• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
input_defuzz_abs_event(int value,int old_val,int fuzz)59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
input_start_autorepeat(struct input_dev * dev,int code)75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
input_stop_autorepeat(struct input_dev * dev)86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	/* trigger auto repeat for key events */
157 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 		for (v = vals; v != vals + count; v++) {
159 			if (v->type == EV_KEY && v->value != 2) {
160 				if (v->value)
161 					input_start_autorepeat(dev, v->code);
162 				else
163 					input_stop_autorepeat(dev);
164 			}
165 		}
166 	}
167 }
168 
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)169 static void input_pass_event(struct input_dev *dev,
170 			     unsigned int type, unsigned int code, int value)
171 {
172 	struct input_value vals[] = { { type, code, value } };
173 
174 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
175 }
176 
177 /*
178  * Generate software autorepeat event. Note that we take
179  * dev->event_lock here to avoid racing with input_event
180  * which may cause keys get "stuck".
181  */
input_repeat_key(unsigned long data)182 static void input_repeat_key(unsigned long data)
183 {
184 	struct input_dev *dev = (void *) data;
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&dev->event_lock, flags);
188 
189 	if (test_bit(dev->repeat_key, dev->key) &&
190 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 		struct input_value vals[] =  {
192 			{ EV_KEY, dev->repeat_key, 2 },
193 			input_value_sync
194 		};
195 
196 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
197 
198 		if (dev->rep[REP_PERIOD])
199 			mod_timer(&dev->timer, jiffies +
200 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 	}
202 
203 	spin_unlock_irqrestore(&dev->event_lock, flags);
204 }
205 
206 #define INPUT_IGNORE_EVENT	0
207 #define INPUT_PASS_TO_HANDLERS	1
208 #define INPUT_PASS_TO_DEVICE	2
209 #define INPUT_SLOT		4
210 #define INPUT_FLUSH		8
211 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212 
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)213 static int input_handle_abs_event(struct input_dev *dev,
214 				  unsigned int code, int *pval)
215 {
216 	struct input_mt *mt = dev->mt;
217 	bool is_mt_event;
218 	int *pold;
219 
220 	if (code == ABS_MT_SLOT) {
221 		/*
222 		 * "Stage" the event; we'll flush it later, when we
223 		 * get actual touch data.
224 		 */
225 		if (mt && *pval >= 0 && *pval < mt->num_slots)
226 			mt->slot = *pval;
227 
228 		return INPUT_IGNORE_EVENT;
229 	}
230 
231 	is_mt_event = input_is_mt_value(code);
232 
233 	if (!is_mt_event) {
234 		pold = &dev->absinfo[code].value;
235 	} else if (mt) {
236 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 	} else {
238 		/*
239 		 * Bypass filtering for multi-touch events when
240 		 * not employing slots.
241 		 */
242 		pold = NULL;
243 	}
244 
245 	if (pold) {
246 		*pval = input_defuzz_abs_event(*pval, *pold,
247 						dev->absinfo[code].fuzz);
248 		if (*pold == *pval)
249 			return INPUT_IGNORE_EVENT;
250 
251 		*pold = *pval;
252 	}
253 
254 	/* Flush pending "slot" event */
255 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 	}
259 
260 	return INPUT_PASS_TO_HANDLERS;
261 }
262 
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)263 static int input_get_disposition(struct input_dev *dev,
264 			  unsigned int type, unsigned int code, int *pval)
265 {
266 	int disposition = INPUT_IGNORE_EVENT;
267 	int value = *pval;
268 
269 	switch (type) {
270 
271 	case EV_SYN:
272 		switch (code) {
273 		case SYN_CONFIG:
274 			disposition = INPUT_PASS_TO_ALL;
275 			break;
276 
277 		case SYN_REPORT:
278 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279 			break;
280 		case SYN_MT_REPORT:
281 			disposition = INPUT_PASS_TO_HANDLERS;
282 			break;
283 		}
284 		break;
285 
286 	case EV_KEY:
287 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288 
289 			/* auto-repeat bypasses state updates */
290 			if (value == 2) {
291 				disposition = INPUT_PASS_TO_HANDLERS;
292 				break;
293 			}
294 
295 			if (!!test_bit(code, dev->key) != !!value) {
296 
297 				__change_bit(code, dev->key);
298 				disposition = INPUT_PASS_TO_HANDLERS;
299 			}
300 		}
301 		break;
302 
303 	case EV_SW:
304 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
305 		    !!test_bit(code, dev->sw) != !!value) {
306 
307 			__change_bit(code, dev->sw);
308 			disposition = INPUT_PASS_TO_HANDLERS;
309 		}
310 		break;
311 
312 	case EV_ABS:
313 		if (is_event_supported(code, dev->absbit, ABS_MAX))
314 			disposition = input_handle_abs_event(dev, code, &value);
315 
316 		break;
317 
318 	case EV_REL:
319 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 			disposition = INPUT_PASS_TO_HANDLERS;
321 
322 		break;
323 
324 	case EV_MSC:
325 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 			disposition = INPUT_PASS_TO_ALL;
327 
328 		break;
329 
330 	case EV_LED:
331 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332 		    !!test_bit(code, dev->led) != !!value) {
333 
334 			__change_bit(code, dev->led);
335 			disposition = INPUT_PASS_TO_ALL;
336 		}
337 		break;
338 
339 	case EV_SND:
340 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341 
342 			if (!!test_bit(code, dev->snd) != !!value)
343 				__change_bit(code, dev->snd);
344 			disposition = INPUT_PASS_TO_ALL;
345 		}
346 		break;
347 
348 	case EV_REP:
349 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 			dev->rep[code] = value;
351 			disposition = INPUT_PASS_TO_ALL;
352 		}
353 		break;
354 
355 	case EV_FF:
356 		if (value >= 0)
357 			disposition = INPUT_PASS_TO_ALL;
358 		break;
359 
360 	case EV_PWR:
361 		disposition = INPUT_PASS_TO_ALL;
362 		break;
363 	}
364 
365 	*pval = value;
366 	return disposition;
367 }
368 
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)369 static void input_handle_event(struct input_dev *dev,
370 			       unsigned int type, unsigned int code, int value)
371 {
372 	int disposition = input_get_disposition(dev, type, code, &value);
373 
374 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 		add_input_randomness(type, code, value);
376 
377 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 		dev->event(dev, type, code, value);
379 
380 	if (!dev->vals)
381 		return;
382 
383 	if (disposition & INPUT_PASS_TO_HANDLERS) {
384 		struct input_value *v;
385 
386 		if (disposition & INPUT_SLOT) {
387 			v = &dev->vals[dev->num_vals++];
388 			v->type = EV_ABS;
389 			v->code = ABS_MT_SLOT;
390 			v->value = dev->mt->slot;
391 		}
392 
393 		v = &dev->vals[dev->num_vals++];
394 		v->type = type;
395 		v->code = code;
396 		v->value = value;
397 	}
398 
399 	if (disposition & INPUT_FLUSH) {
400 		if (dev->num_vals >= 2)
401 			input_pass_values(dev, dev->vals, dev->num_vals);
402 		dev->num_vals = 0;
403 	} else if (dev->num_vals >= dev->max_vals - 2) {
404 		dev->vals[dev->num_vals++] = input_value_sync;
405 		input_pass_values(dev, dev->vals, dev->num_vals);
406 		dev->num_vals = 0;
407 	}
408 
409 }
410 
411 /**
412  * input_event() - report new input event
413  * @dev: device that generated the event
414  * @type: type of the event
415  * @code: event code
416  * @value: value of the event
417  *
418  * This function should be used by drivers implementing various input
419  * devices to report input events. See also input_inject_event().
420  *
421  * NOTE: input_event() may be safely used right after input device was
422  * allocated with input_allocate_device(), even before it is registered
423  * with input_register_device(), but the event will not reach any of the
424  * input handlers. Such early invocation of input_event() may be used
425  * to 'seed' initial state of a switch or initial position of absolute
426  * axis, etc.
427  */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)428 void input_event(struct input_dev *dev,
429 		 unsigned int type, unsigned int code, int value)
430 {
431 	unsigned long flags;
432 
433 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
434 
435 		spin_lock_irqsave(&dev->event_lock, flags);
436 		input_handle_event(dev, type, code, value);
437 		spin_unlock_irqrestore(&dev->event_lock, flags);
438 	}
439 }
440 EXPORT_SYMBOL(input_event);
441 
442 /**
443  * input_inject_event() - send input event from input handler
444  * @handle: input handle to send event through
445  * @type: type of the event
446  * @code: event code
447  * @value: value of the event
448  *
449  * Similar to input_event() but will ignore event if device is
450  * "grabbed" and handle injecting event is not the one that owns
451  * the device.
452  */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)453 void input_inject_event(struct input_handle *handle,
454 			unsigned int type, unsigned int code, int value)
455 {
456 	struct input_dev *dev = handle->dev;
457 	struct input_handle *grab;
458 	unsigned long flags;
459 
460 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 		spin_lock_irqsave(&dev->event_lock, flags);
462 
463 		rcu_read_lock();
464 		grab = rcu_dereference(dev->grab);
465 		if (!grab || grab == handle)
466 			input_handle_event(dev, type, code, value);
467 		rcu_read_unlock();
468 
469 		spin_unlock_irqrestore(&dev->event_lock, flags);
470 	}
471 }
472 EXPORT_SYMBOL(input_inject_event);
473 
474 /**
475  * input_alloc_absinfo - allocates array of input_absinfo structs
476  * @dev: the input device emitting absolute events
477  *
478  * If the absinfo struct the caller asked for is already allocated, this
479  * functions will not do anything.
480  */
input_alloc_absinfo(struct input_dev * dev)481 void input_alloc_absinfo(struct input_dev *dev)
482 {
483 	if (dev->absinfo)
484 		return;
485 
486 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
487 	if (!dev->absinfo) {
488 		dev_err(dev->dev.parent ?: &dev->dev,
489 			"%s: unable to allocate memory\n", __func__);
490 		/*
491 		 * We will handle this allocation failure in
492 		 * input_register_device() when we refuse to register input
493 		 * device with ABS bits but without absinfo.
494 		 */
495 	}
496 }
497 EXPORT_SYMBOL(input_alloc_absinfo);
498 
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)499 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
500 			  int min, int max, int fuzz, int flat)
501 {
502 	struct input_absinfo *absinfo;
503 
504 	input_alloc_absinfo(dev);
505 	if (!dev->absinfo)
506 		return;
507 
508 	absinfo = &dev->absinfo[axis];
509 	absinfo->minimum = min;
510 	absinfo->maximum = max;
511 	absinfo->fuzz = fuzz;
512 	absinfo->flat = flat;
513 
514 	__set_bit(EV_ABS, dev->evbit);
515 	__set_bit(axis, dev->absbit);
516 }
517 EXPORT_SYMBOL(input_set_abs_params);
518 
519 
520 /**
521  * input_grab_device - grabs device for exclusive use
522  * @handle: input handle that wants to own the device
523  *
524  * When a device is grabbed by an input handle all events generated by
525  * the device are delivered only to this handle. Also events injected
526  * by other input handles are ignored while device is grabbed.
527  */
input_grab_device(struct input_handle * handle)528 int input_grab_device(struct input_handle *handle)
529 {
530 	struct input_dev *dev = handle->dev;
531 	int retval;
532 
533 	retval = mutex_lock_interruptible(&dev->mutex);
534 	if (retval)
535 		return retval;
536 
537 	if (dev->grab) {
538 		retval = -EBUSY;
539 		goto out;
540 	}
541 
542 	rcu_assign_pointer(dev->grab, handle);
543 
544  out:
545 	mutex_unlock(&dev->mutex);
546 	return retval;
547 }
548 EXPORT_SYMBOL(input_grab_device);
549 
__input_release_device(struct input_handle * handle)550 static void __input_release_device(struct input_handle *handle)
551 {
552 	struct input_dev *dev = handle->dev;
553 	struct input_handle *grabber;
554 
555 	grabber = rcu_dereference_protected(dev->grab,
556 					    lockdep_is_held(&dev->mutex));
557 	if (grabber == handle) {
558 		rcu_assign_pointer(dev->grab, NULL);
559 		/* Make sure input_pass_event() notices that grab is gone */
560 		synchronize_rcu();
561 
562 		list_for_each_entry(handle, &dev->h_list, d_node)
563 			if (handle->open && handle->handler->start)
564 				handle->handler->start(handle);
565 	}
566 }
567 
568 /**
569  * input_release_device - release previously grabbed device
570  * @handle: input handle that owns the device
571  *
572  * Releases previously grabbed device so that other input handles can
573  * start receiving input events. Upon release all handlers attached
574  * to the device have their start() method called so they have a change
575  * to synchronize device state with the rest of the system.
576  */
input_release_device(struct input_handle * handle)577 void input_release_device(struct input_handle *handle)
578 {
579 	struct input_dev *dev = handle->dev;
580 
581 	mutex_lock(&dev->mutex);
582 	__input_release_device(handle);
583 	mutex_unlock(&dev->mutex);
584 }
585 EXPORT_SYMBOL(input_release_device);
586 
587 /**
588  * input_open_device - open input device
589  * @handle: handle through which device is being accessed
590  *
591  * This function should be called by input handlers when they
592  * want to start receive events from given input device.
593  */
input_open_device(struct input_handle * handle)594 int input_open_device(struct input_handle *handle)
595 {
596 	struct input_dev *dev = handle->dev;
597 	int retval;
598 
599 	retval = mutex_lock_interruptible(&dev->mutex);
600 	if (retval)
601 		return retval;
602 
603 	if (dev->going_away) {
604 		retval = -ENODEV;
605 		goto out;
606 	}
607 
608 	handle->open++;
609 
610 	if (!dev->users++ && dev->open)
611 		retval = dev->open(dev);
612 
613 	if (retval) {
614 		dev->users--;
615 		if (!--handle->open) {
616 			/*
617 			 * Make sure we are not delivering any more events
618 			 * through this handle
619 			 */
620 			synchronize_rcu();
621 		}
622 	}
623 
624  out:
625 	mutex_unlock(&dev->mutex);
626 	return retval;
627 }
628 EXPORT_SYMBOL(input_open_device);
629 
input_flush_device(struct input_handle * handle,struct file * file)630 int input_flush_device(struct input_handle *handle, struct file *file)
631 {
632 	struct input_dev *dev = handle->dev;
633 	int retval;
634 
635 	retval = mutex_lock_interruptible(&dev->mutex);
636 	if (retval)
637 		return retval;
638 
639 	if (dev->flush)
640 		retval = dev->flush(dev, file);
641 
642 	mutex_unlock(&dev->mutex);
643 	return retval;
644 }
645 EXPORT_SYMBOL(input_flush_device);
646 
647 /**
648  * input_close_device - close input device
649  * @handle: handle through which device is being accessed
650  *
651  * This function should be called by input handlers when they
652  * want to stop receive events from given input device.
653  */
input_close_device(struct input_handle * handle)654 void input_close_device(struct input_handle *handle)
655 {
656 	struct input_dev *dev = handle->dev;
657 
658 	mutex_lock(&dev->mutex);
659 
660 	__input_release_device(handle);
661 
662 	if (!--dev->users && dev->close)
663 		dev->close(dev);
664 
665 	if (!--handle->open) {
666 		/*
667 		 * synchronize_rcu() makes sure that input_pass_event()
668 		 * completed and that no more input events are delivered
669 		 * through this handle
670 		 */
671 		synchronize_rcu();
672 	}
673 
674 	mutex_unlock(&dev->mutex);
675 }
676 EXPORT_SYMBOL(input_close_device);
677 
678 /*
679  * Simulate keyup events for all keys that are marked as pressed.
680  * The function must be called with dev->event_lock held.
681  */
input_dev_release_keys(struct input_dev * dev)682 static void input_dev_release_keys(struct input_dev *dev)
683 {
684 	bool need_sync = false;
685 	int code;
686 
687 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
688 		for_each_set_bit(code, dev->key, KEY_CNT) {
689 			input_pass_event(dev, EV_KEY, code, 0);
690 			need_sync = true;
691 		}
692 
693 		if (need_sync)
694 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
695 
696 		memset(dev->key, 0, sizeof(dev->key));
697 	}
698 }
699 
700 /*
701  * Prepare device for unregistering
702  */
input_disconnect_device(struct input_dev * dev)703 static void input_disconnect_device(struct input_dev *dev)
704 {
705 	struct input_handle *handle;
706 
707 	/*
708 	 * Mark device as going away. Note that we take dev->mutex here
709 	 * not to protect access to dev->going_away but rather to ensure
710 	 * that there are no threads in the middle of input_open_device()
711 	 */
712 	mutex_lock(&dev->mutex);
713 	dev->going_away = true;
714 	mutex_unlock(&dev->mutex);
715 
716 	spin_lock_irq(&dev->event_lock);
717 
718 	/*
719 	 * Simulate keyup events for all pressed keys so that handlers
720 	 * are not left with "stuck" keys. The driver may continue
721 	 * generate events even after we done here but they will not
722 	 * reach any handlers.
723 	 */
724 	input_dev_release_keys(dev);
725 
726 	list_for_each_entry(handle, &dev->h_list, d_node)
727 		handle->open = 0;
728 
729 	spin_unlock_irq(&dev->event_lock);
730 }
731 
732 /**
733  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
734  * @ke: keymap entry containing scancode to be converted.
735  * @scancode: pointer to the location where converted scancode should
736  *	be stored.
737  *
738  * This function is used to convert scancode stored in &struct keymap_entry
739  * into scalar form understood by legacy keymap handling methods. These
740  * methods expect scancodes to be represented as 'unsigned int'.
741  */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)742 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
743 			     unsigned int *scancode)
744 {
745 	switch (ke->len) {
746 	case 1:
747 		*scancode = *((u8 *)ke->scancode);
748 		break;
749 
750 	case 2:
751 		*scancode = *((u16 *)ke->scancode);
752 		break;
753 
754 	case 4:
755 		*scancode = *((u32 *)ke->scancode);
756 		break;
757 
758 	default:
759 		return -EINVAL;
760 	}
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL(input_scancode_to_scalar);
765 
766 /*
767  * Those routines handle the default case where no [gs]etkeycode() is
768  * defined. In this case, an array indexed by the scancode is used.
769  */
770 
input_fetch_keycode(struct input_dev * dev,unsigned int index)771 static unsigned int input_fetch_keycode(struct input_dev *dev,
772 					unsigned int index)
773 {
774 	switch (dev->keycodesize) {
775 	case 1:
776 		return ((u8 *)dev->keycode)[index];
777 
778 	case 2:
779 		return ((u16 *)dev->keycode)[index];
780 
781 	default:
782 		return ((u32 *)dev->keycode)[index];
783 	}
784 }
785 
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)786 static int input_default_getkeycode(struct input_dev *dev,
787 				    struct input_keymap_entry *ke)
788 {
789 	unsigned int index;
790 	int error;
791 
792 	if (!dev->keycodesize)
793 		return -EINVAL;
794 
795 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
796 		index = ke->index;
797 	else {
798 		error = input_scancode_to_scalar(ke, &index);
799 		if (error)
800 			return error;
801 	}
802 
803 	if (index >= dev->keycodemax)
804 		return -EINVAL;
805 
806 	ke->keycode = input_fetch_keycode(dev, index);
807 	ke->index = index;
808 	ke->len = sizeof(index);
809 	memcpy(ke->scancode, &index, sizeof(index));
810 
811 	return 0;
812 }
813 
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)814 static int input_default_setkeycode(struct input_dev *dev,
815 				    const struct input_keymap_entry *ke,
816 				    unsigned int *old_keycode)
817 {
818 	unsigned int index;
819 	int error;
820 	int i;
821 
822 	if (!dev->keycodesize)
823 		return -EINVAL;
824 
825 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
826 		index = ke->index;
827 	} else {
828 		error = input_scancode_to_scalar(ke, &index);
829 		if (error)
830 			return error;
831 	}
832 
833 	if (index >= dev->keycodemax)
834 		return -EINVAL;
835 
836 	if (dev->keycodesize < sizeof(ke->keycode) &&
837 			(ke->keycode >> (dev->keycodesize * 8)))
838 		return -EINVAL;
839 
840 	switch (dev->keycodesize) {
841 		case 1: {
842 			u8 *k = (u8 *)dev->keycode;
843 			*old_keycode = k[index];
844 			k[index] = ke->keycode;
845 			break;
846 		}
847 		case 2: {
848 			u16 *k = (u16 *)dev->keycode;
849 			*old_keycode = k[index];
850 			k[index] = ke->keycode;
851 			break;
852 		}
853 		default: {
854 			u32 *k = (u32 *)dev->keycode;
855 			*old_keycode = k[index];
856 			k[index] = ke->keycode;
857 			break;
858 		}
859 	}
860 
861 	if (*old_keycode <= KEY_MAX) {
862 		__clear_bit(*old_keycode, dev->keybit);
863 		for (i = 0; i < dev->keycodemax; i++) {
864 			if (input_fetch_keycode(dev, i) == *old_keycode) {
865 				__set_bit(*old_keycode, dev->keybit);
866 				/* Setting the bit twice is useless, so break */
867 				break;
868 			}
869 		}
870 	}
871 
872 	__set_bit(ke->keycode, dev->keybit);
873 	return 0;
874 }
875 
876 /**
877  * input_get_keycode - retrieve keycode currently mapped to a given scancode
878  * @dev: input device which keymap is being queried
879  * @ke: keymap entry
880  *
881  * This function should be called by anyone interested in retrieving current
882  * keymap. Presently evdev handlers use it.
883  */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)884 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
885 {
886 	unsigned long flags;
887 	int retval;
888 
889 	spin_lock_irqsave(&dev->event_lock, flags);
890 	retval = dev->getkeycode(dev, ke);
891 	spin_unlock_irqrestore(&dev->event_lock, flags);
892 
893 	return retval;
894 }
895 EXPORT_SYMBOL(input_get_keycode);
896 
897 /**
898  * input_set_keycode - attribute a keycode to a given scancode
899  * @dev: input device which keymap is being updated
900  * @ke: new keymap entry
901  *
902  * This function should be called by anyone needing to update current
903  * keymap. Presently keyboard and evdev handlers use it.
904  */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)905 int input_set_keycode(struct input_dev *dev,
906 		      const struct input_keymap_entry *ke)
907 {
908 	unsigned long flags;
909 	unsigned int old_keycode;
910 	int retval;
911 
912 	if (ke->keycode > KEY_MAX)
913 		return -EINVAL;
914 
915 	spin_lock_irqsave(&dev->event_lock, flags);
916 
917 	retval = dev->setkeycode(dev, ke, &old_keycode);
918 	if (retval)
919 		goto out;
920 
921 	/* Make sure KEY_RESERVED did not get enabled. */
922 	__clear_bit(KEY_RESERVED, dev->keybit);
923 
924 	/*
925 	 * Simulate keyup event if keycode is not present
926 	 * in the keymap anymore
927 	 */
928 	if (old_keycode > KEY_MAX) {
929 		dev_warn(dev->dev.parent ?: &dev->dev,
930 			 "%s: got too big old keycode %#x\n",
931 			 __func__, old_keycode);
932 	} else if (test_bit(EV_KEY, dev->evbit) &&
933 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
934 		   __test_and_clear_bit(old_keycode, dev->key)) {
935 		struct input_value vals[] =  {
936 			{ EV_KEY, old_keycode, 0 },
937 			input_value_sync
938 		};
939 
940 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
941 	}
942 
943  out:
944 	spin_unlock_irqrestore(&dev->event_lock, flags);
945 
946 	return retval;
947 }
948 EXPORT_SYMBOL(input_set_keycode);
949 
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)950 bool input_match_device_id(const struct input_dev *dev,
951 			   const struct input_device_id *id)
952 {
953 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
954 		if (id->bustype != dev->id.bustype)
955 			return false;
956 
957 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
958 		if (id->vendor != dev->id.vendor)
959 			return false;
960 
961 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
962 		if (id->product != dev->id.product)
963 			return false;
964 
965 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
966 		if (id->version != dev->id.version)
967 			return false;
968 
969 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
970 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
971 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
972 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
973 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
974 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
975 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
976 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
977 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
978 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
979 		return false;
980 	}
981 
982 	return true;
983 }
984 EXPORT_SYMBOL(input_match_device_id);
985 
input_match_device(struct input_handler * handler,struct input_dev * dev)986 static const struct input_device_id *input_match_device(struct input_handler *handler,
987 							struct input_dev *dev)
988 {
989 	const struct input_device_id *id;
990 
991 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
992 		if (input_match_device_id(dev, id) &&
993 		    (!handler->match || handler->match(handler, dev))) {
994 			return id;
995 		}
996 	}
997 
998 	return NULL;
999 }
1000 
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1001 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1002 {
1003 	const struct input_device_id *id;
1004 	int error;
1005 
1006 	id = input_match_device(handler, dev);
1007 	if (!id)
1008 		return -ENODEV;
1009 
1010 	error = handler->connect(handler, dev, id);
1011 	if (error && error != -ENODEV)
1012 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1013 		       handler->name, kobject_name(&dev->dev.kobj), error);
1014 
1015 	return error;
1016 }
1017 
1018 #ifdef CONFIG_COMPAT
1019 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1020 static int input_bits_to_string(char *buf, int buf_size,
1021 				unsigned long bits, bool skip_empty)
1022 {
1023 	int len = 0;
1024 
1025 	if (in_compat_syscall()) {
1026 		u32 dword = bits >> 32;
1027 		if (dword || !skip_empty)
1028 			len += snprintf(buf, buf_size, "%x ", dword);
1029 
1030 		dword = bits & 0xffffffffUL;
1031 		if (dword || !skip_empty || len)
1032 			len += snprintf(buf + len, max(buf_size - len, 0),
1033 					"%x", dword);
1034 	} else {
1035 		if (bits || !skip_empty)
1036 			len += snprintf(buf, buf_size, "%lx", bits);
1037 	}
1038 
1039 	return len;
1040 }
1041 
1042 #else /* !CONFIG_COMPAT */
1043 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1044 static int input_bits_to_string(char *buf, int buf_size,
1045 				unsigned long bits, bool skip_empty)
1046 {
1047 	return bits || !skip_empty ?
1048 		snprintf(buf, buf_size, "%lx", bits) : 0;
1049 }
1050 
1051 #endif
1052 
1053 #ifdef CONFIG_PROC_FS
1054 
1055 static struct proc_dir_entry *proc_bus_input_dir;
1056 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1057 static int input_devices_state;
1058 
input_wakeup_procfs_readers(void)1059 static inline void input_wakeup_procfs_readers(void)
1060 {
1061 	input_devices_state++;
1062 	wake_up(&input_devices_poll_wait);
1063 }
1064 
input_proc_devices_poll(struct file * file,poll_table * wait)1065 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1066 {
1067 	poll_wait(file, &input_devices_poll_wait, wait);
1068 	if (file->f_version != input_devices_state) {
1069 		file->f_version = input_devices_state;
1070 		return POLLIN | POLLRDNORM;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 union input_seq_state {
1077 	struct {
1078 		unsigned short pos;
1079 		bool mutex_acquired;
1080 	};
1081 	void *p;
1082 };
1083 
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1084 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1085 {
1086 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1087 	int error;
1088 
1089 	/* We need to fit into seq->private pointer */
1090 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1091 
1092 	error = mutex_lock_interruptible(&input_mutex);
1093 	if (error) {
1094 		state->mutex_acquired = false;
1095 		return ERR_PTR(error);
1096 	}
1097 
1098 	state->mutex_acquired = true;
1099 
1100 	return seq_list_start(&input_dev_list, *pos);
1101 }
1102 
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1103 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1104 {
1105 	return seq_list_next(v, &input_dev_list, pos);
1106 }
1107 
input_seq_stop(struct seq_file * seq,void * v)1108 static void input_seq_stop(struct seq_file *seq, void *v)
1109 {
1110 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1111 
1112 	if (state->mutex_acquired)
1113 		mutex_unlock(&input_mutex);
1114 }
1115 
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1116 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1117 				   unsigned long *bitmap, int max)
1118 {
1119 	int i;
1120 	bool skip_empty = true;
1121 	char buf[18];
1122 
1123 	seq_printf(seq, "B: %s=", name);
1124 
1125 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1126 		if (input_bits_to_string(buf, sizeof(buf),
1127 					 bitmap[i], skip_empty)) {
1128 			skip_empty = false;
1129 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * If no output was produced print a single 0.
1135 	 */
1136 	if (skip_empty)
1137 		seq_putc(seq, '0');
1138 
1139 	seq_putc(seq, '\n');
1140 }
1141 
input_devices_seq_show(struct seq_file * seq,void * v)1142 static int input_devices_seq_show(struct seq_file *seq, void *v)
1143 {
1144 	struct input_dev *dev = container_of(v, struct input_dev, node);
1145 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1146 	struct input_handle *handle;
1147 
1148 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1149 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1150 
1151 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1152 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1153 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1154 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1155 	seq_puts(seq, "H: Handlers=");
1156 
1157 	list_for_each_entry(handle, &dev->h_list, d_node)
1158 		seq_printf(seq, "%s ", handle->name);
1159 	seq_putc(seq, '\n');
1160 
1161 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1162 
1163 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1164 	if (test_bit(EV_KEY, dev->evbit))
1165 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1166 	if (test_bit(EV_REL, dev->evbit))
1167 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1168 	if (test_bit(EV_ABS, dev->evbit))
1169 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1170 	if (test_bit(EV_MSC, dev->evbit))
1171 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1172 	if (test_bit(EV_LED, dev->evbit))
1173 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1174 	if (test_bit(EV_SND, dev->evbit))
1175 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1176 	if (test_bit(EV_FF, dev->evbit))
1177 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1178 	if (test_bit(EV_SW, dev->evbit))
1179 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1180 
1181 	seq_putc(seq, '\n');
1182 
1183 	kfree(path);
1184 	return 0;
1185 }
1186 
1187 static const struct seq_operations input_devices_seq_ops = {
1188 	.start	= input_devices_seq_start,
1189 	.next	= input_devices_seq_next,
1190 	.stop	= input_seq_stop,
1191 	.show	= input_devices_seq_show,
1192 };
1193 
input_proc_devices_open(struct inode * inode,struct file * file)1194 static int input_proc_devices_open(struct inode *inode, struct file *file)
1195 {
1196 	return seq_open(file, &input_devices_seq_ops);
1197 }
1198 
1199 static const struct file_operations input_devices_fileops = {
1200 	.owner		= THIS_MODULE,
1201 	.open		= input_proc_devices_open,
1202 	.poll		= input_proc_devices_poll,
1203 	.read		= seq_read,
1204 	.llseek		= seq_lseek,
1205 	.release	= seq_release,
1206 };
1207 
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1208 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1209 {
1210 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1211 	int error;
1212 
1213 	/* We need to fit into seq->private pointer */
1214 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1215 
1216 	error = mutex_lock_interruptible(&input_mutex);
1217 	if (error) {
1218 		state->mutex_acquired = false;
1219 		return ERR_PTR(error);
1220 	}
1221 
1222 	state->mutex_acquired = true;
1223 	state->pos = *pos;
1224 
1225 	return seq_list_start(&input_handler_list, *pos);
1226 }
1227 
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1228 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1229 {
1230 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1231 
1232 	state->pos = *pos + 1;
1233 	return seq_list_next(v, &input_handler_list, pos);
1234 }
1235 
input_handlers_seq_show(struct seq_file * seq,void * v)1236 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1237 {
1238 	struct input_handler *handler = container_of(v, struct input_handler, node);
1239 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1240 
1241 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1242 	if (handler->filter)
1243 		seq_puts(seq, " (filter)");
1244 	if (handler->legacy_minors)
1245 		seq_printf(seq, " Minor=%d", handler->minor);
1246 	seq_putc(seq, '\n');
1247 
1248 	return 0;
1249 }
1250 
1251 static const struct seq_operations input_handlers_seq_ops = {
1252 	.start	= input_handlers_seq_start,
1253 	.next	= input_handlers_seq_next,
1254 	.stop	= input_seq_stop,
1255 	.show	= input_handlers_seq_show,
1256 };
1257 
input_proc_handlers_open(struct inode * inode,struct file * file)1258 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1259 {
1260 	return seq_open(file, &input_handlers_seq_ops);
1261 }
1262 
1263 static const struct file_operations input_handlers_fileops = {
1264 	.owner		= THIS_MODULE,
1265 	.open		= input_proc_handlers_open,
1266 	.read		= seq_read,
1267 	.llseek		= seq_lseek,
1268 	.release	= seq_release,
1269 };
1270 
input_proc_init(void)1271 static int __init input_proc_init(void)
1272 {
1273 	struct proc_dir_entry *entry;
1274 
1275 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1276 	if (!proc_bus_input_dir)
1277 		return -ENOMEM;
1278 
1279 	entry = proc_create("devices", 0, proc_bus_input_dir,
1280 			    &input_devices_fileops);
1281 	if (!entry)
1282 		goto fail1;
1283 
1284 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1285 			    &input_handlers_fileops);
1286 	if (!entry)
1287 		goto fail2;
1288 
1289 	return 0;
1290 
1291  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1292  fail1: remove_proc_entry("bus/input", NULL);
1293 	return -ENOMEM;
1294 }
1295 
input_proc_exit(void)1296 static void input_proc_exit(void)
1297 {
1298 	remove_proc_entry("devices", proc_bus_input_dir);
1299 	remove_proc_entry("handlers", proc_bus_input_dir);
1300 	remove_proc_entry("bus/input", NULL);
1301 }
1302 
1303 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1304 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1305 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1306 static inline void input_proc_exit(void) { }
1307 #endif
1308 
1309 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1310 static ssize_t input_dev_show_##name(struct device *dev,		\
1311 				     struct device_attribute *attr,	\
1312 				     char *buf)				\
1313 {									\
1314 	struct input_dev *input_dev = to_input_dev(dev);		\
1315 									\
1316 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1317 			 input_dev->name ? input_dev->name : "");	\
1318 }									\
1319 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1320 
1321 INPUT_DEV_STRING_ATTR_SHOW(name);
1322 INPUT_DEV_STRING_ATTR_SHOW(phys);
1323 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1324 
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1325 static int input_print_modalias_bits(char *buf, int size,
1326 				     char name, unsigned long *bm,
1327 				     unsigned int min_bit, unsigned int max_bit)
1328 {
1329 	int len = 0, i;
1330 
1331 	len += snprintf(buf, max(size, 0), "%c", name);
1332 	for (i = min_bit; i < max_bit; i++)
1333 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1334 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1335 	return len;
1336 }
1337 
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1338 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1339 				int add_cr)
1340 {
1341 	int len;
1342 
1343 	len = snprintf(buf, max(size, 0),
1344 		       "input:b%04Xv%04Xp%04Xe%04X-",
1345 		       id->id.bustype, id->id.vendor,
1346 		       id->id.product, id->id.version);
1347 
1348 	len += input_print_modalias_bits(buf + len, size - len,
1349 				'e', id->evbit, 0, EV_MAX);
1350 	len += input_print_modalias_bits(buf + len, size - len,
1351 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1352 	len += input_print_modalias_bits(buf + len, size - len,
1353 				'r', id->relbit, 0, REL_MAX);
1354 	len += input_print_modalias_bits(buf + len, size - len,
1355 				'a', id->absbit, 0, ABS_MAX);
1356 	len += input_print_modalias_bits(buf + len, size - len,
1357 				'm', id->mscbit, 0, MSC_MAX);
1358 	len += input_print_modalias_bits(buf + len, size - len,
1359 				'l', id->ledbit, 0, LED_MAX);
1360 	len += input_print_modalias_bits(buf + len, size - len,
1361 				's', id->sndbit, 0, SND_MAX);
1362 	len += input_print_modalias_bits(buf + len, size - len,
1363 				'f', id->ffbit, 0, FF_MAX);
1364 	len += input_print_modalias_bits(buf + len, size - len,
1365 				'w', id->swbit, 0, SW_MAX);
1366 
1367 	if (add_cr)
1368 		len += snprintf(buf + len, max(size - len, 0), "\n");
1369 
1370 	return len;
1371 }
1372 
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1373 static ssize_t input_dev_show_modalias(struct device *dev,
1374 				       struct device_attribute *attr,
1375 				       char *buf)
1376 {
1377 	struct input_dev *id = to_input_dev(dev);
1378 	ssize_t len;
1379 
1380 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1381 
1382 	return min_t(int, len, PAGE_SIZE);
1383 }
1384 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1385 
1386 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1387 			      int max, int add_cr);
1388 
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1389 static ssize_t input_dev_show_properties(struct device *dev,
1390 					 struct device_attribute *attr,
1391 					 char *buf)
1392 {
1393 	struct input_dev *input_dev = to_input_dev(dev);
1394 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1395 				     INPUT_PROP_MAX, true);
1396 	return min_t(int, len, PAGE_SIZE);
1397 }
1398 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1399 
1400 static struct attribute *input_dev_attrs[] = {
1401 	&dev_attr_name.attr,
1402 	&dev_attr_phys.attr,
1403 	&dev_attr_uniq.attr,
1404 	&dev_attr_modalias.attr,
1405 	&dev_attr_properties.attr,
1406 	NULL
1407 };
1408 
1409 static const struct attribute_group input_dev_attr_group = {
1410 	.attrs	= input_dev_attrs,
1411 };
1412 
1413 #define INPUT_DEV_ID_ATTR(name)						\
1414 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1415 					struct device_attribute *attr,	\
1416 					char *buf)			\
1417 {									\
1418 	struct input_dev *input_dev = to_input_dev(dev);		\
1419 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1420 }									\
1421 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1422 
1423 INPUT_DEV_ID_ATTR(bustype);
1424 INPUT_DEV_ID_ATTR(vendor);
1425 INPUT_DEV_ID_ATTR(product);
1426 INPUT_DEV_ID_ATTR(version);
1427 
1428 static struct attribute *input_dev_id_attrs[] = {
1429 	&dev_attr_bustype.attr,
1430 	&dev_attr_vendor.attr,
1431 	&dev_attr_product.attr,
1432 	&dev_attr_version.attr,
1433 	NULL
1434 };
1435 
1436 static const struct attribute_group input_dev_id_attr_group = {
1437 	.name	= "id",
1438 	.attrs	= input_dev_id_attrs,
1439 };
1440 
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1441 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1442 			      int max, int add_cr)
1443 {
1444 	int i;
1445 	int len = 0;
1446 	bool skip_empty = true;
1447 
1448 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1449 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1450 					    bitmap[i], skip_empty);
1451 		if (len) {
1452 			skip_empty = false;
1453 			if (i > 0)
1454 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * If no output was produced print a single 0.
1460 	 */
1461 	if (len == 0)
1462 		len = snprintf(buf, buf_size, "%d", 0);
1463 
1464 	if (add_cr)
1465 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1466 
1467 	return len;
1468 }
1469 
1470 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1471 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1472 				       struct device_attribute *attr,	\
1473 				       char *buf)			\
1474 {									\
1475 	struct input_dev *input_dev = to_input_dev(dev);		\
1476 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1477 				     input_dev->bm##bit, ev##_MAX,	\
1478 				     true);				\
1479 	return min_t(int, len, PAGE_SIZE);				\
1480 }									\
1481 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1482 
1483 INPUT_DEV_CAP_ATTR(EV, ev);
1484 INPUT_DEV_CAP_ATTR(KEY, key);
1485 INPUT_DEV_CAP_ATTR(REL, rel);
1486 INPUT_DEV_CAP_ATTR(ABS, abs);
1487 INPUT_DEV_CAP_ATTR(MSC, msc);
1488 INPUT_DEV_CAP_ATTR(LED, led);
1489 INPUT_DEV_CAP_ATTR(SND, snd);
1490 INPUT_DEV_CAP_ATTR(FF, ff);
1491 INPUT_DEV_CAP_ATTR(SW, sw);
1492 
1493 static struct attribute *input_dev_caps_attrs[] = {
1494 	&dev_attr_ev.attr,
1495 	&dev_attr_key.attr,
1496 	&dev_attr_rel.attr,
1497 	&dev_attr_abs.attr,
1498 	&dev_attr_msc.attr,
1499 	&dev_attr_led.attr,
1500 	&dev_attr_snd.attr,
1501 	&dev_attr_ff.attr,
1502 	&dev_attr_sw.attr,
1503 	NULL
1504 };
1505 
1506 static const struct attribute_group input_dev_caps_attr_group = {
1507 	.name	= "capabilities",
1508 	.attrs	= input_dev_caps_attrs,
1509 };
1510 
1511 static const struct attribute_group *input_dev_attr_groups[] = {
1512 	&input_dev_attr_group,
1513 	&input_dev_id_attr_group,
1514 	&input_dev_caps_attr_group,
1515 	NULL
1516 };
1517 
input_dev_release(struct device * device)1518 static void input_dev_release(struct device *device)
1519 {
1520 	struct input_dev *dev = to_input_dev(device);
1521 
1522 	input_ff_destroy(dev);
1523 	input_mt_destroy_slots(dev);
1524 	kfree(dev->absinfo);
1525 	kfree(dev->vals);
1526 	kfree(dev);
1527 
1528 	module_put(THIS_MODULE);
1529 }
1530 
1531 /*
1532  * Input uevent interface - loading event handlers based on
1533  * device bitfields.
1534  */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1535 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1536 				   const char *name, unsigned long *bitmap, int max)
1537 {
1538 	int len;
1539 
1540 	if (add_uevent_var(env, "%s", name))
1541 		return -ENOMEM;
1542 
1543 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1544 				 sizeof(env->buf) - env->buflen,
1545 				 bitmap, max, false);
1546 	if (len >= (sizeof(env->buf) - env->buflen))
1547 		return -ENOMEM;
1548 
1549 	env->buflen += len;
1550 	return 0;
1551 }
1552 
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1553 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1554 					 struct input_dev *dev)
1555 {
1556 	int len;
1557 
1558 	if (add_uevent_var(env, "MODALIAS="))
1559 		return -ENOMEM;
1560 
1561 	len = input_print_modalias(&env->buf[env->buflen - 1],
1562 				   sizeof(env->buf) - env->buflen,
1563 				   dev, 0);
1564 	if (len >= (sizeof(env->buf) - env->buflen))
1565 		return -ENOMEM;
1566 
1567 	env->buflen += len;
1568 	return 0;
1569 }
1570 
1571 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1572 	do {								\
1573 		int err = add_uevent_var(env, fmt, val);		\
1574 		if (err)						\
1575 			return err;					\
1576 	} while (0)
1577 
1578 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1579 	do {								\
1580 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1581 		if (err)						\
1582 			return err;					\
1583 	} while (0)
1584 
1585 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1586 	do {								\
1587 		int err = input_add_uevent_modalias_var(env, dev);	\
1588 		if (err)						\
1589 			return err;					\
1590 	} while (0)
1591 
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1592 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1593 {
1594 	struct input_dev *dev = to_input_dev(device);
1595 
1596 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1597 				dev->id.bustype, dev->id.vendor,
1598 				dev->id.product, dev->id.version);
1599 	if (dev->name)
1600 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1601 	if (dev->phys)
1602 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1603 	if (dev->uniq)
1604 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1605 
1606 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1607 
1608 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1609 	if (test_bit(EV_KEY, dev->evbit))
1610 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1611 	if (test_bit(EV_REL, dev->evbit))
1612 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1613 	if (test_bit(EV_ABS, dev->evbit))
1614 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1615 	if (test_bit(EV_MSC, dev->evbit))
1616 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1617 	if (test_bit(EV_LED, dev->evbit))
1618 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1619 	if (test_bit(EV_SND, dev->evbit))
1620 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1621 	if (test_bit(EV_FF, dev->evbit))
1622 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1623 	if (test_bit(EV_SW, dev->evbit))
1624 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1625 
1626 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1627 
1628 	return 0;
1629 }
1630 
1631 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1632 	do {								\
1633 		int i;							\
1634 		bool active;						\
1635 									\
1636 		if (!test_bit(EV_##type, dev->evbit))			\
1637 			break;						\
1638 									\
1639 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1640 			active = test_bit(i, dev->bits);		\
1641 			if (!active && !on)				\
1642 				continue;				\
1643 									\
1644 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1645 		}							\
1646 	} while (0)
1647 
input_dev_toggle(struct input_dev * dev,bool activate)1648 static void input_dev_toggle(struct input_dev *dev, bool activate)
1649 {
1650 	if (!dev->event)
1651 		return;
1652 
1653 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1654 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1655 
1656 	if (activate && test_bit(EV_REP, dev->evbit)) {
1657 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1658 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1659 	}
1660 }
1661 
1662 /**
1663  * input_reset_device() - reset/restore the state of input device
1664  * @dev: input device whose state needs to be reset
1665  *
1666  * This function tries to reset the state of an opened input device and
1667  * bring internal state and state if the hardware in sync with each other.
1668  * We mark all keys as released, restore LED state, repeat rate, etc.
1669  */
input_reset_device(struct input_dev * dev)1670 void input_reset_device(struct input_dev *dev)
1671 {
1672 	unsigned long flags;
1673 
1674 	mutex_lock(&dev->mutex);
1675 	spin_lock_irqsave(&dev->event_lock, flags);
1676 
1677 	input_dev_toggle(dev, true);
1678 	input_dev_release_keys(dev);
1679 
1680 	spin_unlock_irqrestore(&dev->event_lock, flags);
1681 	mutex_unlock(&dev->mutex);
1682 }
1683 EXPORT_SYMBOL(input_reset_device);
1684 
1685 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1686 static int input_dev_suspend(struct device *dev)
1687 {
1688 	struct input_dev *input_dev = to_input_dev(dev);
1689 
1690 	spin_lock_irq(&input_dev->event_lock);
1691 
1692 	/*
1693 	 * Keys that are pressed now are unlikely to be
1694 	 * still pressed when we resume.
1695 	 */
1696 	input_dev_release_keys(input_dev);
1697 
1698 	/* Turn off LEDs and sounds, if any are active. */
1699 	input_dev_toggle(input_dev, false);
1700 
1701 	spin_unlock_irq(&input_dev->event_lock);
1702 
1703 	return 0;
1704 }
1705 
input_dev_resume(struct device * dev)1706 static int input_dev_resume(struct device *dev)
1707 {
1708 	struct input_dev *input_dev = to_input_dev(dev);
1709 
1710 	spin_lock_irq(&input_dev->event_lock);
1711 
1712 	/* Restore state of LEDs and sounds, if any were active. */
1713 	input_dev_toggle(input_dev, true);
1714 
1715 	spin_unlock_irq(&input_dev->event_lock);
1716 
1717 	return 0;
1718 }
1719 
input_dev_freeze(struct device * dev)1720 static int input_dev_freeze(struct device *dev)
1721 {
1722 	struct input_dev *input_dev = to_input_dev(dev);
1723 
1724 	spin_lock_irq(&input_dev->event_lock);
1725 
1726 	/*
1727 	 * Keys that are pressed now are unlikely to be
1728 	 * still pressed when we resume.
1729 	 */
1730 	input_dev_release_keys(input_dev);
1731 
1732 	spin_unlock_irq(&input_dev->event_lock);
1733 
1734 	return 0;
1735 }
1736 
input_dev_poweroff(struct device * dev)1737 static int input_dev_poweroff(struct device *dev)
1738 {
1739 	struct input_dev *input_dev = to_input_dev(dev);
1740 
1741 	spin_lock_irq(&input_dev->event_lock);
1742 
1743 	/* Turn off LEDs and sounds, if any are active. */
1744 	input_dev_toggle(input_dev, false);
1745 
1746 	spin_unlock_irq(&input_dev->event_lock);
1747 
1748 	return 0;
1749 }
1750 
1751 static const struct dev_pm_ops input_dev_pm_ops = {
1752 	.suspend	= input_dev_suspend,
1753 	.resume		= input_dev_resume,
1754 	.freeze		= input_dev_freeze,
1755 	.poweroff	= input_dev_poweroff,
1756 	.restore	= input_dev_resume,
1757 };
1758 #endif /* CONFIG_PM */
1759 
1760 static const struct device_type input_dev_type = {
1761 	.groups		= input_dev_attr_groups,
1762 	.release	= input_dev_release,
1763 	.uevent		= input_dev_uevent,
1764 #ifdef CONFIG_PM_SLEEP
1765 	.pm		= &input_dev_pm_ops,
1766 #endif
1767 };
1768 
input_devnode(struct device * dev,umode_t * mode)1769 static char *input_devnode(struct device *dev, umode_t *mode)
1770 {
1771 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1772 }
1773 
1774 struct class input_class = {
1775 	.name		= "input",
1776 	.devnode	= input_devnode,
1777 };
1778 EXPORT_SYMBOL_GPL(input_class);
1779 
1780 /**
1781  * input_allocate_device - allocate memory for new input device
1782  *
1783  * Returns prepared struct input_dev or %NULL.
1784  *
1785  * NOTE: Use input_free_device() to free devices that have not been
1786  * registered; input_unregister_device() should be used for already
1787  * registered devices.
1788  */
input_allocate_device(void)1789 struct input_dev *input_allocate_device(void)
1790 {
1791 	static atomic_t input_no = ATOMIC_INIT(-1);
1792 	struct input_dev *dev;
1793 
1794 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1795 	if (dev) {
1796 		dev->dev.type = &input_dev_type;
1797 		dev->dev.class = &input_class;
1798 		device_initialize(&dev->dev);
1799 		mutex_init(&dev->mutex);
1800 		spin_lock_init(&dev->event_lock);
1801 		init_timer(&dev->timer);
1802 		INIT_LIST_HEAD(&dev->h_list);
1803 		INIT_LIST_HEAD(&dev->node);
1804 
1805 		dev_set_name(&dev->dev, "input%lu",
1806 			     (unsigned long)atomic_inc_return(&input_no));
1807 
1808 		__module_get(THIS_MODULE);
1809 	}
1810 
1811 	return dev;
1812 }
1813 EXPORT_SYMBOL(input_allocate_device);
1814 
1815 struct input_devres {
1816 	struct input_dev *input;
1817 };
1818 
devm_input_device_match(struct device * dev,void * res,void * data)1819 static int devm_input_device_match(struct device *dev, void *res, void *data)
1820 {
1821 	struct input_devres *devres = res;
1822 
1823 	return devres->input == data;
1824 }
1825 
devm_input_device_release(struct device * dev,void * res)1826 static void devm_input_device_release(struct device *dev, void *res)
1827 {
1828 	struct input_devres *devres = res;
1829 	struct input_dev *input = devres->input;
1830 
1831 	dev_dbg(dev, "%s: dropping reference to %s\n",
1832 		__func__, dev_name(&input->dev));
1833 	input_put_device(input);
1834 }
1835 
1836 /**
1837  * devm_input_allocate_device - allocate managed input device
1838  * @dev: device owning the input device being created
1839  *
1840  * Returns prepared struct input_dev or %NULL.
1841  *
1842  * Managed input devices do not need to be explicitly unregistered or
1843  * freed as it will be done automatically when owner device unbinds from
1844  * its driver (or binding fails). Once managed input device is allocated,
1845  * it is ready to be set up and registered in the same fashion as regular
1846  * input device. There are no special devm_input_device_[un]register()
1847  * variants, regular ones work with both managed and unmanaged devices,
1848  * should you need them. In most cases however, managed input device need
1849  * not be explicitly unregistered or freed.
1850  *
1851  * NOTE: the owner device is set up as parent of input device and users
1852  * should not override it.
1853  */
devm_input_allocate_device(struct device * dev)1854 struct input_dev *devm_input_allocate_device(struct device *dev)
1855 {
1856 	struct input_dev *input;
1857 	struct input_devres *devres;
1858 
1859 	devres = devres_alloc(devm_input_device_release,
1860 			      sizeof(*devres), GFP_KERNEL);
1861 	if (!devres)
1862 		return NULL;
1863 
1864 	input = input_allocate_device();
1865 	if (!input) {
1866 		devres_free(devres);
1867 		return NULL;
1868 	}
1869 
1870 	input->dev.parent = dev;
1871 	input->devres_managed = true;
1872 
1873 	devres->input = input;
1874 	devres_add(dev, devres);
1875 
1876 	return input;
1877 }
1878 EXPORT_SYMBOL(devm_input_allocate_device);
1879 
1880 /**
1881  * input_free_device - free memory occupied by input_dev structure
1882  * @dev: input device to free
1883  *
1884  * This function should only be used if input_register_device()
1885  * was not called yet or if it failed. Once device was registered
1886  * use input_unregister_device() and memory will be freed once last
1887  * reference to the device is dropped.
1888  *
1889  * Device should be allocated by input_allocate_device().
1890  *
1891  * NOTE: If there are references to the input device then memory
1892  * will not be freed until last reference is dropped.
1893  */
input_free_device(struct input_dev * dev)1894 void input_free_device(struct input_dev *dev)
1895 {
1896 	if (dev) {
1897 		if (dev->devres_managed)
1898 			WARN_ON(devres_destroy(dev->dev.parent,
1899 						devm_input_device_release,
1900 						devm_input_device_match,
1901 						dev));
1902 		input_put_device(dev);
1903 	}
1904 }
1905 EXPORT_SYMBOL(input_free_device);
1906 
1907 /**
1908  * input_set_capability - mark device as capable of a certain event
1909  * @dev: device that is capable of emitting or accepting event
1910  * @type: type of the event (EV_KEY, EV_REL, etc...)
1911  * @code: event code
1912  *
1913  * In addition to setting up corresponding bit in appropriate capability
1914  * bitmap the function also adjusts dev->evbit.
1915  */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1916 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1917 {
1918 	switch (type) {
1919 	case EV_KEY:
1920 		__set_bit(code, dev->keybit);
1921 		break;
1922 
1923 	case EV_REL:
1924 		__set_bit(code, dev->relbit);
1925 		break;
1926 
1927 	case EV_ABS:
1928 		input_alloc_absinfo(dev);
1929 		if (!dev->absinfo)
1930 			return;
1931 
1932 		__set_bit(code, dev->absbit);
1933 		break;
1934 
1935 	case EV_MSC:
1936 		__set_bit(code, dev->mscbit);
1937 		break;
1938 
1939 	case EV_SW:
1940 		__set_bit(code, dev->swbit);
1941 		break;
1942 
1943 	case EV_LED:
1944 		__set_bit(code, dev->ledbit);
1945 		break;
1946 
1947 	case EV_SND:
1948 		__set_bit(code, dev->sndbit);
1949 		break;
1950 
1951 	case EV_FF:
1952 		__set_bit(code, dev->ffbit);
1953 		break;
1954 
1955 	case EV_PWR:
1956 		/* do nothing */
1957 		break;
1958 
1959 	default:
1960 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1961 		       type, code);
1962 		dump_stack();
1963 		return;
1964 	}
1965 
1966 	__set_bit(type, dev->evbit);
1967 }
1968 EXPORT_SYMBOL(input_set_capability);
1969 
input_estimate_events_per_packet(struct input_dev * dev)1970 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1971 {
1972 	int mt_slots;
1973 	int i;
1974 	unsigned int events;
1975 
1976 	if (dev->mt) {
1977 		mt_slots = dev->mt->num_slots;
1978 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1979 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1980 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1981 		mt_slots = clamp(mt_slots, 2, 32);
1982 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1983 		mt_slots = 2;
1984 	} else {
1985 		mt_slots = 0;
1986 	}
1987 
1988 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1989 
1990 	if (test_bit(EV_ABS, dev->evbit))
1991 		for_each_set_bit(i, dev->absbit, ABS_CNT)
1992 			events += input_is_mt_axis(i) ? mt_slots : 1;
1993 
1994 	if (test_bit(EV_REL, dev->evbit))
1995 		events += bitmap_weight(dev->relbit, REL_CNT);
1996 
1997 	/* Make room for KEY and MSC events */
1998 	events += 7;
1999 
2000 	return events;
2001 }
2002 
2003 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2004 	do {								\
2005 		if (!test_bit(EV_##type, dev->evbit))			\
2006 			memset(dev->bits##bit, 0,			\
2007 				sizeof(dev->bits##bit));		\
2008 	} while (0)
2009 
input_cleanse_bitmasks(struct input_dev * dev)2010 static void input_cleanse_bitmasks(struct input_dev *dev)
2011 {
2012 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2013 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2014 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2015 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2016 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2017 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2018 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2019 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2020 }
2021 
__input_unregister_device(struct input_dev * dev)2022 static void __input_unregister_device(struct input_dev *dev)
2023 {
2024 	struct input_handle *handle, *next;
2025 
2026 	input_disconnect_device(dev);
2027 
2028 	mutex_lock(&input_mutex);
2029 
2030 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2031 		handle->handler->disconnect(handle);
2032 	WARN_ON(!list_empty(&dev->h_list));
2033 
2034 	del_timer_sync(&dev->timer);
2035 	list_del_init(&dev->node);
2036 
2037 	input_wakeup_procfs_readers();
2038 
2039 	mutex_unlock(&input_mutex);
2040 
2041 	device_del(&dev->dev);
2042 }
2043 
devm_input_device_unregister(struct device * dev,void * res)2044 static void devm_input_device_unregister(struct device *dev, void *res)
2045 {
2046 	struct input_devres *devres = res;
2047 	struct input_dev *input = devres->input;
2048 
2049 	dev_dbg(dev, "%s: unregistering device %s\n",
2050 		__func__, dev_name(&input->dev));
2051 	__input_unregister_device(input);
2052 }
2053 
2054 /**
2055  * input_enable_softrepeat - enable software autorepeat
2056  * @dev: input device
2057  * @delay: repeat delay
2058  * @period: repeat period
2059  *
2060  * Enable software autorepeat on the input device.
2061  */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2062 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2063 {
2064 	dev->timer.data = (unsigned long) dev;
2065 	dev->timer.function = input_repeat_key;
2066 	dev->rep[REP_DELAY] = delay;
2067 	dev->rep[REP_PERIOD] = period;
2068 }
2069 EXPORT_SYMBOL(input_enable_softrepeat);
2070 
2071 /**
2072  * input_register_device - register device with input core
2073  * @dev: device to be registered
2074  *
2075  * This function registers device with input core. The device must be
2076  * allocated with input_allocate_device() and all it's capabilities
2077  * set up before registering.
2078  * If function fails the device must be freed with input_free_device().
2079  * Once device has been successfully registered it can be unregistered
2080  * with input_unregister_device(); input_free_device() should not be
2081  * called in this case.
2082  *
2083  * Note that this function is also used to register managed input devices
2084  * (ones allocated with devm_input_allocate_device()). Such managed input
2085  * devices need not be explicitly unregistered or freed, their tear down
2086  * is controlled by the devres infrastructure. It is also worth noting
2087  * that tear down of managed input devices is internally a 2-step process:
2088  * registered managed input device is first unregistered, but stays in
2089  * memory and can still handle input_event() calls (although events will
2090  * not be delivered anywhere). The freeing of managed input device will
2091  * happen later, when devres stack is unwound to the point where device
2092  * allocation was made.
2093  */
input_register_device(struct input_dev * dev)2094 int input_register_device(struct input_dev *dev)
2095 {
2096 	struct input_devres *devres = NULL;
2097 	struct input_handler *handler;
2098 	unsigned int packet_size;
2099 	const char *path;
2100 	int error;
2101 
2102 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2103 		dev_err(&dev->dev,
2104 			"Absolute device without dev->absinfo, refusing to register\n");
2105 		return -EINVAL;
2106 	}
2107 
2108 	if (dev->devres_managed) {
2109 		devres = devres_alloc(devm_input_device_unregister,
2110 				      sizeof(*devres), GFP_KERNEL);
2111 		if (!devres)
2112 			return -ENOMEM;
2113 
2114 		devres->input = dev;
2115 	}
2116 
2117 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2118 	__set_bit(EV_SYN, dev->evbit);
2119 
2120 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2121 	__clear_bit(KEY_RESERVED, dev->keybit);
2122 
2123 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2124 	input_cleanse_bitmasks(dev);
2125 
2126 	packet_size = input_estimate_events_per_packet(dev);
2127 	if (dev->hint_events_per_packet < packet_size)
2128 		dev->hint_events_per_packet = packet_size;
2129 
2130 	dev->max_vals = dev->hint_events_per_packet + 2;
2131 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2132 	if (!dev->vals) {
2133 		error = -ENOMEM;
2134 		goto err_devres_free;
2135 	}
2136 
2137 	/*
2138 	 * If delay and period are pre-set by the driver, then autorepeating
2139 	 * is handled by the driver itself and we don't do it in input.c.
2140 	 */
2141 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2142 		input_enable_softrepeat(dev, 250, 33);
2143 
2144 	if (!dev->getkeycode)
2145 		dev->getkeycode = input_default_getkeycode;
2146 
2147 	if (!dev->setkeycode)
2148 		dev->setkeycode = input_default_setkeycode;
2149 
2150 	error = device_add(&dev->dev);
2151 	if (error)
2152 		goto err_free_vals;
2153 
2154 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2155 	pr_info("%s as %s\n",
2156 		dev->name ? dev->name : "Unspecified device",
2157 		path ? path : "N/A");
2158 	kfree(path);
2159 
2160 	error = mutex_lock_interruptible(&input_mutex);
2161 	if (error)
2162 		goto err_device_del;
2163 
2164 	list_add_tail(&dev->node, &input_dev_list);
2165 
2166 	list_for_each_entry(handler, &input_handler_list, node)
2167 		input_attach_handler(dev, handler);
2168 
2169 	input_wakeup_procfs_readers();
2170 
2171 	mutex_unlock(&input_mutex);
2172 
2173 	if (dev->devres_managed) {
2174 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2175 			__func__, dev_name(&dev->dev));
2176 		devres_add(dev->dev.parent, devres);
2177 	}
2178 	return 0;
2179 
2180 err_device_del:
2181 	device_del(&dev->dev);
2182 err_free_vals:
2183 	kfree(dev->vals);
2184 	dev->vals = NULL;
2185 err_devres_free:
2186 	devres_free(devres);
2187 	return error;
2188 }
2189 EXPORT_SYMBOL(input_register_device);
2190 
2191 /**
2192  * input_unregister_device - unregister previously registered device
2193  * @dev: device to be unregistered
2194  *
2195  * This function unregisters an input device. Once device is unregistered
2196  * the caller should not try to access it as it may get freed at any moment.
2197  */
input_unregister_device(struct input_dev * dev)2198 void input_unregister_device(struct input_dev *dev)
2199 {
2200 	if (dev->devres_managed) {
2201 		WARN_ON(devres_destroy(dev->dev.parent,
2202 					devm_input_device_unregister,
2203 					devm_input_device_match,
2204 					dev));
2205 		__input_unregister_device(dev);
2206 		/*
2207 		 * We do not do input_put_device() here because it will be done
2208 		 * when 2nd devres fires up.
2209 		 */
2210 	} else {
2211 		__input_unregister_device(dev);
2212 		input_put_device(dev);
2213 	}
2214 }
2215 EXPORT_SYMBOL(input_unregister_device);
2216 
2217 /**
2218  * input_register_handler - register a new input handler
2219  * @handler: handler to be registered
2220  *
2221  * This function registers a new input handler (interface) for input
2222  * devices in the system and attaches it to all input devices that
2223  * are compatible with the handler.
2224  */
input_register_handler(struct input_handler * handler)2225 int input_register_handler(struct input_handler *handler)
2226 {
2227 	struct input_dev *dev;
2228 	int error;
2229 
2230 	error = mutex_lock_interruptible(&input_mutex);
2231 	if (error)
2232 		return error;
2233 
2234 	INIT_LIST_HEAD(&handler->h_list);
2235 
2236 	list_add_tail(&handler->node, &input_handler_list);
2237 
2238 	list_for_each_entry(dev, &input_dev_list, node)
2239 		input_attach_handler(dev, handler);
2240 
2241 	input_wakeup_procfs_readers();
2242 
2243 	mutex_unlock(&input_mutex);
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL(input_register_handler);
2247 
2248 /**
2249  * input_unregister_handler - unregisters an input handler
2250  * @handler: handler to be unregistered
2251  *
2252  * This function disconnects a handler from its input devices and
2253  * removes it from lists of known handlers.
2254  */
input_unregister_handler(struct input_handler * handler)2255 void input_unregister_handler(struct input_handler *handler)
2256 {
2257 	struct input_handle *handle, *next;
2258 
2259 	mutex_lock(&input_mutex);
2260 
2261 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2262 		handler->disconnect(handle);
2263 	WARN_ON(!list_empty(&handler->h_list));
2264 
2265 	list_del_init(&handler->node);
2266 
2267 	input_wakeup_procfs_readers();
2268 
2269 	mutex_unlock(&input_mutex);
2270 }
2271 EXPORT_SYMBOL(input_unregister_handler);
2272 
2273 /**
2274  * input_handler_for_each_handle - handle iterator
2275  * @handler: input handler to iterate
2276  * @data: data for the callback
2277  * @fn: function to be called for each handle
2278  *
2279  * Iterate over @bus's list of devices, and call @fn for each, passing
2280  * it @data and stop when @fn returns a non-zero value. The function is
2281  * using RCU to traverse the list and therefore may be using in atomic
2282  * contexts. The @fn callback is invoked from RCU critical section and
2283  * thus must not sleep.
2284  */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2285 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2286 				  int (*fn)(struct input_handle *, void *))
2287 {
2288 	struct input_handle *handle;
2289 	int retval = 0;
2290 
2291 	rcu_read_lock();
2292 
2293 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2294 		retval = fn(handle, data);
2295 		if (retval)
2296 			break;
2297 	}
2298 
2299 	rcu_read_unlock();
2300 
2301 	return retval;
2302 }
2303 EXPORT_SYMBOL(input_handler_for_each_handle);
2304 
2305 /**
2306  * input_register_handle - register a new input handle
2307  * @handle: handle to register
2308  *
2309  * This function puts a new input handle onto device's
2310  * and handler's lists so that events can flow through
2311  * it once it is opened using input_open_device().
2312  *
2313  * This function is supposed to be called from handler's
2314  * connect() method.
2315  */
input_register_handle(struct input_handle * handle)2316 int input_register_handle(struct input_handle *handle)
2317 {
2318 	struct input_handler *handler = handle->handler;
2319 	struct input_dev *dev = handle->dev;
2320 	int error;
2321 
2322 	/*
2323 	 * We take dev->mutex here to prevent race with
2324 	 * input_release_device().
2325 	 */
2326 	error = mutex_lock_interruptible(&dev->mutex);
2327 	if (error)
2328 		return error;
2329 
2330 	/*
2331 	 * Filters go to the head of the list, normal handlers
2332 	 * to the tail.
2333 	 */
2334 	if (handler->filter)
2335 		list_add_rcu(&handle->d_node, &dev->h_list);
2336 	else
2337 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2338 
2339 	mutex_unlock(&dev->mutex);
2340 
2341 	/*
2342 	 * Since we are supposed to be called from ->connect()
2343 	 * which is mutually exclusive with ->disconnect()
2344 	 * we can't be racing with input_unregister_handle()
2345 	 * and so separate lock is not needed here.
2346 	 */
2347 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2348 
2349 	if (handler->start)
2350 		handler->start(handle);
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(input_register_handle);
2355 
2356 /**
2357  * input_unregister_handle - unregister an input handle
2358  * @handle: handle to unregister
2359  *
2360  * This function removes input handle from device's
2361  * and handler's lists.
2362  *
2363  * This function is supposed to be called from handler's
2364  * disconnect() method.
2365  */
input_unregister_handle(struct input_handle * handle)2366 void input_unregister_handle(struct input_handle *handle)
2367 {
2368 	struct input_dev *dev = handle->dev;
2369 
2370 	list_del_rcu(&handle->h_node);
2371 
2372 	/*
2373 	 * Take dev->mutex to prevent race with input_release_device().
2374 	 */
2375 	mutex_lock(&dev->mutex);
2376 	list_del_rcu(&handle->d_node);
2377 	mutex_unlock(&dev->mutex);
2378 
2379 	synchronize_rcu();
2380 }
2381 EXPORT_SYMBOL(input_unregister_handle);
2382 
2383 /**
2384  * input_get_new_minor - allocates a new input minor number
2385  * @legacy_base: beginning or the legacy range to be searched
2386  * @legacy_num: size of legacy range
2387  * @allow_dynamic: whether we can also take ID from the dynamic range
2388  *
2389  * This function allocates a new device minor for from input major namespace.
2390  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2391  * parameters and whether ID can be allocated from dynamic range if there are
2392  * no free IDs in legacy range.
2393  */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2394 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2395 			bool allow_dynamic)
2396 {
2397 	/*
2398 	 * This function should be called from input handler's ->connect()
2399 	 * methods, which are serialized with input_mutex, so no additional
2400 	 * locking is needed here.
2401 	 */
2402 	if (legacy_base >= 0) {
2403 		int minor = ida_simple_get(&input_ida,
2404 					   legacy_base,
2405 					   legacy_base + legacy_num,
2406 					   GFP_KERNEL);
2407 		if (minor >= 0 || !allow_dynamic)
2408 			return minor;
2409 	}
2410 
2411 	return ida_simple_get(&input_ida,
2412 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2413 			      GFP_KERNEL);
2414 }
2415 EXPORT_SYMBOL(input_get_new_minor);
2416 
2417 /**
2418  * input_free_minor - release previously allocated minor
2419  * @minor: minor to be released
2420  *
2421  * This function releases previously allocated input minor so that it can be
2422  * reused later.
2423  */
input_free_minor(unsigned int minor)2424 void input_free_minor(unsigned int minor)
2425 {
2426 	ida_simple_remove(&input_ida, minor);
2427 }
2428 EXPORT_SYMBOL(input_free_minor);
2429 
input_init(void)2430 static int __init input_init(void)
2431 {
2432 	int err;
2433 
2434 	err = class_register(&input_class);
2435 	if (err) {
2436 		pr_err("unable to register input_dev class\n");
2437 		return err;
2438 	}
2439 
2440 	err = input_proc_init();
2441 	if (err)
2442 		goto fail1;
2443 
2444 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2445 				     INPUT_MAX_CHAR_DEVICES, "input");
2446 	if (err) {
2447 		pr_err("unable to register char major %d", INPUT_MAJOR);
2448 		goto fail2;
2449 	}
2450 
2451 	return 0;
2452 
2453  fail2:	input_proc_exit();
2454  fail1:	class_unregister(&input_class);
2455 	return err;
2456 }
2457 
input_exit(void)2458 static void __exit input_exit(void)
2459 {
2460 	input_proc_exit();
2461 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2462 				 INPUT_MAX_CHAR_DEVICES);
2463 	class_unregister(&input_class);
2464 }
2465 
2466 subsys_initcall(input_init);
2467 module_exit(input_exit);
2468