• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/sched/clock.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/cpu.h>
28 #include <linux/stop_machine.h>
29 #include <linux/time.h>
30 #include <linux/device.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/types.h>
35 #include <linux/profile.h>
36 #include <linux/timex.h>
37 #include <linux/notifier.h>
38 #include <linux/timekeeper_internal.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <asm/facility.h>
44 #include <asm/delay.h>
45 #include <asm/div64.h>
46 #include <asm/vdso.h>
47 #include <asm/irq.h>
48 #include <asm/irq_regs.h>
49 #include <asm/vtimer.h>
50 #include <asm/stp.h>
51 #include <asm/cio.h>
52 #include "entry.h"
53 
54 unsigned char tod_clock_base[16] __aligned(8) = {
55 	/* Force to data section. */
56 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
58 };
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60 
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68 
69 unsigned char ptff_function_mask[16];
70 
71 static unsigned long long lpar_offset;
72 static unsigned long long initial_leap_seconds;
73 static unsigned long long tod_steering_end;
74 static long long tod_steering_delta;
75 
76 /*
77  * Get time offsets with PTFF
78  */
time_early_init(void)79 void __init time_early_init(void)
80 {
81 	struct ptff_qto qto;
82 	struct ptff_qui qui;
83 
84 	/* Initialize TOD steering parameters */
85 	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
86 	vdso_data->ts_end = tod_steering_end;
87 
88 	if (!test_facility(28))
89 		return;
90 
91 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
92 
93 	/* get LPAR offset */
94 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
95 		lpar_offset = qto.tod_epoch_difference;
96 
97 	/* get initial leap seconds */
98 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
99 		initial_leap_seconds = (unsigned long long)
100 			((long) qui.old_leap * 4096000000L);
101 }
102 
103 /*
104  * Scheduler clock - returns current time in nanosec units.
105  */
sched_clock(void)106 unsigned long long notrace sched_clock(void)
107 {
108 	return tod_to_ns(get_tod_clock_monotonic());
109 }
110 NOKPROBE_SYMBOL(sched_clock);
111 
112 /*
113  * Monotonic_clock - returns # of nanoseconds passed since time_init()
114  */
monotonic_clock(void)115 unsigned long long monotonic_clock(void)
116 {
117 	return sched_clock();
118 }
119 EXPORT_SYMBOL(monotonic_clock);
120 
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)121 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
122 {
123 	unsigned long long high, low, rem, sec, nsec;
124 
125 	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
126 	high = (*(unsigned long long *) clk) >> 4;
127 	low = (*(unsigned long long *)&clk[7]) << 4;
128 	/* Calculate seconds and nano-seconds */
129 	sec = high;
130 	rem = do_div(sec, 1000000);
131 	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
132 
133 	xt->tv_sec = sec;
134 	xt->tv_nsec = nsec;
135 }
136 
clock_comparator_work(void)137 void clock_comparator_work(void)
138 {
139 	struct clock_event_device *cd;
140 
141 	S390_lowcore.clock_comparator = clock_comparator_max;
142 	cd = this_cpu_ptr(&comparators);
143 	cd->event_handler(cd);
144 }
145 
s390_next_event(unsigned long delta,struct clock_event_device * evt)146 static int s390_next_event(unsigned long delta,
147 			   struct clock_event_device *evt)
148 {
149 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
150 	set_clock_comparator(S390_lowcore.clock_comparator);
151 	return 0;
152 }
153 
154 /*
155  * Set up lowcore and control register of the current cpu to
156  * enable TOD clock and clock comparator interrupts.
157  */
init_cpu_timer(void)158 void init_cpu_timer(void)
159 {
160 	struct clock_event_device *cd;
161 	int cpu;
162 
163 	S390_lowcore.clock_comparator = clock_comparator_max;
164 	set_clock_comparator(S390_lowcore.clock_comparator);
165 
166 	cpu = smp_processor_id();
167 	cd = &per_cpu(comparators, cpu);
168 	cd->name		= "comparator";
169 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
170 	cd->mult		= 16777;
171 	cd->shift		= 12;
172 	cd->min_delta_ns	= 1;
173 	cd->min_delta_ticks	= 1;
174 	cd->max_delta_ns	= LONG_MAX;
175 	cd->max_delta_ticks	= ULONG_MAX;
176 	cd->rating		= 400;
177 	cd->cpumask		= cpumask_of(cpu);
178 	cd->set_next_event	= s390_next_event;
179 
180 	clockevents_register_device(cd);
181 
182 	/* Enable clock comparator timer interrupt. */
183 	__ctl_set_bit(0,11);
184 
185 	/* Always allow the timing alert external interrupt. */
186 	__ctl_set_bit(0, 4);
187 }
188 
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)189 static void clock_comparator_interrupt(struct ext_code ext_code,
190 				       unsigned int param32,
191 				       unsigned long param64)
192 {
193 	inc_irq_stat(IRQEXT_CLK);
194 	if (S390_lowcore.clock_comparator == clock_comparator_max)
195 		set_clock_comparator(S390_lowcore.clock_comparator);
196 }
197 
198 static void stp_timing_alert(struct stp_irq_parm *);
199 
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)200 static void timing_alert_interrupt(struct ext_code ext_code,
201 				   unsigned int param32, unsigned long param64)
202 {
203 	inc_irq_stat(IRQEXT_TLA);
204 	if (param32 & 0x00038000)
205 		stp_timing_alert((struct stp_irq_parm *) &param32);
206 }
207 
208 static void stp_reset(void);
209 
read_persistent_clock64(struct timespec64 * ts)210 void read_persistent_clock64(struct timespec64 *ts)
211 {
212 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
213 	__u64 delta;
214 
215 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
216 	get_tod_clock_ext(clk);
217 	*(__u64 *) &clk[1] -= delta;
218 	if (*(__u64 *) &clk[1] > delta)
219 		clk[0]--;
220 	ext_to_timespec64(clk, ts);
221 }
222 
read_boot_clock64(struct timespec64 * ts)223 void read_boot_clock64(struct timespec64 *ts)
224 {
225 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
226 	__u64 delta;
227 
228 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
229 	memcpy(clk, tod_clock_base, 16);
230 	*(__u64 *) &clk[1] -= delta;
231 	if (*(__u64 *) &clk[1] > delta)
232 		clk[0]--;
233 	ext_to_timespec64(clk, ts);
234 }
235 
read_tod_clock(struct clocksource * cs)236 static u64 read_tod_clock(struct clocksource *cs)
237 {
238 	unsigned long long now, adj;
239 
240 	preempt_disable(); /* protect from changes to steering parameters */
241 	now = get_tod_clock();
242 	adj = tod_steering_end - now;
243 	if (unlikely((s64) adj >= 0))
244 		/*
245 		 * manually steer by 1 cycle every 2^16 cycles. This
246 		 * corresponds to shifting the tod delta by 15. 1s is
247 		 * therefore steered in ~9h. The adjust will decrease
248 		 * over time, until it finally reaches 0.
249 		 */
250 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
251 	preempt_enable();
252 	return now;
253 }
254 
255 static struct clocksource clocksource_tod = {
256 	.name		= "tod",
257 	.rating		= 400,
258 	.read		= read_tod_clock,
259 	.mask		= -1ULL,
260 	.mult		= 1000,
261 	.shift		= 12,
262 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
263 };
264 
clocksource_default_clock(void)265 struct clocksource * __init clocksource_default_clock(void)
266 {
267 	return &clocksource_tod;
268 }
269 
update_vsyscall(struct timekeeper * tk)270 void update_vsyscall(struct timekeeper *tk)
271 {
272 	u64 nsecps;
273 
274 	if (tk->tkr_mono.clock != &clocksource_tod)
275 		return;
276 
277 	/* Make userspace gettimeofday spin until we're done. */
278 	++vdso_data->tb_update_count;
279 	smp_wmb();
280 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
281 	vdso_data->xtime_clock_sec = tk->xtime_sec;
282 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
283 	vdso_data->wtom_clock_sec =
284 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
285 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
286 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
287 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
288 	while (vdso_data->wtom_clock_nsec >= nsecps) {
289 		vdso_data->wtom_clock_nsec -= nsecps;
290 		vdso_data->wtom_clock_sec++;
291 	}
292 
293 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
294 	vdso_data->xtime_coarse_nsec =
295 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
296 	vdso_data->wtom_coarse_sec =
297 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
298 	vdso_data->wtom_coarse_nsec =
299 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
300 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
301 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
302 		vdso_data->wtom_coarse_sec++;
303 	}
304 
305 	vdso_data->tk_mult = tk->tkr_mono.mult;
306 	vdso_data->tk_shift = tk->tkr_mono.shift;
307 	smp_wmb();
308 	++vdso_data->tb_update_count;
309 }
310 
311 extern struct timezone sys_tz;
312 
update_vsyscall_tz(void)313 void update_vsyscall_tz(void)
314 {
315 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
316 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
317 }
318 
319 /*
320  * Initialize the TOD clock and the CPU timer of
321  * the boot cpu.
322  */
time_init(void)323 void __init time_init(void)
324 {
325 	/* Reset time synchronization interfaces. */
326 	stp_reset();
327 
328 	/* request the clock comparator external interrupt */
329 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
330 		panic("Couldn't request external interrupt 0x1004");
331 
332 	/* request the timing alert external interrupt */
333 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
334 		panic("Couldn't request external interrupt 0x1406");
335 
336 	if (__clocksource_register(&clocksource_tod) != 0)
337 		panic("Could not register TOD clock source");
338 
339 	/* Enable TOD clock interrupts on the boot cpu. */
340 	init_cpu_timer();
341 
342 	/* Enable cpu timer interrupts on the boot cpu. */
343 	vtime_init();
344 }
345 
346 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
347 static DEFINE_MUTEX(clock_sync_mutex);
348 static unsigned long clock_sync_flags;
349 
350 #define CLOCK_SYNC_HAS_STP	0
351 #define CLOCK_SYNC_STP		1
352 
353 /*
354  * The get_clock function for the physical clock. It will get the current
355  * TOD clock, subtract the LPAR offset and write the result to *clock.
356  * The function returns 0 if the clock is in sync with the external time
357  * source. If the clock mode is local it will return -EOPNOTSUPP and
358  * -EAGAIN if the clock is not in sync with the external reference.
359  */
get_phys_clock(unsigned long * clock)360 int get_phys_clock(unsigned long *clock)
361 {
362 	atomic_t *sw_ptr;
363 	unsigned int sw0, sw1;
364 
365 	sw_ptr = &get_cpu_var(clock_sync_word);
366 	sw0 = atomic_read(sw_ptr);
367 	*clock = get_tod_clock() - lpar_offset;
368 	sw1 = atomic_read(sw_ptr);
369 	put_cpu_var(clock_sync_word);
370 	if (sw0 == sw1 && (sw0 & 0x80000000U))
371 		/* Success: time is in sync. */
372 		return 0;
373 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
374 		return -EOPNOTSUPP;
375 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
376 		return -EACCES;
377 	return -EAGAIN;
378 }
379 EXPORT_SYMBOL(get_phys_clock);
380 
381 /*
382  * Make get_phys_clock() return -EAGAIN.
383  */
disable_sync_clock(void * dummy)384 static void disable_sync_clock(void *dummy)
385 {
386 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
387 	/*
388 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
389 	 * fail until the sync bit is turned back on. In addition
390 	 * increase the "sequence" counter to avoid the race of an
391 	 * stp event and the complete recovery against get_phys_clock.
392 	 */
393 	atomic_andnot(0x80000000, sw_ptr);
394 	atomic_inc(sw_ptr);
395 }
396 
397 /*
398  * Make get_phys_clock() return 0 again.
399  * Needs to be called from a context disabled for preemption.
400  */
enable_sync_clock(void)401 static void enable_sync_clock(void)
402 {
403 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
404 	atomic_or(0x80000000, sw_ptr);
405 }
406 
407 /*
408  * Function to check if the clock is in sync.
409  */
check_sync_clock(void)410 static inline int check_sync_clock(void)
411 {
412 	atomic_t *sw_ptr;
413 	int rc;
414 
415 	sw_ptr = &get_cpu_var(clock_sync_word);
416 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
417 	put_cpu_var(clock_sync_word);
418 	return rc;
419 }
420 
421 /*
422  * Apply clock delta to the global data structures.
423  * This is called once on the CPU that performed the clock sync.
424  */
clock_sync_global(unsigned long long delta)425 static void clock_sync_global(unsigned long long delta)
426 {
427 	unsigned long now, adj;
428 	struct ptff_qto qto;
429 
430 	/* Fixup the monotonic sched clock. */
431 	*(unsigned long long *) &tod_clock_base[1] += delta;
432 	if (*(unsigned long long *) &tod_clock_base[1] < delta)
433 		/* Epoch overflow */
434 		tod_clock_base[0]++;
435 	/* Adjust TOD steering parameters. */
436 	vdso_data->tb_update_count++;
437 	now = get_tod_clock();
438 	adj = tod_steering_end - now;
439 	if (unlikely((s64) adj >= 0))
440 		/* Calculate how much of the old adjustment is left. */
441 		tod_steering_delta = (tod_steering_delta < 0) ?
442 			-(adj >> 15) : (adj >> 15);
443 	tod_steering_delta += delta;
444 	if ((abs(tod_steering_delta) >> 48) != 0)
445 		panic("TOD clock sync offset %lli is too large to drift\n",
446 		      tod_steering_delta);
447 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
448 	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
449 	vdso_data->ts_end = tod_steering_end;
450 	vdso_data->tb_update_count++;
451 	/* Update LPAR offset. */
452 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
453 		lpar_offset = qto.tod_epoch_difference;
454 	/* Call the TOD clock change notifier. */
455 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
456 }
457 
458 /*
459  * Apply clock delta to the per-CPU data structures of this CPU.
460  * This is called for each online CPU after the call to clock_sync_global.
461  */
clock_sync_local(unsigned long long delta)462 static void clock_sync_local(unsigned long long delta)
463 {
464 	/* Add the delta to the clock comparator. */
465 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
466 		S390_lowcore.clock_comparator += delta;
467 		set_clock_comparator(S390_lowcore.clock_comparator);
468 	}
469 	/* Adjust the last_update_clock time-stamp. */
470 	S390_lowcore.last_update_clock += delta;
471 }
472 
473 /* Single threaded workqueue used for stp sync events */
474 static struct workqueue_struct *time_sync_wq;
475 
time_init_wq(void)476 static void __init time_init_wq(void)
477 {
478 	if (time_sync_wq)
479 		return;
480 	time_sync_wq = create_singlethread_workqueue("timesync");
481 }
482 
483 struct clock_sync_data {
484 	atomic_t cpus;
485 	int in_sync;
486 	unsigned long long clock_delta;
487 };
488 
489 /*
490  * Server Time Protocol (STP) code.
491  */
492 static bool stp_online;
493 static struct stp_sstpi stp_info;
494 static void *stp_page;
495 
496 static void stp_work_fn(struct work_struct *work);
497 static DEFINE_MUTEX(stp_work_mutex);
498 static DECLARE_WORK(stp_work, stp_work_fn);
499 static struct timer_list stp_timer;
500 
early_parse_stp(char * p)501 static int __init early_parse_stp(char *p)
502 {
503 	return kstrtobool(p, &stp_online);
504 }
505 early_param("stp", early_parse_stp);
506 
507 /*
508  * Reset STP attachment.
509  */
stp_reset(void)510 static void __init stp_reset(void)
511 {
512 	int rc;
513 
514 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
515 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
516 	if (rc == 0)
517 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
518 	else if (stp_online) {
519 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
520 		free_page((unsigned long) stp_page);
521 		stp_page = NULL;
522 		stp_online = false;
523 	}
524 }
525 
stp_timeout(unsigned long dummy)526 static void stp_timeout(unsigned long dummy)
527 {
528 	queue_work(time_sync_wq, &stp_work);
529 }
530 
stp_init(void)531 static int __init stp_init(void)
532 {
533 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
534 		return 0;
535 	setup_timer(&stp_timer, stp_timeout, 0UL);
536 	time_init_wq();
537 	if (!stp_online)
538 		return 0;
539 	queue_work(time_sync_wq, &stp_work);
540 	return 0;
541 }
542 
543 arch_initcall(stp_init);
544 
545 /*
546  * STP timing alert. There are three causes:
547  * 1) timing status change
548  * 2) link availability change
549  * 3) time control parameter change
550  * In all three cases we are only interested in the clock source state.
551  * If a STP clock source is now available use it.
552  */
stp_timing_alert(struct stp_irq_parm * intparm)553 static void stp_timing_alert(struct stp_irq_parm *intparm)
554 {
555 	if (intparm->tsc || intparm->lac || intparm->tcpc)
556 		queue_work(time_sync_wq, &stp_work);
557 }
558 
559 /*
560  * STP sync check machine check. This is called when the timing state
561  * changes from the synchronized state to the unsynchronized state.
562  * After a STP sync check the clock is not in sync. The machine check
563  * is broadcasted to all cpus at the same time.
564  */
stp_sync_check(void)565 int stp_sync_check(void)
566 {
567 	disable_sync_clock(NULL);
568 	return 1;
569 }
570 
571 /*
572  * STP island condition machine check. This is called when an attached
573  * server  attempts to communicate over an STP link and the servers
574  * have matching CTN ids and have a valid stratum-1 configuration
575  * but the configurations do not match.
576  */
stp_island_check(void)577 int stp_island_check(void)
578 {
579 	disable_sync_clock(NULL);
580 	return 1;
581 }
582 
stp_queue_work(void)583 void stp_queue_work(void)
584 {
585 	queue_work(time_sync_wq, &stp_work);
586 }
587 
stp_sync_clock(void * data)588 static int stp_sync_clock(void *data)
589 {
590 	struct clock_sync_data *sync = data;
591 	unsigned long long clock_delta;
592 	static int first;
593 	int rc;
594 
595 	enable_sync_clock();
596 	if (xchg(&first, 1) == 0) {
597 		/* Wait until all other cpus entered the sync function. */
598 		while (atomic_read(&sync->cpus) != 0)
599 			cpu_relax();
600 		rc = 0;
601 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
602 		    stp_info.todoff[2] || stp_info.todoff[3] ||
603 		    stp_info.tmd != 2) {
604 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
605 					&clock_delta);
606 			if (rc == 0) {
607 				sync->clock_delta = clock_delta;
608 				clock_sync_global(clock_delta);
609 				rc = chsc_sstpi(stp_page, &stp_info,
610 						sizeof(struct stp_sstpi));
611 				if (rc == 0 && stp_info.tmd != 2)
612 					rc = -EAGAIN;
613 			}
614 		}
615 		sync->in_sync = rc ? -EAGAIN : 1;
616 		xchg(&first, 0);
617 	} else {
618 		/* Slave */
619 		atomic_dec(&sync->cpus);
620 		/* Wait for in_sync to be set. */
621 		while (READ_ONCE(sync->in_sync) == 0)
622 			__udelay(1);
623 	}
624 	if (sync->in_sync != 1)
625 		/* Didn't work. Clear per-cpu in sync bit again. */
626 		disable_sync_clock(NULL);
627 	/* Apply clock delta to per-CPU fields of this CPU. */
628 	clock_sync_local(sync->clock_delta);
629 
630 	return 0;
631 }
632 
633 /*
634  * STP work. Check for the STP state and take over the clock
635  * synchronization if the STP clock source is usable.
636  */
stp_work_fn(struct work_struct * work)637 static void stp_work_fn(struct work_struct *work)
638 {
639 	struct clock_sync_data stp_sync;
640 	int rc;
641 
642 	/* prevent multiple execution. */
643 	mutex_lock(&stp_work_mutex);
644 
645 	if (!stp_online) {
646 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
647 		del_timer_sync(&stp_timer);
648 		goto out_unlock;
649 	}
650 
651 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
652 	if (rc)
653 		goto out_unlock;
654 
655 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
656 	if (rc || stp_info.c == 0)
657 		goto out_unlock;
658 
659 	/* Skip synchronization if the clock is already in sync. */
660 	if (check_sync_clock())
661 		goto out_unlock;
662 
663 	memset(&stp_sync, 0, sizeof(stp_sync));
664 	cpus_read_lock();
665 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
666 	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
667 	cpus_read_unlock();
668 
669 	if (!check_sync_clock())
670 		/*
671 		 * There is a usable clock but the synchonization failed.
672 		 * Retry after a second.
673 		 */
674 		mod_timer(&stp_timer, jiffies + HZ);
675 
676 out_unlock:
677 	mutex_unlock(&stp_work_mutex);
678 }
679 
680 /*
681  * STP subsys sysfs interface functions
682  */
683 static struct bus_type stp_subsys = {
684 	.name		= "stp",
685 	.dev_name	= "stp",
686 };
687 
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)688 static ssize_t stp_ctn_id_show(struct device *dev,
689 				struct device_attribute *attr,
690 				char *buf)
691 {
692 	if (!stp_online)
693 		return -ENODATA;
694 	return sprintf(buf, "%016llx\n",
695 		       *(unsigned long long *) stp_info.ctnid);
696 }
697 
698 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
699 
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)700 static ssize_t stp_ctn_type_show(struct device *dev,
701 				struct device_attribute *attr,
702 				char *buf)
703 {
704 	if (!stp_online)
705 		return -ENODATA;
706 	return sprintf(buf, "%i\n", stp_info.ctn);
707 }
708 
709 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
710 
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t stp_dst_offset_show(struct device *dev,
712 				   struct device_attribute *attr,
713 				   char *buf)
714 {
715 	if (!stp_online || !(stp_info.vbits & 0x2000))
716 		return -ENODATA;
717 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
718 }
719 
720 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
721 
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)722 static ssize_t stp_leap_seconds_show(struct device *dev,
723 					struct device_attribute *attr,
724 					char *buf)
725 {
726 	if (!stp_online || !(stp_info.vbits & 0x8000))
727 		return -ENODATA;
728 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
729 }
730 
731 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
732 
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)733 static ssize_t stp_stratum_show(struct device *dev,
734 				struct device_attribute *attr,
735 				char *buf)
736 {
737 	if (!stp_online)
738 		return -ENODATA;
739 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
740 }
741 
742 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
743 
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)744 static ssize_t stp_time_offset_show(struct device *dev,
745 				struct device_attribute *attr,
746 				char *buf)
747 {
748 	if (!stp_online || !(stp_info.vbits & 0x0800))
749 		return -ENODATA;
750 	return sprintf(buf, "%i\n", (int) stp_info.tto);
751 }
752 
753 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
754 
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t stp_time_zone_offset_show(struct device *dev,
756 				struct device_attribute *attr,
757 				char *buf)
758 {
759 	if (!stp_online || !(stp_info.vbits & 0x4000))
760 		return -ENODATA;
761 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
762 }
763 
764 static DEVICE_ATTR(time_zone_offset, 0400,
765 			 stp_time_zone_offset_show, NULL);
766 
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)767 static ssize_t stp_timing_mode_show(struct device *dev,
768 				struct device_attribute *attr,
769 				char *buf)
770 {
771 	if (!stp_online)
772 		return -ENODATA;
773 	return sprintf(buf, "%i\n", stp_info.tmd);
774 }
775 
776 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
777 
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t stp_timing_state_show(struct device *dev,
779 				struct device_attribute *attr,
780 				char *buf)
781 {
782 	if (!stp_online)
783 		return -ENODATA;
784 	return sprintf(buf, "%i\n", stp_info.tst);
785 }
786 
787 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
788 
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)789 static ssize_t stp_online_show(struct device *dev,
790 				struct device_attribute *attr,
791 				char *buf)
792 {
793 	return sprintf(buf, "%i\n", stp_online);
794 }
795 
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)796 static ssize_t stp_online_store(struct device *dev,
797 				struct device_attribute *attr,
798 				const char *buf, size_t count)
799 {
800 	unsigned int value;
801 
802 	value = simple_strtoul(buf, NULL, 0);
803 	if (value != 0 && value != 1)
804 		return -EINVAL;
805 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
806 		return -EOPNOTSUPP;
807 	mutex_lock(&clock_sync_mutex);
808 	stp_online = value;
809 	if (stp_online)
810 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
811 	else
812 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
813 	queue_work(time_sync_wq, &stp_work);
814 	mutex_unlock(&clock_sync_mutex);
815 	return count;
816 }
817 
818 /*
819  * Can't use DEVICE_ATTR because the attribute should be named
820  * stp/online but dev_attr_online already exists in this file ..
821  */
822 static struct device_attribute dev_attr_stp_online = {
823 	.attr = { .name = "online", .mode = 0600 },
824 	.show	= stp_online_show,
825 	.store	= stp_online_store,
826 };
827 
828 static struct device_attribute *stp_attributes[] = {
829 	&dev_attr_ctn_id,
830 	&dev_attr_ctn_type,
831 	&dev_attr_dst_offset,
832 	&dev_attr_leap_seconds,
833 	&dev_attr_stp_online,
834 	&dev_attr_stratum,
835 	&dev_attr_time_offset,
836 	&dev_attr_time_zone_offset,
837 	&dev_attr_timing_mode,
838 	&dev_attr_timing_state,
839 	NULL
840 };
841 
stp_init_sysfs(void)842 static int __init stp_init_sysfs(void)
843 {
844 	struct device_attribute **attr;
845 	int rc;
846 
847 	rc = subsys_system_register(&stp_subsys, NULL);
848 	if (rc)
849 		goto out;
850 	for (attr = stp_attributes; *attr; attr++) {
851 		rc = device_create_file(stp_subsys.dev_root, *attr);
852 		if (rc)
853 			goto out_unreg;
854 	}
855 	return 0;
856 out_unreg:
857 	for (; attr >= stp_attributes; attr--)
858 		device_remove_file(stp_subsys.dev_root, *attr);
859 	bus_unregister(&stp_subsys);
860 out:
861 	return rc;
862 }
863 
864 device_initcall(stp_init_sysfs);
865