1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
__intel_breadcrumbs_wakeup(struct intel_breadcrumbs * b)30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31 {
32 struct intel_wait *wait;
33 unsigned int result = 0;
34
35 lockdep_assert_held(&b->irq_lock);
36
37 wait = b->irq_wait;
38 if (wait) {
39 result = ENGINE_WAKEUP_WAITER;
40 if (wake_up_process(wait->tsk))
41 result |= ENGINE_WAKEUP_ASLEEP;
42 }
43
44 return result;
45 }
46
intel_engine_wakeup(struct intel_engine_cs * engine)47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
48 {
49 struct intel_breadcrumbs *b = &engine->breadcrumbs;
50 unsigned long flags;
51 unsigned int result;
52
53 spin_lock_irqsave(&b->irq_lock, flags);
54 result = __intel_breadcrumbs_wakeup(b);
55 spin_unlock_irqrestore(&b->irq_lock, flags);
56
57 return result;
58 }
59
wait_timeout(void)60 static unsigned long wait_timeout(void)
61 {
62 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
63 }
64
missed_breadcrumb(struct intel_engine_cs * engine)65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
66 {
67 DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s, current seqno=%x, last=%x\n",
68 engine->name, __builtin_return_address(0),
69 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70 &engine->irq_posted)),
71 intel_engine_get_seqno(engine),
72 intel_engine_last_submit(engine));
73
74 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
75 }
76
intel_breadcrumbs_hangcheck(unsigned long data)77 static void intel_breadcrumbs_hangcheck(unsigned long data)
78 {
79 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
80 struct intel_breadcrumbs *b = &engine->breadcrumbs;
81
82 if (!b->irq_armed)
83 return;
84
85 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
86 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
87 mod_timer(&b->hangcheck, wait_timeout());
88 return;
89 }
90
91 /* We keep the hangcheck timer alive until we disarm the irq, even
92 * if there are no waiters at present.
93 *
94 * If the waiter was currently running, assume it hasn't had a chance
95 * to process the pending interrupt (e.g, low priority task on a loaded
96 * system) and wait until it sleeps before declaring a missed interrupt.
97 *
98 * If the waiter was asleep (and not even pending a wakeup), then we
99 * must have missed an interrupt as the GPU has stopped advancing
100 * but we still have a waiter. Assuming all batches complete within
101 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
102 */
103 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
104 missed_breadcrumb(engine);
105 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
106 } else {
107 mod_timer(&b->hangcheck, wait_timeout());
108 }
109 }
110
intel_breadcrumbs_fake_irq(unsigned long data)111 static void intel_breadcrumbs_fake_irq(unsigned long data)
112 {
113 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
114 struct intel_breadcrumbs *b = &engine->breadcrumbs;
115
116 /* The timer persists in case we cannot enable interrupts,
117 * or if we have previously seen seqno/interrupt incoherency
118 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
119 * Here the worker will wake up every jiffie in order to kick the
120 * oldest waiter to do the coherent seqno check.
121 */
122
123 spin_lock_irq(&b->irq_lock);
124 if (!__intel_breadcrumbs_wakeup(b))
125 __intel_engine_disarm_breadcrumbs(engine);
126 spin_unlock_irq(&b->irq_lock);
127 if (!b->irq_armed)
128 return;
129
130 mod_timer(&b->fake_irq, jiffies + 1);
131
132 /* Ensure that even if the GPU hangs, we get woken up.
133 *
134 * However, note that if no one is waiting, we never notice
135 * a gpu hang. Eventually, we will have to wait for a resource
136 * held by the GPU and so trigger a hangcheck. In the most
137 * pathological case, this will be upon memory starvation! To
138 * prevent this, we also queue the hangcheck from the retire
139 * worker.
140 */
141 i915_queue_hangcheck(engine->i915);
142 }
143
irq_enable(struct intel_engine_cs * engine)144 static void irq_enable(struct intel_engine_cs *engine)
145 {
146 /* Enabling the IRQ may miss the generation of the interrupt, but
147 * we still need to force the barrier before reading the seqno,
148 * just in case.
149 */
150 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
151
152 /* Caller disables interrupts */
153 spin_lock(&engine->i915->irq_lock);
154 engine->irq_enable(engine);
155 spin_unlock(&engine->i915->irq_lock);
156 }
157
irq_disable(struct intel_engine_cs * engine)158 static void irq_disable(struct intel_engine_cs *engine)
159 {
160 /* Caller disables interrupts */
161 spin_lock(&engine->i915->irq_lock);
162 engine->irq_disable(engine);
163 spin_unlock(&engine->i915->irq_lock);
164 }
165
__intel_engine_disarm_breadcrumbs(struct intel_engine_cs * engine)166 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
167 {
168 struct intel_breadcrumbs *b = &engine->breadcrumbs;
169
170 lockdep_assert_held(&b->irq_lock);
171 GEM_BUG_ON(b->irq_wait);
172
173 if (b->irq_enabled) {
174 irq_disable(engine);
175 b->irq_enabled = false;
176 }
177
178 b->irq_armed = false;
179 }
180
intel_engine_disarm_breadcrumbs(struct intel_engine_cs * engine)181 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
182 {
183 struct intel_breadcrumbs *b = &engine->breadcrumbs;
184 struct intel_wait *wait, *n, *first;
185
186 if (!b->irq_armed)
187 return;
188
189 /* We only disarm the irq when we are idle (all requests completed),
190 * so if the bottom-half remains asleep, it missed the request
191 * completion.
192 */
193
194 spin_lock_irq(&b->rb_lock);
195
196 spin_lock(&b->irq_lock);
197 first = fetch_and_zero(&b->irq_wait);
198 __intel_engine_disarm_breadcrumbs(engine);
199 spin_unlock(&b->irq_lock);
200
201 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
202 RB_CLEAR_NODE(&wait->node);
203 if (wake_up_process(wait->tsk) && wait == first)
204 missed_breadcrumb(engine);
205 }
206 b->waiters = RB_ROOT;
207
208 spin_unlock_irq(&b->rb_lock);
209 }
210
use_fake_irq(const struct intel_breadcrumbs * b)211 static bool use_fake_irq(const struct intel_breadcrumbs *b)
212 {
213 const struct intel_engine_cs *engine =
214 container_of(b, struct intel_engine_cs, breadcrumbs);
215
216 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
217 return false;
218
219 /* Only start with the heavy weight fake irq timer if we have not
220 * seen any interrupts since enabling it the first time. If the
221 * interrupts are still arriving, it means we made a mistake in our
222 * engine->seqno_barrier(), a timing error that should be transient
223 * and unlikely to reoccur.
224 */
225 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
226 }
227
enable_fake_irq(struct intel_breadcrumbs * b)228 static void enable_fake_irq(struct intel_breadcrumbs *b)
229 {
230 /* Ensure we never sleep indefinitely */
231 if (!b->irq_enabled || use_fake_irq(b))
232 mod_timer(&b->fake_irq, jiffies + 1);
233 else
234 mod_timer(&b->hangcheck, wait_timeout());
235 }
236
__intel_breadcrumbs_enable_irq(struct intel_breadcrumbs * b)237 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
238 {
239 struct intel_engine_cs *engine =
240 container_of(b, struct intel_engine_cs, breadcrumbs);
241 struct drm_i915_private *i915 = engine->i915;
242
243 lockdep_assert_held(&b->irq_lock);
244 if (b->irq_armed)
245 return false;
246
247 /* The breadcrumb irq will be disarmed on the interrupt after the
248 * waiters are signaled. This gives us a single interrupt window in
249 * which we can add a new waiter and avoid the cost of re-enabling
250 * the irq.
251 */
252 b->irq_armed = true;
253 GEM_BUG_ON(b->irq_enabled);
254
255 if (I915_SELFTEST_ONLY(b->mock)) {
256 /* For our mock objects we want to avoid interaction
257 * with the real hardware (which is not set up). So
258 * we simply pretend we have enabled the powerwell
259 * and the irq, and leave it up to the mock
260 * implementation to call intel_engine_wakeup()
261 * itself when it wants to simulate a user interrupt,
262 */
263 return true;
264 }
265
266 /* Since we are waiting on a request, the GPU should be busy
267 * and should have its own rpm reference. This is tracked
268 * by i915->gt.awake, we can forgo holding our own wakref
269 * for the interrupt as before i915->gt.awake is released (when
270 * the driver is idle) we disarm the breadcrumbs.
271 */
272
273 /* No interrupts? Kick the waiter every jiffie! */
274 if (intel_irqs_enabled(i915)) {
275 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
276 irq_enable(engine);
277 b->irq_enabled = true;
278 }
279
280 enable_fake_irq(b);
281 return true;
282 }
283
to_wait(struct rb_node * node)284 static inline struct intel_wait *to_wait(struct rb_node *node)
285 {
286 return rb_entry(node, struct intel_wait, node);
287 }
288
__intel_breadcrumbs_finish(struct intel_breadcrumbs * b,struct intel_wait * wait)289 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
290 struct intel_wait *wait)
291 {
292 lockdep_assert_held(&b->rb_lock);
293 GEM_BUG_ON(b->irq_wait == wait);
294
295 /* This request is completed, so remove it from the tree, mark it as
296 * complete, and *then* wake up the associated task. N.B. when the
297 * task wakes up, it will find the empty rb_node, discern that it
298 * has already been removed from the tree and skip the serialisation
299 * of the b->rb_lock and b->irq_lock. This means that the destruction
300 * of the intel_wait is not serialised with the interrupt handler
301 * by the waiter - it must instead be serialised by the caller.
302 */
303 rb_erase(&wait->node, &b->waiters);
304 RB_CLEAR_NODE(&wait->node);
305
306 wake_up_process(wait->tsk); /* implicit smp_wmb() */
307 }
308
__intel_breadcrumbs_next(struct intel_engine_cs * engine,struct rb_node * next)309 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
310 struct rb_node *next)
311 {
312 struct intel_breadcrumbs *b = &engine->breadcrumbs;
313
314 spin_lock(&b->irq_lock);
315 GEM_BUG_ON(!b->irq_armed);
316 GEM_BUG_ON(!b->irq_wait);
317 b->irq_wait = to_wait(next);
318 spin_unlock(&b->irq_lock);
319
320 /* We always wake up the next waiter that takes over as the bottom-half
321 * as we may delegate not only the irq-seqno barrier to the next waiter
322 * but also the task of waking up concurrent waiters.
323 */
324 if (next)
325 wake_up_process(to_wait(next)->tsk);
326 }
327
__intel_engine_add_wait(struct intel_engine_cs * engine,struct intel_wait * wait)328 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
329 struct intel_wait *wait)
330 {
331 struct intel_breadcrumbs *b = &engine->breadcrumbs;
332 struct rb_node **p, *parent, *completed;
333 bool first, armed;
334 u32 seqno;
335
336 /* Insert the request into the retirement ordered list
337 * of waiters by walking the rbtree. If we are the oldest
338 * seqno in the tree (the first to be retired), then
339 * set ourselves as the bottom-half.
340 *
341 * As we descend the tree, prune completed branches since we hold the
342 * spinlock we know that the first_waiter must be delayed and can
343 * reduce some of the sequential wake up latency if we take action
344 * ourselves and wake up the completed tasks in parallel. Also, by
345 * removing stale elements in the tree, we may be able to reduce the
346 * ping-pong between the old bottom-half and ourselves as first-waiter.
347 */
348 armed = false;
349 first = true;
350 parent = NULL;
351 completed = NULL;
352 seqno = intel_engine_get_seqno(engine);
353
354 /* If the request completed before we managed to grab the spinlock,
355 * return now before adding ourselves to the rbtree. We let the
356 * current bottom-half handle any pending wakeups and instead
357 * try and get out of the way quickly.
358 */
359 if (i915_seqno_passed(seqno, wait->seqno)) {
360 RB_CLEAR_NODE(&wait->node);
361 return first;
362 }
363
364 p = &b->waiters.rb_node;
365 while (*p) {
366 parent = *p;
367 if (wait->seqno == to_wait(parent)->seqno) {
368 /* We have multiple waiters on the same seqno, select
369 * the highest priority task (that with the smallest
370 * task->prio) to serve as the bottom-half for this
371 * group.
372 */
373 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
374 p = &parent->rb_right;
375 first = false;
376 } else {
377 p = &parent->rb_left;
378 }
379 } else if (i915_seqno_passed(wait->seqno,
380 to_wait(parent)->seqno)) {
381 p = &parent->rb_right;
382 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
383 completed = parent;
384 else
385 first = false;
386 } else {
387 p = &parent->rb_left;
388 }
389 }
390 rb_link_node(&wait->node, parent, p);
391 rb_insert_color(&wait->node, &b->waiters);
392
393 if (first) {
394 spin_lock(&b->irq_lock);
395 b->irq_wait = wait;
396 /* After assigning ourselves as the new bottom-half, we must
397 * perform a cursory check to prevent a missed interrupt.
398 * Either we miss the interrupt whilst programming the hardware,
399 * or if there was a previous waiter (for a later seqno) they
400 * may be woken instead of us (due to the inherent race
401 * in the unlocked read of b->irq_seqno_bh in the irq handler)
402 * and so we miss the wake up.
403 */
404 armed = __intel_breadcrumbs_enable_irq(b);
405 spin_unlock(&b->irq_lock);
406 }
407
408 if (completed) {
409 /* Advance the bottom-half (b->irq_wait) before we wake up
410 * the waiters who may scribble over their intel_wait
411 * just as the interrupt handler is dereferencing it via
412 * b->irq_wait.
413 */
414 if (!first) {
415 struct rb_node *next = rb_next(completed);
416 GEM_BUG_ON(next == &wait->node);
417 __intel_breadcrumbs_next(engine, next);
418 }
419
420 do {
421 struct intel_wait *crumb = to_wait(completed);
422 completed = rb_prev(completed);
423 __intel_breadcrumbs_finish(b, crumb);
424 } while (completed);
425 }
426
427 GEM_BUG_ON(!b->irq_wait);
428 GEM_BUG_ON(!b->irq_armed);
429 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
430
431 return armed;
432 }
433
intel_engine_add_wait(struct intel_engine_cs * engine,struct intel_wait * wait)434 bool intel_engine_add_wait(struct intel_engine_cs *engine,
435 struct intel_wait *wait)
436 {
437 struct intel_breadcrumbs *b = &engine->breadcrumbs;
438 bool armed;
439
440 spin_lock_irq(&b->rb_lock);
441 armed = __intel_engine_add_wait(engine, wait);
442 spin_unlock_irq(&b->rb_lock);
443 if (armed)
444 return armed;
445
446 /* Make the caller recheck if its request has already started. */
447 return i915_seqno_passed(intel_engine_get_seqno(engine),
448 wait->seqno - 1);
449 }
450
chain_wakeup(struct rb_node * rb,int priority)451 static inline bool chain_wakeup(struct rb_node *rb, int priority)
452 {
453 return rb && to_wait(rb)->tsk->prio <= priority;
454 }
455
wakeup_priority(struct intel_breadcrumbs * b,struct task_struct * tsk)456 static inline int wakeup_priority(struct intel_breadcrumbs *b,
457 struct task_struct *tsk)
458 {
459 if (tsk == b->signaler)
460 return INT_MIN;
461 else
462 return tsk->prio;
463 }
464
__intel_engine_remove_wait(struct intel_engine_cs * engine,struct intel_wait * wait)465 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
466 struct intel_wait *wait)
467 {
468 struct intel_breadcrumbs *b = &engine->breadcrumbs;
469
470 lockdep_assert_held(&b->rb_lock);
471
472 if (RB_EMPTY_NODE(&wait->node))
473 goto out;
474
475 if (b->irq_wait == wait) {
476 const int priority = wakeup_priority(b, wait->tsk);
477 struct rb_node *next;
478
479 /* We are the current bottom-half. Find the next candidate,
480 * the first waiter in the queue on the remaining oldest
481 * request. As multiple seqnos may complete in the time it
482 * takes us to wake up and find the next waiter, we have to
483 * wake up that waiter for it to perform its own coherent
484 * completion check.
485 */
486 next = rb_next(&wait->node);
487 if (chain_wakeup(next, priority)) {
488 /* If the next waiter is already complete,
489 * wake it up and continue onto the next waiter. So
490 * if have a small herd, they will wake up in parallel
491 * rather than sequentially, which should reduce
492 * the overall latency in waking all the completed
493 * clients.
494 *
495 * However, waking up a chain adds extra latency to
496 * the first_waiter. This is undesirable if that
497 * waiter is a high priority task.
498 */
499 u32 seqno = intel_engine_get_seqno(engine);
500
501 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
502 struct rb_node *n = rb_next(next);
503
504 __intel_breadcrumbs_finish(b, to_wait(next));
505 next = n;
506 if (!chain_wakeup(next, priority))
507 break;
508 }
509 }
510
511 __intel_breadcrumbs_next(engine, next);
512 } else {
513 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
514 }
515
516 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
517 rb_erase(&wait->node, &b->waiters);
518
519 out:
520 GEM_BUG_ON(b->irq_wait == wait);
521 GEM_BUG_ON(rb_first(&b->waiters) !=
522 (b->irq_wait ? &b->irq_wait->node : NULL));
523 }
524
intel_engine_remove_wait(struct intel_engine_cs * engine,struct intel_wait * wait)525 void intel_engine_remove_wait(struct intel_engine_cs *engine,
526 struct intel_wait *wait)
527 {
528 struct intel_breadcrumbs *b = &engine->breadcrumbs;
529
530 /* Quick check to see if this waiter was already decoupled from
531 * the tree by the bottom-half to avoid contention on the spinlock
532 * by the herd.
533 */
534 if (RB_EMPTY_NODE(&wait->node)) {
535 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
536 return;
537 }
538
539 spin_lock_irq(&b->rb_lock);
540 __intel_engine_remove_wait(engine, wait);
541 spin_unlock_irq(&b->rb_lock);
542 }
543
signal_complete(const struct drm_i915_gem_request * request)544 static bool signal_complete(const struct drm_i915_gem_request *request)
545 {
546 if (!request)
547 return false;
548
549 /*
550 * Carefully check if the request is complete, giving time for the
551 * seqno to be visible or if the GPU hung.
552 */
553 return __i915_request_irq_complete(request);
554 }
555
to_signaler(struct rb_node * rb)556 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
557 {
558 return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
559 }
560
signaler_set_rtpriority(void)561 static void signaler_set_rtpriority(void)
562 {
563 struct sched_param param = { .sched_priority = 1 };
564
565 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
566 }
567
intel_breadcrumbs_signaler(void * arg)568 static int intel_breadcrumbs_signaler(void *arg)
569 {
570 struct intel_engine_cs *engine = arg;
571 struct intel_breadcrumbs *b = &engine->breadcrumbs;
572 struct drm_i915_gem_request *request;
573
574 /* Install ourselves with high priority to reduce signalling latency */
575 signaler_set_rtpriority();
576
577 do {
578 bool do_schedule = true;
579
580 set_current_state(TASK_INTERRUPTIBLE);
581
582 /* We are either woken up by the interrupt bottom-half,
583 * or by a client adding a new signaller. In both cases,
584 * the GPU seqno may have advanced beyond our oldest signal.
585 * If it has, propagate the signal, remove the waiter and
586 * check again with the next oldest signal. Otherwise we
587 * need to wait for a new interrupt from the GPU or for
588 * a new client.
589 */
590 rcu_read_lock();
591 request = rcu_dereference(b->first_signal);
592 if (request)
593 request = i915_gem_request_get_rcu(request);
594 rcu_read_unlock();
595 if (signal_complete(request)) {
596 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
597 &request->fence.flags)) {
598 local_bh_disable();
599 dma_fence_signal(&request->fence);
600 GEM_BUG_ON(!i915_gem_request_completed(request));
601 local_bh_enable(); /* kick start the tasklets */
602 }
603
604 spin_lock_irq(&b->rb_lock);
605
606 /* Wake up all other completed waiters and select the
607 * next bottom-half for the next user interrupt.
608 */
609 __intel_engine_remove_wait(engine,
610 &request->signaling.wait);
611
612 /* Find the next oldest signal. Note that as we have
613 * not been holding the lock, another client may
614 * have installed an even older signal than the one
615 * we just completed - so double check we are still
616 * the oldest before picking the next one.
617 */
618 if (request == rcu_access_pointer(b->first_signal)) {
619 struct rb_node *rb =
620 rb_next(&request->signaling.node);
621 rcu_assign_pointer(b->first_signal,
622 rb ? to_signaler(rb) : NULL);
623 }
624 rb_erase(&request->signaling.node, &b->signals);
625 RB_CLEAR_NODE(&request->signaling.node);
626
627 spin_unlock_irq(&b->rb_lock);
628
629 i915_gem_request_put(request);
630
631 /* If the engine is saturated we may be continually
632 * processing completed requests. This angers the
633 * NMI watchdog if we never let anything else
634 * have access to the CPU. Let's pretend to be nice
635 * and relinquish the CPU if we burn through the
636 * entire RT timeslice!
637 */
638 do_schedule = need_resched();
639 }
640
641 if (unlikely(do_schedule)) {
642 DEFINE_WAIT(exec);
643
644 if (kthread_should_park())
645 kthread_parkme();
646
647 if (kthread_should_stop()) {
648 GEM_BUG_ON(request);
649 break;
650 }
651
652 if (request)
653 add_wait_queue(&request->execute, &exec);
654
655 schedule();
656
657 if (request)
658 remove_wait_queue(&request->execute, &exec);
659 }
660 i915_gem_request_put(request);
661 } while (1);
662 __set_current_state(TASK_RUNNING);
663
664 return 0;
665 }
666
intel_engine_enable_signaling(struct drm_i915_gem_request * request,bool wakeup)667 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
668 bool wakeup)
669 {
670 struct intel_engine_cs *engine = request->engine;
671 struct intel_breadcrumbs *b = &engine->breadcrumbs;
672 u32 seqno;
673
674 /* Note that we may be called from an interrupt handler on another
675 * device (e.g. nouveau signaling a fence completion causing us
676 * to submit a request, and so enable signaling). As such,
677 * we need to make sure that all other users of b->rb_lock protect
678 * against interrupts, i.e. use spin_lock_irqsave.
679 */
680
681 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
682 GEM_BUG_ON(!irqs_disabled());
683 lockdep_assert_held(&request->lock);
684
685 seqno = i915_gem_request_global_seqno(request);
686 if (!seqno)
687 return;
688
689 request->signaling.wait.tsk = b->signaler;
690 request->signaling.wait.request = request;
691 request->signaling.wait.seqno = seqno;
692 i915_gem_request_get(request);
693
694 spin_lock(&b->rb_lock);
695
696 /* First add ourselves into the list of waiters, but register our
697 * bottom-half as the signaller thread. As per usual, only the oldest
698 * waiter (not just signaller) is tasked as the bottom-half waking
699 * up all completed waiters after the user interrupt.
700 *
701 * If we are the oldest waiter, enable the irq (after which we
702 * must double check that the seqno did not complete).
703 */
704 wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
705
706 if (!__i915_gem_request_completed(request, seqno)) {
707 struct rb_node *parent, **p;
708 bool first;
709
710 /* Now insert ourselves into the retirement ordered list of
711 * signals on this engine. We track the oldest seqno as that
712 * will be the first signal to complete.
713 */
714 parent = NULL;
715 first = true;
716 p = &b->signals.rb_node;
717 while (*p) {
718 parent = *p;
719 if (i915_seqno_passed(seqno,
720 to_signaler(parent)->signaling.wait.seqno)) {
721 p = &parent->rb_right;
722 first = false;
723 } else {
724 p = &parent->rb_left;
725 }
726 }
727 rb_link_node(&request->signaling.node, parent, p);
728 rb_insert_color(&request->signaling.node, &b->signals);
729 if (first)
730 rcu_assign_pointer(b->first_signal, request);
731 } else {
732 __intel_engine_remove_wait(engine, &request->signaling.wait);
733 i915_gem_request_put(request);
734 wakeup = false;
735 }
736
737 spin_unlock(&b->rb_lock);
738
739 if (wakeup)
740 wake_up_process(b->signaler);
741 }
742
intel_engine_cancel_signaling(struct drm_i915_gem_request * request)743 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
744 {
745 struct intel_engine_cs *engine = request->engine;
746 struct intel_breadcrumbs *b = &engine->breadcrumbs;
747
748 GEM_BUG_ON(!irqs_disabled());
749 lockdep_assert_held(&request->lock);
750 GEM_BUG_ON(!request->signaling.wait.seqno);
751
752 spin_lock(&b->rb_lock);
753
754 if (!RB_EMPTY_NODE(&request->signaling.node)) {
755 if (request == rcu_access_pointer(b->first_signal)) {
756 struct rb_node *rb =
757 rb_next(&request->signaling.node);
758 rcu_assign_pointer(b->first_signal,
759 rb ? to_signaler(rb) : NULL);
760 }
761 rb_erase(&request->signaling.node, &b->signals);
762 RB_CLEAR_NODE(&request->signaling.node);
763 i915_gem_request_put(request);
764 }
765
766 __intel_engine_remove_wait(engine, &request->signaling.wait);
767
768 spin_unlock(&b->rb_lock);
769
770 request->signaling.wait.seqno = 0;
771 }
772
intel_engine_init_breadcrumbs(struct intel_engine_cs * engine)773 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
774 {
775 struct intel_breadcrumbs *b = &engine->breadcrumbs;
776 struct task_struct *tsk;
777
778 spin_lock_init(&b->rb_lock);
779 spin_lock_init(&b->irq_lock);
780
781 setup_timer(&b->fake_irq,
782 intel_breadcrumbs_fake_irq,
783 (unsigned long)engine);
784 setup_timer(&b->hangcheck,
785 intel_breadcrumbs_hangcheck,
786 (unsigned long)engine);
787
788 /* Spawn a thread to provide a common bottom-half for all signals.
789 * As this is an asynchronous interface we cannot steal the current
790 * task for handling the bottom-half to the user interrupt, therefore
791 * we create a thread to do the coherent seqno dance after the
792 * interrupt and then signal the waitqueue (via the dma-buf/fence).
793 */
794 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
795 "i915/signal:%d", engine->id);
796 if (IS_ERR(tsk))
797 return PTR_ERR(tsk);
798
799 b->signaler = tsk;
800
801 return 0;
802 }
803
cancel_fake_irq(struct intel_engine_cs * engine)804 static void cancel_fake_irq(struct intel_engine_cs *engine)
805 {
806 struct intel_breadcrumbs *b = &engine->breadcrumbs;
807
808 del_timer_sync(&b->hangcheck);
809 del_timer_sync(&b->fake_irq);
810 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
811 }
812
intel_engine_reset_breadcrumbs(struct intel_engine_cs * engine)813 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
814 {
815 struct intel_breadcrumbs *b = &engine->breadcrumbs;
816
817 cancel_fake_irq(engine);
818 spin_lock_irq(&b->irq_lock);
819
820 if (b->irq_enabled)
821 irq_enable(engine);
822 else
823 irq_disable(engine);
824
825 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
826 * GPU is active and may have already executed the MI_USER_INTERRUPT
827 * before the CPU is ready to receive. However, the engine is currently
828 * idle (we haven't started it yet), there is no possibility for a
829 * missed interrupt as we enabled the irq and so we can clear the
830 * immediate wakeup (until a real interrupt arrives for the waiter).
831 */
832 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
833
834 if (b->irq_armed)
835 enable_fake_irq(b);
836
837 spin_unlock_irq(&b->irq_lock);
838 }
839
intel_engine_fini_breadcrumbs(struct intel_engine_cs * engine)840 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
841 {
842 struct intel_breadcrumbs *b = &engine->breadcrumbs;
843
844 /* The engines should be idle and all requests accounted for! */
845 WARN_ON(READ_ONCE(b->irq_wait));
846 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
847 WARN_ON(rcu_access_pointer(b->first_signal));
848 WARN_ON(!RB_EMPTY_ROOT(&b->signals));
849
850 if (!IS_ERR_OR_NULL(b->signaler))
851 kthread_stop(b->signaler);
852
853 cancel_fake_irq(engine);
854 }
855
intel_breadcrumbs_busy(struct intel_engine_cs * engine)856 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
857 {
858 struct intel_breadcrumbs *b = &engine->breadcrumbs;
859 bool busy = false;
860
861 spin_lock_irq(&b->rb_lock);
862
863 if (b->irq_wait) {
864 wake_up_process(b->irq_wait->tsk);
865 busy = true;
866 }
867
868 if (rcu_access_pointer(b->first_signal)) {
869 wake_up_process(b->signaler);
870 busy = true;
871 }
872
873 spin_unlock_irq(&b->rb_lock);
874
875 return busy;
876 }
877
878 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
879 #include "selftests/intel_breadcrumbs.c"
880 #endif
881