1 /*
2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
3 *
4 * Authors:
5 * Mimi Zohar <zohar@us.ibm.com>
6 * Kylene Hall <kjhall@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, version 2 of the License.
11 *
12 * File: ima_crypto.c
13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
27
28 #include "ima.h"
29
30 struct ahash_completion {
31 struct completion completion;
32 int err;
33 };
34
35 /* minimum file size for ahash use */
36 static unsigned long ima_ahash_minsize;
37 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
38 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
39
40 /* default is 0 - 1 page. */
41 static int ima_maxorder;
42 static unsigned int ima_bufsize = PAGE_SIZE;
43
param_set_bufsize(const char * val,const struct kernel_param * kp)44 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
45 {
46 unsigned long long size;
47 int order;
48
49 size = memparse(val, NULL);
50 order = get_order(size);
51 if (order >= MAX_ORDER)
52 return -EINVAL;
53 ima_maxorder = order;
54 ima_bufsize = PAGE_SIZE << order;
55 return 0;
56 }
57
58 static const struct kernel_param_ops param_ops_bufsize = {
59 .set = param_set_bufsize,
60 .get = param_get_uint,
61 };
62 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
63
64 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
65 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
66
67 static struct crypto_shash *ima_shash_tfm;
68 static struct crypto_ahash *ima_ahash_tfm;
69
ima_init_crypto(void)70 int __init ima_init_crypto(void)
71 {
72 long rc;
73
74 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
75 if (IS_ERR(ima_shash_tfm)) {
76 rc = PTR_ERR(ima_shash_tfm);
77 pr_err("Can not allocate %s (reason: %ld)\n",
78 hash_algo_name[ima_hash_algo], rc);
79 return rc;
80 }
81 pr_info("Allocated hash algorithm: %s\n",
82 hash_algo_name[ima_hash_algo]);
83 return 0;
84 }
85
ima_alloc_tfm(enum hash_algo algo)86 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
87 {
88 struct crypto_shash *tfm = ima_shash_tfm;
89 int rc;
90
91 if (algo < 0 || algo >= HASH_ALGO__LAST)
92 algo = ima_hash_algo;
93
94 if (algo != ima_hash_algo) {
95 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
96 if (IS_ERR(tfm)) {
97 rc = PTR_ERR(tfm);
98 pr_err("Can not allocate %s (reason: %d)\n",
99 hash_algo_name[algo], rc);
100 }
101 }
102 return tfm;
103 }
104
ima_free_tfm(struct crypto_shash * tfm)105 static void ima_free_tfm(struct crypto_shash *tfm)
106 {
107 if (tfm != ima_shash_tfm)
108 crypto_free_shash(tfm);
109 }
110
111 /**
112 * ima_alloc_pages() - Allocate contiguous pages.
113 * @max_size: Maximum amount of memory to allocate.
114 * @allocated_size: Returned size of actual allocation.
115 * @last_warn: Should the min_size allocation warn or not.
116 *
117 * Tries to do opportunistic allocation for memory first trying to allocate
118 * max_size amount of memory and then splitting that until zero order is
119 * reached. Allocation is tried without generating allocation warnings unless
120 * last_warn is set. Last_warn set affects only last allocation of zero order.
121 *
122 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
123 *
124 * Return pointer to allocated memory, or NULL on failure.
125 */
ima_alloc_pages(loff_t max_size,size_t * allocated_size,int last_warn)126 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
127 int last_warn)
128 {
129 void *ptr;
130 int order = ima_maxorder;
131 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
132
133 if (order)
134 order = min(get_order(max_size), order);
135
136 for (; order; order--) {
137 ptr = (void *)__get_free_pages(gfp_mask, order);
138 if (ptr) {
139 *allocated_size = PAGE_SIZE << order;
140 return ptr;
141 }
142 }
143
144 /* order is zero - one page */
145
146 gfp_mask = GFP_KERNEL;
147
148 if (!last_warn)
149 gfp_mask |= __GFP_NOWARN;
150
151 ptr = (void *)__get_free_pages(gfp_mask, 0);
152 if (ptr) {
153 *allocated_size = PAGE_SIZE;
154 return ptr;
155 }
156
157 *allocated_size = 0;
158 return NULL;
159 }
160
161 /**
162 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
163 * @ptr: Pointer to allocated pages.
164 * @size: Size of allocated buffer.
165 */
ima_free_pages(void * ptr,size_t size)166 static void ima_free_pages(void *ptr, size_t size)
167 {
168 if (!ptr)
169 return;
170 free_pages((unsigned long)ptr, get_order(size));
171 }
172
ima_alloc_atfm(enum hash_algo algo)173 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
174 {
175 struct crypto_ahash *tfm = ima_ahash_tfm;
176 int rc;
177
178 if (algo < 0 || algo >= HASH_ALGO__LAST)
179 algo = ima_hash_algo;
180
181 if (algo != ima_hash_algo || !tfm) {
182 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
183 if (!IS_ERR(tfm)) {
184 if (algo == ima_hash_algo)
185 ima_ahash_tfm = tfm;
186 } else {
187 rc = PTR_ERR(tfm);
188 pr_err("Can not allocate %s (reason: %d)\n",
189 hash_algo_name[algo], rc);
190 }
191 }
192 return tfm;
193 }
194
ima_free_atfm(struct crypto_ahash * tfm)195 static void ima_free_atfm(struct crypto_ahash *tfm)
196 {
197 if (tfm != ima_ahash_tfm)
198 crypto_free_ahash(tfm);
199 }
200
ahash_complete(struct crypto_async_request * req,int err)201 static void ahash_complete(struct crypto_async_request *req, int err)
202 {
203 struct ahash_completion *res = req->data;
204
205 if (err == -EINPROGRESS)
206 return;
207 res->err = err;
208 complete(&res->completion);
209 }
210
ahash_wait(int err,struct ahash_completion * res)211 static int ahash_wait(int err, struct ahash_completion *res)
212 {
213 switch (err) {
214 case 0:
215 break;
216 case -EINPROGRESS:
217 case -EBUSY:
218 wait_for_completion(&res->completion);
219 reinit_completion(&res->completion);
220 err = res->err;
221 /* fall through */
222 default:
223 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
224 }
225
226 return err;
227 }
228
ima_calc_file_hash_atfm(struct file * file,struct ima_digest_data * hash,struct crypto_ahash * tfm)229 static int ima_calc_file_hash_atfm(struct file *file,
230 struct ima_digest_data *hash,
231 struct crypto_ahash *tfm)
232 {
233 loff_t i_size, offset;
234 char *rbuf[2] = { NULL, };
235 int rc, rbuf_len, active = 0, ahash_rc = 0;
236 struct ahash_request *req;
237 struct scatterlist sg[1];
238 struct ahash_completion res;
239 size_t rbuf_size[2];
240
241 hash->length = crypto_ahash_digestsize(tfm);
242
243 req = ahash_request_alloc(tfm, GFP_KERNEL);
244 if (!req)
245 return -ENOMEM;
246
247 init_completion(&res.completion);
248 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
249 CRYPTO_TFM_REQ_MAY_SLEEP,
250 ahash_complete, &res);
251
252 rc = ahash_wait(crypto_ahash_init(req), &res);
253 if (rc)
254 goto out1;
255
256 i_size = i_size_read(file_inode(file));
257
258 if (i_size == 0)
259 goto out2;
260
261 /*
262 * Try to allocate maximum size of memory.
263 * Fail if even a single page cannot be allocated.
264 */
265 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
266 if (!rbuf[0]) {
267 rc = -ENOMEM;
268 goto out1;
269 }
270
271 /* Only allocate one buffer if that is enough. */
272 if (i_size > rbuf_size[0]) {
273 /*
274 * Try to allocate secondary buffer. If that fails fallback to
275 * using single buffering. Use previous memory allocation size
276 * as baseline for possible allocation size.
277 */
278 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
279 &rbuf_size[1], 0);
280 }
281
282 for (offset = 0; offset < i_size; offset += rbuf_len) {
283 if (!rbuf[1] && offset) {
284 /* Not using two buffers, and it is not the first
285 * read/request, wait for the completion of the
286 * previous ahash_update() request.
287 */
288 rc = ahash_wait(ahash_rc, &res);
289 if (rc)
290 goto out3;
291 }
292 /* read buffer */
293 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
294 rc = integrity_kernel_read(file, offset, rbuf[active],
295 rbuf_len);
296 if (rc != rbuf_len) {
297 if (rc >= 0)
298 rc = -EINVAL;
299 goto out3;
300 }
301
302 if (rbuf[1] && offset) {
303 /* Using two buffers, and it is not the first
304 * read/request, wait for the completion of the
305 * previous ahash_update() request.
306 */
307 rc = ahash_wait(ahash_rc, &res);
308 if (rc)
309 goto out3;
310 }
311
312 sg_init_one(&sg[0], rbuf[active], rbuf_len);
313 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
314
315 ahash_rc = crypto_ahash_update(req);
316
317 if (rbuf[1])
318 active = !active; /* swap buffers, if we use two */
319 }
320 /* wait for the last update request to complete */
321 rc = ahash_wait(ahash_rc, &res);
322 out3:
323 ima_free_pages(rbuf[0], rbuf_size[0]);
324 ima_free_pages(rbuf[1], rbuf_size[1]);
325 out2:
326 if (!rc) {
327 ahash_request_set_crypt(req, NULL, hash->digest, 0);
328 rc = ahash_wait(crypto_ahash_final(req), &res);
329 }
330 out1:
331 ahash_request_free(req);
332 return rc;
333 }
334
ima_calc_file_ahash(struct file * file,struct ima_digest_data * hash)335 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
336 {
337 struct crypto_ahash *tfm;
338 int rc;
339
340 tfm = ima_alloc_atfm(hash->algo);
341 if (IS_ERR(tfm))
342 return PTR_ERR(tfm);
343
344 rc = ima_calc_file_hash_atfm(file, hash, tfm);
345
346 ima_free_atfm(tfm);
347
348 return rc;
349 }
350
ima_calc_file_hash_tfm(struct file * file,struct ima_digest_data * hash,struct crypto_shash * tfm)351 static int ima_calc_file_hash_tfm(struct file *file,
352 struct ima_digest_data *hash,
353 struct crypto_shash *tfm)
354 {
355 loff_t i_size, offset = 0;
356 char *rbuf;
357 int rc;
358 SHASH_DESC_ON_STACK(shash, tfm);
359
360 shash->tfm = tfm;
361 shash->flags = 0;
362
363 hash->length = crypto_shash_digestsize(tfm);
364
365 rc = crypto_shash_init(shash);
366 if (rc != 0)
367 return rc;
368
369 i_size = i_size_read(file_inode(file));
370
371 if (i_size == 0)
372 goto out;
373
374 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
375 if (!rbuf)
376 return -ENOMEM;
377
378 while (offset < i_size) {
379 int rbuf_len;
380
381 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
382 if (rbuf_len < 0) {
383 rc = rbuf_len;
384 break;
385 }
386 if (rbuf_len == 0)
387 break;
388 offset += rbuf_len;
389
390 rc = crypto_shash_update(shash, rbuf, rbuf_len);
391 if (rc)
392 break;
393 }
394 kfree(rbuf);
395 out:
396 if (!rc)
397 rc = crypto_shash_final(shash, hash->digest);
398 return rc;
399 }
400
ima_calc_file_shash(struct file * file,struct ima_digest_data * hash)401 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
402 {
403 struct crypto_shash *tfm;
404 int rc;
405
406 tfm = ima_alloc_tfm(hash->algo);
407 if (IS_ERR(tfm))
408 return PTR_ERR(tfm);
409
410 rc = ima_calc_file_hash_tfm(file, hash, tfm);
411
412 ima_free_tfm(tfm);
413
414 return rc;
415 }
416
417 /*
418 * ima_calc_file_hash - calculate file hash
419 *
420 * Asynchronous hash (ahash) allows using HW acceleration for calculating
421 * a hash. ahash performance varies for different data sizes on different
422 * crypto accelerators. shash performance might be better for smaller files.
423 * The 'ima.ahash_minsize' module parameter allows specifying the best
424 * minimum file size for using ahash on the system.
425 *
426 * If the ima.ahash_minsize parameter is not specified, this function uses
427 * shash for the hash calculation. If ahash fails, it falls back to using
428 * shash.
429 */
ima_calc_file_hash(struct file * file,struct ima_digest_data * hash)430 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
431 {
432 loff_t i_size;
433 int rc;
434 struct file *f = file;
435 bool new_file_instance = false, modified_flags = false;
436
437 /*
438 * For consistency, fail file's opened with the O_DIRECT flag on
439 * filesystems mounted with/without DAX option.
440 */
441 if (file->f_flags & O_DIRECT) {
442 hash->length = hash_digest_size[ima_hash_algo];
443 hash->algo = ima_hash_algo;
444 return -EINVAL;
445 }
446
447 /* Open a new file instance in O_RDONLY if we cannot read */
448 if (!(file->f_mode & FMODE_READ)) {
449 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
450 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
451 flags |= O_RDONLY;
452 f = dentry_open(&file->f_path, flags, file->f_cred);
453 if (IS_ERR(f)) {
454 /*
455 * Cannot open the file again, lets modify f_flags
456 * of original and continue
457 */
458 pr_info_ratelimited("Unable to reopen file for reading.\n");
459 f = file;
460 f->f_flags |= FMODE_READ;
461 modified_flags = true;
462 } else {
463 new_file_instance = true;
464 }
465 }
466
467 i_size = i_size_read(file_inode(f));
468
469 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
470 rc = ima_calc_file_ahash(f, hash);
471 if (!rc)
472 goto out;
473 }
474
475 rc = ima_calc_file_shash(f, hash);
476 out:
477 if (new_file_instance)
478 fput(f);
479 else if (modified_flags)
480 f->f_flags &= ~FMODE_READ;
481 return rc;
482 }
483
484 /*
485 * Calculate the hash of template data
486 */
ima_calc_field_array_hash_tfm(struct ima_field_data * field_data,struct ima_template_desc * td,int num_fields,struct ima_digest_data * hash,struct crypto_shash * tfm)487 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
488 struct ima_template_desc *td,
489 int num_fields,
490 struct ima_digest_data *hash,
491 struct crypto_shash *tfm)
492 {
493 SHASH_DESC_ON_STACK(shash, tfm);
494 int rc, i;
495
496 shash->tfm = tfm;
497 shash->flags = 0;
498
499 hash->length = crypto_shash_digestsize(tfm);
500
501 rc = crypto_shash_init(shash);
502 if (rc != 0)
503 return rc;
504
505 for (i = 0; i < num_fields; i++) {
506 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
507 u8 *data_to_hash = field_data[i].data;
508 u32 datalen = field_data[i].len;
509 u32 datalen_to_hash =
510 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
511
512 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
513 rc = crypto_shash_update(shash,
514 (const u8 *) &datalen_to_hash,
515 sizeof(datalen_to_hash));
516 if (rc)
517 break;
518 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
519 memcpy(buffer, data_to_hash, datalen);
520 data_to_hash = buffer;
521 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
522 }
523 rc = crypto_shash_update(shash, data_to_hash, datalen);
524 if (rc)
525 break;
526 }
527
528 if (!rc)
529 rc = crypto_shash_final(shash, hash->digest);
530
531 return rc;
532 }
533
ima_calc_field_array_hash(struct ima_field_data * field_data,struct ima_template_desc * desc,int num_fields,struct ima_digest_data * hash)534 int ima_calc_field_array_hash(struct ima_field_data *field_data,
535 struct ima_template_desc *desc, int num_fields,
536 struct ima_digest_data *hash)
537 {
538 struct crypto_shash *tfm;
539 int rc;
540
541 tfm = ima_alloc_tfm(hash->algo);
542 if (IS_ERR(tfm))
543 return PTR_ERR(tfm);
544
545 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
546 hash, tfm);
547
548 ima_free_tfm(tfm);
549
550 return rc;
551 }
552
calc_buffer_ahash_atfm(const void * buf,loff_t len,struct ima_digest_data * hash,struct crypto_ahash * tfm)553 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
554 struct ima_digest_data *hash,
555 struct crypto_ahash *tfm)
556 {
557 struct ahash_request *req;
558 struct scatterlist sg;
559 struct ahash_completion res;
560 int rc, ahash_rc = 0;
561
562 hash->length = crypto_ahash_digestsize(tfm);
563
564 req = ahash_request_alloc(tfm, GFP_KERNEL);
565 if (!req)
566 return -ENOMEM;
567
568 init_completion(&res.completion);
569 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
570 CRYPTO_TFM_REQ_MAY_SLEEP,
571 ahash_complete, &res);
572
573 rc = ahash_wait(crypto_ahash_init(req), &res);
574 if (rc)
575 goto out;
576
577 sg_init_one(&sg, buf, len);
578 ahash_request_set_crypt(req, &sg, NULL, len);
579
580 ahash_rc = crypto_ahash_update(req);
581
582 /* wait for the update request to complete */
583 rc = ahash_wait(ahash_rc, &res);
584 if (!rc) {
585 ahash_request_set_crypt(req, NULL, hash->digest, 0);
586 rc = ahash_wait(crypto_ahash_final(req), &res);
587 }
588 out:
589 ahash_request_free(req);
590 return rc;
591 }
592
calc_buffer_ahash(const void * buf,loff_t len,struct ima_digest_data * hash)593 static int calc_buffer_ahash(const void *buf, loff_t len,
594 struct ima_digest_data *hash)
595 {
596 struct crypto_ahash *tfm;
597 int rc;
598
599 tfm = ima_alloc_atfm(hash->algo);
600 if (IS_ERR(tfm))
601 return PTR_ERR(tfm);
602
603 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
604
605 ima_free_atfm(tfm);
606
607 return rc;
608 }
609
calc_buffer_shash_tfm(const void * buf,loff_t size,struct ima_digest_data * hash,struct crypto_shash * tfm)610 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
611 struct ima_digest_data *hash,
612 struct crypto_shash *tfm)
613 {
614 SHASH_DESC_ON_STACK(shash, tfm);
615 unsigned int len;
616 int rc;
617
618 shash->tfm = tfm;
619 shash->flags = 0;
620
621 hash->length = crypto_shash_digestsize(tfm);
622
623 rc = crypto_shash_init(shash);
624 if (rc != 0)
625 return rc;
626
627 while (size) {
628 len = size < PAGE_SIZE ? size : PAGE_SIZE;
629 rc = crypto_shash_update(shash, buf, len);
630 if (rc)
631 break;
632 buf += len;
633 size -= len;
634 }
635
636 if (!rc)
637 rc = crypto_shash_final(shash, hash->digest);
638 return rc;
639 }
640
calc_buffer_shash(const void * buf,loff_t len,struct ima_digest_data * hash)641 static int calc_buffer_shash(const void *buf, loff_t len,
642 struct ima_digest_data *hash)
643 {
644 struct crypto_shash *tfm;
645 int rc;
646
647 tfm = ima_alloc_tfm(hash->algo);
648 if (IS_ERR(tfm))
649 return PTR_ERR(tfm);
650
651 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
652
653 ima_free_tfm(tfm);
654 return rc;
655 }
656
ima_calc_buffer_hash(const void * buf,loff_t len,struct ima_digest_data * hash)657 int ima_calc_buffer_hash(const void *buf, loff_t len,
658 struct ima_digest_data *hash)
659 {
660 int rc;
661
662 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
663 rc = calc_buffer_ahash(buf, len, hash);
664 if (!rc)
665 return 0;
666 }
667
668 return calc_buffer_shash(buf, len, hash);
669 }
670
ima_pcrread(int idx,u8 * pcr)671 static void __init ima_pcrread(int idx, u8 *pcr)
672 {
673 if (!ima_used_chip)
674 return;
675
676 if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0)
677 pr_err("Error Communicating to TPM chip\n");
678 }
679
680 /*
681 * Calculate the boot aggregate hash
682 */
ima_calc_boot_aggregate_tfm(char * digest,struct crypto_shash * tfm)683 static int __init ima_calc_boot_aggregate_tfm(char *digest,
684 struct crypto_shash *tfm)
685 {
686 u8 pcr_i[TPM_DIGEST_SIZE];
687 int rc, i;
688 SHASH_DESC_ON_STACK(shash, tfm);
689
690 shash->tfm = tfm;
691 shash->flags = 0;
692
693 rc = crypto_shash_init(shash);
694 if (rc != 0)
695 return rc;
696
697 /* cumulative sha1 over tpm registers 0-7 */
698 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
699 ima_pcrread(i, pcr_i);
700 /* now accumulate with current aggregate */
701 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
702 }
703 if (!rc)
704 crypto_shash_final(shash, digest);
705 return rc;
706 }
707
ima_calc_boot_aggregate(struct ima_digest_data * hash)708 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
709 {
710 struct crypto_shash *tfm;
711 int rc;
712
713 tfm = ima_alloc_tfm(hash->algo);
714 if (IS_ERR(tfm))
715 return PTR_ERR(tfm);
716
717 hash->length = crypto_shash_digestsize(tfm);
718 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
719
720 ima_free_tfm(tfm);
721
722 return rc;
723 }
724