO		(1LL << 49)
3036 #define IIO_PRB_ERROR		(1LL << 48)
3037 
3038 /*************************************************************************
3039 
3040  Some of the IIO field masks and shifts are defined here.
3041  This is in order to maintain compatibility in SN0 and SN1 code
3042 
3043 **************************************************************************/
3044 
3045 /*
3046  * ICMR register fields
3047  * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3048  * present in SHub)
3049  */
3050 
3051 #define IIO_ICMR_CRB_VLD_SHFT   20
3052 #define IIO_ICMR_CRB_VLD_MASK	(0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3053 
3054 #define IIO_ICMR_FC_CNT_SHFT    16
3055 #define IIO_ICMR_FC_CNT_MASK	(0xf << IIO_ICMR_FC_CNT_SHFT)
3056 
3057 #define IIO_ICMR_C_CNT_SHFT     4
3058 #define IIO_ICMR_C_CNT_MASK	(0xf << IIO_ICMR_C_CNT_SHFT)
3059 
3060 #define IIO_ICMR_PRECISE	(1UL << 52)
3061 #define IIO_ICMR_CLR_RPPD	(1UL << 13)
3062 #define IIO_ICMR_CLR_RQPD	(1UL << 12)
3063 
3064 /*
3065  * IIO PIO Deallocation register field masks : (IIO_IPDR)
3066  XXX present but not needed in bedrock?  See the manual.
3067  */
3068 #define IIO_IPDR_PND    	(1 << 4)
3069 
3070 /*
3071  * IIO CRB deallocation register field masks: (IIO_ICDR)
3072  */
3073 #define IIO_ICDR_PND    	(1 << 4)
3074 
3075 /*
3076  * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3077  */
3078 #define IBLS_BUSY		(0x1UL << 20)
3079 #define IBLS_ERROR_SHFT		16
3080 #define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)
3081 #define IBLS_LENGTH_MASK	0xffff
3082 
3083 /*
3084  * IO BTE Control/Terminate register (IBCT) register bit field definitions
3085  */
3086 #define IBCT_POISON		(0x1UL << 8)
3087 #define IBCT_NOTIFY		(0x1UL << 4)
3088 #define IBCT_ZFIL_MODE		(0x1UL << 0)
3089 
3090 /*
3091  * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3092  */
3093 #define IIEPH1_VALID		(1UL << 44)
3094 #define IIEPH1_OVERRUN		(1UL << 40)
3095 #define IIEPH1_ERR_TYPE_SHFT	32
3096 #define IIEPH1_ERR_TYPE_MASK	0xf
3097 #define IIEPH1_SOURCE_SHFT	20
3098 #define IIEPH1_SOURCE_MASK	11
3099 #define IIEPH1_SUPPL_SHFT	8
3100 #define IIEPH1_SUPPL_MASK	11
3101 #define IIEPH1_CMD_SHFT		0
3102 #define IIEPH1_CMD_MASK		7
3103 
3104 #define IIEPH2_TAIL		(1UL << 40)
3105 #define IIEPH2_ADDRESS_SHFT	0
3106 #define IIEPH2_ADDRESS_MASK	38
3107 
3108 #define IIEPH1_ERR_SHORT_REQ	2
3109 #define IIEPH1_ERR_SHORT_REPLY	3
3110 #define IIEPH1_ERR_LONG_REQ	4
3111 #define IIEPH1_ERR_LONG_REPLY	5
3112 
3113 /*
3114  * IO Error Clear register bit field definitions
3115  */
3116 #define IECLR_PI1_FWD_INT	(1UL << 31)	/* clear PI1_FORWARD_INT in iidsr */
3117 #define IECLR_PI0_FWD_INT	(1UL << 30)	/* clear PI0_FORWARD_INT in iidsr */
3118 #define IECLR_SPUR_RD_HDR	(1UL << 29)	/* clear valid bit in ixss reg */
3119 #define IECLR_BTE1		(1UL << 18)	/* clear bte error 1 */
3120 #define IECLR_BTE0		(1UL << 17)	/* clear bte error 0 */
3121 #define IECLR_CRAZY		(1UL << 16)	/* clear crazy bit in wstat reg */
3122 #define IECLR_PRB_F		(1UL << 15)	/* clear err bit in PRB_F reg */
3123 #define IECLR_PRB_E		(1UL << 14)	/* clear err bit in PRB_E reg */
3124 #define IECLR_PRB_D		(1UL << 13)	/* clear err bit in PRB_D reg */
3125 #define IECLR_PRB_C		(1UL << 12)	/* clear err bit in PRB_C reg */
3126 #define IECLR_PRB_B		(1UL << 11)	/* clear err bit in PRB_B reg */
3127 #define IECLR_PRB_A		(1UL << 10)	/* clear err bit in PRB_A reg */
3128 #define IECLR_PRB_9		(1UL << 9)	/* clear err bit in PRB_9 reg */
3129 #define IECLR_PRB_8		(1UL << 8)	/* clear err bit in PRB_8 reg */
3130 #define IECLR_PRB_0		(1UL << 0)	/* clear err bit in PRB_0 reg */
3131 
3132 /*
3133  * IIO CRB control register Fields: IIO_ICCR
3134  */
3135 #define	IIO_ICCR_PENDING	0x10000
3136 #define	IIO_ICCR_CMD_MASK	0xFF
3137 #define	IIO_ICCR_CMD_SHFT	7
3138 #define	IIO_ICCR_CMD_NOP	0x0	/* No Op */
3139 #define	IIO_ICCR_CMD_WAKE	0x100	/* Reactivate CRB entry and process */
3140 #define	IIO_ICCR_CMD_TIMEOUT	0x200	/* Make CRB timeout & mark invalid */
3141 #define	IIO_ICCR_CMD_EJECT	0x400	/* Contents of entry written to memory
3142 					 * via a WB
3143 					 */
3144 #define	IIO_ICCR_CMD_FLUSH	0x800
3145 
3146 /*
3147  *
3148  * CRB Register description.
3149  *
3150  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3151  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3152  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3153  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3154  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3155  *
3156  * Many of the fields in CRB are status bits used by hardware
3157  * for implementation of the protocol. It's very dangerous to
3158  * mess around with the CRB registers.
3159  *
3160  * It's OK to read the CRB registers and try to make sense out of the
3161  * fields in CRB.
3162  *
3163  * Updating CRB requires all activities in Hub IIO to be quiesced.
3164  * otherwise, a write to CRB could corrupt other CRB entries.
3165  * CRBs are here only as a back door peek to shub IIO's status.
3166  * Quiescing implies  no dmas no PIOs
3167  * either directly from the cpu or from sn0net.
3168  * this is not something that can be done easily. So, AVOID updating
3169  * CRBs.
3170  */
3171 
3172 /*
3173  * Easy access macros for CRBs, all 5 registers (A-E)
3174  */
3175 typedef ii_icrb0_a_u_t icrba_t;
3176 #define a_sidn		ii_icrb0_a_fld_s.ia_sidn
3177 #define a_tnum		ii_icrb0_a_fld_s.ia_tnum
3178 #define a_addr          ii_icrb0_a_fld_s.ia_addr
3179 #define a_valid         ii_icrb0_a_fld_s.ia_vld
3180 #define a_iow           ii_icrb0_a_fld_s.ia_iow
3181 #define a_regvalue	ii_icrb0_a_regval
3182 
3183 typedef ii_icrb0_b_u_t icrbb_t;
3184 #define b_use_old       ii_icrb0_b_fld_s.ib_use_old
3185 #define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
3186 #define b_imsg          ii_icrb0_b_fld_s.ib_imsg
3187 #define b_initiator     ii_icrb0_b_fld_s.ib_init
3188 #define b_exc           ii_icrb0_b_fld_s.ib_exc
3189 #define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
3190 #define b_resp          ii_icrb0_b_fld_s.ib_resp
3191 #define b_ack           ii_icrb0_b_fld_s.ib_ack
3192 #define b_hold          ii_icrb0_b_fld_s.ib_hold
3193 #define b_wb            ii_icrb0_b_fld_s.ib_wb
3194 #define b_intvn         ii_icrb0_b_fld_s.ib_intvn
3195 #define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
3196 #define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
3197 #define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
3198 #define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
3199 #define b_error         ii_icrb0_b_fld_s.ib_error
3200 #define b_ecode         ii_icrb0_b_fld_s.ib_errcode
3201 #define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
3202 #define b_mark          ii_icrb0_b_fld_s.ib_mark
3203 #define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
3204 #define b_regvalue	ii_icrb0_b_regval
3205 
3206 typedef ii_icrb0_c_u_t icrbc_t;
3207 #define c_suppl         ii_icrb0_c_fld_s.ic_suppl
3208 #define c_barrop        ii_icrb0_c_fld_s.ic_bo
3209 #define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
3210 #define c_gbr           ii_icrb0_c_fld_s.ic_gbr
3211 #define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
3212 #define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
3213 #define c_xtsize        ii_icrb0_c_fld_s.ic_size
3214 #define c_source        ii_icrb0_c_fld_s.ic_source
3215 #define c_regvalue	ii_icrb0_c_regval
3216 
3217 typedef ii_icrb0_d_u_t icrbd_t;
3218 #define d_sleep         ii_icrb0_d_fld_s.id_sleep
3219 #define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
3220 #define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
3221 #define d_bteop         ii_icrb0_d_fld_s.id_bte_op
3222 #define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
3223 #define d_benable       ii_icrb0_d_fld_s.id_pa_be	/* ic_pa_be fld has 2 names */
3224 #define d_regvalue	ii_icrb0_d_regval
3225 
3226 typedef ii_icrb0_e_u_t icrbe_t;
3227 #define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
3228 #define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
3229 #define icrbe_context   ii_icrb0_e_fld_s.ie_context
3230 #define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
3231 #define e_regvalue	ii_icrb0_e_regval
3232 
3233 /* Number of widgets supported by shub */
3234 #define HUB_NUM_WIDGET          9
3235 #define HUB_WIDGET_ID_MIN       0x8
3236 #define HUB_WIDGET_ID_MAX       0xf
3237 
3238 #define HUB_WIDGET_PART_NUM     0xc120
3239 #define MAX_HUBS_PER_XBOW       2
3240 
3241 /* A few more #defines for backwards compatibility */
3242 #define iprb_t          ii_iprb0_u_t
3243 #define iprb_regval     ii_iprb0_regval
3244 #define iprb_mult_err	ii_iprb0_fld_s.i_mult_err
3245 #define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd
3246 #define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr
3247 #define iprb_rd_to	ii_iprb0_fld_s.i_rd_to
3248 #define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
3249 #define iprb_error      ii_iprb0_fld_s.i_error
3250 #define iprb_ff         ii_iprb0_fld_s.i_f
3251 #define iprb_mode       ii_iprb0_fld_s.i_m
3252 #define iprb_bnakctr    ii_iprb0_fld_s.i_nb
3253 #define iprb_anakctr    ii_iprb0_fld_s.i_na
3254 #define iprb_xtalkctr   ii_iprb0_fld_s.i_c
3255 
3256 #define LNK_STAT_WORKING        0x2		/* LLP is working */
3257 
3258 #define IIO_WSTAT_ECRAZY	(1ULL << 32)	/* Hub gone crazy */
3259 #define IIO_WSTAT_TXRETRY	(1ULL << 9)	/* Hub Tx Retry timeout */
3260 #define IIO_WSTAT_TXRETRY_MASK  0x7F		/* should be 0xFF?? */
3261 #define IIO_WSTAT_TXRETRY_SHFT  16
3262 #define IIO_WSTAT_TXRETRY_CNT(w)	(((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3263                           		IIO_WSTAT_TXRETRY_MASK)
3264 
3265 /* Number of II perf. counters we can multiplex at once */
3266 
3267 #define IO_PERF_SETS	32
3268 
3269 /* Bit for the widget in inbound access register */
3270 #define IIO_IIWA_WIDGET(_w)	((u64)(1ULL << _w))
3271 /* Bit for the widget in outbound access register */
3272 #define IIO_IOWA_WIDGET(_w)	((u64)(1ULL << _w))
3273 
3274 /* NOTE: The following define assumes that we are going to get
3275  * widget numbers from 8 thru F and the device numbers within
3276  * widget from 0 thru 7.
3277  */
3278 #define IIO_IIDEM_WIDGETDEV_MASK(w, d)	((u64)(1ULL << (8 * ((w) - 8) + (d))))
3279 
3280 /* IO Interrupt Destination Register */
3281 #define IIO_IIDSR_SENT_SHIFT    28
3282 #define IIO_IIDSR_SENT_MASK     0x30000000
3283 #define IIO_IIDSR_ENB_SHIFT     24
3284 #define IIO_IIDSR_ENB_MASK      0x01000000
3285 #define IIO_IIDSR_NODE_SHIFT    9
3286 #define IIO_IIDSR_NODE_MASK     0x000ff700
3287 #define IIO_IIDSR_PI_ID_SHIFT   8
3288 #define IIO_IIDSR_PI_ID_MASK    0x00000100
3289 #define IIO_IIDSR_LVL_SHIFT     0
3290 #define IIO_IIDSR_LVL_MASK      0x000000ff
3291 
3292 /* Xtalk timeout threshold register (IIO_IXTT) */
3293 #define IXTT_RRSP_TO_SHFT	55	/* read response timeout */
3294 #define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)
3295 #define IXTT_RRSP_PS_SHFT	32	/* read responsed TO prescalar */
3296 #define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3297 #define IXTT_TAIL_TO_SHFT	0	/* tail timeout counter threshold */
3298 #define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3299 
3300 /*
3301  * The IO LLP control status register and widget control register
3302  */
3303 
3304 typedef union hubii_wcr_u {
3305 	u64 wcr_reg_value;
3306 	struct {
3307 		u64 wcr_widget_id:4,	/* LLP crossbar credit */
3308 		 wcr_tag_mode:1,	/* Tag mode */
3309 		 wcr_rsvd1:8,	/* Reserved */
3310 		 wcr_xbar_crd:3,	/* LLP crossbar credit */
3311 		 wcr_f_bad_pkt:1,	/* Force bad llp pkt enable */
3312 		 wcr_dir_con:1,	/* widget direct connect */
3313 		 wcr_e_thresh:5,	/* elasticity threshold */
3314 		 wcr_rsvd:41;	/* unused */
3315 	} wcr_fields_s;
3316 } hubii_wcr_t;
3317 
3318 #define iwcr_dir_con    wcr_fields_s.wcr_dir_con
3319 
3320 /* The structures below are defined to extract and modify the ii
3321 performance registers */
3322 
3323 /* io_perf_sel allows the caller to specify what tests will be
3324    performed */
3325 
3326 typedef union io_perf_sel {
3327 	u64 perf_sel_reg;
3328 	struct {
3329 		u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
3330 	} perf_sel_bits;
3331 } io_perf_sel_t;
3332 
3333 /* io_perf_cnt is to extract the count from the shub registers. Due to
3334    hardware problems there is only one counter, not two. */
3335 
3336 typedef union io_perf_cnt {
3337 	u64 perf_cnt;
3338 	struct {
3339 		u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
3340 	} perf_cnt_bits;
3341 
3342 } io_perf_cnt_t;
3343 
3344 typedef union iprte_a {
3345 	u64 entry;
3346 	struct {
3347 		u64 i_rsvd_1:3;
3348 		u64 i_addr:38;
3349 		u64 i_init:3;
3350 		u64 i_source:8;
3351 		u64 i_rsvd:2;
3352 		u64 i_widget:4;
3353 		u64 i_to_cnt:5;
3354 		u64 i_vld:1;
3355 	} iprte_fields;
3356 } iprte_a_t;
3357 
3358 #endif				/* _ASM_IA64_SN_SHUBIO_H */
3359