• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
3  *
4  * Authors:
5  * Mimi Zohar <zohar@us.ibm.com>
6  * Kylene Hall <kjhall@us.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, version 2 of the License.
11  *
12  * File: ima_crypto.c
13  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
27 
28 #include "ima.h"
29 
30 struct ahash_completion {
31 	struct completion completion;
32 	int err;
33 };
34 
35 /* minimum file size for ahash use */
36 static unsigned long ima_ahash_minsize;
37 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
38 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
39 
40 /* default is 0 - 1 page. */
41 static int ima_maxorder;
42 static unsigned int ima_bufsize = PAGE_SIZE;
43 
param_set_bufsize(const char * val,const struct kernel_param * kp)44 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
45 {
46 	unsigned long long size;
47 	int order;
48 
49 	size = memparse(val, NULL);
50 	order = get_order(size);
51 	if (order >= MAX_ORDER)
52 		return -EINVAL;
53 	ima_maxorder = order;
54 	ima_bufsize = PAGE_SIZE << order;
55 	return 0;
56 }
57 
58 static const struct kernel_param_ops param_ops_bufsize = {
59 	.set = param_set_bufsize,
60 	.get = param_get_uint,
61 };
62 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
63 
64 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
65 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
66 
67 static struct crypto_shash *ima_shash_tfm;
68 static struct crypto_ahash *ima_ahash_tfm;
69 
ima_init_crypto(void)70 int __init ima_init_crypto(void)
71 {
72 	long rc;
73 
74 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
75 	if (IS_ERR(ima_shash_tfm)) {
76 		rc = PTR_ERR(ima_shash_tfm);
77 		pr_err("Can not allocate %s (reason: %ld)\n",
78 		       hash_algo_name[ima_hash_algo], rc);
79 		return rc;
80 	}
81 	pr_info("Allocated hash algorithm: %s\n",
82 		hash_algo_name[ima_hash_algo]);
83 	return 0;
84 }
85 
ima_alloc_tfm(enum hash_algo algo)86 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
87 {
88 	struct crypto_shash *tfm = ima_shash_tfm;
89 	int rc;
90 
91 	if (algo < 0 || algo >= HASH_ALGO__LAST)
92 		algo = ima_hash_algo;
93 
94 	if (algo != ima_hash_algo) {
95 		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
96 		if (IS_ERR(tfm)) {
97 			rc = PTR_ERR(tfm);
98 			pr_err("Can not allocate %s (reason: %d)\n",
99 			       hash_algo_name[algo], rc);
100 		}
101 	}
102 	return tfm;
103 }
104 
ima_free_tfm(struct crypto_shash * tfm)105 static void ima_free_tfm(struct crypto_shash *tfm)
106 {
107 	if (tfm != ima_shash_tfm)
108 		crypto_free_shash(tfm);
109 }
110 
111 /**
112  * ima_alloc_pages() - Allocate contiguous pages.
113  * @max_size:       Maximum amount of memory to allocate.
114  * @allocated_size: Returned size of actual allocation.
115  * @last_warn:      Should the min_size allocation warn or not.
116  *
117  * Tries to do opportunistic allocation for memory first trying to allocate
118  * max_size amount of memory and then splitting that until zero order is
119  * reached. Allocation is tried without generating allocation warnings unless
120  * last_warn is set. Last_warn set affects only last allocation of zero order.
121  *
122  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
123  *
124  * Return pointer to allocated memory, or NULL on failure.
125  */
ima_alloc_pages(loff_t max_size,size_t * allocated_size,int last_warn)126 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
127 			     int last_warn)
128 {
129 	void *ptr;
130 	int order = ima_maxorder;
131 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
132 
133 	if (order)
134 		order = min(get_order(max_size), order);
135 
136 	for (; order; order--) {
137 		ptr = (void *)__get_free_pages(gfp_mask, order);
138 		if (ptr) {
139 			*allocated_size = PAGE_SIZE << order;
140 			return ptr;
141 		}
142 	}
143 
144 	/* order is zero - one page */
145 
146 	gfp_mask = GFP_KERNEL;
147 
148 	if (!last_warn)
149 		gfp_mask |= __GFP_NOWARN;
150 
151 	ptr = (void *)__get_free_pages(gfp_mask, 0);
152 	if (ptr) {
153 		*allocated_size = PAGE_SIZE;
154 		return ptr;
155 	}
156 
157 	*allocated_size = 0;
158 	return NULL;
159 }
160 
161 /**
162  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
163  * @ptr:  Pointer to allocated pages.
164  * @size: Size of allocated buffer.
165  */
ima_free_pages(void * ptr,size_t size)166 static void ima_free_pages(void *ptr, size_t size)
167 {
168 	if (!ptr)
169 		return;
170 	free_pages((unsigned long)ptr, get_order(size));
171 }
172 
ima_alloc_atfm(enum hash_algo algo)173 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
174 {
175 	struct crypto_ahash *tfm = ima_ahash_tfm;
176 	int rc;
177 
178 	if (algo < 0 || algo >= HASH_ALGO__LAST)
179 		algo = ima_hash_algo;
180 
181 	if (algo != ima_hash_algo || !tfm) {
182 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
183 		if (!IS_ERR(tfm)) {
184 			if (algo == ima_hash_algo)
185 				ima_ahash_tfm = tfm;
186 		} else {
187 			rc = PTR_ERR(tfm);
188 			pr_err("Can not allocate %s (reason: %d)\n",
189 			       hash_algo_name[algo], rc);
190 		}
191 	}
192 	return tfm;
193 }
194 
ima_free_atfm(struct crypto_ahash * tfm)195 static void ima_free_atfm(struct crypto_ahash *tfm)
196 {
197 	if (tfm != ima_ahash_tfm)
198 		crypto_free_ahash(tfm);
199 }
200 
ahash_complete(struct crypto_async_request * req,int err)201 static void ahash_complete(struct crypto_async_request *req, int err)
202 {
203 	struct ahash_completion *res = req->data;
204 
205 	if (err == -EINPROGRESS)
206 		return;
207 	res->err = err;
208 	complete(&res->completion);
209 }
210 
ahash_wait(int err,struct ahash_completion * res)211 static int ahash_wait(int err, struct ahash_completion *res)
212 {
213 	switch (err) {
214 	case 0:
215 		break;
216 	case -EINPROGRESS:
217 	case -EBUSY:
218 		wait_for_completion(&res->completion);
219 		reinit_completion(&res->completion);
220 		err = res->err;
221 		/* fall through */
222 	default:
223 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
224 	}
225 
226 	return err;
227 }
228 
ima_calc_file_hash_atfm(struct file * file,struct ima_digest_data * hash,struct crypto_ahash * tfm)229 static int ima_calc_file_hash_atfm(struct file *file,
230 				   struct ima_digest_data *hash,
231 				   struct crypto_ahash *tfm)
232 {
233 	loff_t i_size, offset;
234 	char *rbuf[2] = { NULL, };
235 	int rc, rbuf_len, active = 0, ahash_rc = 0;
236 	struct ahash_request *req;
237 	struct scatterlist sg[1];
238 	struct ahash_completion res;
239 	size_t rbuf_size[2];
240 
241 	hash->length = crypto_ahash_digestsize(tfm);
242 
243 	req = ahash_request_alloc(tfm, GFP_KERNEL);
244 	if (!req)
245 		return -ENOMEM;
246 
247 	init_completion(&res.completion);
248 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
249 				   CRYPTO_TFM_REQ_MAY_SLEEP,
250 				   ahash_complete, &res);
251 
252 	rc = ahash_wait(crypto_ahash_init(req), &res);
253 	if (rc)
254 		goto out1;
255 
256 	i_size = i_size_read(file_inode(file));
257 
258 	if (i_size == 0)
259 		goto out2;
260 
261 	/*
262 	 * Try to allocate maximum size of memory.
263 	 * Fail if even a single page cannot be allocated.
264 	 */
265 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
266 	if (!rbuf[0]) {
267 		rc = -ENOMEM;
268 		goto out1;
269 	}
270 
271 	/* Only allocate one buffer if that is enough. */
272 	if (i_size > rbuf_size[0]) {
273 		/*
274 		 * Try to allocate secondary buffer. If that fails fallback to
275 		 * using single buffering. Use previous memory allocation size
276 		 * as baseline for possible allocation size.
277 		 */
278 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
279 					  &rbuf_size[1], 0);
280 	}
281 
282 	for (offset = 0; offset < i_size; offset += rbuf_len) {
283 		if (!rbuf[1] && offset) {
284 			/* Not using two buffers, and it is not the first
285 			 * read/request, wait for the completion of the
286 			 * previous ahash_update() request.
287 			 */
288 			rc = ahash_wait(ahash_rc, &res);
289 			if (rc)
290 				goto out3;
291 		}
292 		/* read buffer */
293 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
294 		rc = integrity_kernel_read(file, offset, rbuf[active],
295 					   rbuf_len);
296 		if (rc != rbuf_len) {
297 			if (rc >= 0)
298 				rc = -EINVAL;
299 			goto out3;
300 		}
301 
302 		if (rbuf[1] && offset) {
303 			/* Using two buffers, and it is not the first
304 			 * read/request, wait for the completion of the
305 			 * previous ahash_update() request.
306 			 */
307 			rc = ahash_wait(ahash_rc, &res);
308 			if (rc)
309 				goto out3;
310 		}
311 
312 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
313 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
314 
315 		ahash_rc = crypto_ahash_update(req);
316 
317 		if (rbuf[1])
318 			active = !active; /* swap buffers, if we use two */
319 	}
320 	/* wait for the last update request to complete */
321 	rc = ahash_wait(ahash_rc, &res);
322 out3:
323 	ima_free_pages(rbuf[0], rbuf_size[0]);
324 	ima_free_pages(rbuf[1], rbuf_size[1]);
325 out2:
326 	if (!rc) {
327 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
328 		rc = ahash_wait(crypto_ahash_final(req), &res);
329 	}
330 out1:
331 	ahash_request_free(req);
332 	return rc;
333 }
334 
ima_calc_file_ahash(struct file * file,struct ima_digest_data * hash)335 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
336 {
337 	struct crypto_ahash *tfm;
338 	int rc;
339 
340 	tfm = ima_alloc_atfm(hash->algo);
341 	if (IS_ERR(tfm))
342 		return PTR_ERR(tfm);
343 
344 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
345 
346 	ima_free_atfm(tfm);
347 
348 	return rc;
349 }
350 
ima_calc_file_hash_tfm(struct file * file,struct ima_digest_data * hash,struct crypto_shash * tfm)351 static int ima_calc_file_hash_tfm(struct file *file,
352 				  struct ima_digest_data *hash,
353 				  struct crypto_shash *tfm)
354 {
355 	loff_t i_size, offset = 0;
356 	char *rbuf;
357 	int rc;
358 	SHASH_DESC_ON_STACK(shash, tfm);
359 
360 	shash->tfm = tfm;
361 	shash->flags = 0;
362 
363 	hash->length = crypto_shash_digestsize(tfm);
364 
365 	rc = crypto_shash_init(shash);
366 	if (rc != 0)
367 		return rc;
368 
369 	i_size = i_size_read(file_inode(file));
370 
371 	if (i_size == 0)
372 		goto out;
373 
374 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
375 	if (!rbuf)
376 		return -ENOMEM;
377 
378 	while (offset < i_size) {
379 		int rbuf_len;
380 
381 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
382 		if (rbuf_len < 0) {
383 			rc = rbuf_len;
384 			break;
385 		}
386 		if (rbuf_len == 0)
387 			break;
388 		offset += rbuf_len;
389 
390 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
391 		if (rc)
392 			break;
393 	}
394 	kfree(rbuf);
395 out:
396 	if (!rc)
397 		rc = crypto_shash_final(shash, hash->digest);
398 	return rc;
399 }
400 
ima_calc_file_shash(struct file * file,struct ima_digest_data * hash)401 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
402 {
403 	struct crypto_shash *tfm;
404 	int rc;
405 
406 	tfm = ima_alloc_tfm(hash->algo);
407 	if (IS_ERR(tfm))
408 		return PTR_ERR(tfm);
409 
410 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
411 
412 	ima_free_tfm(tfm);
413 
414 	return rc;
415 }
416 
417 /*
418  * ima_calc_file_hash - calculate file hash
419  *
420  * Asynchronous hash (ahash) allows using HW acceleration for calculating
421  * a hash. ahash performance varies for different data sizes on different
422  * crypto accelerators. shash performance might be better for smaller files.
423  * The 'ima.ahash_minsize' module parameter allows specifying the best
424  * minimum file size for using ahash on the system.
425  *
426  * If the ima.ahash_minsize parameter is not specified, this function uses
427  * shash for the hash calculation.  If ahash fails, it falls back to using
428  * shash.
429  */
ima_calc_file_hash(struct file * file,struct ima_digest_data * hash)430 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
431 {
432 	loff_t i_size;
433 	int rc;
434 	struct file *f = file;
435 	bool new_file_instance = false, modified_flags = false;
436 
437 	/*
438 	 * For consistency, fail file's opened with the O_DIRECT flag on
439 	 * filesystems mounted with/without DAX option.
440 	 */
441 	if (file->f_flags & O_DIRECT) {
442 		hash->length = hash_digest_size[ima_hash_algo];
443 		hash->algo = ima_hash_algo;
444 		return -EINVAL;
445 	}
446 
447 	/* Open a new file instance in O_RDONLY if we cannot read */
448 	if (!(file->f_mode & FMODE_READ)) {
449 		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
450 				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
451 		flags |= O_RDONLY;
452 		f = dentry_open(&file->f_path, flags, file->f_cred);
453 		if (IS_ERR(f)) {
454 			/*
455 			 * Cannot open the file again, lets modify f_flags
456 			 * of original and continue
457 			 */
458 			pr_info_ratelimited("Unable to reopen file for reading.\n");
459 			f = file;
460 			f->f_flags |= FMODE_READ;
461 			modified_flags = true;
462 		} else {
463 			new_file_instance = true;
464 		}
465 	}
466 
467 	i_size = i_size_read(file_inode(f));
468 
469 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
470 		rc = ima_calc_file_ahash(f, hash);
471 		if (!rc)
472 			goto out;
473 	}
474 
475 	rc = ima_calc_file_shash(f, hash);
476 out:
477 	if (new_file_instance)
478 		fput(f);
479 	else if (modified_flags)
480 		f->f_flags &= ~FMODE_READ;
481 	return rc;
482 }
483 
484 /*
485  * Calculate the hash of template data
486  */
ima_calc_field_array_hash_tfm(struct ima_field_data * field_data,struct ima_template_desc * td,int num_fields,struct ima_digest_data * hash,struct crypto_shash * tfm)487 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
488 					 struct ima_template_desc *td,
489 					 int num_fields,
490 					 struct ima_digest_data *hash,
491 					 struct crypto_shash *tfm)
492 {
493 	SHASH_DESC_ON_STACK(shash, tfm);
494 	int rc, i;
495 
496 	shash->tfm = tfm;
497 	shash->flags = 0;
498 
499 	hash->length = crypto_shash_digestsize(tfm);
500 
501 	rc = crypto_shash_init(shash);
502 	if (rc != 0)
503 		return rc;
504 
505 	for (i = 0; i < num_fields; i++) {
506 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
507 		u8 *data_to_hash = field_data[i].data;
508 		u32 datalen = field_data[i].len;
509 		u32 datalen_to_hash =
510 		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
511 
512 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
513 			rc = crypto_shash_update(shash,
514 						(const u8 *) &datalen_to_hash,
515 						sizeof(datalen_to_hash));
516 			if (rc)
517 				break;
518 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
519 			memcpy(buffer, data_to_hash, datalen);
520 			data_to_hash = buffer;
521 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
522 		}
523 		rc = crypto_shash_update(shash, data_to_hash, datalen);
524 		if (rc)
525 			break;
526 	}
527 
528 	if (!rc)
529 		rc = crypto_shash_final(shash, hash->digest);
530 
531 	return rc;
532 }
533 
ima_calc_field_array_hash(struct ima_field_data * field_data,struct ima_template_desc * desc,int num_fields,struct ima_digest_data * hash)534 int ima_calc_field_array_hash(struct ima_field_data *field_data,
535 			      struct ima_template_desc *desc, int num_fields,
536 			      struct ima_digest_data *hash)
537 {
538 	struct crypto_shash *tfm;
539 	int rc;
540 
541 	tfm = ima_alloc_tfm(hash->algo);
542 	if (IS_ERR(tfm))
543 		return PTR_ERR(tfm);
544 
545 	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
546 					   hash, tfm);
547 
548 	ima_free_tfm(tfm);
549 
550 	return rc;
551 }
552 
calc_buffer_ahash_atfm(const void * buf,loff_t len,struct ima_digest_data * hash,struct crypto_ahash * tfm)553 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
554 				  struct ima_digest_data *hash,
555 				  struct crypto_ahash *tfm)
556 {
557 	struct ahash_request *req;
558 	struct scatterlist sg;
559 	struct ahash_completion res;
560 	int rc, ahash_rc = 0;
561 
562 	hash->length = crypto_ahash_digestsize(tfm);
563 
564 	req = ahash_request_alloc(tfm, GFP_KERNEL);
565 	if (!req)
566 		return -ENOMEM;
567 
568 	init_completion(&res.completion);
569 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
570 				   CRYPTO_TFM_REQ_MAY_SLEEP,
571 				   ahash_complete, &res);
572 
573 	rc = ahash_wait(crypto_ahash_init(req), &res);
574 	if (rc)
575 		goto out;
576 
577 	sg_init_one(&sg, buf, len);
578 	ahash_request_set_crypt(req, &sg, NULL, len);
579 
580 	ahash_rc = crypto_ahash_update(req);
581 
582 	/* wait for the update request to complete */
583 	rc = ahash_wait(ahash_rc, &res);
584 	if (!rc) {
585 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
586 		rc = ahash_wait(crypto_ahash_final(req), &res);
587 	}
588 out:
589 	ahash_request_free(req);
590 	return rc;
591 }
592 
calc_buffer_ahash(const void * buf,loff_t len,struct ima_digest_data * hash)593 static int calc_buffer_ahash(const void *buf, loff_t len,
594 			     struct ima_digest_data *hash)
595 {
596 	struct crypto_ahash *tfm;
597 	int rc;
598 
599 	tfm = ima_alloc_atfm(hash->algo);
600 	if (IS_ERR(tfm))
601 		return PTR_ERR(tfm);
602 
603 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
604 
605 	ima_free_atfm(tfm);
606 
607 	return rc;
608 }
609 
calc_buffer_shash_tfm(const void * buf,loff_t size,struct ima_digest_data * hash,struct crypto_shash * tfm)610 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
611 				struct ima_digest_data *hash,
612 				struct crypto_shash *tfm)
613 {
614 	SHASH_DESC_ON_STACK(shash, tfm);
615 	unsigned int len;
616 	int rc;
617 
618 	shash->tfm = tfm;
619 	shash->flags = 0;
620 
621 	hash->length = crypto_shash_digestsize(tfm);
622 
623 	rc = crypto_shash_init(shash);
624 	if (rc != 0)
625 		return rc;
626 
627 	while (size) {
628 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
629 		rc = crypto_shash_update(shash, buf, len);
630 		if (rc)
631 			break;
632 		buf += len;
633 		size -= len;
634 	}
635 
636 	if (!rc)
637 		rc = crypto_shash_final(shash, hash->digest);
638 	return rc;
639 }
640 
calc_buffer_shash(const void * buf,loff_t len,struct ima_digest_data * hash)641 static int calc_buffer_shash(const void *buf, loff_t len,
642 			     struct ima_digest_data *hash)
643 {
644 	struct crypto_shash *tfm;
645 	int rc;
646 
647 	tfm = ima_alloc_tfm(hash->algo);
648 	if (IS_ERR(tfm))
649 		return PTR_ERR(tfm);
650 
651 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
652 
653 	ima_free_tfm(tfm);
654 	return rc;
655 }
656 
ima_calc_buffer_hash(const void * buf,loff_t len,struct ima_digest_data * hash)657 int ima_calc_buffer_hash(const void *buf, loff_t len,
658 			 struct ima_digest_data *hash)
659 {
660 	int rc;
661 
662 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
663 		rc = calc_buffer_ahash(buf, len, hash);
664 		if (!rc)
665 			return 0;
666 	}
667 
668 	return calc_buffer_shash(buf, len, hash);
669 }
670 
ima_pcrread(int idx,u8 * pcr)671 static void __init ima_pcrread(int idx, u8 *pcr)
672 {
673 	if (!ima_used_chip)
674 		return;
675 
676 	if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0)
677 		pr_err("Error Communicating to TPM chip\n");
678 }
679 
680 /*
681  * Calculate the boot aggregate hash
682  */
ima_calc_boot_aggregate_tfm(char * digest,struct crypto_shash * tfm)683 static int __init ima_calc_boot_aggregate_tfm(char *digest,
684 					      struct crypto_shash *tfm)
685 {
686 	u8 pcr_i[TPM_DIGEST_SIZE];
687 	int rc, i;
688 	SHASH_DESC_ON_STACK(shash, tfm);
689 
690 	shash->tfm = tfm;
691 	shash->flags = 0;
692 
693 	rc = crypto_shash_init(shash);
694 	if (rc != 0)
695 		return rc;
696 
697 	/* cumulative sha1 over tpm registers 0-7 */
698 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
699 		ima_pcrread(i, pcr_i);
700 		/* now accumulate with current aggregate */
701 		rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
702 	}
703 	if (!rc)
704 		crypto_shash_final(shash, digest);
705 	return rc;
706 }
707 
ima_calc_boot_aggregate(struct ima_digest_data * hash)708 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
709 {
710 	struct crypto_shash *tfm;
711 	int rc;
712 
713 	tfm = ima_alloc_tfm(hash->algo);
714 	if (IS_ERR(tfm))
715 		return PTR_ERR(tfm);
716 
717 	hash->length = crypto_shash_digestsize(tfm);
718 	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
719 
720 	ima_free_tfm(tfm);
721 
722 	return rc;
723 }
724