• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 
40 #include "hci_uart.h"
41 #include "btintel.h"
42 
43 #define STATE_BOOTLOADER	0
44 #define STATE_DOWNLOADING	1
45 #define STATE_FIRMWARE_LOADED	2
46 #define STATE_FIRMWARE_FAILED	3
47 #define STATE_BOOTING		4
48 #define STATE_LPM_ENABLED	5
49 #define STATE_TX_ACTIVE		6
50 #define STATE_SUSPENDED		7
51 #define STATE_LPM_TRANSACTION	8
52 
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57 
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61 
62 #define LPM_SUSPEND_DELAY_MS 1000
63 
64 struct hci_lpm_pkt {
65 	__u8 opcode;
66 	__u8 dlen;
67 	__u8 data[0];
68 } __packed;
69 
70 struct intel_device {
71 	struct list_head list;
72 	struct platform_device *pdev;
73 	struct gpio_desc *reset;
74 	struct hci_uart *hu;
75 	struct mutex hu_lock;
76 	int irq;
77 };
78 
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81 
82 struct intel_data {
83 	struct sk_buff *rx_skb;
84 	struct sk_buff_head txq;
85 	struct work_struct busy_work;
86 	struct hci_uart *hu;
87 	unsigned long flags;
88 };
89 
intel_convert_speed(unsigned int speed)90 static u8 intel_convert_speed(unsigned int speed)
91 {
92 	switch (speed) {
93 	case 9600:
94 		return 0x00;
95 	case 19200:
96 		return 0x01;
97 	case 38400:
98 		return 0x02;
99 	case 57600:
100 		return 0x03;
101 	case 115200:
102 		return 0x04;
103 	case 230400:
104 		return 0x05;
105 	case 460800:
106 		return 0x06;
107 	case 921600:
108 		return 0x07;
109 	case 1843200:
110 		return 0x08;
111 	case 3250000:
112 		return 0x09;
113 	case 2000000:
114 		return 0x0a;
115 	case 3000000:
116 		return 0x0b;
117 	default:
118 		return 0xff;
119 	}
120 }
121 
intel_wait_booting(struct hci_uart * hu)122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124 	struct intel_data *intel = hu->priv;
125 	int err;
126 
127 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 				  TASK_INTERRUPTIBLE,
129 				  msecs_to_jiffies(1000));
130 
131 	if (err == -EINTR) {
132 		bt_dev_err(hu->hdev, "Device boot interrupted");
133 		return -EINTR;
134 	}
135 
136 	if (err) {
137 		bt_dev_err(hu->hdev, "Device boot timeout");
138 		return -ETIMEDOUT;
139 	}
140 
141 	return err;
142 }
143 
144 #ifdef CONFIG_PM
intel_wait_lpm_transaction(struct hci_uart * hu)145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147 	struct intel_data *intel = hu->priv;
148 	int err;
149 
150 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 				  TASK_INTERRUPTIBLE,
152 				  msecs_to_jiffies(1000));
153 
154 	if (err == -EINTR) {
155 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 		return -EINTR;
157 	}
158 
159 	if (err) {
160 		bt_dev_err(hu->hdev, "LPM transaction timeout");
161 		return -ETIMEDOUT;
162 	}
163 
164 	return err;
165 }
166 
intel_lpm_suspend(struct hci_uart * hu)167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 	struct intel_data *intel = hu->priv;
171 	struct sk_buff *skb;
172 
173 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 	    test_bit(STATE_SUSPENDED, &intel->flags))
175 		return 0;
176 
177 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 		return -EAGAIN;
179 
180 	bt_dev_dbg(hu->hdev, "Suspending");
181 
182 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 	if (!skb) {
184 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 		return -ENOMEM;
186 	}
187 
188 	skb_put_data(skb, suspend, sizeof(suspend));
189 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190 
191 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192 
193 	/* LPM flow is a priority, enqueue packet at list head */
194 	skb_queue_head(&intel->txq, skb);
195 	hci_uart_tx_wakeup(hu);
196 
197 	intel_wait_lpm_transaction(hu);
198 	/* Even in case of failure, continue and test the suspended flag */
199 
200 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201 
202 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 		bt_dev_err(hu->hdev, "Device suspend error");
204 		return -EINVAL;
205 	}
206 
207 	bt_dev_dbg(hu->hdev, "Suspended");
208 
209 	hci_uart_set_flow_control(hu, true);
210 
211 	return 0;
212 }
213 
intel_lpm_resume(struct hci_uart * hu)214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216 	struct intel_data *intel = hu->priv;
217 	struct sk_buff *skb;
218 
219 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 	    !test_bit(STATE_SUSPENDED, &intel->flags))
221 		return 0;
222 
223 	bt_dev_dbg(hu->hdev, "Resuming");
224 
225 	hci_uart_set_flow_control(hu, false);
226 
227 	skb = bt_skb_alloc(0, GFP_KERNEL);
228 	if (!skb) {
229 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 		return -ENOMEM;
231 	}
232 
233 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234 
235 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236 
237 	/* LPM flow is a priority, enqueue packet at list head */
238 	skb_queue_head(&intel->txq, skb);
239 	hci_uart_tx_wakeup(hu);
240 
241 	intel_wait_lpm_transaction(hu);
242 	/* Even in case of failure, continue and test the suspended flag */
243 
244 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245 
246 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 		bt_dev_err(hu->hdev, "Device resume error");
248 		return -EINVAL;
249 	}
250 
251 	bt_dev_dbg(hu->hdev, "Resumed");
252 
253 	return 0;
254 }
255 #endif /* CONFIG_PM */
256 
intel_lpm_host_wake(struct hci_uart * hu)257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 	struct intel_data *intel = hu->priv;
261 	struct sk_buff *skb;
262 
263 	hci_uart_set_flow_control(hu, false);
264 
265 	clear_bit(STATE_SUSPENDED, &intel->flags);
266 
267 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 	if (!skb) {
269 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 		return -ENOMEM;
271 	}
272 
273 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
274 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
275 
276 	/* LPM flow is a priority, enqueue packet at list head */
277 	skb_queue_head(&intel->txq, skb);
278 	hci_uart_tx_wakeup(hu);
279 
280 	bt_dev_dbg(hu->hdev, "Resumed by controller");
281 
282 	return 0;
283 }
284 
intel_irq(int irq,void * dev_id)285 static irqreturn_t intel_irq(int irq, void *dev_id)
286 {
287 	struct intel_device *idev = dev_id;
288 
289 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
290 
291 	mutex_lock(&idev->hu_lock);
292 	if (idev->hu)
293 		intel_lpm_host_wake(idev->hu);
294 	mutex_unlock(&idev->hu_lock);
295 
296 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 	pm_runtime_get(&idev->pdev->dev);
298 	pm_runtime_mark_last_busy(&idev->pdev->dev);
299 	pm_runtime_put_autosuspend(&idev->pdev->dev);
300 
301 	return IRQ_HANDLED;
302 }
303 
intel_set_power(struct hci_uart * hu,bool powered)304 static int intel_set_power(struct hci_uart *hu, bool powered)
305 {
306 	struct list_head *p;
307 	int err = -ENODEV;
308 
309 	if (!hu->tty->dev)
310 		return err;
311 
312 	mutex_lock(&intel_device_list_lock);
313 
314 	list_for_each(p, &intel_device_list) {
315 		struct intel_device *idev = list_entry(p, struct intel_device,
316 						       list);
317 
318 		/* tty device and pdev device should share the same parent
319 		 * which is the UART port.
320 		 */
321 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
322 			continue;
323 
324 		if (!idev->reset) {
325 			err = -ENOTSUPP;
326 			break;
327 		}
328 
329 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 			hu, dev_name(&idev->pdev->dev), powered);
331 
332 		gpiod_set_value(idev->reset, powered);
333 
334 		/* Provide to idev a hu reference which is used to run LPM
335 		 * transactions (lpm suspend/resume) from PM callbacks.
336 		 * hu needs to be protected against concurrent removing during
337 		 * these PM ops.
338 		 */
339 		mutex_lock(&idev->hu_lock);
340 		idev->hu = powered ? hu : NULL;
341 		mutex_unlock(&idev->hu_lock);
342 
343 		if (idev->irq < 0)
344 			break;
345 
346 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
347 			err = devm_request_threaded_irq(&idev->pdev->dev,
348 							idev->irq, NULL,
349 							intel_irq,
350 							IRQF_ONESHOT,
351 							"bt-host-wake", idev);
352 			if (err) {
353 				BT_ERR("hu %p, unable to allocate irq-%d",
354 				       hu, idev->irq);
355 				break;
356 			}
357 
358 			device_wakeup_enable(&idev->pdev->dev);
359 
360 			pm_runtime_set_active(&idev->pdev->dev);
361 			pm_runtime_use_autosuspend(&idev->pdev->dev);
362 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
363 							 LPM_SUSPEND_DELAY_MS);
364 			pm_runtime_enable(&idev->pdev->dev);
365 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
366 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
367 			device_wakeup_disable(&idev->pdev->dev);
368 
369 			pm_runtime_disable(&idev->pdev->dev);
370 		}
371 	}
372 
373 	mutex_unlock(&intel_device_list_lock);
374 
375 	return err;
376 }
377 
intel_busy_work(struct work_struct * work)378 static void intel_busy_work(struct work_struct *work)
379 {
380 	struct list_head *p;
381 	struct intel_data *intel = container_of(work, struct intel_data,
382 						busy_work);
383 
384 	if (!intel->hu->tty->dev)
385 		return;
386 
387 	/* Link is busy, delay the suspend */
388 	mutex_lock(&intel_device_list_lock);
389 	list_for_each(p, &intel_device_list) {
390 		struct intel_device *idev = list_entry(p, struct intel_device,
391 						       list);
392 
393 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
394 			pm_runtime_get(&idev->pdev->dev);
395 			pm_runtime_mark_last_busy(&idev->pdev->dev);
396 			pm_runtime_put_autosuspend(&idev->pdev->dev);
397 			break;
398 		}
399 	}
400 	mutex_unlock(&intel_device_list_lock);
401 }
402 
intel_open(struct hci_uart * hu)403 static int intel_open(struct hci_uart *hu)
404 {
405 	struct intel_data *intel;
406 
407 	BT_DBG("hu %p", hu);
408 
409 	if (!hci_uart_has_flow_control(hu))
410 		return -EOPNOTSUPP;
411 
412 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
413 	if (!intel)
414 		return -ENOMEM;
415 
416 	skb_queue_head_init(&intel->txq);
417 	INIT_WORK(&intel->busy_work, intel_busy_work);
418 
419 	intel->hu = hu;
420 
421 	hu->priv = intel;
422 
423 	if (!intel_set_power(hu, true))
424 		set_bit(STATE_BOOTING, &intel->flags);
425 
426 	return 0;
427 }
428 
intel_close(struct hci_uart * hu)429 static int intel_close(struct hci_uart *hu)
430 {
431 	struct intel_data *intel = hu->priv;
432 
433 	BT_DBG("hu %p", hu);
434 
435 	cancel_work_sync(&intel->busy_work);
436 
437 	intel_set_power(hu, false);
438 
439 	skb_queue_purge(&intel->txq);
440 	kfree_skb(intel->rx_skb);
441 	kfree(intel);
442 
443 	hu->priv = NULL;
444 	return 0;
445 }
446 
intel_flush(struct hci_uart * hu)447 static int intel_flush(struct hci_uart *hu)
448 {
449 	struct intel_data *intel = hu->priv;
450 
451 	BT_DBG("hu %p", hu);
452 
453 	skb_queue_purge(&intel->txq);
454 
455 	return 0;
456 }
457 
inject_cmd_complete(struct hci_dev * hdev,__u16 opcode)458 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
459 {
460 	struct sk_buff *skb;
461 	struct hci_event_hdr *hdr;
462 	struct hci_ev_cmd_complete *evt;
463 
464 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
465 	if (!skb)
466 		return -ENOMEM;
467 
468 	hdr = skb_put(skb, sizeof(*hdr));
469 	hdr->evt = HCI_EV_CMD_COMPLETE;
470 	hdr->plen = sizeof(*evt) + 1;
471 
472 	evt = skb_put(skb, sizeof(*evt));
473 	evt->ncmd = 0x01;
474 	evt->opcode = cpu_to_le16(opcode);
475 
476 	skb_put_u8(skb, 0x00);
477 
478 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
479 
480 	return hci_recv_frame(hdev, skb);
481 }
482 
intel_set_baudrate(struct hci_uart * hu,unsigned int speed)483 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
484 {
485 	struct intel_data *intel = hu->priv;
486 	struct hci_dev *hdev = hu->hdev;
487 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
488 	struct sk_buff *skb;
489 	int err;
490 
491 	/* This can be the first command sent to the chip, check
492 	 * that the controller is ready.
493 	 */
494 	err = intel_wait_booting(hu);
495 
496 	clear_bit(STATE_BOOTING, &intel->flags);
497 
498 	/* In case of timeout, try to continue anyway */
499 	if (err && err != -ETIMEDOUT)
500 		return err;
501 
502 	bt_dev_info(hdev, "Change controller speed to %d", speed);
503 
504 	speed_cmd[3] = intel_convert_speed(speed);
505 	if (speed_cmd[3] == 0xff) {
506 		bt_dev_err(hdev, "Unsupported speed");
507 		return -EINVAL;
508 	}
509 
510 	/* Device will not accept speed change if Intel version has not been
511 	 * previously requested.
512 	 */
513 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
514 	if (IS_ERR(skb)) {
515 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
516 			   PTR_ERR(skb));
517 		return PTR_ERR(skb);
518 	}
519 	kfree_skb(skb);
520 
521 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
522 	if (!skb) {
523 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
524 		return -ENOMEM;
525 	}
526 
527 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
528 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
529 
530 	hci_uart_set_flow_control(hu, true);
531 
532 	skb_queue_tail(&intel->txq, skb);
533 	hci_uart_tx_wakeup(hu);
534 
535 	/* wait 100ms to change baudrate on controller side */
536 	msleep(100);
537 
538 	hci_uart_set_baudrate(hu, speed);
539 	hci_uart_set_flow_control(hu, false);
540 
541 	return 0;
542 }
543 
intel_setup(struct hci_uart * hu)544 static int intel_setup(struct hci_uart *hu)
545 {
546 	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
547 					  0x00, 0x08, 0x04, 0x00 };
548 	struct intel_data *intel = hu->priv;
549 	struct hci_dev *hdev = hu->hdev;
550 	struct sk_buff *skb;
551 	struct intel_version ver;
552 	struct intel_boot_params *params;
553 	struct list_head *p;
554 	const struct firmware *fw;
555 	const u8 *fw_ptr;
556 	char fwname[64];
557 	u32 frag_len;
558 	ktime_t calltime, delta, rettime;
559 	unsigned long long duration;
560 	unsigned int init_speed, oper_speed;
561 	int speed_change = 0;
562 	int err;
563 
564 	bt_dev_dbg(hdev, "start intel_setup");
565 
566 	hu->hdev->set_diag = btintel_set_diag;
567 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
568 
569 	calltime = ktime_get();
570 
571 	if (hu->init_speed)
572 		init_speed = hu->init_speed;
573 	else
574 		init_speed = hu->proto->init_speed;
575 
576 	if (hu->oper_speed)
577 		oper_speed = hu->oper_speed;
578 	else
579 		oper_speed = hu->proto->oper_speed;
580 
581 	if (oper_speed && init_speed && oper_speed != init_speed)
582 		speed_change = 1;
583 
584 	/* Check that the controller is ready */
585 	err = intel_wait_booting(hu);
586 
587 	clear_bit(STATE_BOOTING, &intel->flags);
588 
589 	/* In case of timeout, try to continue anyway */
590 	if (err && err != -ETIMEDOUT)
591 		return err;
592 
593 	set_bit(STATE_BOOTLOADER, &intel->flags);
594 
595 	/* Read the Intel version information to determine if the device
596 	 * is in bootloader mode or if it already has operational firmware
597 	 * loaded.
598 	 */
599 	 err = btintel_read_version(hdev, &ver);
600 	 if (err)
601 		return err;
602 
603 	/* The hardware platform number has a fixed value of 0x37 and
604 	 * for now only accept this single value.
605 	 */
606 	if (ver.hw_platform != 0x37) {
607 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
608 			   ver.hw_platform);
609 		return -EINVAL;
610 	}
611 
612         /* Check for supported iBT hardware variants of this firmware
613          * loading method.
614          *
615          * This check has been put in place to ensure correct forward
616          * compatibility options when newer hardware variants come along.
617          */
618 	switch (ver.hw_variant) {
619 	case 0x0b:	/* LnP */
620 	case 0x0c:	/* WsP */
621 	case 0x12:	/* ThP */
622 		break;
623 	default:
624 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
625 			   ver.hw_variant);
626 		return -EINVAL;
627 	}
628 
629 	btintel_version_info(hdev, &ver);
630 
631 	/* The firmware variant determines if the device is in bootloader
632 	 * mode or is running operational firmware. The value 0x06 identifies
633 	 * the bootloader and the value 0x23 identifies the operational
634 	 * firmware.
635 	 *
636 	 * When the operational firmware is already present, then only
637 	 * the check for valid Bluetooth device address is needed. This
638 	 * determines if the device will be added as configured or
639 	 * unconfigured controller.
640 	 *
641 	 * It is not possible to use the Secure Boot Parameters in this
642 	 * case since that command is only available in bootloader mode.
643 	 */
644 	if (ver.fw_variant == 0x23) {
645 		clear_bit(STATE_BOOTLOADER, &intel->flags);
646 		btintel_check_bdaddr(hdev);
647 		return 0;
648 	}
649 
650 	/* If the device is not in bootloader mode, then the only possible
651 	 * choice is to return an error and abort the device initialization.
652 	 */
653 	if (ver.fw_variant != 0x06) {
654 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
655 			   ver.fw_variant);
656 		return -ENODEV;
657 	}
658 
659 	/* Read the secure boot parameters to identify the operating
660 	 * details of the bootloader.
661 	 */
662 	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
663 	if (IS_ERR(skb)) {
664 		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
665 			   PTR_ERR(skb));
666 		return PTR_ERR(skb);
667 	}
668 
669 	if (skb->len != sizeof(*params)) {
670 		bt_dev_err(hdev, "Intel boot parameters size mismatch");
671 		kfree_skb(skb);
672 		return -EILSEQ;
673 	}
674 
675 	params = (struct intel_boot_params *)skb->data;
676 	if (params->status) {
677 		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
678 			   params->status);
679 		err = -bt_to_errno(params->status);
680 		kfree_skb(skb);
681 		return err;
682 	}
683 
684 	bt_dev_info(hdev, "Device revision is %u",
685 		    le16_to_cpu(params->dev_revid));
686 
687 	bt_dev_info(hdev, "Secure boot is %s",
688 		    params->secure_boot ? "enabled" : "disabled");
689 
690 	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
691 		params->min_fw_build_nn, params->min_fw_build_cw,
692 		2000 + params->min_fw_build_yy);
693 
694 	/* It is required that every single firmware fragment is acknowledged
695 	 * with a command complete event. If the boot parameters indicate
696 	 * that this bootloader does not send them, then abort the setup.
697 	 */
698 	if (params->limited_cce != 0x00) {
699 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
700 			   params->limited_cce);
701 		kfree_skb(skb);
702 		return -EINVAL;
703 	}
704 
705 	/* If the OTP has no valid Bluetooth device address, then there will
706 	 * also be no valid address for the operational firmware.
707 	 */
708 	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
709 		bt_dev_info(hdev, "No device address configured");
710 		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
711 	}
712 
713 	/* With this Intel bootloader only the hardware variant and device
714 	 * revision information are used to select the right firmware.
715 	 *
716 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
717 	 *
718 	 * Currently the supported hardware variants are:
719 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
720 	 */
721 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
722 		le16_to_cpu(ver.hw_variant),
723 		le16_to_cpu(params->dev_revid));
724 
725 	err = request_firmware(&fw, fwname, &hdev->dev);
726 	if (err < 0) {
727 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
728 			   err);
729 		kfree_skb(skb);
730 		return err;
731 	}
732 
733 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
734 
735 	/* Save the DDC file name for later */
736 	snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
737 		le16_to_cpu(ver.hw_variant),
738 		le16_to_cpu(params->dev_revid));
739 
740 	kfree_skb(skb);
741 
742 	if (fw->size < 644) {
743 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
744 			   fw->size);
745 		err = -EBADF;
746 		goto done;
747 	}
748 
749 	set_bit(STATE_DOWNLOADING, &intel->flags);
750 
751 	/* Start the firmware download transaction with the Init fragment
752 	 * represented by the 128 bytes of CSS header.
753 	 */
754 	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
755 	if (err < 0) {
756 		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
757 		goto done;
758 	}
759 
760 	/* Send the 256 bytes of public key information from the firmware
761 	 * as the PKey fragment.
762 	 */
763 	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
764 	if (err < 0) {
765 		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
766 			   err);
767 		goto done;
768 	}
769 
770 	/* Send the 256 bytes of signature information from the firmware
771 	 * as the Sign fragment.
772 	 */
773 	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
774 	if (err < 0) {
775 		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
776 			   err);
777 		goto done;
778 	}
779 
780 	fw_ptr = fw->data + 644;
781 	frag_len = 0;
782 
783 	while (fw_ptr - fw->data < fw->size) {
784 		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
785 
786 		frag_len += sizeof(*cmd) + cmd->plen;
787 
788 		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
789 			   fw->size);
790 
791 		/* The parameter length of the secure send command requires
792 		 * a 4 byte alignment. It happens so that the firmware file
793 		 * contains proper Intel_NOP commands to align the fragments
794 		 * as needed.
795 		 *
796 		 * Send set of commands with 4 byte alignment from the
797 		 * firmware data buffer as a single Data fragement.
798 		 */
799 		if (frag_len % 4)
800 			continue;
801 
802 		/* Send each command from the firmware data buffer as
803 		 * a single Data fragment.
804 		 */
805 		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
806 		if (err < 0) {
807 			bt_dev_err(hdev, "Failed to send firmware data (%d)",
808 				   err);
809 			goto done;
810 		}
811 
812 		fw_ptr += frag_len;
813 		frag_len = 0;
814 	}
815 
816 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
817 
818 	bt_dev_info(hdev, "Waiting for firmware download to complete");
819 
820 	/* Before switching the device into operational mode and with that
821 	 * booting the loaded firmware, wait for the bootloader notification
822 	 * that all fragments have been successfully received.
823 	 *
824 	 * When the event processing receives the notification, then the
825 	 * STATE_DOWNLOADING flag will be cleared.
826 	 *
827 	 * The firmware loading should not take longer than 5 seconds
828 	 * and thus just timeout if that happens and fail the setup
829 	 * of this device.
830 	 */
831 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
832 				  TASK_INTERRUPTIBLE,
833 				  msecs_to_jiffies(5000));
834 	if (err == -EINTR) {
835 		bt_dev_err(hdev, "Firmware loading interrupted");
836 		err = -EINTR;
837 		goto done;
838 	}
839 
840 	if (err) {
841 		bt_dev_err(hdev, "Firmware loading timeout");
842 		err = -ETIMEDOUT;
843 		goto done;
844 	}
845 
846 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
847 		bt_dev_err(hdev, "Firmware loading failed");
848 		err = -ENOEXEC;
849 		goto done;
850 	}
851 
852 	rettime = ktime_get();
853 	delta = ktime_sub(rettime, calltime);
854 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
855 
856 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
857 
858 done:
859 	release_firmware(fw);
860 
861 	if (err < 0)
862 		return err;
863 
864 	/* We need to restore the default speed before Intel reset */
865 	if (speed_change) {
866 		err = intel_set_baudrate(hu, init_speed);
867 		if (err)
868 			return err;
869 	}
870 
871 	calltime = ktime_get();
872 
873 	set_bit(STATE_BOOTING, &intel->flags);
874 
875 	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
876 			     HCI_CMD_TIMEOUT);
877 	if (IS_ERR(skb))
878 		return PTR_ERR(skb);
879 
880 	kfree_skb(skb);
881 
882 	/* The bootloader will not indicate when the device is ready. This
883 	 * is done by the operational firmware sending bootup notification.
884 	 *
885 	 * Booting into operational firmware should not take longer than
886 	 * 1 second. However if that happens, then just fail the setup
887 	 * since something went wrong.
888 	 */
889 	bt_dev_info(hdev, "Waiting for device to boot");
890 
891 	err = intel_wait_booting(hu);
892 	if (err)
893 		return err;
894 
895 	clear_bit(STATE_BOOTING, &intel->flags);
896 
897 	rettime = ktime_get();
898 	delta = ktime_sub(rettime, calltime);
899 	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
900 
901 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
902 
903 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
904 	 * until further LPM TX notification.
905 	 */
906 	mutex_lock(&intel_device_list_lock);
907 	list_for_each(p, &intel_device_list) {
908 		struct intel_device *dev = list_entry(p, struct intel_device,
909 						      list);
910 		if (!hu->tty->dev)
911 			break;
912 		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
913 			if (device_may_wakeup(&dev->pdev->dev)) {
914 				set_bit(STATE_LPM_ENABLED, &intel->flags);
915 				set_bit(STATE_TX_ACTIVE, &intel->flags);
916 			}
917 			break;
918 		}
919 	}
920 	mutex_unlock(&intel_device_list_lock);
921 
922 	/* Ignore errors, device can work without DDC parameters */
923 	btintel_load_ddc_config(hdev, fwname);
924 
925 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
926 	if (IS_ERR(skb))
927 		return PTR_ERR(skb);
928 	kfree_skb(skb);
929 
930 	if (speed_change) {
931 		err = intel_set_baudrate(hu, oper_speed);
932 		if (err)
933 			return err;
934 	}
935 
936 	bt_dev_info(hdev, "Setup complete");
937 
938 	clear_bit(STATE_BOOTLOADER, &intel->flags);
939 
940 	return 0;
941 }
942 
intel_recv_event(struct hci_dev * hdev,struct sk_buff * skb)943 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
944 {
945 	struct hci_uart *hu = hci_get_drvdata(hdev);
946 	struct intel_data *intel = hu->priv;
947 	struct hci_event_hdr *hdr;
948 
949 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
950 	    !test_bit(STATE_BOOTING, &intel->flags))
951 		goto recv;
952 
953 	hdr = (void *)skb->data;
954 
955 	/* When the firmware loading completes the device sends
956 	 * out a vendor specific event indicating the result of
957 	 * the firmware loading.
958 	 */
959 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
960 	    skb->data[2] == 0x06) {
961 		if (skb->data[3] != 0x00)
962 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
963 
964 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
965 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
966 			smp_mb__after_atomic();
967 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
968 		}
969 
970 	/* When switching to the operational firmware the device
971 	 * sends a vendor specific event indicating that the bootup
972 	 * completed.
973 	 */
974 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
975 		   skb->data[2] == 0x02) {
976 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
977 			smp_mb__after_atomic();
978 			wake_up_bit(&intel->flags, STATE_BOOTING);
979 		}
980 	}
981 recv:
982 	return hci_recv_frame(hdev, skb);
983 }
984 
intel_recv_lpm_notify(struct hci_dev * hdev,int value)985 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
986 {
987 	struct hci_uart *hu = hci_get_drvdata(hdev);
988 	struct intel_data *intel = hu->priv;
989 
990 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
991 
992 	if (value) {
993 		set_bit(STATE_TX_ACTIVE, &intel->flags);
994 		schedule_work(&intel->busy_work);
995 	} else {
996 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
997 	}
998 }
999 
intel_recv_lpm(struct hci_dev * hdev,struct sk_buff * skb)1000 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
1001 {
1002 	struct hci_lpm_pkt *lpm = (void *)skb->data;
1003 	struct hci_uart *hu = hci_get_drvdata(hdev);
1004 	struct intel_data *intel = hu->priv;
1005 
1006 	switch (lpm->opcode) {
1007 	case LPM_OP_TX_NOTIFY:
1008 		if (lpm->dlen < 1) {
1009 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1010 			break;
1011 		}
1012 		intel_recv_lpm_notify(hdev, lpm->data[0]);
1013 		break;
1014 	case LPM_OP_SUSPEND_ACK:
1015 		set_bit(STATE_SUSPENDED, &intel->flags);
1016 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1017 			smp_mb__after_atomic();
1018 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1019 		}
1020 		break;
1021 	case LPM_OP_RESUME_ACK:
1022 		clear_bit(STATE_SUSPENDED, &intel->flags);
1023 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1024 			smp_mb__after_atomic();
1025 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1026 		}
1027 		break;
1028 	default:
1029 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1030 		break;
1031 	}
1032 
1033 	kfree_skb(skb);
1034 
1035 	return 0;
1036 }
1037 
1038 #define INTEL_RECV_LPM \
1039 	.type = HCI_LPM_PKT, \
1040 	.hlen = HCI_LPM_HDR_SIZE, \
1041 	.loff = 1, \
1042 	.lsize = 1, \
1043 	.maxlen = HCI_LPM_MAX_SIZE
1044 
1045 static const struct h4_recv_pkt intel_recv_pkts[] = {
1046 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1047 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1048 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1049 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1050 };
1051 
intel_recv(struct hci_uart * hu,const void * data,int count)1052 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1053 {
1054 	struct intel_data *intel = hu->priv;
1055 
1056 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1057 		return -EUNATCH;
1058 
1059 	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1060 				    intel_recv_pkts,
1061 				    ARRAY_SIZE(intel_recv_pkts));
1062 	if (IS_ERR(intel->rx_skb)) {
1063 		int err = PTR_ERR(intel->rx_skb);
1064 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1065 		intel->rx_skb = NULL;
1066 		return err;
1067 	}
1068 
1069 	return count;
1070 }
1071 
intel_enqueue(struct hci_uart * hu,struct sk_buff * skb)1072 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1073 {
1074 	struct intel_data *intel = hu->priv;
1075 	struct list_head *p;
1076 
1077 	BT_DBG("hu %p skb %p", hu, skb);
1078 
1079 	if (!hu->tty->dev)
1080 		goto out_enqueue;
1081 
1082 	/* Be sure our controller is resumed and potential LPM transaction
1083 	 * completed before enqueuing any packet.
1084 	 */
1085 	mutex_lock(&intel_device_list_lock);
1086 	list_for_each(p, &intel_device_list) {
1087 		struct intel_device *idev = list_entry(p, struct intel_device,
1088 						       list);
1089 
1090 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1091 			pm_runtime_get_sync(&idev->pdev->dev);
1092 			pm_runtime_mark_last_busy(&idev->pdev->dev);
1093 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1094 			break;
1095 		}
1096 	}
1097 	mutex_unlock(&intel_device_list_lock);
1098 out_enqueue:
1099 	skb_queue_tail(&intel->txq, skb);
1100 
1101 	return 0;
1102 }
1103 
intel_dequeue(struct hci_uart * hu)1104 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1105 {
1106 	struct intel_data *intel = hu->priv;
1107 	struct sk_buff *skb;
1108 
1109 	skb = skb_dequeue(&intel->txq);
1110 	if (!skb)
1111 		return skb;
1112 
1113 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1114 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1115 		struct hci_command_hdr *cmd = (void *)skb->data;
1116 		__u16 opcode = le16_to_cpu(cmd->opcode);
1117 
1118 		/* When the 0xfc01 command is issued to boot into
1119 		 * the operational firmware, it will actually not
1120 		 * send a command complete event. To keep the flow
1121 		 * control working inject that event here.
1122 		 */
1123 		if (opcode == 0xfc01)
1124 			inject_cmd_complete(hu->hdev, opcode);
1125 	}
1126 
1127 	/* Prepend skb with frame type */
1128 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1129 
1130 	return skb;
1131 }
1132 
1133 static const struct hci_uart_proto intel_proto = {
1134 	.id		= HCI_UART_INTEL,
1135 	.name		= "Intel",
1136 	.manufacturer	= 2,
1137 	.init_speed	= 115200,
1138 	.oper_speed	= 3000000,
1139 	.open		= intel_open,
1140 	.close		= intel_close,
1141 	.flush		= intel_flush,
1142 	.setup		= intel_setup,
1143 	.set_baudrate	= intel_set_baudrate,
1144 	.recv		= intel_recv,
1145 	.enqueue	= intel_enqueue,
1146 	.dequeue	= intel_dequeue,
1147 };
1148 
1149 #ifdef CONFIG_ACPI
1150 static const struct acpi_device_id intel_acpi_match[] = {
1151 	{ "INT33E1", 0 },
1152 	{ },
1153 };
1154 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1155 #endif
1156 
1157 #ifdef CONFIG_PM
intel_suspend_device(struct device * dev)1158 static int intel_suspend_device(struct device *dev)
1159 {
1160 	struct intel_device *idev = dev_get_drvdata(dev);
1161 
1162 	mutex_lock(&idev->hu_lock);
1163 	if (idev->hu)
1164 		intel_lpm_suspend(idev->hu);
1165 	mutex_unlock(&idev->hu_lock);
1166 
1167 	return 0;
1168 }
1169 
intel_resume_device(struct device * dev)1170 static int intel_resume_device(struct device *dev)
1171 {
1172 	struct intel_device *idev = dev_get_drvdata(dev);
1173 
1174 	mutex_lock(&idev->hu_lock);
1175 	if (idev->hu)
1176 		intel_lpm_resume(idev->hu);
1177 	mutex_unlock(&idev->hu_lock);
1178 
1179 	return 0;
1180 }
1181 #endif
1182 
1183 #ifdef CONFIG_PM_SLEEP
intel_suspend(struct device * dev)1184 static int intel_suspend(struct device *dev)
1185 {
1186 	struct intel_device *idev = dev_get_drvdata(dev);
1187 
1188 	if (device_may_wakeup(dev))
1189 		enable_irq_wake(idev->irq);
1190 
1191 	return intel_suspend_device(dev);
1192 }
1193 
intel_resume(struct device * dev)1194 static int intel_resume(struct device *dev)
1195 {
1196 	struct intel_device *idev = dev_get_drvdata(dev);
1197 
1198 	if (device_may_wakeup(dev))
1199 		disable_irq_wake(idev->irq);
1200 
1201 	return intel_resume_device(dev);
1202 }
1203 #endif
1204 
1205 static const struct dev_pm_ops intel_pm_ops = {
1206 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1207 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1208 };
1209 
1210 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1211 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1212 
1213 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1214 	{ "reset-gpios", &reset_gpios, 1 },
1215 	{ "host-wake-gpios", &host_wake_gpios, 1 },
1216 	{ },
1217 };
1218 
intel_probe(struct platform_device * pdev)1219 static int intel_probe(struct platform_device *pdev)
1220 {
1221 	struct intel_device *idev;
1222 	int ret;
1223 
1224 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1225 	if (!idev)
1226 		return -ENOMEM;
1227 
1228 	mutex_init(&idev->hu_lock);
1229 
1230 	idev->pdev = pdev;
1231 
1232 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1233 	if (ret)
1234 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1235 
1236 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1237 	if (IS_ERR(idev->reset)) {
1238 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1239 		return PTR_ERR(idev->reset);
1240 	}
1241 
1242 	idev->irq = platform_get_irq(pdev, 0);
1243 	if (idev->irq < 0) {
1244 		struct gpio_desc *host_wake;
1245 
1246 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1247 
1248 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1249 		if (IS_ERR(host_wake)) {
1250 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1251 			goto no_irq;
1252 		}
1253 
1254 		idev->irq = gpiod_to_irq(host_wake);
1255 		if (idev->irq < 0) {
1256 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1257 			goto no_irq;
1258 		}
1259 	}
1260 
1261 	/* Only enable wake-up/irq when controller is powered */
1262 	device_set_wakeup_capable(&pdev->dev, true);
1263 	device_wakeup_disable(&pdev->dev);
1264 
1265 no_irq:
1266 	platform_set_drvdata(pdev, idev);
1267 
1268 	/* Place this instance on the device list */
1269 	mutex_lock(&intel_device_list_lock);
1270 	list_add_tail(&idev->list, &intel_device_list);
1271 	mutex_unlock(&intel_device_list_lock);
1272 
1273 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1274 		 desc_to_gpio(idev->reset), idev->irq);
1275 
1276 	return 0;
1277 }
1278 
intel_remove(struct platform_device * pdev)1279 static int intel_remove(struct platform_device *pdev)
1280 {
1281 	struct intel_device *idev = platform_get_drvdata(pdev);
1282 
1283 	device_wakeup_disable(&pdev->dev);
1284 
1285 	mutex_lock(&intel_device_list_lock);
1286 	list_del(&idev->list);
1287 	mutex_unlock(&intel_device_list_lock);
1288 
1289 	dev_info(&pdev->dev, "unregistered.\n");
1290 
1291 	return 0;
1292 }
1293 
1294 static struct platform_driver intel_driver = {
1295 	.probe = intel_probe,
1296 	.remove = intel_remove,
1297 	.driver = {
1298 		.name = "hci_intel",
1299 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1300 		.pm = &intel_pm_ops,
1301 	},
1302 };
1303 
intel_init(void)1304 int __init intel_init(void)
1305 {
1306 	platform_driver_register(&intel_driver);
1307 
1308 	return hci_uart_register_proto(&intel_proto);
1309 }
1310 
intel_deinit(void)1311 int __exit intel_deinit(void)
1312 {
1313 	platform_driver_unregister(&intel_driver);
1314 
1315 	return hci_uart_unregister_proto(&intel_proto);
1316 }
1317