1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Support for INET connection oriented protocols.
7 *
8 * Authors: See the TCP sources
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or(at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37 * only, and any IPv4 addresses if not IPv6 only
38 * match_wildcard == false: addresses must be exactly the same, i.e.
39 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40 * and 0.0.0.0 equals to 0.0.0.0 only
41 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_wildcard)42 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43 const struct in6_addr *sk2_rcv_saddr6,
44 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45 bool sk1_ipv6only, bool sk2_ipv6only,
46 bool match_wildcard)
47 {
48 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50
51 /* if both are mapped, treat as IPv4 */
52 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53 if (!sk2_ipv6only) {
54 if (sk1_rcv_saddr == sk2_rcv_saddr)
55 return 1;
56 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57 return match_wildcard;
58 }
59 return 0;
60 }
61
62 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63 return 1;
64
65 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67 return 1;
68
69 if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71 return 1;
72
73 if (sk2_rcv_saddr6 &&
74 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75 return 1;
76
77 return 0;
78 }
79 #endif
80
81 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
82 * match_wildcard == false: addresses must be exactly the same, i.e.
83 * 0.0.0.0 only equals to 0.0.0.0
84 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_wildcard)85 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86 bool sk2_ipv6only, bool match_wildcard)
87 {
88 if (!sk2_ipv6only) {
89 if (sk1_rcv_saddr == sk2_rcv_saddr)
90 return 1;
91 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92 return match_wildcard;
93 }
94 return 0;
95 }
96
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)97 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98 bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101 if (sk->sk_family == AF_INET6)
102 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103 inet6_rcv_saddr(sk2),
104 sk->sk_rcv_saddr,
105 sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk),
107 ipv6_only_sock(sk2),
108 match_wildcard);
109 #endif
110 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111 ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
inet_get_local_port_range(struct net * net,int * low,int * high)115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 unsigned int seq;
118
119 do {
120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122 *low = net->ipv4.ip_local_ports.range[0];
123 *high = net->ipv4.ip_local_ports.range[1];
124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)128 static int inet_csk_bind_conflict(const struct sock *sk,
129 const struct inet_bind_bucket *tb,
130 bool relax, bool reuseport_ok)
131 {
132 struct sock *sk2;
133 bool reuse = sk->sk_reuse;
134 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 kuid_t uid = sock_i_uid((struct sock *)sk);
136
137 /*
138 * Unlike other sk lookup places we do not check
139 * for sk_net here, since _all_ the socks listed
140 * in tb->owners list belong to the same net - the
141 * one this bucket belongs to.
142 */
143
144 sk_for_each_bound(sk2, &tb->owners) {
145 if (sk != sk2 &&
146 (!sk->sk_bound_dev_if ||
147 !sk2->sk_bound_dev_if ||
148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 if ((!reuse || !sk2->sk_reuse ||
150 sk2->sk_state == TCP_LISTEN) &&
151 (!reuseport || !sk2->sk_reuseport ||
152 rcu_access_pointer(sk->sk_reuseport_cb) ||
153 (sk2->sk_state != TCP_TIME_WAIT &&
154 !uid_eq(uid, sock_i_uid(sk2))))) {
155 if (inet_rcv_saddr_equal(sk, sk2, true))
156 break;
157 }
158 if (!relax && reuse && sk2->sk_reuse &&
159 sk2->sk_state != TCP_LISTEN) {
160 if (inet_rcv_saddr_equal(sk, sk2, true))
161 break;
162 }
163 }
164 }
165 return sk2 != NULL;
166 }
167
168 /*
169 * Find an open port number for the socket. Returns with the
170 * inet_bind_hashbucket lock held.
171 */
172 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 int port = 0;
177 struct inet_bind_hashbucket *head;
178 struct net *net = sock_net(sk);
179 int i, low, high, attempt_half;
180 struct inet_bind_bucket *tb;
181 u32 remaining, offset;
182
183 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185 inet_get_local_port_range(net, &low, &high);
186 high++; /* [32768, 60999] -> [32768, 61000[ */
187 if (high - low < 4)
188 attempt_half = 0;
189 if (attempt_half) {
190 int half = low + (((high - low) >> 2) << 1);
191
192 if (attempt_half == 1)
193 high = half;
194 else
195 low = half;
196 }
197 remaining = high - low;
198 if (likely(remaining > 1))
199 remaining &= ~1U;
200
201 offset = prandom_u32() % remaining;
202 /* __inet_hash_connect() favors ports having @low parity
203 * We do the opposite to not pollute connect() users.
204 */
205 offset |= 1U;
206
207 other_parity_scan:
208 port = low + offset;
209 for (i = 0; i < remaining; i += 2, port += 2) {
210 if (unlikely(port >= high))
211 port -= remaining;
212 if (inet_is_local_reserved_port(net, port))
213 continue;
214 head = &hinfo->bhash[inet_bhashfn(net, port,
215 hinfo->bhash_size)];
216 spin_lock_bh(&head->lock);
217 inet_bind_bucket_for_each(tb, &head->chain)
218 if (net_eq(ib_net(tb), net) && tb->port == port) {
219 if (!inet_csk_bind_conflict(sk, tb, false, false))
220 goto success;
221 goto next_port;
222 }
223 tb = NULL;
224 goto success;
225 next_port:
226 spin_unlock_bh(&head->lock);
227 cond_resched();
228 }
229
230 offset--;
231 if (!(offset & 1))
232 goto other_parity_scan;
233
234 if (attempt_half == 1) {
235 /* OK we now try the upper half of the range */
236 attempt_half = 2;
237 goto other_half_scan;
238 }
239 return NULL;
240 success:
241 *port_ret = port;
242 *tb_ret = tb;
243 return head;
244 }
245
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247 struct sock *sk)
248 {
249 kuid_t uid = sock_i_uid(sk);
250
251 if (tb->fastreuseport <= 0)
252 return 0;
253 if (!sk->sk_reuseport)
254 return 0;
255 if (rcu_access_pointer(sk->sk_reuseport_cb))
256 return 0;
257 if (!uid_eq(tb->fastuid, uid))
258 return 0;
259 /* We only need to check the rcv_saddr if this tb was once marked
260 * without fastreuseport and then was reset, as we can only know that
261 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262 * owners list.
263 */
264 if (tb->fastreuseport == FASTREUSEPORT_ANY)
265 return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267 if (tb->fast_sk_family == AF_INET6)
268 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269 inet6_rcv_saddr(sk),
270 tb->fast_rcv_saddr,
271 sk->sk_rcv_saddr,
272 tb->fast_ipv6_only,
273 ipv6_only_sock(sk), true);
274 #endif
275 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276 ipv6_only_sock(sk), true);
277 }
278
279 /* Obtain a reference to a local port for the given sock,
280 * if snum is zero it means select any available local port.
281 * We try to allocate an odd port (and leave even ports for connect())
282 */
inet_csk_get_port(struct sock * sk,unsigned short snum)283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287 int ret = 1, port = snum;
288 struct inet_bind_hashbucket *head;
289 struct net *net = sock_net(sk);
290 struct inet_bind_bucket *tb = NULL;
291 kuid_t uid = sock_i_uid(sk);
292
293 if (!port) {
294 head = inet_csk_find_open_port(sk, &tb, &port);
295 if (!head)
296 return ret;
297 if (!tb)
298 goto tb_not_found;
299 goto success;
300 }
301 head = &hinfo->bhash[inet_bhashfn(net, port,
302 hinfo->bhash_size)];
303 spin_lock_bh(&head->lock);
304 inet_bind_bucket_for_each(tb, &head->chain)
305 if (net_eq(ib_net(tb), net) && tb->port == port)
306 goto tb_found;
307 tb_not_found:
308 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309 net, head, port);
310 if (!tb)
311 goto fail_unlock;
312 tb_found:
313 if (!hlist_empty(&tb->owners)) {
314 if (sk->sk_reuse == SK_FORCE_REUSE)
315 goto success;
316
317 if ((tb->fastreuse > 0 && reuse) ||
318 sk_reuseport_match(tb, sk))
319 goto success;
320 if (inet_csk_bind_conflict(sk, tb, true, true))
321 goto fail_unlock;
322 }
323 success:
324 if (hlist_empty(&tb->owners)) {
325 tb->fastreuse = reuse;
326 if (sk->sk_reuseport) {
327 tb->fastreuseport = FASTREUSEPORT_ANY;
328 tb->fastuid = uid;
329 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330 tb->fast_ipv6_only = ipv6_only_sock(sk);
331 tb->fast_sk_family = sk->sk_family;
332 #if IS_ENABLED(CONFIG_IPV6)
333 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
334 #endif
335 } else {
336 tb->fastreuseport = 0;
337 }
338 } else {
339 if (!reuse)
340 tb->fastreuse = 0;
341 if (sk->sk_reuseport) {
342 /* We didn't match or we don't have fastreuseport set on
343 * the tb, but we have sk_reuseport set on this socket
344 * and we know that there are no bind conflicts with
345 * this socket in this tb, so reset our tb's reuseport
346 * settings so that any subsequent sockets that match
347 * our current socket will be put on the fast path.
348 *
349 * If we reset we need to set FASTREUSEPORT_STRICT so we
350 * do extra checking for all subsequent sk_reuseport
351 * socks.
352 */
353 if (!sk_reuseport_match(tb, sk)) {
354 tb->fastreuseport = FASTREUSEPORT_STRICT;
355 tb->fastuid = uid;
356 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
357 tb->fast_ipv6_only = ipv6_only_sock(sk);
358 tb->fast_sk_family = sk->sk_family;
359 #if IS_ENABLED(CONFIG_IPV6)
360 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
361 #endif
362 }
363 } else {
364 tb->fastreuseport = 0;
365 }
366 }
367 if (!inet_csk(sk)->icsk_bind_hash)
368 inet_bind_hash(sk, tb, port);
369 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
370 ret = 0;
371
372 fail_unlock:
373 spin_unlock_bh(&head->lock);
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(inet_csk_get_port);
377
378 /*
379 * Wait for an incoming connection, avoid race conditions. This must be called
380 * with the socket locked.
381 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)382 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
383 {
384 struct inet_connection_sock *icsk = inet_csk(sk);
385 DEFINE_WAIT(wait);
386 int err;
387
388 /*
389 * True wake-one mechanism for incoming connections: only
390 * one process gets woken up, not the 'whole herd'.
391 * Since we do not 'race & poll' for established sockets
392 * anymore, the common case will execute the loop only once.
393 *
394 * Subtle issue: "add_wait_queue_exclusive()" will be added
395 * after any current non-exclusive waiters, and we know that
396 * it will always _stay_ after any new non-exclusive waiters
397 * because all non-exclusive waiters are added at the
398 * beginning of the wait-queue. As such, it's ok to "drop"
399 * our exclusiveness temporarily when we get woken up without
400 * having to remove and re-insert us on the wait queue.
401 */
402 for (;;) {
403 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
404 TASK_INTERRUPTIBLE);
405 release_sock(sk);
406 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
407 timeo = schedule_timeout(timeo);
408 sched_annotate_sleep();
409 lock_sock(sk);
410 err = 0;
411 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
412 break;
413 err = -EINVAL;
414 if (sk->sk_state != TCP_LISTEN)
415 break;
416 err = sock_intr_errno(timeo);
417 if (signal_pending(current))
418 break;
419 err = -EAGAIN;
420 if (!timeo)
421 break;
422 }
423 finish_wait(sk_sleep(sk), &wait);
424 return err;
425 }
426
427 /*
428 * This will accept the next outstanding connection.
429 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)430 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
431 {
432 struct inet_connection_sock *icsk = inet_csk(sk);
433 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
434 struct request_sock *req;
435 struct sock *newsk;
436 int error;
437
438 lock_sock(sk);
439
440 /* We need to make sure that this socket is listening,
441 * and that it has something pending.
442 */
443 error = -EINVAL;
444 if (sk->sk_state != TCP_LISTEN)
445 goto out_err;
446
447 /* Find already established connection */
448 if (reqsk_queue_empty(queue)) {
449 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
450
451 /* If this is a non blocking socket don't sleep */
452 error = -EAGAIN;
453 if (!timeo)
454 goto out_err;
455
456 error = inet_csk_wait_for_connect(sk, timeo);
457 if (error)
458 goto out_err;
459 }
460 req = reqsk_queue_remove(queue, sk);
461 newsk = req->sk;
462
463 if (sk->sk_protocol == IPPROTO_TCP &&
464 tcp_rsk(req)->tfo_listener) {
465 spin_lock_bh(&queue->fastopenq.lock);
466 if (tcp_rsk(req)->tfo_listener) {
467 /* We are still waiting for the final ACK from 3WHS
468 * so can't free req now. Instead, we set req->sk to
469 * NULL to signify that the child socket is taken
470 * so reqsk_fastopen_remove() will free the req
471 * when 3WHS finishes (or is aborted).
472 */
473 req->sk = NULL;
474 req = NULL;
475 }
476 spin_unlock_bh(&queue->fastopenq.lock);
477 }
478
479 out:
480 release_sock(sk);
481 if (newsk && mem_cgroup_sockets_enabled) {
482 int amt;
483
484 /* atomically get the memory usage, set and charge the
485 * newsk->sk_memcg.
486 */
487 lock_sock(newsk);
488
489 /* The socket has not been accepted yet, no need to look at
490 * newsk->sk_wmem_queued.
491 */
492 amt = sk_mem_pages(newsk->sk_forward_alloc +
493 atomic_read(&newsk->sk_rmem_alloc));
494 mem_cgroup_sk_alloc(newsk);
495 if (newsk->sk_memcg && amt)
496 mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
497
498 release_sock(newsk);
499 }
500 if (req)
501 reqsk_put(req);
502 return newsk;
503 out_err:
504 newsk = NULL;
505 req = NULL;
506 *err = error;
507 goto out;
508 }
509 EXPORT_SYMBOL(inet_csk_accept);
510
511 /*
512 * Using different timers for retransmit, delayed acks and probes
513 * We may wish use just one timer maintaining a list of expire jiffies
514 * to optimize.
515 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(unsigned long),void (* delack_handler)(unsigned long),void (* keepalive_handler)(unsigned long))516 void inet_csk_init_xmit_timers(struct sock *sk,
517 void (*retransmit_handler)(unsigned long),
518 void (*delack_handler)(unsigned long),
519 void (*keepalive_handler)(unsigned long))
520 {
521 struct inet_connection_sock *icsk = inet_csk(sk);
522
523 setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler,
524 (unsigned long)sk);
525 setup_timer(&icsk->icsk_delack_timer, delack_handler,
526 (unsigned long)sk);
527 setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk);
528 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
529 }
530 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
531
inet_csk_clear_xmit_timers(struct sock * sk)532 void inet_csk_clear_xmit_timers(struct sock *sk)
533 {
534 struct inet_connection_sock *icsk = inet_csk(sk);
535
536 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
537
538 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
539 sk_stop_timer(sk, &icsk->icsk_delack_timer);
540 sk_stop_timer(sk, &sk->sk_timer);
541 }
542 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
543
inet_csk_delete_keepalive_timer(struct sock * sk)544 void inet_csk_delete_keepalive_timer(struct sock *sk)
545 {
546 sk_stop_timer(sk, &sk->sk_timer);
547 }
548 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
549
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)550 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
551 {
552 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
553 }
554 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
555
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)556 struct dst_entry *inet_csk_route_req(const struct sock *sk,
557 struct flowi4 *fl4,
558 const struct request_sock *req)
559 {
560 const struct inet_request_sock *ireq = inet_rsk(req);
561 struct net *net = read_pnet(&ireq->ireq_net);
562 struct ip_options_rcu *opt;
563 struct rtable *rt;
564
565 rcu_read_lock();
566 opt = rcu_dereference(ireq->ireq_opt);
567
568 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
569 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
570 sk->sk_protocol, inet_sk_flowi_flags(sk),
571 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
572 ireq->ir_loc_addr, ireq->ir_rmt_port,
573 htons(ireq->ir_num), sk->sk_uid);
574 security_req_classify_flow(req, flowi4_to_flowi(fl4));
575 rt = ip_route_output_flow(net, fl4, sk);
576 if (IS_ERR(rt))
577 goto no_route;
578 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
579 goto route_err;
580 rcu_read_unlock();
581 return &rt->dst;
582
583 route_err:
584 ip_rt_put(rt);
585 no_route:
586 rcu_read_unlock();
587 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
588 return NULL;
589 }
590 EXPORT_SYMBOL_GPL(inet_csk_route_req);
591
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)592 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
593 struct sock *newsk,
594 const struct request_sock *req)
595 {
596 const struct inet_request_sock *ireq = inet_rsk(req);
597 struct net *net = read_pnet(&ireq->ireq_net);
598 struct inet_sock *newinet = inet_sk(newsk);
599 struct ip_options_rcu *opt;
600 struct flowi4 *fl4;
601 struct rtable *rt;
602
603 opt = rcu_dereference(ireq->ireq_opt);
604 fl4 = &newinet->cork.fl.u.ip4;
605
606 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
607 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
608 sk->sk_protocol, inet_sk_flowi_flags(sk),
609 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
610 ireq->ir_loc_addr, ireq->ir_rmt_port,
611 htons(ireq->ir_num), sk->sk_uid);
612 security_req_classify_flow(req, flowi4_to_flowi(fl4));
613 rt = ip_route_output_flow(net, fl4, sk);
614 if (IS_ERR(rt))
615 goto no_route;
616 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
617 goto route_err;
618 return &rt->dst;
619
620 route_err:
621 ip_rt_put(rt);
622 no_route:
623 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
624 return NULL;
625 }
626 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
627
628 #if IS_ENABLED(CONFIG_IPV6)
629 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
630 #else
631 #define AF_INET_FAMILY(fam) true
632 #endif
633
634 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int thresh,const int max_retries,const u8 rskq_defer_accept,int * expire,int * resend)635 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
636 const int max_retries,
637 const u8 rskq_defer_accept,
638 int *expire, int *resend)
639 {
640 if (!rskq_defer_accept) {
641 *expire = req->num_timeout >= thresh;
642 *resend = 1;
643 return;
644 }
645 *expire = req->num_timeout >= thresh &&
646 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
647 /*
648 * Do not resend while waiting for data after ACK,
649 * start to resend on end of deferring period to give
650 * last chance for data or ACK to create established socket.
651 */
652 *resend = !inet_rsk(req)->acked ||
653 req->num_timeout >= rskq_defer_accept - 1;
654 }
655
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)656 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
657 {
658 int err = req->rsk_ops->rtx_syn_ack(parent, req);
659
660 if (!err)
661 req->num_retrans++;
662 return err;
663 }
664 EXPORT_SYMBOL(inet_rtx_syn_ack);
665
666 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock_queue * queue,struct request_sock * req)667 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
668 struct request_sock *req)
669 {
670 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
671 bool found = false;
672
673 if (sk_hashed(req_to_sk(req))) {
674 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
675
676 spin_lock(lock);
677 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
678 spin_unlock(lock);
679 }
680 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
681 reqsk_put(req);
682 return found;
683 }
684
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)685 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
686 {
687 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
688 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
689 reqsk_put(req);
690 }
691 }
692 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
693
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)694 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
695 {
696 inet_csk_reqsk_queue_drop(sk, req);
697 reqsk_put(req);
698 }
699 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
700
reqsk_timer_handler(unsigned long data)701 static void reqsk_timer_handler(unsigned long data)
702 {
703 struct request_sock *req = (struct request_sock *)data;
704 struct sock *sk_listener = req->rsk_listener;
705 struct net *net = sock_net(sk_listener);
706 struct inet_connection_sock *icsk = inet_csk(sk_listener);
707 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
708 int qlen, expire = 0, resend = 0;
709 int max_retries, thresh;
710 u8 defer_accept;
711
712 if (sk_state_load(sk_listener) != TCP_LISTEN)
713 goto drop;
714
715 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
716 thresh = max_retries;
717 /* Normally all the openreqs are young and become mature
718 * (i.e. converted to established socket) for first timeout.
719 * If synack was not acknowledged for 1 second, it means
720 * one of the following things: synack was lost, ack was lost,
721 * rtt is high or nobody planned to ack (i.e. synflood).
722 * When server is a bit loaded, queue is populated with old
723 * open requests, reducing effective size of queue.
724 * When server is well loaded, queue size reduces to zero
725 * after several minutes of work. It is not synflood,
726 * it is normal operation. The solution is pruning
727 * too old entries overriding normal timeout, when
728 * situation becomes dangerous.
729 *
730 * Essentially, we reserve half of room for young
731 * embrions; and abort old ones without pity, if old
732 * ones are about to clog our table.
733 */
734 qlen = reqsk_queue_len(queue);
735 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
736 int young = reqsk_queue_len_young(queue) << 1;
737
738 while (thresh > 2) {
739 if (qlen < young)
740 break;
741 thresh--;
742 young <<= 1;
743 }
744 }
745 defer_accept = READ_ONCE(queue->rskq_defer_accept);
746 if (defer_accept)
747 max_retries = defer_accept;
748 syn_ack_recalc(req, thresh, max_retries, defer_accept,
749 &expire, &resend);
750 req->rsk_ops->syn_ack_timeout(req);
751 if (!expire &&
752 (!resend ||
753 !inet_rtx_syn_ack(sk_listener, req) ||
754 inet_rsk(req)->acked)) {
755 unsigned long timeo;
756
757 if (req->num_timeout++ == 0)
758 atomic_dec(&queue->young);
759 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
760 mod_timer(&req->rsk_timer, jiffies + timeo);
761 return;
762 }
763 drop:
764 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
765 }
766
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)767 static void reqsk_queue_hash_req(struct request_sock *req,
768 unsigned long timeout)
769 {
770 req->num_retrans = 0;
771 req->num_timeout = 0;
772 req->sk = NULL;
773
774 setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler,
775 (unsigned long)req);
776 mod_timer(&req->rsk_timer, jiffies + timeout);
777
778 inet_ehash_insert(req_to_sk(req), NULL);
779 /* before letting lookups find us, make sure all req fields
780 * are committed to memory and refcnt initialized.
781 */
782 smp_wmb();
783 refcount_set(&req->rsk_refcnt, 2 + 1);
784 }
785
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)786 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
787 unsigned long timeout)
788 {
789 reqsk_queue_hash_req(req, timeout);
790 inet_csk_reqsk_queue_added(sk);
791 }
792 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
793
794 /**
795 * inet_csk_clone_lock - clone an inet socket, and lock its clone
796 * @sk: the socket to clone
797 * @req: request_sock
798 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
799 *
800 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
801 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)802 struct sock *inet_csk_clone_lock(const struct sock *sk,
803 const struct request_sock *req,
804 const gfp_t priority)
805 {
806 struct sock *newsk = sk_clone_lock(sk, priority);
807
808 if (newsk) {
809 struct inet_connection_sock *newicsk = inet_csk(newsk);
810
811 newsk->sk_state = TCP_SYN_RECV;
812 newicsk->icsk_bind_hash = NULL;
813
814 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
815 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
816 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
817
818 /* listeners have SOCK_RCU_FREE, not the children */
819 sock_reset_flag(newsk, SOCK_RCU_FREE);
820
821 inet_sk(newsk)->mc_list = NULL;
822
823 newsk->sk_mark = inet_rsk(req)->ir_mark;
824 atomic64_set(&newsk->sk_cookie,
825 atomic64_read(&inet_rsk(req)->ir_cookie));
826
827 newicsk->icsk_retransmits = 0;
828 newicsk->icsk_backoff = 0;
829 newicsk->icsk_probes_out = 0;
830
831 /* Deinitialize accept_queue to trap illegal accesses. */
832 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
833
834 security_inet_csk_clone(newsk, req);
835 }
836 return newsk;
837 }
838 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
839
840 /*
841 * At this point, there should be no process reference to this
842 * socket, and thus no user references at all. Therefore we
843 * can assume the socket waitqueue is inactive and nobody will
844 * try to jump onto it.
845 */
inet_csk_destroy_sock(struct sock * sk)846 void inet_csk_destroy_sock(struct sock *sk)
847 {
848 WARN_ON(sk->sk_state != TCP_CLOSE);
849 WARN_ON(!sock_flag(sk, SOCK_DEAD));
850
851 /* It cannot be in hash table! */
852 WARN_ON(!sk_unhashed(sk));
853
854 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
855 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
856
857 sk->sk_prot->destroy(sk);
858
859 sk_stream_kill_queues(sk);
860
861 xfrm_sk_free_policy(sk);
862
863 sk_refcnt_debug_release(sk);
864
865 percpu_counter_dec(sk->sk_prot->orphan_count);
866
867 sock_put(sk);
868 }
869 EXPORT_SYMBOL(inet_csk_destroy_sock);
870
871 /* This function allows to force a closure of a socket after the call to
872 * tcp/dccp_create_openreq_child().
873 */
inet_csk_prepare_forced_close(struct sock * sk)874 void inet_csk_prepare_forced_close(struct sock *sk)
875 __releases(&sk->sk_lock.slock)
876 {
877 /* sk_clone_lock locked the socket and set refcnt to 2 */
878 bh_unlock_sock(sk);
879 sock_put(sk);
880
881 /* The below has to be done to allow calling inet_csk_destroy_sock */
882 sock_set_flag(sk, SOCK_DEAD);
883 percpu_counter_inc(sk->sk_prot->orphan_count);
884 inet_sk(sk)->inet_num = 0;
885 }
886 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
887
inet_csk_listen_start(struct sock * sk,int backlog)888 int inet_csk_listen_start(struct sock *sk, int backlog)
889 {
890 struct inet_connection_sock *icsk = inet_csk(sk);
891 struct inet_sock *inet = inet_sk(sk);
892 int err = -EADDRINUSE;
893
894 reqsk_queue_alloc(&icsk->icsk_accept_queue);
895
896 sk->sk_max_ack_backlog = backlog;
897 sk->sk_ack_backlog = 0;
898 inet_csk_delack_init(sk);
899
900 /* There is race window here: we announce ourselves listening,
901 * but this transition is still not validated by get_port().
902 * It is OK, because this socket enters to hash table only
903 * after validation is complete.
904 */
905 sk_state_store(sk, TCP_LISTEN);
906 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
907 inet->inet_sport = htons(inet->inet_num);
908
909 sk_dst_reset(sk);
910 err = sk->sk_prot->hash(sk);
911
912 if (likely(!err))
913 return 0;
914 }
915
916 sk->sk_state = TCP_CLOSE;
917 return err;
918 }
919 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
920
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)921 static void inet_child_forget(struct sock *sk, struct request_sock *req,
922 struct sock *child)
923 {
924 sk->sk_prot->disconnect(child, O_NONBLOCK);
925
926 sock_orphan(child);
927
928 percpu_counter_inc(sk->sk_prot->orphan_count);
929
930 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
931 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
932 BUG_ON(sk != req->rsk_listener);
933
934 /* Paranoid, to prevent race condition if
935 * an inbound pkt destined for child is
936 * blocked by sock lock in tcp_v4_rcv().
937 * Also to satisfy an assertion in
938 * tcp_v4_destroy_sock().
939 */
940 tcp_sk(child)->fastopen_rsk = NULL;
941 }
942 inet_csk_destroy_sock(child);
943 }
944
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)945 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
946 struct request_sock *req,
947 struct sock *child)
948 {
949 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
950
951 spin_lock(&queue->rskq_lock);
952 if (unlikely(sk->sk_state != TCP_LISTEN)) {
953 inet_child_forget(sk, req, child);
954 child = NULL;
955 } else {
956 req->sk = child;
957 req->dl_next = NULL;
958 if (queue->rskq_accept_head == NULL)
959 WRITE_ONCE(queue->rskq_accept_head, req);
960 else
961 queue->rskq_accept_tail->dl_next = req;
962 queue->rskq_accept_tail = req;
963 sk_acceptq_added(sk);
964 }
965 spin_unlock(&queue->rskq_lock);
966 return child;
967 }
968 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
969
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)970 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
971 struct request_sock *req, bool own_req)
972 {
973 if (own_req) {
974 inet_csk_reqsk_queue_drop(sk, req);
975 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
976 if (inet_csk_reqsk_queue_add(sk, req, child))
977 return child;
978 }
979 /* Too bad, another child took ownership of the request, undo. */
980 bh_unlock_sock(child);
981 sock_put(child);
982 return NULL;
983 }
984 EXPORT_SYMBOL(inet_csk_complete_hashdance);
985
986 /*
987 * This routine closes sockets which have been at least partially
988 * opened, but not yet accepted.
989 */
inet_csk_listen_stop(struct sock * sk)990 void inet_csk_listen_stop(struct sock *sk)
991 {
992 struct inet_connection_sock *icsk = inet_csk(sk);
993 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
994 struct request_sock *next, *req;
995
996 /* Following specs, it would be better either to send FIN
997 * (and enter FIN-WAIT-1, it is normal close)
998 * or to send active reset (abort).
999 * Certainly, it is pretty dangerous while synflood, but it is
1000 * bad justification for our negligence 8)
1001 * To be honest, we are not able to make either
1002 * of the variants now. --ANK
1003 */
1004 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1005 struct sock *child = req->sk;
1006
1007 local_bh_disable();
1008 bh_lock_sock(child);
1009 WARN_ON(sock_owned_by_user(child));
1010 sock_hold(child);
1011
1012 inet_child_forget(sk, req, child);
1013 reqsk_put(req);
1014 bh_unlock_sock(child);
1015 local_bh_enable();
1016 sock_put(child);
1017
1018 cond_resched();
1019 }
1020 if (queue->fastopenq.rskq_rst_head) {
1021 /* Free all the reqs queued in rskq_rst_head. */
1022 spin_lock_bh(&queue->fastopenq.lock);
1023 req = queue->fastopenq.rskq_rst_head;
1024 queue->fastopenq.rskq_rst_head = NULL;
1025 spin_unlock_bh(&queue->fastopenq.lock);
1026 while (req != NULL) {
1027 next = req->dl_next;
1028 reqsk_put(req);
1029 req = next;
1030 }
1031 }
1032 WARN_ON_ONCE(sk->sk_ack_backlog);
1033 }
1034 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1035
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1036 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1037 {
1038 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1039 const struct inet_sock *inet = inet_sk(sk);
1040
1041 sin->sin_family = AF_INET;
1042 sin->sin_addr.s_addr = inet->inet_daddr;
1043 sin->sin_port = inet->inet_dport;
1044 }
1045 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1046
1047 #ifdef CONFIG_COMPAT
inet_csk_compat_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1048 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1049 char __user *optval, int __user *optlen)
1050 {
1051 const struct inet_connection_sock *icsk = inet_csk(sk);
1052
1053 if (icsk->icsk_af_ops->compat_getsockopt)
1054 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1055 optval, optlen);
1056 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1057 optval, optlen);
1058 }
1059 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1060
inet_csk_compat_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1061 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1062 char __user *optval, unsigned int optlen)
1063 {
1064 const struct inet_connection_sock *icsk = inet_csk(sk);
1065
1066 if (icsk->icsk_af_ops->compat_setsockopt)
1067 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1068 optval, optlen);
1069 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1070 optval, optlen);
1071 }
1072 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1073 #endif
1074
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1075 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1076 {
1077 const struct inet_sock *inet = inet_sk(sk);
1078 const struct ip_options_rcu *inet_opt;
1079 __be32 daddr = inet->inet_daddr;
1080 struct flowi4 *fl4;
1081 struct rtable *rt;
1082
1083 rcu_read_lock();
1084 inet_opt = rcu_dereference(inet->inet_opt);
1085 if (inet_opt && inet_opt->opt.srr)
1086 daddr = inet_opt->opt.faddr;
1087 fl4 = &fl->u.ip4;
1088 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1089 inet->inet_saddr, inet->inet_dport,
1090 inet->inet_sport, sk->sk_protocol,
1091 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1092 if (IS_ERR(rt))
1093 rt = NULL;
1094 if (rt)
1095 sk_setup_caps(sk, &rt->dst);
1096 rcu_read_unlock();
1097
1098 return &rt->dst;
1099 }
1100
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1101 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1102 {
1103 struct dst_entry *dst = __sk_dst_check(sk, 0);
1104 struct inet_sock *inet = inet_sk(sk);
1105
1106 if (!dst) {
1107 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1108 if (!dst)
1109 goto out;
1110 }
1111 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1112
1113 dst = __sk_dst_check(sk, 0);
1114 if (!dst)
1115 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1116 out:
1117 return dst;
1118 }
1119 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1120